Sample records for distribution function measured

  1. Studies of the Intrinsic Complexities of Magnetotail Ion Distributions: Theory and Observations

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha

    1998-01-01

    This year we have studied the relationship between the structure seen in measured distribution functions and the detailed magnetospheric configuration. Results from our recent studies using time-dependent large-scale kinetic (LSK) calculations are used to infer the sources of the ions in the velocity distribution functions measured by a single spacecraft (Geotail). Our results strongly indicate that the different ion sources and acceleration mechanisms producing a measured distribution function can explain this structure. Moreover, individual structures within distribution functions were traced back to single sources. We also confirmed the fractal nature of ion distributions.

  2. dftools: Distribution function fitting

    NASA Astrophysics Data System (ADS)

    Obreschkow, Danail

    2018-05-01

    dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.

  3. Energy distribution functions of kilovolt ions in a modified Penning discharge.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1973-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.

  4. Energy distribution functions of kilovolt ions in a modified Penning discharge.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.

  5. An estimation of distribution method for infrared target detection based on Copulas

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhang, Yiqun

    2015-10-01

    Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.

  6. Measurement of the Spatial Distribution of the Spectral Response Variation in the Field of View of the ASD Spectrometer Input Optics

    DTIC Science & Technology

    2014-12-01

    development. It will be used for the measurement of the spectro-polarimetric BRDF (Bidirectional Reflectance Distribution function). For practical reasons...goniomètre est en développement. Il sera utilisé pour les mesures de BRDF (fonction de distribution de réflectance bidirectionnelle) spectrales et...by the independent measurements of the spectral and Bidirectional Reflectance Distribution Function ( BRDF ). The BRDF is the measurement of the

  7. Parallel Measurements of Light Scattering and Characterization of Marine Particles in Water: An Evaluation of Methodology

    DTIC Science & Technology

    2008-01-01

    A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY

  8. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  9. Energy distribution functions of kilovolt ions parallel and perpendicular to the magnetic field of a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1973-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space and cause an isotropic energy distribution. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail.

  10. Energy distribution functions of kilovolt ions in a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated.

  11. Statistical characteristics of surrogate data based on geophysical measurements

    NASA Astrophysics Data System (ADS)

    Venema, V.; Bachner, S.; Rust, H. W.; Simmer, C.

    2006-09-01

    In this study, the statistical properties of a range of measurements are compared with those of their surrogate time series. Seven different records are studied, amongst others, historical time series of mean daily temperature, daily rain sums and runoff from two rivers, and cloud measurements. Seven different algorithms are used to generate the surrogate time series. The best-known method is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm, which is able to reproduce the measured distribution as well as the power spectrum. Using this setup, the measurements and their surrogates are compared with respect to their power spectrum, increment distribution, structure functions, annual percentiles and return values. It is found that the surrogates that reproduce the power spectrum and the distribution of the measurements are able to closely match the increment distributions and the structure functions of the measurements, but this often does not hold for surrogates that only mimic the power spectrum of the measurement. However, even the best performing surrogates do not have asymmetric increment distributions, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found deviations of the structure functions on small scales.

  12. 3D measurements and simulations of ion and neutral velocity distribution functions in a magnetized plasma boundary

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Keniley, Shane; Curreli, Davide; Henriquez, Miguel F.; Caron, David D.; Jemiolo, Andrew J.; McLaughlin, Jacob W.; Dufor, Mikal T.; Neal, Luke A.; Scime, Earl E.; Siddiqui, M. Umair

    2017-10-01

    We present progress toward the first paired 3D laser induced fluorescence measurements of ion and neutral velocity distribution functions (I/NVDFs) in a magnetized plasma boundary. These measurements are performed in the presheath region of an absorbing boundary immersed in a background magnetic field that is obliquely incident to the boundary surface (ψ =74°). Parallel and perpendicular flow measurements demonstrate that cross-field ion flows occur and that ions within several gyro-radii of the surface are accelerated in the E-> × B-> direction. We present electrostatic probe measurements of electron temperature, plasma density, and electric potential in the same region. Ion, neutral and electron measurements are compared to Boltzmann simulations, allowing direct comparison between measured and theoretical distribution functions in the boundary region. NSF PHYS 1360278.

  13. The joint fit of the BHMF and ERDF for the BAT AGN Sample

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Koss, Michael; Ricci, Claudio; Trakhtenbrot, Benny; Oh, Kyuseok; Schawinski, Kevin; Lamperti, Isabella

    2018-01-01

    A natural product of an AGN survey is the AGN luminosity function. This statistical measure describes the distribution of directly measurable AGN luminosities. Intrinsically, the shape of the luminosity function depends on the distribution of black hole masses and Eddington ratios. To constrain these fundamental AGN properties, the luminosity function thus has to be disentangled into the black hole mass and Eddington ratio distribution function. The BASS survey is unique as it allows such a joint fit for a large number of local AGN, is unbiased in terms of obscuration in the X-rays and provides black hole masses for type-1 and type-2 AGN. The black hole mass function at z ~ 0 represents an essential baseline for simulations and black hole growth models. The normalization of the Eddington ratio distribution function directly constrains the AGN fraction. Together, the BASS AGN luminosity, black hole mass and Eddington ratio distribution functions thus provide a complete picture of the local black hole population.

  14. Photoelectric dust levitation around airless bodies revised using realistic photoelectron velocity distributions

    NASA Astrophysics Data System (ADS)

    Senshu, H.; Kimura, H.; Yamamoto, T.; Wada, K.; Kobayashi, M.; Namiki, N.; Matsui, T.

    2015-10-01

    The velocity distribution function of photoelectrons from a surface exposed to solar UV radiation is fundamental to the electrostatic status of the surface. There is one and only one laboratory measurement of photoelectron emission from astronomically relevant material, but the energy distribution function was measured only in the emission angle from the normal to the surface of 0 to about π / 4. Therefore, the measured distribution is not directly usable to estimate the vertical structure of a photoelectric sheath above the surface. In this study, we develop a new analytical method to calculate an angle-resolved velocity distribution function of photoelectrons from the laboratory measurement data. We find that the photoelectric current and yield for lunar surface fines measured in a laboratory have been underestimated by a factor of two. We apply our new energy distribution function of photoelectrons to model the formation of photoelectric sheath above the surface of asteroid 433 Eros. Our model shows that a 0.1 μm-radius dust grain can librate above the surface of asteroid 433 Eros regardless of its launching velocity. In addition, a 0.5 μm grain can hover over the surface if the grain was launched at a velocity slower than 0.4 m/s, which is a more stringent condition for levitation than previous studies. However, a lack of high-energy data on the photoelectron energy distribution above 6 eV prevents us from firmly placing a constraint on the levitation condition.

  15. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  16. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  17. Exploring the Alfven-Wave Acceleration of Auroral Electrons in the Laboratory

    NASA Astrophysics Data System (ADS)

    Schroeder, James William Ryan

    Inertial Alfven waves occur in plasmas where the Alfven speed is greater than the electron thermal speed and the scale of wave field structure across the background magnetic field is comparable to the electron skin depth. Such waves have an electric field aligned with the background magnetic field that can accelerate electrons. It is likely that electrons are accelerated by inertial Alfven waves in the auroral magnetosphere and contribute to the generation of auroras. While rocket and satellite measurements show a high level of coincidence between inertial Alfven waves and auroral activity, definitive measurements of electrons being accelerated by inertial Alfven waves are lacking. Continued uncertainty stems from the difficulty of making a conclusive interpretation of measurements from spacecraft flying through a complex and transient process. A laboratory experiment can avoid some of the ambiguity contained in spacecraft measurements. Experiments have been performed in the Large Plasma Device (LAPD) at UCLA. Inertial Alfven waves were produced while simultaneously measuring the suprathermal tails of the electron distribution function. Measurements of the distribution function use resonant absorption of whistler mode waves. During a burst of inertial Alfven waves, the measured portion of the distribution function oscillates at the Alfven wave frequency. The phase space response of the electrons is well-described by a linear solution to the Boltzmann equation. Experiments have been repeated using electrostatic and inductive Alfven wave antennas. The oscillation of the distribution function is described by a purely Alfvenic model when the Alfven wave is produced by the inductive antenna. However, when the electrostatic antenna is used, measured oscillations of the distribution function are described by a model combining Alfvenic and non-Alfvenic effects. Indications of a nonlinear interaction between electrons and inertial Alfven waves are present in recent data.

  18. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  19. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  20. Experimental results on TMDs

    DOE PAGES

    None, None

    2016-06-13

    QCD factorisation for semi-inclusive deep inelastic scattering at low transverse momentum in the current-fragmentation region has been established recently, providing a rigorous basis to study the Transverse Momentum Dependent distribution and fragmentation functions (TMDs) of partons from Semi-Inclusive DIS data using different spin-dependent and spin-independent observables. The main focus of the experiments were the measurements of various single- and double-spin asymmetries in hadron electro-production (ep{up-arrow} --> ehX ) with unpolarised, longitudinally and transversely polarised targets. The joint use of a longitudinally polarised beam and longitudinally and transversely polarised targets allowed to measure double-spin asymmetries (DSA) related to leading-twist distribution functionsmore » describing the transverse momentum distribution of longitudinally and transversely polarised quarks in a longitudinally and transversely polarised nucleons (helicity and worm-gear TMDs). Furthermore, the single-spin asymmetries (SSA) measured with transversely polarised targets, provided access to specific leading-twist parton distribution functions: the transversity, the Sivers function and the so-called 'pretzelosity' function. In this review we present the current status and some future measurements of TMDs worldwide.« less

  1. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma

    2016-07-15

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less

  2. Standardization of Broadband UV Measurements for 365 nm LED Sources

    PubMed Central

    Eppeldauer, George P.

    2012-01-01

    Broadband UV measurements are evaluated when UV-A irradiance meters measure optical radiation from 365 nm UV sources. The CIE standardized rectangular-shape UV-A function can be realized only with large spectral mismatch errors. The spectral power-distribution of the 365 nm excitation source is not standardized. Accordingly, the readings made with different types of UV meters, even if they measure the same UV source, can be very different. Available UV detectors and UV meters were measured and evaluated for spectral responsivity. The spectral product of the source-distribution and the meter’s spectral-responsivity were calculated for different combinations to estimate broad-band signal-measurement errors. Standardization of both the UV source-distribution and the meter spectral-responsivity is recommended here to perform uniform broad-band measurements with low uncertainty. It is shown what spectral responsivity function(s) is needed for new and existing UV irradiance meters to perform low-uncertainty broadband 365 nm measurements. PMID:26900516

  3. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison.

    PubMed

    Dai, Qi; Yang, Yanchun; Wang, Tianming

    2008-10-15

    Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.

  4. Measurements of the u valence quark distribution function in the proton and u quark fragmentation functions

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    1989-07-01

    A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.

  5. Functions of cumulative distribution of attenuation due to rain on an interval from 9.5 Km A to 17.8 GHz

    NASA Technical Reports Server (NTRS)

    Fedi, F.; Migliorini, P.

    1981-01-01

    Measurement results of attenuation due to rain are reported. Cumulative distribution functions of the attenuation found in three connections are described. Differences between the distribution functions and different polarization frequencies are demonstrated. The possibilty of establishing a bond between the statistics of annual attenuation and worst month attenuation is explored.

  6. Rocket measurement of auroral partial parallel distribution functions

    NASA Astrophysics Data System (ADS)

    Lin, C.-A.

    1980-01-01

    The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.

  7. Measurement of Device Parameters Using Image Recovery Techniques in Large-Scale IC Devices

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Edmonds, Larry

    2004-01-01

    Devices that respond to radiation on a cell level will produce histograms showing the relative frequency of cell damage as a function of damage. The measured distribution is the convolution of distributions from radiation responses, measurement noise, and manufacturing parameters. A method of extracting device characteristics and parameters from measured distributions via mathematical and image subtraction techniques is described.

  8. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    NASA Astrophysics Data System (ADS)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friar, James Lewis; Goldman, Terrance J.; Pérez-Mercader, J.

    In this paper, we apply the Law of Total Probability to the construction of scale-invariant probability distribution functions (pdf's), and require that probability measures be dimensionless and unitless under a continuous change of scales. If the scale-change distribution function is scale invariant then the constructed distribution will also be scale invariant. Repeated application of this construction on an arbitrary set of (normalizable) pdf's results again in scale-invariant distributions. The invariant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. Finally, we separately demonstrate that the reciprocal distribution results uniquely from requiring maximum entropymore » for size-class distributions with uniform bin sizes.« less

  10. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements

    NASA Astrophysics Data System (ADS)

    Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin

    2018-01-01

    The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.

  11. Measurement of double-differential cross sections for top quark pair production in pp collisions at √{s} = 8 {TeV} and impact on parton distribution functions

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Bihan, A.-C. Le; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Zenaiev, O.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Antunes De Oliveira, A. Carvalho; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, U.; Gonella, F.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-07-01

    Normalized double-differential cross sections for top quark pair (t\\overline{t}) production are measured in pp collisions at a centre-of-mass energy of 8 {TeV} with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 {fb}^{-1}. The measurement is performed in the dilepton e^{± }μ ^{∓ } final state. The t\\overline{t} cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t\\overline{t} system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t\\overline{t} cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

  12. Measurement of double-differential cross sections for top quark pair production in pp collisions at [Formula: see text][Formula: see text] and impact on parton distribution functions.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Mossolov, V; Suarez Gonzalez, J; Zykunov, V; Shumeiko, N; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Chagas, E Belchior Batista Das; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; De Souza, S Fonseca; Guativa, L M Huertas; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Ruan, M; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Bihan, A-C Le; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Khvedelidze, A; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Verlage, T; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Zenaiev, O; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Katkov, I; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Kousouris, K; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Pasztor, G; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Antunes De Oliveira, A Carvalho; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, U; Gonella, F; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Ventura, S; Zanetti, M; Zotto, P; Braghieri, A; Fallavollita, F; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Mariani, V; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Danilov, M; Popova, E; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Klyukhin, V; Korneeva, N; Lokhtin, I; Miagkov, I; Obraztsov, S; Perfilov, M; Savrin, V; Volkov, P; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chen, Y; Cimmino, A; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Donato, S; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Seitz, C; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Topakli, H; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Squires, M; Stolp, D; Tos, K; Tripathi, M; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Gerosa, R; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Bunn, J; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Apresyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Bein, S; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Perry, T; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Forthomme, L; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Medvedeva, T; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Zaleski, S; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-01-01

    Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

  13. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    NASA Astrophysics Data System (ADS)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  14. Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models.

    PubMed

    Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A

    2010-07-01

    Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.

  15. Evolution of association between renal and liver functions while awaiting heart transplant: An application using a bivariate multiphase nonlinear mixed effects model.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Barnard, John

    2018-07-01

    In many longitudinal follow-up studies, we observe more than one longitudinal outcome. Impaired renal and liver functions are indicators of poor clinical outcomes for patients who are on mechanical circulatory support and awaiting heart transplant. Hence, monitoring organ functions while waiting for heart transplant is an integral part of patient management. Longitudinal measurements of bilirubin can be used as a marker for liver function and glomerular filtration rate for renal function. We derive an approximation to evolution of association between these two organ functions using a bivariate nonlinear mixed effects model for continuous longitudinal measurements, where the two submodels are linked by a common distribution of time-dependent latent variables and a common distribution of measurement errors.

  16. Ubiquity of Benford's law and emergence of the reciprocal distribution

    DOE PAGES

    Friar, James Lewis; Goldman, Terrance J.; Pérez-Mercader, J.

    2016-04-07

    In this paper, we apply the Law of Total Probability to the construction of scale-invariant probability distribution functions (pdf's), and require that probability measures be dimensionless and unitless under a continuous change of scales. If the scale-change distribution function is scale invariant then the constructed distribution will also be scale invariant. Repeated application of this construction on an arbitrary set of (normalizable) pdf's results again in scale-invariant distributions. The invariant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. Finally, we separately demonstrate that the reciprocal distribution results uniquely from requiring maximum entropymore » for size-class distributions with uniform bin sizes.« less

  17. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  18. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  19. Structural frequency functions for an impulsive, distributed forcing function

    NASA Technical Reports Server (NTRS)

    Bateman, Vesta I.

    1987-01-01

    The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.

  20. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  1. Measurements of the neutron polarized structure function at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, C.C.; E-142 Collaboration

    1995-08-01

    Detailed measurements of unpolarized or spin-averaged nucleon structure functions over the past two decades have led to detailed knowledge of the nucleon`s internal momentum distribution. Polarized nucleon structure function measurements, which probe the nucleon`s internal spin distribution, started at SLAC in 1976. E-142 has recently measured the neutron polarized structure function g{sub 1}{sup n}(x) over the range 0.03 {le} {times} {le} 0.6 at an average Q{sup 2} of 2 GeV{sup 2} and found the integral I{sup n} = {integral}{sub 0}{sup 1}g{sub 1}{sup n}(x)dx={minus}0.022{plus_minus}0.011. E-143, which took data recently, has measured g{sub 1}{sup p} and g{sub 1}{sup 4}. Two more experimentsmore » (E-154 and E-155) will extend these measurements to lower x and higher Q{sup 2}.« less

  2. Virtual gonio-spectrophotometer for validation of BRDF designs

    NASA Astrophysics Data System (ADS)

    Mihálik, Andrej; Ďurikovič, Roman

    2011-10-01

    Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.

  3. Bidirectional reflectance distribution function measurements and analysis of retroreflective materials.

    PubMed

    Belcour, Laurent; Pacanowski, Romain; Delahaie, Marion; Laville-Geay, Aude; Eupherte, Laure

    2014-12-01

    We compare the performance of various analytical retroreflecting bidirectional reflectance distribution function (BRDF) models to assess how they reproduce accurately measured data of retroreflecting materials. We introduce a new parametrization, the back vector parametrization, to analyze retroreflecting data, and we show that this parametrization better preserves the isotropy of data. Furthermore, we update existing BRDF models to improve the representation of retroreflective data.

  4. Measurements of ultrafine particles from a gas-turbine burning biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; Minutolo, P.

    2010-04-15

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distributionmore » function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the microturbine indicating that the distribution function of the sizes of the emitted particles can be strongly affected by combustion conditions. (author)« less

  5. Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Vaughan, O. H.

    1978-01-01

    In measuring the size distribution of artificial fog particles, it is important that the natural state of the particles not be disturbed by the measuring device, such as occurs when samples are drawn through tubes. This paper describes a method for carrying out such a measurement by allowing the fog particles to settle in quiet air inside an enclosure through which traverses a parallel beam of light for measuring the optical depth as a function of time. An analytic function fit to the optical depth time decay curve can be directly inverted to yield the size distribution. Results of one such experiment performed on artificial fogs are shown as an example. The forwardscattering corrections to the measured extinction coefficient are also discussed with the aim of optimizing the experimental design so that the error due to forwardscattering is minimized.

  6. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  7. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  8. Unstable density distribution associated with equatorial plasma bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, E. A., E-mail: esfhan.kherani@inpe.br; Meneses, F. Carlos de; Bharuthram, R.

    2016-04-15

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion growsmore » to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.« less

  9. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  10. Results of APL rain gauge network measurements in mid-Atlantic coast region and comparisons of distributions with CCIR models

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Gebo, Norman; Rowland, John

    1988-01-01

    In this effort are described cumulative rain rate distributions for a network of nine tipping bucket rain gauge systems located in the mid-Atlantic coast region in the vicinity of the NASA Wallops Flight Facility, Wallops Island, Virginia. The rain gauges are situated within a gridded region of dimensions of 47 km east-west by 70 km north-south. Distributions are presented for the individual site measurements and the network average for the year period June 1, 1986 through May 31, 1987. A previous six year average distribution derived from measurements at one of the site locations is also presented. Comparisons are given of the network average, the CCIR (International Radio Consultative Committee) climatic zone, and the CCIR functional model distributions, the latter of which approximates a log normal at the lower rain rate and a gamma function at the higher rates.

  11. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Technical Reports Server (NTRS)

    Witherow, William K. (Inventor)

    1988-01-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  12. Probability and Statistics in Sensor Performance Modeling

    DTIC Science & Technology

    2010-12-01

    language software program is called Environmental Awareness for Sensor and Emitter Employment. Some important numerical issues in the implementation...3 Statistical analysis for measuring sensor performance...complementary cumulative distribution function cdf cumulative distribution function DST decision-support tool EASEE Environmental Awareness of

  13. EVOLUTION OF THE VELOCITY-DISPERSION FUNCTION OF LUMINOUS RED GALAXIES: A HIERARCHICAL BAYESIAN MEASUREMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Yiping; Bolton, Adam S.; Dawson, Kyle S.

    2012-04-15

    We present a hierarchical Bayesian determination of the velocity-dispersion function of approximately 430,000 massive luminous red galaxies observed at relatively low spectroscopic signal-to-noise ratio (S/N {approx} 3-5 per 69 km s{sup -1}) by the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. We marginalize over spectroscopic redshift errors, and use the full velocity-dispersion likelihood function for each galaxy to make a self-consistent determination of the velocity-dispersion distribution parameters as a function of absolute magnitude and redshift, correcting as well for the effects of broadband magnitude errors on our binning. Parameterizing the distribution at each point inmore » the luminosity-redshift plane with a log-normal form, we detect significant evolution in the width of the distribution toward higher intrinsic scatter at higher redshifts. Using a subset of deep re-observations of BOSS galaxies, we demonstrate that our distribution-parameter estimates are unbiased regardless of spectroscopic S/N. We also show through simulation that our method introduces no systematic parameter bias with redshift. We highlight the advantage of the hierarchical Bayesian method over frequentist 'stacking' of spectra, and illustrate how our measured distribution parameters can be adopted as informative priors for velocity-dispersion measurements from individual noisy spectra.« less

  14. Measurement of double-differential cross sections for top quark pair production in pp collisions at $$\\sqrt{s} = 8$$ TeV and impact on parton distribution functions

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-07-11

    Normalized double-differential cross sections for top quark pair (more » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ ) production are measured in pp collisions at a centre-of-mass energy of 8 $$\\,\\text {TeV}$$ with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 $$\\,\\text {fb}^{-1}$$ . The measurement is performed in the dilepton $$\\mathrm {e}^{\\pm }\\mu ^{\\mp }$$ final state. The $$\\mathrm{t}\\overline{\\mathrm{t}}$$ cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and $$\\mathrm{t}\\overline{\\mathrm{t}}$$ system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. Lastly, the inclusion of the measured $$\\mathrm{t}\\overline{\\mathrm{t}}$$ cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.« less

  15. Representation of the Geosynchronous Plasma Environment in Spacecraft Charging Calculations

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Mandell, M. J.; Thomsen, M. F.

    2006-01-01

    Historically, our ability to predict and postdict spacecraft surface charging has been limited by the characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These measured fluxes have been corrected for the difference between the measured and calculated potential. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the incident electron flux distribution function and a Maxwellian function fit to the incident ion flux distribution function agree with measured potentials nearly as well as do potentials calculated using the measured fluxes. Alternative spectral representations gave less accurate estimates of potential. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the high energy flux alone.

  16. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  17. TESTING FOR DIFFERENCES BETWEEN CUMULATIVE DISTRIBUTION FUNCTIONS FROM COMPLEX ENVIRONMENTAL SAMPLING SURVEYS

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) employs the cumulative distribution function (cdf) to measure the status of quantitative variables for resources of interest. The ability to compare cdf's for a resource from, say,...

  18. Determination of Anisotropic Ion Velocity Distribution Function in Intrinsic Gas Plasma. Theory.

    NASA Astrophysics Data System (ADS)

    Mustafaev, A.; Grabovskiy, A.; Murillo, O.; Soukhomlinov, V.

    2018-02-01

    The first seven coefficients of the expansion of the energy and angular distribution functions in Legendre polynomials for Hg+ ions in Hg vapor plasma with the parameter E/P ≈ 400 V/(cm Torr) are measured for the first time using a planar one-sided probe. The analytic solution to the Boltzmann kinetic equation for ions in the plasma of their parent gas is obtained in the conditions when the resonant charge exchange is the predominant process, and ions acquire on their mean free path a velocity much higher than the characteristic velocity of thermal motion of atoms. The presence of an ambipolar field of an arbitrary strength is taken into account. It is shown that the ion velocity distribution function is determined by two parameters and differs substantially from the Maxwellian distribution. Comparison of the results of calculation of the drift velocity of He+ ions in He, Ar+ in Ar, and Hg+ in Hg with the available experimental data shows their conformity. The results of the calculation of the ion distribution function correctly describe the experimental data obtained from its measurement. Analysis of the result shows that in spite of the presence of the strong field, the ion velocity distribution functions are isotropic for ion velocities lower than the average thermal velocity of atoms. With increasing ion velocity, the distribution becomes more and more extended in the direction of the electric field.

  19. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Probe measurements of the electron velocity distribution function in beams: Low-voltage beam discharge in helium

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V.; Mustafaev, A.; Timofeev, N.

    2018-04-01

    Previously developed methods based on the single-sided probe technique are altered and applied to measure the anisotropic angular spread and narrow energy distribution functions of charged particle (electron and ion) beams. The conventional method is not suitable for some configurations, such as low-voltage beam discharges, electron beams accelerated in near-wall and near-electrode layers, and vacuum electron beam sources. To determine the range of applicability of the proposed method, simple algebraic relationships between the charged particle energies and their angular distribution are obtained. The method is verified for the case of the collisionless mode of a low-voltage He beam discharge, where the traditional method for finding the electron distribution function with the help of a Legendre polynomial expansion is not applicable. This leads to the development of a physical model of the formation of the electron distribution function in a collisionless low-voltage He beam discharge. The results of a numerical calculation based on Monte Carlo simulations are in good agreement with the experimental data obtained using the new method.

  1. Dynamic data driven bidirectional reflectance distribution function measurement system

    NASA Astrophysics Data System (ADS)

    Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.

    2014-09-01

    The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.

  2. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.

  3. Comparison of the bidirectional reflectance distribution function of various surfaces

    NASA Astrophysics Data System (ADS)

    Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.

    1989-04-01

    This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests.

  4. A practical divergence measure for survival distributions that can be estimated from Kaplan-Meier curves.

    PubMed

    Cox, Trevor F; Czanner, Gabriela

    2016-06-30

    This paper introduces a new simple divergence measure between two survival distributions. For two groups of patients, the divergence measure between their associated survival distributions is based on the integral of the absolute difference in probabilities that a patient from one group dies at time t and a patient from the other group survives beyond time t and vice versa. In the case of non-crossing hazard functions, the divergence measure is closely linked to the Harrell concordance index, C, the Mann-Whitney test statistic and the area under a receiver operating characteristic curve. The measure can be used in a dynamic way where the divergence between two survival distributions from time zero up to time t is calculated enabling real-time monitoring of treatment differences. The divergence can be found for theoretical survival distributions or can be estimated non-parametrically from survival data using Kaplan-Meier estimates of the survivor functions. The estimator of the divergence is shown to be generally unbiased and approximately normally distributed. For the case of proportional hazards, the constituent parts of the divergence measure can be used to assess the proportional hazards assumption. The use of the divergence measure is illustrated on the survival of pancreatic cancer patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2017-03-01

    The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.

  6. Measurement of argon neutral velocity distribution functions near an absorbing boundary in a plasma

    NASA Astrophysics Data System (ADS)

    Short, Zachary; Thompson, Derek; Good, Timothy; Scime, Earl

    2016-10-01

    Neutral particle distributions are critical to the study of plasma boundary interactions, where ion-neutral collisions, e.g. via charge exchange, may modify energetic particle populations impacting the boundary surface. Neutral particle behavior at absorbing boundaries thus underlies a number of important plasma physics issues, such as wall loading in fusion devices and anomalous erosion in Hall thruster channels. Neutral velocity distribution functions (NVDFs) are measured using laser-induced fluorescence (LIF). Our LIF scheme excites the 1s4 non-metastable state of neutral argon with 667.913 nm photons. The subsequent decay emission at 750.590 nm is recorded synchronously with injection laser frequency. Measurements are performed near a grounded boundary immersed in a cylindrical helicon plasma, with the boundary plate oriented at an oblique angle to the magnetic field. NVDFs are recorded in multiple velocity dimensions and in a three-dimensional volume, enabling point-to-point comparisons with NVDF predictions from particle-in-cell models as well as comparisons with ion velocity distribution function measurements obtained in the same regions through Ar-II LIF. This work is supported by US National Science Foundation Grant Number PHYS-1360278.

  7. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  8. Dark matter in 3D

    DOE PAGES

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our methodmore » using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.« less

  9. On the consequences of bi-Maxwellian plasma distributions for parallel electric fields

    NASA Technical Reports Server (NTRS)

    Olsen, Richard C.

    1992-01-01

    The objective is to use the measurements of the equatorial particle distributions to obtain the parallel electric field structure and the evolution of the plasma distribution function along the field line. Appropriate uses of kinetic theory allows us to use the measured ( and inferred) particle distributions to obtain the electric field, and hence the variation on plasma density along the magnetic field line. The approach, here, is to utilize the adiabatic invariants, and assume the plasma distributions are in equilibrium.

  10. Changes in Optical Properties of Spacecraft Materials Due to Combined Effects of Aging Factors in a Space Environment

    DTIC Science & Technology

    2013-07-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 16-07-2013 2...Bidirectional scattering distribution function (BSDF) and Bidirectional reflectance distribution function ( BRDF ) measurements were conducted for the...radiation (visible, ultraviolet, vacuum ultraviolet and soft X-ray radiation) at an altitude of 400 km 4) BSDF/ BRDF measurements have been conducted for

  11. Determining plasma parameters in cold, multi-species plasmas using Maxwell and Kappa distribution functions.

    NASA Astrophysics Data System (ADS)

    Jahn, J. M.; Denton, R. E.; Nose, M.; Bonnell, J. W.; Kurth, W. S.; Livadiotis, G.; Larsen, B.; Goldstein, J.

    2016-12-01

    Determining the total plasma density from ion data is essentially an impossible task for particle instruments. The lowest instrument energy threshold never includes the coldest particles (i.e., Emin> 0 eV), and any positive spacecraft charging—which is normal for a sunlit spacecraft—exacerbates the problem by shifting the detectable minimum energy to higher values. For ion data, traditionally field line resonance measurements of ULF waves in the magnetosphere have been used to determine the mass loading of magnetic field lines in this case. This approach delivers a reduced ion mass M that represents the mass ratio of all ions on a magnetic field line. For multi-species plasmas like the plasmasphere this bounds the problem, but it does not provide a unique solution. To at least estimate partial densities using particle instruments, one traditionally performs fits to the measured particle distribution functions under the assumption that the underlying particle distributions are Maxwellian. Uncertainties performing a fit aside, there is usually no possibility to detect a possible bi-Maxwellian distribution where one of the Maxwellians is very cold. The tail of such a distribution may fall completely below the low energy threshold of the measurement. In this paper we present a different approach to determining the fractional temperatures Ti and densities ni in a multi-species plasma. First, we describe and demonstrate an approach to determine Ti and ni that does not require fitting but relies more on the mathematical properties of the distribution functions. We apply our approach to Van Allen Probes measurements of the plasmaspheric H+, He+, and O+ distribution functions under the assumption that the particle distributions are Maxwellian. We compare our results to mass loading results from the Van Allen Probes field line resonance analyses (for composition) and to the total (electron) plasma density derived from the EFW and EMFISIS experiments. Then we expand our approach to allow for kappa distributions instead. While this introduces an additional degree of freedom and therefore requires fitting, our approach is still better constrained than the traditional Maxwell fitting and may hold the key to a better understanding of the true nature of plasmaspheric particle distributions.

  12. Comparison of 3D ion velocity distribution measurements and models in the vicinity of an absorbing boundary oriented obliquely to a magnetic field

    NASA Astrophysics Data System (ADS)

    Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.

    2016-10-01

    Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.

  13. Estimation of d- 2 H Breakup Neutron Energy Distributions From d- 3 He

    DOE PAGES

    Hoop, B.; Grimes, S. M.; Drosg, M.

    2017-06-19

    A method is described to estimate deuteron-on-deuteron breakup neutron distributions at 0° using deuterium bombardment of 3He. Break-up neutron distributions are modeled with the product of a Fermi-Dirac distribution and a cumulative logistic distribution function. Four measured break-up neutron distributions from 6.15- to 12.0-MeV deuterons on 3He are compared with thirteen measured distributions from 6.83- to 11.03-MeV deuterons on deuterium. Model pararmeters that describe d -3He neutron distributions are used to estimate neutron distributions from 6- to 12-MeV deuterons on deuterium.

  14. 2-dimensional ion velocity distributions measured by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel B.; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark J.

    2013-08-01

    The dynamics of ions traversing sheaths in low temperature plasmas are important to the formation of the ion energy distribution incident onto surfaces during microelectronics fabrication. Ion dynamics have been measured using laser-induced fluorescence (LIF) in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a commercial inductively coupled plasma processing reactor. The velocity distribution of argon ions was measured at thousands of positions above and radially along the surface of the wafer by utilizing a planar laser sheet from a pulsed, tunable dye laser. Velocities were measured both parallel and perpendicular to the wafer over an energy range of 0.4-600 eV. The resulting fluorescence was recorded using a fast CCD camera, which provided resolution of 0.4 mm in space and 30 ns in time. Data were taken at eight different phases during the 2.2 MHz cycle. The ion velocity distributions (IVDs) in the sheath were found to be spatially non-uniform near the edge of the wafer and phase-dependent as a function of height. Several cm above the wafer the IVD is Maxwellian and independent of phase. Experimental results were compared with simulations. The experimental time-averaged ion energy distribution function as a function of height compare favorably with results from the computer model.

  15. Flight Crew Workload Evaluation Based on the Workload Function Distribution Method.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Jie, Yuwen; Fu, Shan

    2017-05-01

    The minimum flight crew on the flight deck should be established according to the workload for individual crewmembers. Typical workload measures consist of three types: subjective rating scale, task performance, and psychophysiological measures. However, all these measures have their own limitations. To reflect flight crew workload more specifically and comprehensively within the flight environment, and more directly comply with airworthiness regulations, the Workload Function Distribution Method, which combined the basic six workload functions, was proposed. The analysis was based on the different conditions of workload function numbers. Each condition was analyzed from two aspects, which were overall proportion and effective proportion. Three types of approach tasks were used in this study and the NASA-TLX scale was implemented for comparison. Neither the one-function condition nor the two-function condition had the same results with NASA-TLX. However, both the three-function and the four- to six- function conditions were identical with NASA-TLX. Further, the significant differences were different on four to six conditions. The overall proportion was insignificant, while the effective proportions were significant. The results show that the conditions with one function and two functions seemed to have no influence on workload, while executing three functions and four to six functions had an impact on workload. Besides, effective proportions of workload functions were more precisely compared with the overall proportions to indicate workload, especially in the conditions with multiple functions.Zheng Y, Lu Y, Jie Y, Fu S. Flight crew workload evaluation based on the workload function distribution method. Aerosp Med Hum Perform. 2017; 88(5):481-486.

  16. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  17. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-01

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.

  18. New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

    PubMed

    Villéger, Sébastien; Mason, Norman W H; Mouillot, David

    2008-08-01

    Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.

  19. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  20. Comparison of the bidirectional reflectance distribution function of various surfaces

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.

    1988-01-01

    Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.

  1. Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau

    2017-10-01

    Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

  2. Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment.

    PubMed

    Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau

    2017-10-01

    Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

  3. Determination of Distance Distribution Functions by Singlet-Singlet Energy Transfer

    PubMed Central

    Cantor, Charles R.; Pechukas, Philip

    1971-01-01

    The efficiency of energy transfer between two chromophores can be used to define an apparent donor-acceptor distance, which in flexible systems will depend on the R0 of the chromophores. If efficiency is measured as a function of R0, it will be possible to determine the actual distribution function of donor-acceptor distances. Numerical procedures are described for extracting this information from experimental data. They should be most useful for distribution functions with mean values from 20-30 Å (2-3 nm). This technique should provide considerably more detailed information on end-to-end distributions of oligomers than has hitherto been available. It should also be useful for describing, in detail, conformational flexibility in other large molecules. PMID:16591942

  4. Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x

    DOE PAGES

    Zenaiev, O.; Geiser, A.; Lipka, K.; ...

    2015-08-01

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less

  5. Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenaiev, O.; Geiser, A.; Lipka, K.

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less

  6. Regression-assisted deconvolution.

    PubMed

    McIntyre, Julie; Stefanski, Leonard A

    2011-06-30

    We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Reconstruction of atmospheric pollutant concentrations from remote sensing data - An application of distributed parameter observer theory

    NASA Technical Reports Server (NTRS)

    Koda, M.; Seinfeld, J. H.

    1982-01-01

    The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.

  8. Determination of Ionospheric Electron Density Profiles from Satellite UV (Ultraviolet) Emission Measurements, Fiscal Year 1984.

    DTIC Science & Technology

    1985-04-26

    distribution function. It is from the calculated distribution function that the photoelectron flux can be derived. The VUV daytime emissions that we are...OECLASSIPICATIONUOOWNdGRADING SCHEDULE Apoe o ulcrlae N/A distribution unlimited .PE RPORMING ORGANIZATION REPORT NUMBER41S( 5. MONITORING ORGANIZATION REPORT...EDP for systems users. This report considers the following ionospheric subregions: (a) the daytime mid- latitude ionosphere from, 90 to 1000 km, (b

  9. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  10. Determining accurate measurements of the growth rate from the galaxy correlation function in simulations

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Blake, Chris; Poole, Gregory B.; Marin, Felipe

    2013-04-01

    We use high-resolution N-body simulations to develop a new, flexible empirical approach for measuring the growth rate from redshift-space distortions in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a 1 h-3 Gpc3 volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting luminous red galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the `standard' assumption of a power-law correlation function can result in a significant systematic error in the growth-rate determination. We introduce a new, empirical fitting function that produces results with a lower (5-10 per cent) amplitude of systematic error. We also introduce a new technique which permits the galaxy pairwise velocity distribution, the quantity which drives the non-linear growth of structure, to be measured as a non-parametric stepwise function. Our (model-independent) results agree well with an exponential pairwise velocity distribution, expected from theoretical considerations, and are consistent with direct measurements of halo velocity differences from the parent catalogues. In a companion paper, we present the application of our new methodology to the WiggleZ Survey data set.

  11. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    DOE PAGES

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-27

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. Finally, the algorithm is found to out-perform current leading x-ray inversion algorithms when the error duemore » to counting statistics is high.« less

  12. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. Finally, the algorithm is found to out-perform current leading x-ray inversion algorithms when the error duemore » to counting statistics is high.« less

  13. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J; Micka, J; Culberson, W

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less

  14. Constraining the noise-free distribution of halo spin parameters

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.

    2017-11-01

    Any measurement made using an N-body simulation is subject to noise due to the finite number of particles used to sample the dark matter distribution function, and the lack of structure below the simulation resolution. This noise can be particularly significant when attempting to measure intrinsically small quantities, such as halo spin. In this work, we develop a model to describe the effects of particle noise on halo spin parameters. This model is calibrated using N-body simulations in which the particle noise can be treated as a Poisson process on the underlying dark matter distribution function, and we demonstrate that this calibrated model reproduces measurements of halo spin parameter error distributions previously measured in N-body convergence studies. Utilizing this model, along with previous measurements of the distribution of halo spin parameters in N-body simulations, we place constraints on the noise-free distribution of halo spins. We find that the noise-free median spin is 3 per cent lower than that measured directly from the N-body simulation, corresponding to a shift of approximately 40 times the statistical uncertainty in this measurement arising purely from halo counting statistics. We also show that measurement of the spin of an individual halo to 10 per cent precision requires at least 4 × 104 particles in the halo - for haloes containing 200 particles, the fractional error on spins measured for individual haloes is of order unity. N-body simulations should be viewed as the results of a statistical experiment applied to a model of dark matter structure formation. When viewed in this way, it is clear that determination of any quantity from such a simulation should be made through forward modelling of the effects of particle noise.

  15. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.

  16. A decentralized mechanism for improving the functional robustness of distribution networks.

    PubMed

    Shi, Benyun; Liu, Jiming

    2012-10-01

    Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.

  17. Advanced S-Band studies using the TDRSS communications satellite

    NASA Technical Reports Server (NTRS)

    Jenkins, Jeffrey D.; Osborne, William P.; Fan, Yiping

    1994-01-01

    This report will describe the design, implementation, and results of a propagation experiment which used TDRSS to transmit spread signals at S-Band to an instrumented mobile receiver. The results consist of fade measurements and distribution functions in 21 environments across the Continental United States (CONUS). From these distribution functions, some idea may be gained about what system designers should expect for excess path loss in many mobile environments. Some of these results may be compared against similar measurements made with narrowband beacon measurements. Such comparisons provide insight into what gains the spread signaling system may or may not have in multipath and shadowing environments.

  18. Orbit Tomography: A Method for Determining the Population of Individual Fast-ion Orbits from Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-10-01

    Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  19. The Generation, Radiation and Prediction of Supersonic Jet Noise. Volume 1

    DTIC Science & Technology

    1978-10-01

    standard, Gaussian correlation function model can yield a good noise spectrum prediction (at 900), but the corresponding axial source distributions do not...forms for the turbulence cross-correlation function. Good agreement was obtained between measured and calculated far- field noise spectra. However, the...complementary error function profile (3.63) was found to provide a good fit to the axial velocity distribution tor a wide range of Mach numbers in the Initial

  20. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

    DOE PAGES

    Paz-Soldan, Carlos; Cooper, Christopher M.; Aleynikov, Pavel; ...

    2017-06-22

    Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature andmore » reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation ofHXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.« less

  1. INFERRING THE ECCENTRICITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, David W.; Bovy, Jo; Myers, Adam D., E-mail: david.hogg@nyu.ed

    2010-12-20

    Standard maximum-likelihood estimators for binary-star and exoplanet eccentricities are biased high, in the sense that the estimated eccentricity tends to be larger than the true eccentricity. As with most non-trivial observables, a simple histogram of estimated eccentricities is not a good estimate of the true eccentricity distribution. Here, we develop and test a hierarchical probabilistic method for performing the relevant meta-analysis, that is, inferring the true eccentricity distribution, taking as input the likelihood functions for the individual star eccentricities, or samplings of the posterior probability distributions for the eccentricities (under a given, uninformative prior). The method is a simple implementationmore » of a hierarchical Bayesian model; it can also be seen as a kind of heteroscedastic deconvolution. It can be applied to any quantity measured with finite precision-other orbital parameters, or indeed any astronomical measurements of any kind, including magnitudes, distances, or photometric redshifts-so long as the measurements have been communicated as a likelihood function or a posterior sampling.« less

  2. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less

  3. Measurement of higher cumulants of net-charge multiplicity distributions in Au +Au collisions at √{sN N}=7.7 -200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Mohapatra, S.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration

    2016-01-01

    We report the measurement of cumulants (Cn,n =1 ,...,4 ) of the net-charge distributions measured within pseudorapidity (|η |<0.35 ) in Au +Au collisions at √{sNN}=7.7 -200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C1/C2 , C3/C1 ) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2 and C3/C1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. The extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.

  4. High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Ehm, Lars

    In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.

  5. Unveiling saturation effects from nuclear structure function measurements at the EIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquet, Cyrille; Moldes, Manoel R.; Zurita, Pia

    Here, we analyze the possibility of extracting a clear signal of non-linear parton saturation effects from future measurements of nuclear structure functions at the Electron–Ion Collider (EIC), in the small-x region. Our approach consists in generating pseudodata for electron-gold collisions, using the running-coupling Balitsky–Kovchegov evolution equation, and in assessing the compatibility of these saturated pseudodata with existing sets of nuclear parton distribution functions (nPDFs), extrapolated if necessary. The level of disagreement between the two is quantified by applying a Bayesian reweighting technique. This allows to infer the parton distributions needed in order to describe the pseudodata, which we find quitemore » different from the actual distributions, especially for sea quarks and gluons. This tension suggests that, should saturation effects impact the future nuclear structure function data as predicted, a successful refitting of the nPDFs may not be achievable, which would unambiguously signal the presence of non-linear effects.« less

  6. Unveiling saturation effects from nuclear structure function measurements at the EIC

    DOE PAGES

    Marquet, Cyrille; Moldes, Manoel R.; Zurita, Pia

    2017-07-21

    Here, we analyze the possibility of extracting a clear signal of non-linear parton saturation effects from future measurements of nuclear structure functions at the Electron–Ion Collider (EIC), in the small-x region. Our approach consists in generating pseudodata for electron-gold collisions, using the running-coupling Balitsky–Kovchegov evolution equation, and in assessing the compatibility of these saturated pseudodata with existing sets of nuclear parton distribution functions (nPDFs), extrapolated if necessary. The level of disagreement between the two is quantified by applying a Bayesian reweighting technique. This allows to infer the parton distributions needed in order to describe the pseudodata, which we find quitemore » different from the actual distributions, especially for sea quarks and gluons. This tension suggests that, should saturation effects impact the future nuclear structure function data as predicted, a successful refitting of the nPDFs may not be achievable, which would unambiguously signal the presence of non-linear effects.« less

  7. A spherical harmonic approach for the determination of HCP texture from ultrasound: A solution to the inverse problem

    NASA Astrophysics Data System (ADS)

    Lan, Bo; Lowe, Michael J. S.; Dunne, Fionn P. E.

    2015-10-01

    A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.

  8. Comparable Analysis of the Distribution Functions of Runup Heights of the 1896, 1933 and 2011 Japanese Tsunamis in the Sanriku Area

    NASA Astrophysics Data System (ADS)

    Choi, B. H.; Min, B. I.; Yoshinobu, T.; Kim, K. O.; Pelinovsky, E.

    2012-04-01

    Data from a field survey of the 2011 tsunami in the Sanriku area of Japan is presented and used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated using a theoretical log-normal curve [Choi et al, 2002]. The characteristics of the distribution functions derived from the runup-heights data obtained during the 2011 event are compared with data from two previous gigantic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large (more than 5,247), which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and number of observations suggested by Kajiura [1983]. The distribution function of the 2011 event demonstrates the sensitivity to the number of observation points (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

  9. The use of discontinuities and functional groups to assess relative resilience in complex systems

    USGS Publications Warehouse

    Allen, Craig R.; Gunderson, Lance; Johnson, A.R.

    2005-01-01

    It is evident when the resilience of a system has been exceeded and the system qualitatively changed. However, it is not clear how to measure resilience in a system prior to the demonstration that the capacity for resilient response has been exceeded. We argue that self-organizing human and natural systems are structured by a relatively small set of processes operating across scales in time and space. These structuring processes should generate a discontinuous distribution of structures and frequencies, where discontinuities mark the transition from one scale to another. Resilience is not driven by the identity of elements of a system, but rather by the functions those elements provide, and their distribution within and across scales. A self-organizing system that is resilient should maintain patterns of function within and across scales despite the turnover of specific elements (for example, species, cities). However, the loss of functions, or a decrease in functional representation at certain scales will decrease system resilience. It follows that some distributions of function should be more resilient than others. We propose that the determination of discontinuities, and the quantification of function both within and across scales, produce relative measures of resilience in ecological and other systems. We describe a set of methods to assess the relative resilience of a system based upon the determination of discontinuities and the quantification of the distribution of functions in relation to those discontinuities. ?? 2005 Springer Science+Business Media, Inc.

  10. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    Directional reflectance distributions spanning the entire existent hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using the rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Analysis of field data showed unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends were proposed. A 3-D model was developed and is unique in that it predicts: (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy; (2) the spectral absorption as a function of location within the scene; and (3) the directional spectral radiance as a function of the sensor's location within the scene. Initial verification of the model as applied to a soybean row crop showed that the simulated directional data corresponded relatively well in gross trends to the measured data. The model was expanded to include the anisotropic scattering properties of leaves as a function of the leaf orientation distribution in both the zenith and azimuth angle modes.

  11. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J.; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement.

  12. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode

    DOE PAGES

    Shi, Chenyang; Teerakapibal, Rattavut; Yu, Lian; ...

    2017-07-10

    Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situmore » structural studies for a wide range of materials.« less

  13. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Chenyang; Teerakapibal, Rattavut; Yu, Lian

    2017-07-10

    Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accuratein situstructuralmore » studies for a wide range of materials.« less

  14. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.

    PubMed

    Rollet, S; Autischer, M; Beck, P; Latocha, M

    2007-01-01

    The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.

  15. Measurements of jet multiplicity and differential production cross sections of Z + jets events in proton-proton collisions at √s = 7 TeV

    DOE PAGES

    Khachatryan, V.

    2015-03-11

    Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at √s = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. Themore » measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.« less

  16. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  17. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  18. Simulation of the Effects of Random Measurement Errors

    ERIC Educational Resources Information Center

    Kinsella, I. A.; Hannaidh, P. B. O.

    1978-01-01

    Describes a simulation method for measurement of errors that requires calculators and tables of random digits. Each student simulates the random behaviour of the component variables in the function and by combining the results of all students, the outline of the sampling distribution of the function can be obtained. (GA)

  19. The Use of Compressive Sensing to Reconstruct Radiation Characteristics of Wide-Band Antennas from Sparse Measurements

    DTIC Science & Technology

    2015-06-01

    of uniform- versus nonuniform -pattern reconstruction, of transform function used, and of minimum randomly distributed measurements needed to...the radiation-frequency pattern’s reconstruction using uniform and nonuniform randomly distributed samples even though the pattern error manifests...5 Fig. 3 The nonuniform compressive-sensing reconstruction of the radiation

  20. Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at [Formula: see text] using the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Barrera, C Oropeza; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2016-01-01

    Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, [Formula: see text] system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of [Formula: see text]. The observables have been chosen to emphasize the [Formula: see text] production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb[Formula: see text], recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a  b -quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.

  1. Intensive Versus Distributed Aphasia Therapy: A Nonrandomized, Parallel-Group, Dosage-Controlled Study.

    PubMed

    Dignam, Jade; Copland, David; McKinnon, Eril; Burfein, Penni; O'Brien, Kate; Farrell, Anna; Rodriguez, Amy D

    2015-08-01

    Most studies comparing different levels of aphasia treatment intensity have not controlled the dosage of therapy provided. Consequently, the true effect of treatment intensity in aphasia rehabilitation remains unknown. Aphasia Language Impairment and Functioning Therapy is an intensive, comprehensive aphasia program. We investigated the efficacy of a dosage-controlled trial of Aphasia Language Impairment and Functioning Therapy, when delivered in an intensive versus distributed therapy schedule, on communication outcomes in participants with chronic aphasia. Thirty-four adults with chronic, poststroke aphasia were recruited to participate in an intensive (n=16; 16 hours per week; 3 weeks) versus distributed (n=18; 6 hours per week; 8 weeks) therapy program. Treatment included 48 hours of impairment, functional, computer, and group-based aphasia therapy. Distributed therapy resulted in significantly greater improvements on the Boston Naming Test when compared with intensive therapy immediately post therapy (P=0.04) and at 1-month follow-up (P=0.002). We found comparable gains on measures of participants' communicative effectiveness, communication confidence, and communication-related quality of life for the intensive and distributed treatment conditions at post-therapy and 1-month follow-up. Aphasia Language Impairment and Functioning Therapy resulted in superior clinical outcomes on measures of language impairment when delivered in a distributed versus intensive schedule. The therapy progam had a positive effect on participants' functional communication and communication-related quality of life, regardless of treatment intensity. These findings contribute to our understanding of the effect of treatment intensity in aphasia rehabilitation and have important clinical implications for service delivery models. © 2015 American Heart Association, Inc.

  2. Quantifying Similarity and Distance Measures for Vector-Based Datasets: Histograms, Signals, and Probability Distribution Functions

    DTIC Science & Technology

    2017-02-01

    note, a number of different measures implemented in both MATLAB and Python as functions are used to quantify similarity/distance between 2 vector-based...this technical note are widely used and may have an important role when computing the distance and similarity of large datasets and when considering high...throughput processes. In this technical note, a number of different measures implemented in both MAT- LAB and Python as functions are used to

  3. Multiplicity distributions of charged hadrons in vp and charged current interactions

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Burke, S.

    1992-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. The invariant mass W of the total hadronic system ranges from 3 GeV to ˜14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for X 2. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling.

  4. Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.

    PubMed

    Terraneo, M; Georgeot, B; Shepelyansky, D L

    2005-06-01

    We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.

  5. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Methods of computational physics in the problem of mathematical interpretation of laser investigations

    NASA Astrophysics Data System (ADS)

    Brodyn, M. S.; Starkov, V. N.

    2007-07-01

    It is shown that in laser experiments performed by using an 'imperfect' setup when instrumental distortions are considerable, sufficiently accurate results can be obtained by the modern methods of computational physics. It is found for the first time that a new instrumental function — the 'cap' function — a 'sister' of a Gaussian curve proved to be demanded namely in laser experiments. A new mathematical model of a measurement path and carefully performed computational experiment show that a light beam transmitted through a mesoporous film has actually a narrower intensity distribution than the detected beam, and the amplitude of the real intensity distribution is twice as large as that for measured intensity distributions.

  6. Rational BRDF.

    PubMed

    Pacanowski, Romain; Salazar Celis, Oliver; Schlick, Christophe; Granier, Xavier; Poulin, Pierre; Cuyt, Annie

    2012-11-01

    Over the last two decades, much effort has been devoted to accurately measuring Bidirectional Reflectance Distribution Functions (BRDFs) of real-world materials and to use efficiently the resulting data for rendering. Because of their large size, it is difficult to use directly measured BRDFs for real-time applications, and fitting the most sophisticated analytical BRDF models is still a complex task. In this paper, we introduce Rational BRDF, a general-purpose and efficient representation for arbitrary BRDFs, based on Rational Functions (RFs). Using an adapted parametrization, we demonstrate how Rational BRDFs offer 1) a more compact and efficient representation using low-degree RFs, 2) an accurate fitting of measured materials with guaranteed control of the residual error, and 3) efficient importance sampling by applying the same fitting process to determine the inverse of the Cumulative Distribution Function (CDF) generated from the BRDF for use in Monte-Carlo rendering.

  7. Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.

    PubMed

    Carbone, Marco; Penna, Nadia; Piro, Patrizia

    2015-09-01

    The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.

  8. A radiation model for calculating atmospheric corrections to remotely sensed infrared measurements, version 2

    NASA Technical Reports Server (NTRS)

    Boudreau, R. D.

    1973-01-01

    A numerical model is developed which calculates the atmospheric corrections to infrared radiometric measurements due to absorption and emission by water vapor, carbon dioxide, and ozone. The corrections due to aerosols are not accounted for. The transmissions functions for water vapor, carbon dioxide, and water are given. The model requires as input the vertical distribution of temperature and water vapor as determined by a standard radiosonde. The vertical distribution of carbon dioxide is assumed to be constant. The vertical distribution of ozone is an average of observed values. The model also requires as input the spectral response function of the radiometer and the nadir angle at which the measurements were made. A listing of the FORTRAN program is given with details for its use and examples of input and output listings. Calculations for four model atmospheres are presented.

  9. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    PubMed Central

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288

  10. A quark model analysis of the transversity distribution

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Vento, Vicente

    1998-04-01

    The feasibility of measuring chiral-odd parton distribution functions in polarized Drell-Yan and semi-inclusive experiments has renewed theoretical interest in their study. Models of hadron structure have proven successful in describing the gross features of the chiral-even structure functions. Similar expectations motivated our study of the transversity parton distributions in the Isgur-Karl and MIT bag models. We confirm, by performing a NLO calculation, the diverse low x behaviors of the transversity and spin structure functions at the experimental scale and show that it is fundamentally a consequence of the different behaviors under evolution of these functions. The inequalities of Soffer establish constraints between data and model calculations of the chiral-odd transversity function. The approximate compatibility of our model calculations with these constraints confers credibility to our estimates.

  11. Intrapixel measurement techniques on large focal plane arrays for astronomical applications: a comparative study

    NASA Astrophysics Data System (ADS)

    Ketchazo, C.; Viale, T.; Boulade, O.; de la Barrière, F.; Dubreuil, D.; Mugnier, L.; Moreau, V.; Guérineau, N.; Mulet, P.; Druart, G.; Delisle, C.

    2017-09-01

    The intrapixel response is the signal detected by a single pixel illuminated by a Dirac distribution as a function of the position of this Dirac inside this pixel. It is also known as the pixel response function (PRF). This function measures the sensitivity variation at the subpixel scale and gives a spatial map of the sensitivity across a pixel.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, P. A.; Lynch, K. A.

    Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion upflow/outflow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion upflow, it is necessary to examine the thermal ion population at 200-350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurements of the thermalmore » ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma outside the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

  13. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganezer, K; Krmar, M; Cvejic, Z

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less

  14. Some Modified Integrated Squared Error Procedures for Multivariate Normal Data.

    DTIC Science & Technology

    1982-06-01

    p-dimensional Gaussian. There are a number of measures of qualitative robustness but the most important is the influence function . Most of the other...measures are derived from the influence function . The influence function is simply proportional to the score function (Huber, 1981, p. 45 ). The... influence function at the p-variate Gaussian distribution Np (UV) is as -1P IC(x; ,N) = IE&) ;-") sD=XV = (I+c) (p+2)(x-p) exp(- ! (x-p) TV-.1-)) (3.6

  15. On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; del-Castillo-Negrete, D.

    2017-12-01

    Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.

  16. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    PubMed

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  17. Evaluation of scattered light distributions of cw-transillumination for functional diagnostic of rheumatic disorders in interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Prapavat, Viravuth; Schuetz, Rijk; Runge, Wolfram; Beuthan, Juergen; Mueller, Gerhard J.

    1995-12-01

    This paper presents in-vitro-studies using the scattered intensity distribution obtained by cw- transillumination to examine the condition of rheumatic disorders of interphalangeal joints. Inflammation of joints, due to rheumatic diseases, leads to changes in the synovial membrane, synovia composition and content, and anatomic geometrical variations. Measurements have shown that these rheumatic induced inflammation processes result in a variation in optical properties of joint systems. With a scanning system the interphalangeal joint is transilluminated with diode lasers (670 nm, 905 nm) perpendicular to the joint cavity. The detection of the entire distribution of the transmitted radiation intensity was performed with a CCD camera. As a function of the structure and optical properties of the transilluminated volume we achieved distributions of scattered radiation which show characteristic variations in intensity and shape. Using signal and image processing procedures we evaluated the measured scattered distributions regarding their information weight, shape and scale features. Mathematical methods were used to find classification criteria to determine variations of the joint condition.

  18. Distributed temperature sensor testing in liquid sodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  19. Lifestyle-Adjusted Function: Variation beyond BADL and IADL Competencies

    ERIC Educational Resources Information Center

    Albert, Steven M.; Bear-Lehman, Jane; Burkhardt, Ann

    2009-01-01

    Purpose: Using the Activity Card Sort (ACS), we derived a measure of lifestyle-adjusted function and examined the distribution of this measure and its correlates in a community sample of older adults at risk for disability transitions. Design and Methods: Participants in the Sources of Independence in the Elderly project (n = 375) completed the…

  20. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation

    DTIC Science & Technology

    2008-02-01

    be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique

  1. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplak, Agnieszka M.; Slosar, Anze

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n-th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation overmore » mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. In conclusion, we find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.« less

  2. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplak, Agnieszka M.; Slosar, Anže, E-mail: acieplak@bnl.gov, E-mail: anze@bnl.gov

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n -th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisationmore » over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. We find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.« less

  3. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    DOE PAGES

    Cieplak, Agnieszka M.; Slosar, Anze

    2017-10-12

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n-th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation overmore » mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. In conclusion, we find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.« less

  4. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.; Slosar, Anže

    2017-10-01

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n-th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. We find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.

  5. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  6. Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen

    2017-12-01

    We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.

  7. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  8. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    PubMed

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  9. Measurement of higher cumulants of net-charge multiplicity distributions in Au + Au collisions at s N N = 7.7 – 200 GeV

    DOE PAGES

    Adare, A.; Afanasiev, S.; Aidala, C.; ...

    2016-01-19

    Our report presents the measurement of cumulants (C n,n=1,...,4) of the net-charge distributions measured within pseudorapidity (|η|<0.35) in Au+Au collisions at √s NN=7.7–200GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C 1/C 2, C 3/C 1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do notmore » observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. These measured values of C 1/C 2 and C 3/C 1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. Moreover, the extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.« less

  10. Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation.

    PubMed

    Gratton, Caterina; Laumann, Timothy O; Nielsen, Ashley N; Greene, Deanna J; Gordon, Evan M; Gilmore, Adrian W; Nelson, Steven M; Coalson, Rebecca S; Snyder, Abraham Z; Schlaggar, Bradley L; Dosenbach, Nico U F; Petersen, Steven E

    2018-04-18

    The organization of human brain networks can be measured by capturing correlated brain activity with fMRI. There is considerable interest in understanding how brain networks vary across individuals or neuropsychiatric populations or are altered during the performance of specific behaviors. However, the plausibility and validity of such measurements is dependent on the extent to which functional networks are stable over time or are state dependent. We analyzed data from nine high-quality, highly sampled individuals to parse the magnitude and anatomical distribution of network variability across subjects, sessions, and tasks. Critically, we find that functional networks are dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state and day-to-day variability. Sources of variation were differentially distributed across the brain and differentially linked to intrinsic and task-evoked sources. We conclude that functional networks are suited to measuring stable individual characteristics, suggesting utility in personalized medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Exact Distributions of Intraclass Correlation and Cronbach's Alpha with Gaussian Data and General Covariance

    ERIC Educational Resources Information Center

    Kistner, Emily O.; Muller, Keith E.

    2004-01-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact…

  12. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy.

    PubMed

    Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco

    2018-01-11

    Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.

  13. Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.

    1993-01-01

    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.

  14. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  15. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm

    PubMed Central

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2018-01-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035

  16. Measurement of the distribution coefficient of neodymium in cubic ZrO 2

    NASA Astrophysics Data System (ADS)

    Römer, H.; Luther, K.-D.; Assmus, W.

    1993-05-01

    The incorporation of solute elements into single crystals has been examined for many years. In this paper we investigate the distribution coefficient of Nd 2O 3 in cubic stabilized zirconiumdioxide crystals. The distribution coefficient is measured as a function of the growth velocity. The validity of the Burton-Prim-Slichter theory [J.A. Burton, R.C. Prim and W.P. Slichter, J. Chem. Phys. 21 (1953) 1987] for the system zirconium dioxide/yttrium oxide is confirmed by the experimental results. The value for the equilibrium distribution coefficient is evaluated as k0 = 0.426.

  17. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter

    PubMed Central

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, y¯D, were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured y¯D were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm−1. PMID:25210053

  18. Electrostatic analyzer measurements of ionospheric thermal ion populations

    DOE PAGES

    Fernandes, P. A.; Lynch, K. A.

    2016-07-09

    Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion upflow/outflow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion upflow, it is necessary to examine the thermal ion population at 200-350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurements of the thermalmore » ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma outside the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

  19. Measurement of the triple-differential dijet cross section in proton-proton collisions at √{s}=8 {TeV} and constraints on parton distribution functions

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Zeid, S. Abu; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Teles, P. Rebello; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; Figueiredo, D. Matos; Herrera, C. Mora; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; De Araujo, F. Torres Da Silva; Pereira, A. Vilela; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Abad, D. Romero; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Hernández, C. F. González; Alvarez, J. D. Ruiz; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Jarrin, E. Carrera; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Bihan, A.-C. Le; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Antunes De Oliveira, A. Carvalho; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Cifuentes, J. A. Brochero; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-De; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Ibarguen, H. A. Salazar; Estrada, C. Uribe; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Iglesias, L. Lloret; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Polikarpov, S.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Maestre, J. Alcaraz; Luna, M. Barrio; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; De Martino, E. Navarro; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Menendez, J. Fernandez; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Cruz, S. Sanchez; Andrés, I. Suárez; Vischia, P.; Garcia, J. M. Vizan; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Virto, A. Lopez; Marco, J.; Rivero, C. Martinez; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Della Porta, G. Zevi; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Sevilla, M. Franco; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; De Sá, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Gonzalez, I. D. Sandoval; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Kravchenko, I.; Rodrigues, A. Malta; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-11-01

    A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 {TeV} using 19.7 {fb}^ {-1} of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is α _S(M_ {Z}) = 0.1199 ± {0.0015} (exp) _{-0.0020}^{+0.0031} (theo), where M_ {Z} is the mass of the Z boson.

  20. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  1. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  2. Log Normal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of Alpha Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2008-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316

  3. Quark fragmentation functions in NJL-jet model

    NASA Astrophysics Data System (ADS)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  4. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  5. Functional linear models for zero-inflated count data with application to modeling hospitalizations in patients on dialysis.

    PubMed

    Sentürk, Damla; Dalrymple, Lorien S; Nguyen, Danh V

    2014-11-30

    We propose functional linear models for zero-inflated count data with a focus on the functional hurdle and functional zero-inflated Poisson (ZIP) models. Although the hurdle model assumes the counts come from a mixture of a degenerate distribution at zero and a zero-truncated Poisson distribution, the ZIP model considers a mixture of a degenerate distribution at zero and a standard Poisson distribution. We extend the generalized functional linear model framework with a functional predictor and multiple cross-sectional predictors to model counts generated by a mixture distribution. We propose an estimation procedure for functional hurdle and ZIP models, called penalized reconstruction, geared towards error-prone and sparsely observed longitudinal functional predictors. The approach relies on dimension reduction and pooling of information across subjects involving basis expansions and penalized maximum likelihood techniques. The developed functional hurdle model is applied to modeling hospitalizations within the first 2 years from initiation of dialysis, with a high percentage of zeros, in the Comprehensive Dialysis Study participants. Hospitalization counts are modeled as a function of sparse longitudinal measurements of serum albumin concentrations, patient demographics, and comorbidities. Simulation studies are used to study finite sample properties of the proposed method and include comparisons with an adaptation of standard principal components regression. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at $$\\sqrt{s}=8\\,~{\\mathrm {TeV}}$$ using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-10-03

    Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, tmore » $$\\bar{t}$$ system and event-level kinematic observables in proton–proton collisions at a centre-of-mass energy of √s=8TeV. The observables have been chosen to emphasize the t$$\\bar{t}$$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb - 1 , recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.« less

  7. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  8. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  9. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    NASA Astrophysics Data System (ADS)

    Berryman, James G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.

  10. Poster - Thur Eve - 16: Four-dimensional x-ray computed tomography and hyperpolarized 3 He magnetic resonance imaging of gas distribution in lung cancer.

    PubMed

    Mathew, L; Castillo, R; Castillo, E; Yaremko, B; Rodrigues, G; Etemad-Rezai, R; Guerrero, T; Parraga, G

    2012-07-01

    Dynamic imaging methods such as four-dimensional computed tomography (4DCT) and static imaging methods such as noble gas magnetic resonance imaging (MRI) deliver direct and regional measurements of lung function even in lung cancer patients in whom global lung function measurements are dominated by tumour burden. The purpose of this study was to directly compare quantitative measurements of gas distribution from static hyperpolarized 3 He MRI and dynamic 4DCT in a small group of lung cancer patients. MRI and 4DCT were performed in 11 subjects prior to radiation therapy. MRI was performed at 3.0T in breath-hold after inhalation 1L of hyperpolarized 3 He gas. Gas distribution in 3 He MRI was quantified using a semi-automated segmentation algorithm to generate percent-ventilated volume (PVV), reflecting the volume of gas in the lung normalized to the thoracic cavity volume. 4DCT pulmonary function maps were generated using deformable image registration of six expiratory phase images. The correspondence between identical tissue elements at inspiratory and expiratory phases was used to estimate regional gas distribution and PVV was quantified from these images. After accounting for differences in lung volumes between 3 He MRI (1.9±0.5L ipsilateral, 2.3±0.7 contralateral) and 4DCT (1.2±0.3L ipsilateral, 1.3±0.4L contralateral) during image acquisition, there was no statistically significant difference in PVV between 3 He MRI (72±11% ipsilateral, 79±12% contralateral) and 4DCT (74±3% ipsilateral, 75±4% contralateral). Our results indicate quantitative agreement in the regional distribution of inhaled gas in both static and dynamic imaging methods. PVV may be considered as a regional surrogate measurement of lung function or ventilation. © 2012 American Association of Physicists in Medicine.

  11. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less

  12. Dimension-independent likelihood-informed MCMC

    DOE PAGES

    Cui, Tiangang; Law, Kody J. H.; Marzouk, Youssef M.

    2015-10-08

    Many Bayesian inference problems require exploring the posterior distribution of highdimensional parameters that represent the discretization of an underlying function. Our work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. There are two distinct lines of research that intersect in the methods we develop here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian informationmore » and any associated lowdimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Finally, we use two nonlinear inverse problems in order to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.« less

  13. The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study.

    PubMed

    Sengers, B G; Van Donkelaar, C C; Oomens, C W J; Baaijens, F P T

    2004-12-01

    Assessment of the functionality of tissue engineered cartilage constructs is hampered by the lack of correlation between global measurements of extra cellular matrix constituents and the global mechanical properties. Based on patterns of matrix deposition around individual cells, it has been hypothesized previously, that mechanical functionality arises when contact occurs between zones of matrix associated with individual cells. The objective of this study is to determine whether the local distribution of newly synthesized extracellular matrix components contributes to the evolution of the mechanical properties of tissue engineered cartilage constructs. A computational homogenization approach was adopted, based on the concept of a periodic representative volume element. Local transport and immobilization of newly synthesized matrix components were described. Mechanical properties were taken dependent on the local matrix concentration and subsequently the global aggregate modulus and hydraulic permeability were derived. The transport parameters were varied to assess the effect of the evolving matrix distribution during culture. The results indicate that the overall stiffness and permeability are to a large extent insensitive to differences in local matrix distribution. This emphasizes the need for caution in the visual interpretation of tissue functionality from histology and underlines the importance of complementary measurements of the matrix's intrinsic molecular organization.

  14. Condition assessment of nonlinear processes

    DOEpatents

    Hively, Lee M.; Gailey, Paul C.; Protopopescu, Vladimir A.

    2002-01-01

    There is presented a reliable technique for measuring condition change in nonlinear data such as brain waves. The nonlinear data is filtered and discretized into windowed data sets. The system dynamics within each data set is represented by a sequence of connected phase-space points, and for each data set a distribution function is derived. New metrics are introduced that evaluate the distance between distribution functions. The metrics are properly renormalized to provide robust and sensitive relative measures of condition change. As an example, these measures can be used on EEG data, to provide timely discrimination between normal, preseizure, seizure, and post-seizure states in epileptic patients. Apparatus utilizing hardware or software to perform the method and provide an indicative output is also disclosed.

  15. Measurements of the separated longitudinal structure function FL from hydrogen and deuterium targets at low Q2

    NASA Astrophysics Data System (ADS)

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.; Abbott, D.; Adams, G. S.; Afanasev, A.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, R.; Avery, S.; Baker, O. K.; Benmouna, N.; Berman, B. L.; Biselli, A.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Brash, E.; Breuer, H.; Chang, G.; Chant, N.; Christy, M. E.; Connell, S. H.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dodario, T.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Ent, R.; Fenker, H. C.; Frolov, V. V.; Gaskell, D.; Garrow, K.; Gilman, R.; Gueye, P.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Jackson, H.; Jiang, X.; Jones, M. K.; Joo, K.; Kelly, J. J.; Keppel, C. E.; Kuhn, J.; Kinney, E.; Klein, A.; Kubarovsky, V.; Liang, Y.; Lolos, G.; Lung, A.; Mack, D.; Malace, S.; Markowitz, P.; Mbianda, G.; McGrath, E.; Mckee, D.; Meekins, D. G.; Mkrtchyan, H.; Napolitano, J.; Navasardyan, T.; Niculescu, G.; Nozar, M.; Ostapenko, T.; Papandreou, Z.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tadevosyan, V.; Tang, L.; Telfeyan, J.; Todor, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Warren, G.; Wesselmann, F.; Wojtsekhowski, B.; Wood, S. A.; Yan, C.; Zihlmann, B.

    2018-04-01

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q2<1 GeV2 , and compare them with parton distribution parametrization and kT factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q2 scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R , than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.

  16. Measurements of the separated longitudinal structure function F L from hydrogen and deuterium targets at low Q 2

    DOE PAGES

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.; ...

    2018-04-26

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less

  17. Measurements of the separated longitudinal structure function F L from hydrogen and deuterium targets at low Q 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less

  18. The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Bertini, I.; Della Corte, V.; Güttler, C.; Ivanovski, S.; La Forgia, F.; Lasue, J.; Levasseur-Regourd, A. C.; Marzari, F.; Moreno, F.; Mottola, S.; Naletto, G.; Palumbo, P.; Rinaldi, G.; Rotundi, A.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Fornasier, S.; Groussin, O.; Gutiérrez, P. J.; Hviid, H. S.; Ip, W. H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, M. L.; Lazzarin, M.; López-Moreno, J. J.; Shi, X.; Thomas, N.; Tubiana, C.

    2018-05-01

    The OSIRIS camera onboard Rosetta measured the phase function of both the coma dust and the nucleus. The two functions have a very different slope versus the phase angle. Here, we show that the nucleus phase function should be adopted to convert the brightness to the size of dust particles larger than 2.5 mm only. This makes the dust bursts observed close to Rosetta by OSIRIS, occurring about every hour, consistent with the fragmentation on impact with Rosetta of parent particles, whose flux agrees with the dust flux observed by GIADA. OSIRIS also measured the antisunward acceleration of the fragments, thus providing the first direct measurement of the solar radiation force acting on the dust fragments and thus of their bulk density, excluding any measurable rocket effect by the ice sublimation from the dust. The obtained particle density distribution has a peak matching the bulk density of most COSIMA particles, and represents a subset of the density distribution measured by GIADA. This implies a bias in the elemental abundances measured by COSIMA, which thus are consistent with the 67P dust mass fractions inferred by GIADA, i.e. (38 ± 8) {per cent} of hydrocarbons versus the (62 ± 8) {per cent} of sulphides and silicates.

  19. Image analysis for the automated estimation of clonal growth and its application to the growth of smooth muscle cells.

    PubMed

    Gavino, V C; Milo, G E; Cornwell, D G

    1982-03-01

    Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.

  20. Trace element distribution in the rat cerebellum

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.

    1990-04-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.

  1. Species, functional groups, and thresholds in ecological resilience

    USGS Publications Warehouse

    Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

    2012-01-01

    The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions.

  2. Continuous Wave Ring-Down Spectroscopy Diagnostic for Measuring Argon Ion and Neutral Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl

    2013-10-01

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.

  3. Unified halo-independent formalism from convex hulls for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2017-12-01

    Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution F(v) in Earth's frame or 2- Galactic velocity distribution fgal(vec u), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (Script N‑1), where Script N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is Script N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function tilde eta0BF(vmin) (which is an integral of the speed distribution) with at most (Script N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise confidence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of fgal(vec u), which is a sum of Galactic streams, yields a periodic time-dependent halo function tilde etaBF(vmin, t) which at any fixed time is a piecewise constant function of vmin with at most Script N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u) that is once again a sum of delta functions, and produces a time-dependent tilde etaBF(vmin, t) function (and a time-averaged tilde eta0BF(vmin)) that is piecewise linear, differing significantly from best-fit halo functions obtained without the assumption of isotropy.

  4. Ventilation-perfusion distribution in normal subjects.

    PubMed

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  5. Integrated measurements and modeling of CO2, CH4, and N2O fluxes using soil microsite frequency distributions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Sihi, Debjani; Savage, Kathleen

    2017-04-01

    Soil fluxes of greenhouse gases (GHGs) play a significant role as biotic feedbacks to climate change. Production and consumption of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. Models of belowground processes of these GHGs should be internally consistent with respect to the biophysical processes of gaseous production, consumption, and transport within the soil, including the contrasting effects of oxygen (O2) as either substrate or inhibitor. We installed automated chambers to simultaneously measure soil fluxes of CO2 (using LiCor-IRGA), CH4, and N2O (using Aerodyne quantum cascade laser) along soil moisture gradients at the Howland Forest in Maine, USA. Measured fluxes of these GHGs were used to develop and validate a merged model. While originally intended for aerobic respiration, the core structure of the Dual Arrhenius and Michaelis-Menten (DAMM) model was modified by adding M-M and Arrhenius functions for each GHG production and consumption process, and then using the same diffusion functions for each GHG and for O2. The area under a soil chamber was partitioned according to a log-normal probability distribution function, where only a small fraction of microsites had high available-C. The probability distribution of soil C leads to a simulated distribution of heterotrophic respiration, which translates to a distribution of O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates microsite concentrations of O2, which then determine the distribution of microsite production and consumption of CH4 and N2O, and subsequently their microsite concentrations using the same diffusion function. At many moisture values, there are some microsites of production and some of consumption for each gas, and the resulting simulated microsite concentrations of CH4 and N2O range from below ambient to above ambient atmospheric values. As soil moisture or temperature increase, the skewness of the microsite distributions of heterotrophic respiration and CH4 concentrations shifts toward a larger fraction of high values, while the skewness of microsite distributions of O2 and N2O concentrations shifts toward a larger fraction of low values. This approach of probability distribution functions for each gas simulates the importance of microsite hotspots of methanogenesis and N2O reduction at high moisture (and temperature). In addition, the model demonstrates that net consumption of atmospheric CH4 and N2O can occur simultaneously within a chamber due to the distribution of soil microsite conditions, which is consistent with some episodes of measured fluxes. Because soil CO2, N2O and CH4 fluxes are linked through substrate supply and O2 effects, the multiple constraints of simultaneous measurements of all three GHGs proved to be effective when applied to our combined model. Simulating all three GHGs simultaneously in a parsimonious modeling framework provides confidence that the most important mechanisms are skillfully simulated using appropriate parameterization and good process representation.

  6. Measuring the Mass Distribution in Z is Approximately 0.2 Cluster Lenses with XMM, HST and CFHT

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Being the most massive gravitationally bound objects in the Universe, clusters of galaxies are prime targets for studies of structure formation and evolution. Specifically the comoving space density of virialized clusters of a given mass (or X-ray temperature), but also the frequency and degree of substructure, as well as the shape of the cluster mass profile are quantities whose current values and evolution as a function of lookback time can provide important constraints on the cosmological and physical parameters of structure formation theories. The project funded by NASA grant NAG 5-10041 intended to take such studies to a new level by combining observations of a well-selected cluster sample by three state-of-the-art telescopes: HST, to accurately measure the mass distribution in the cluster core (approx. 0.5 h(sup -1)(sub 50) Mpc) via strong gravitational lensing; CFHT, to measure the large scale mass distribution out to approx. 3 Mpc via weak lensing; and XMM, to measure the gas density and temperature distribution accurately on intermediate scales < 1.5 Mpc. XMM plays a pivotal role in this context as the calibration of X-ray mass measurements through accurate, spatially resolved X-ray temperature measurements (particularly in the cosmologically most sensitive range of kT> 5 keV) is central to the questions outlined above. This set of observations promised to yield the best cluster mass measurements obtained so far for a representative sample, thus allowing us to: 1) Measure the high-mass end of the local cluster mass function; 2) Test predictions of a universal cluster mass profile; 3) calibrate the mass-temperature and temperature-luminosity relations for clusters and the scatter around these relations, which is vital for studies of cluster evolution using the X-ray temperature and X-ray luminosity functions.

  7. ATTITUDE FILTERING ON SO(3)

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2005-01-01

    A new method is presented for the simultaneous estimation of the attitude of a spacecraft and an N-vector of bias parameters. This method uses a probability distribution function defined on the Cartesian product of SO(3), the group of rotation matrices, and the Euclidean space W N .The Fokker-Planck equation propagates the probability distribution function between measurements, and Bayes s formula incorporates measurement update information. This approach avoids all the issues of singular attitude representations or singular covariance matrices encountered in extended Kalman filters. In addition, the filter has a consistent initialization for a completely unknown initial attitude, owing to the fact that SO(3) is a compact space.

  8. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    PubMed

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  9. Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate

    NASA Astrophysics Data System (ADS)

    Ramstad, R.; Barbash, S.; Futaana, Y.; Nilsson, H.; Holmstrom, M.

    2015-12-01

    Eight years (2007-2015) of ion flux measurements from Mars Express are used to empirically investigate the influence of the Martian crustal magnetic fields on the atmospheric ion escape rate. We combine ASPERA-3/IMA (Analyzer of Space Plasmas and Energetic Atoms/Ion Mass Analyzer) measurements taken during nominal upstream solar wind and solar Extreme Ultraviolet (EUV) conditions to compute global average ion distribution functions for varying solar zenith angles (SZA) of the strongest crustal field. Escape rates are subsequently calculated from each of the average distribution functions. A statistically significant increase in escape rate is found for high dayside SZA, compared to low SZA.

  10. Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing

    NASA Astrophysics Data System (ADS)

    Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.

    Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.

  11. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  13. Statistics of Dark Matter Halos from Gravitational Lensing.

    PubMed

    Jain; Van Waerbeke L

    2000-02-10

    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.

  14. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma.

    PubMed

    McCarren, D; Scime, E

    2015-10-01

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10(9) cm(-3) < plasma density <10(13) cm(-3)) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  15. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  17. Bayes classification of terrain cover using normalized polarimetric data

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Swartz, A. A.; Kong, J. A.; Shin, R. T.; Novak, L. M.

    1988-01-01

    The normalized polarimetric classifier (NPC) which uses only the relative magnitudes and phases of the polarimetric data is proposed for discrimination of terrain elements. The probability density functions (PDFs) of polarimetric data are assumed to have a complex Gaussian distribution, and the marginal PDF of the normalized polarimetric data is derived by adopting the Euclidean norm as the normalization function. The general form of the distance measure for the NPC is also obtained. It is demonstrated that for polarimetric data with an arbitrary PDF, the distance measure of NPC will be independent of the normalization function selected even when the classifier is mistrained. A complex Gaussian distribution is assumed for the polarimetric data consisting of grass and tree regions. The probability of error for the NPC is compared with those of several other single-feature classifiers. The classification error of NPCs is shown to be independent of the normalization function.

  18. Transmission of ˜ 10 keV electron beams through thin ceramic foils: Measurements and Monte Carlo simulations of electron energy distribution functions

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Heindl, T.; Skrobol, C.; Wieser, J.; Krücken, R.; Ulrich, A.

    2008-07-01

    Electron beams with particle energy of ~10 keV were sent through 300 nm thick ceramic (Si3N4 + SiO2) foils and the resulting electron energy distribution functions were recorded using a retarding grid technique. The results are compared with Monte Carlo simulations performed with two publicly available packages, Geant4 and Casino v2.42. It is demonstrated that Geant4, unlike Casino, provides electron energy distribution functions very similar to the experimental distributions. Both simulation packages provide a quite precise average energy of transmitted electrons: we demonstrate that the maximum uncertainty of the calculated values of the average energy is 6% for Geant4 and 8% for Casino, taking into account all systematic uncertainties and the discrepancies in the experimental and simulated data.

  19. Analysis of scattering statistics and governing distribution functions in optical coherence tomography.

    PubMed

    Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-07-01

    The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed.

  20. Internal force field in proteins seen by divergence entropy

    PubMed Central

    Marchewka, Damian; Banach, Mateusz; Roterman, Irena

    2011-01-01

    The characteristic distribution of non-binding interactions in a protein is described. It establishes that hydrophobic interactions can be characterized by suitable 3D Gauss functions while electrostatic interactions generally follow a random distribution. The implementation of this observation suggests differentiated optimization procedure for these two types of interactions. The electrostatic interaction may follow traditional energy optimization while the criteria for convergence shall measure the accordance with 3-D Gauss function. PMID:21769190

  1. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  2. Modeling the directional reflectance from complete homogeneous vegetation canopies with various leaf-orientation distributions

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1984-01-01

    The directional-reflectance distributions of radiant flux from homogeneous vegetation canopies with greater than 90 percent ground cover are analyzed with a radiative-transfer model. The model assumes that the leaves consist of small finite planes with Lambertian properties. Four theoretical canopies with different leaf-orientation distributions were studied: erectophile, spherical, planophile, and heliotropic canopies. The directional-reflectance distributions from the model closely resemble reflectance distributions measured in the field. The physical scattering mechanisms operating in the model explain the variations observed in the reflectance distributions as a function of leaf-orientation distribution, solar zenith angle, and leaf transmittance and reflectance. The simulated reflectance distribution show unique characteristics for each canopy. The basic understanding of the physical scattering properties of the different canopy geometries gained in this study provide a basis for developing techniques to infer leaf-orientation distributions of vegetation canopies from directional remote-sensing measurements.

  3. Upgrade of goniospectrophtometer GEFE for near-field scattering and fluorescence radiance measurements

    NASA Astrophysics Data System (ADS)

    Bernad, Berta; Ferrero, Alejandro; Pons, Alicia; Hernanz, M. L.; Campos, Joaquín.

    2015-03-01

    The goniospectrophotometer GEFE, designed and developed at IO-CSIC (Instituto de Optica, Agencia Estatal Consejo Superior de Investigaciones Cientificas), was conceived to measure the spectral Bidirectional Reflectance Distribution Function (BRDF) at any pair of irradiation and detection directions. Although the potential of this instrument has largely been proved, it still required to be upgraded to deal with some important scattering features for the assessment of the appearance. Since it was not provided with a detector with spatial resolution, it simply could not measure spectrophotometric quantities to characterize texture through the Bidirectional Texture Function (BTF) or translucency through the more complex Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF). Another requirement in the GEFE upgrading was to provide it with the capability of measuring fluorescence at different geometries, since some of the new pigments used in industry are fluorescent, which can have a non-negligible impact in the color of the product. Then, spectral resolution at irradiation and detection had to be available in GEFE. This paper describes the upgrading of the goniospectrophotometer GEFE, and its new capabilities through the presentation of sparkle and goniofluorescence measurements. In addition, the potential of the instrument to evaluate translucency by the measurement of the BSSRDF is briefly discussed.

  4. Comparison of forward and backward pp pair knockout in 3He(e,e'pp)n

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, H.; Weinstein, L. B.; Laget, J. M.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Sanctis, E.; De Vita, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Hafidi, K.; Hicks, K.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Lu, H. Y.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Paolone, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pisano, S.; Pozdniakov, S.; Procureur, S.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Saini, M. S.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Smith, E. S.; Sober, D. I.; Sokan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Wood, M. H.; Zana, L.; Zhao, B.

    2012-06-01

    Measuring nucleon-nucleon short range correlations (SRCs) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wave function, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3He(e,e'pp)n reaction, looking at events with high-momentum protons (pp>0.35 GeV/c) and a low-momentum neutron (pn<0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q⃗). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC.

  5. Electron-beam-charged dielectrics: Internal charge distribution

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  6. Discriminating topology in galaxy distributions using network analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl

    2016-07-01

    The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.

  7. Valence-quark distribution functions in the kaon and pion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Chang, Lei; Roberts, Craig D.

    2016-04-18

    We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson’s momentum at a characteristic hadronic scale and vanish as ( 1 - x ) 2 when Bjorken- x → 1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U ( 3 ) -flavor symmetry breaking in meson parton distribution functions is modulatedmore » by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion’s light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.« less

  8. Incorporation of a spatial source distribution and a spatial sensor sensitivity in a laser ultrasound propagation model using a streamlined Huygens' principle.

    PubMed

    Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž

    2016-03-01

    The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-29

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  10. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  11. Enhanced production of ψ (2 S ) mesons in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae

    2015-05-01

    I study the production of a ψ (2 S ) meson in heavy ion collisions. I evaluate Wigner functions for the ψ (2 S ) meson using both Gaussian and Coulomb wave functions, and investigate the wave function dependence in the ψ (2 S ) meson production by recombination of charm and anticharm quarks. The enhanced transverse momentum distribution of ψ (2 S ) mesons compared to that of J /ψ mesons, originated from wave function distributions of the ψ (2 S ) and J /ψ meson in momentum space, provides a plausible explanation for the recent measurement of the nuclear modification factor ratio between the ψ (2 S ) and J /ψ meson.

  12. A generalized statistical model for the size distribution of wealth

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  13. Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.

  14. Extended bidirectional reflectance distribution function for polarized light scattering from subsurface defects under a smooth surface.

    PubMed

    Shen, Jian; Deng, Degang; Kong, Weijin; Liu, Shijie; Shen, Zicai; Wei, Chaoyang; He, Hongbo; Shao, Jianda; Fan, Zhengxiu

    2006-11-01

    By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions.

  15. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, [Formula: see text], were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured [Formula: see text] were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm(-1). © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  17. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  18. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  19. Distributed strain measurement in a rectangular plate using an array of optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1984-01-01

    Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.

  20. Determining the influential depth for surface reflectance of sediment by BRDF measurements.

    PubMed

    Zhang, H; Voss, K; Reid, R

    2003-10-20

    We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.

  1. Simulation of Mach Probes in Non-Uniform Magnetized Plasmas: the Influence of a Background Density Gradient

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.

    2013-10-01

    Mach probes can be used to measure transverse flow in magnetized plasmas, but what they actually measure in strongly non-uniform plasmas has not been definitively established. A fluid treatment in previous work has suggested that the diamagnetic drifts associated with background density and temperature gradients affect transverse flow measurements, but detailed computational study is required to validate and elaborate on those results; it is really a kinetic problem, since the probe deforms and introduces voids in the ion and electron distribution functions. A new code, the Plasma-Object Simulator with Iterated Trajectories (POSIT) has been developed to self-consistently compute the steady-state six-dimensional ion and electron distribution functions in the perturbed plasma. Particle trajectories are integrated backwards in time to the domain boundary, where arbitrary background distribution functions can be specified. This allows POSIT to compute the ion and electron density at each node of its unstructured mesh, update the potential based on those densities, and then iterate until convergence. POSIT is used to study the impact of a background density gradient on transverse Mach probe measurements, and the results compared to the previous fluid theory. C.B. Haakonsen was supported in part by NSF/DOE Grant No. DE-FG02-06ER54512, and in part by an SCGF award administered by ORISE under DOE Contract No. DE-AC05-06OR23100.

  2. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Qin, Shengwei; Zhang, Jiazhi; Wang, Ying; Rong, Yonghua; Zuo, Xunwei; Chen, Nailu

    2017-10-01

    Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.

  3. Total Water-Vapor Distribution in the Summer Cloudless Atmosphere over the South of Western Siberia

    NASA Astrophysics Data System (ADS)

    Troshkin, D. N.; Bezuglova, N. N.; Kabanov, M. V.; Pavlov, V. E.; Sokolov, K. I.; Sukovatov, K. Yu.

    2017-12-01

    The spatial distribution of the total water vapor in different climatic zones of the south of Western Siberia in summer of 2008-2011 is studied on the basis of Envisat data. The correlation analysis of the water-vapor time series from the Envisat data W and radiosonde observations w for the territory of Omsk aerological station show that the absolute values of W and w are linearly correlated with a coefficient of 0.77 (significance level p < 0.05). The distribution functions of the total water vapor are calculated based on the number of its measurements by Envisat for a cloudless sky of three zones with different physical properties of the underlying surface, in particular, steppes to the south of the Vasyugan Swamp and forests to the northeast of the Swamp. The distribution functions are bimodal; each mode follows the lognormal law. The parameters of these functions are given.

  4. Empirical estimation of a distribution function with truncated and doubly interval-censored data and its application to AIDS studies.

    PubMed

    Sun, J

    1995-09-01

    In this paper we discuss the non-parametric estimation of a distribution function based on incomplete data for which the measurement origin of a survival time or the date of enrollment in a study is known only to belong to an interval. Also the survival time of interest itself is observed from a truncated distribution and is known only to lie in an interval. To estimate the distribution function, a simple self-consistency algorithm, a generalization of Turnbull's (1976, Journal of the Royal Statistical Association, Series B 38, 290-295) self-consistency algorithm, is proposed. This method is then used to analyze two AIDS cohort studies, for which direct use of the EM algorithm (Dempster, Laird and Rubin, 1976, Journal of the Royal Statistical Association, Series B 39, 1-38), which is computationally complicated, has previously been the usual method of the analysis.

  5. Measuring charge nonuniformity in MOS devices

    NASA Technical Reports Server (NTRS)

    Maserjian, J.; Zamani, N.

    1980-01-01

    Convenient method of determining inherent lateral charge non-uniformities along silicon dioxide/silicon interface of metal-oxide-semiconductor (MOS) employs rapid measurement of capacitance of interface as function of voltage at liquid nitrogen temperature. Charge distribution is extracted by fast-Fourier-transform analysis of capacitance voltage (C-V) measurement.

  6. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  7. Measurement of the triple-differential dijet cross section in proton-proton collisions at $$\\sqrt{s}=8\\,\\text {TeV} $$ and constraints on parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8more » $$\\,\\text {TeV}$$ using 19.7 $$\\,\\text {fb}^\\text {-1}$$ of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is $$\\alpha _S(M_\\text {Z}) = 0.1199\\,\\pm {0.0015}\\,(\\mathrm {exp})\\, _{-0.0020}^{+0.0031}\\,(\\mathrm {theo})$$ , where $$M_\\text {Z}$$ is the mass of the Z boson.« less

  8. Radiative transfer modeling applied to sea water constituent determination. [Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Faller, K. H.

    1979-01-01

    Optical radiation from the sea is influenced by pigments dissolved in the water and contained in discrete organisms suspended in the sea, and by pigmented and unpigmented inorganic and organic particles. The problem of extracting the information concerning these pigments and particulates from the optical properties of the sea is addressed and the properties which determine characteristics of the radiation that a remote sensor will detect and measure are considered. The results of the application of the volume scattering function model to the data collected in the Gulf of Mexico and its environs indicate that the size distribution of the concentrations of particles found in the sea can be predicted from measurements of the volume scattering function. Furthermore, with the volume scattering function model and knowledge of the absorption spectra of dissolved pigments, the radiative transfer model can compute a distribution of particle sizes and indices of refraction and concentration of dissolved pigments that give an upwelling light spectrum that closely matches measurements of that spectrum at sea.

  9. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  10. Measurement of the triple-differential dijet cross section in proton-proton collisions at $$\\sqrt{s}=8\\,\\text {TeV} $$ and constraints on parton distribution functions

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-11-07

    Here, a measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8more » $$\\,\\text {TeV}$$ using 19.7 $$\\,\\text {fb}^\\text {-1}$$ of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is $$\\alpha _S(M_\\text {Z}) = 0.1199\\,\\pm {0.0015}\\,(\\mathrm {exp})\\, _{-0.0020}^{+0.0031}\\,(\\mathrm {theo})$$ , where $$M_\\text {Z}$$ is the mass of the Z boson.« less

  11. Constraining the Sea Quark Distributions Through W+/- Cross Section Ratio Measurements at STAR

    NASA Astrophysics Data System (ADS)

    Posik, Matthew; STAR Collaboration

    2017-09-01

    Over the years, extractions of parton distribution functions (PDFs) have become more precise, however there are still regions where more data are needed to improve constraints. One such distribution is the sea quark distribution near the valence region, in particular the d / u distribution. Currently, measurements in the high-x region still have large uncertainties and suggest different trends for this distribution. The charged W cross section ratio is sensitive to the unpolarized sea quark distributions and could be used to help constrain the d / u distribution. Through pp collisions, the STAR experiment at RHIC, is well equipped to measure the e+/- leptonic decays of W+/- bosons in the mid-rapidity range | η | <= 1 at √{ s} = 500/510 GeV. At these kinematics STAR is sensitive to quark distributions near Bjorken-x of 0.16. STAR can also extend the sea quark sensitivity to higher x by measuring the leptonic decays in the forward rapidity range 1.1 < η < 2.0. STAR runs from 2011 through 2013 have collected about 350 pb-1 of data. Presented here are preliminary results for the 2011-2012 W cross section ratios ( 100 pb-1), and an update on the 2013 W cross section analysis ( 250 pb-1).

  12. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  13. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  14. Fast semi-analytical method for precise prediction of ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Wencong; Zhang, Xi; Diao, Dongfeng

    2018-05-01

    We propose a fast semi-analytical method to predict ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas, which are difficult to measure in commercial plasma reactors. In the intermediate frequency regime, the ion density within the sheath is strongly modulated by the low-frequency sheath electric field, making the time-independent ion density assumption employed in conventional models invalid. Our results are in a good agreement with experimental measurements and computer simulations. The application of this method will facilitate the understanding of ion–material interaction mechanisms and development of new-generation plasma etching devices.

  15. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  16. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarren, D.; Lockheed Martin, Palmdale, California 93599; Scime, E., E-mail: earl.scime@mail.wvu.edu

    2015-10-15

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  17. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  18. Measurement of the Transverse Single-Spin Asymmetry in p↑+p →W±/Z0 at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, B.; Huang, T.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, L.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, G.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, X.; Xie, W.; Xin, K.; Xu, N.; Xu, Y. F.; Xu, Z.; Xu, Q. H.; Xu, J.; Xu, H.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, Z.; Zhang, S.; Zhang, J. B.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-04-01

    We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √{s }=500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  19. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.

    PubMed

    Li, Xiaolu; Liang, Yu; Xu, Lijun

    2014-09-01

    To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

  20. Eddington's demon: inferring galaxy mass functions and other distributions from uncertain data

    NASA Astrophysics Data System (ADS)

    Obreschkow, D.; Murray, S. G.; Robotham, A. S. G.; Westmeier, T.

    2018-03-01

    We present a general modified maximum likelihood (MML) method for inferring generative distribution functions from uncertain and biased data. The MML estimator is identical to, but easier and many orders of magnitude faster to compute than the solution of the exact Bayesian hierarchical modelling of all measurement errors. As a key application, this method can accurately recover the mass function (MF) of galaxies, while simultaneously dealing with observational uncertainties (Eddington bias), complex selection functions and unknown cosmic large-scale structure. The MML method is free of binning and natively accounts for small number statistics and non-detections. Its fast implementation in the R-package dftools is equally applicable to other objects, such as haloes, groups, and clusters, as well as observables other than mass. The formalism readily extends to multidimensional distribution functions, e.g. a Choloniewski function for the galaxy mass-angular momentum distribution, also handled by dftools. The code provides uncertainties and covariances for the fitted model parameters and approximate Bayesian evidences. We use numerous mock surveys to illustrate and test the MML method, as well as to emphasize the necessity of accounting for observational uncertainties in MFs of modern galaxy surveys.

  1. Research on distributed optical fiber sensing data processing method based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  2. Thermionic noise measurements for on-line dispenser cathode diagnostics for linear beam microwave tubes

    NASA Technical Reports Server (NTRS)

    Holland, C.; Brodie, I.

    1985-01-01

    A test stand has been set up to measure the current fluctuation noise properties of B- and M-type dispenser cathodes in a typical TWT gun structure. Noise techniques were used to determine the work function distribution on the cathode surfaces. Significant differences between the B and M types and significant changes in the work function distribution during activation and life are found. In turn, knowledge of the expected work function can be used to accurately determine the cathode-operating temperatures in a TWT structure. Noise measurements also demonstrate more sensitivity to space charge effects than the Miram method. Full automation of the measurements and computations is now required to speed up data acquisition and reduction. The complete set of equations for the space charge limited diode were programmed so that given four of the five measurable variables (J, J sub O, T, D, and V) the fifth could be computed. Using this program, we estimated that an rms fluctuation in the diode spacing d in the frequency range of 145 Hz about 20 kHz of only about 10 to the -5 power A would account for the observed noise in a space charge limited diode with 1 mm spacing.

  3. An analytical solution to the one-dimensional heat conduction-convection equation in soil

    USDA-ARS?s Scientific Manuscript database

    Heat transfer in soil occurs by conduction and convection. Infiltrating water affects soil temperature distributions, and measuring soil temperature distributions below infiltrating water can provide a signal for the flux of water. In earlier work a sine wave function (hereinafter referred to as the...

  4. Flame thermometry

    NASA Astrophysics Data System (ADS)

    Strojnik, Marija; Páez, Gonzalo; Granados, Juan C.

    2006-08-01

    We determine the temperature distribution within the flame as a function of position. We determined temperature distribution and the length of a flame by dual-wavelength thermometry, at 470 nm and 515 nm. The error percentages on the temperature and the flame length measurements are 1.9% as compared with the predicted thermodynamic results.

  5. Bug Distribution and Pattern Classification.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.

    The study examines the rule space model, a probabilistic model capable of measuring cognitive skill acquisition and of diagnosing erroneous rules of operation in a procedural domain. The model involves two important components: (1) determination of a set of bug distributions (bug density functions representing clusters around the rules); and (2)…

  6. Modeling of Disordered Binary Alloys Under Thermal Forcing: Effect of Nanocrystallite Dissociation on Thermal Expansion of AuCu3

    NASA Astrophysics Data System (ADS)

    Kim, Y. W.; Cress, R. P.

    2016-11-01

    Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.

  7. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  8. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Quasi solution of radiation transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    There is uncertainty with experimental data as well as with input data of theoretical calculations. The neutron distribution from the variational principle, which takes into account both theoretical and experimental data, is obtained to increase the accuracy and speed of neutronic calculations. The neutron imbalance in mesh cells and the discrepancy between experimentally measured and calculated functional of the neutron distribution are simultaneously minimized. A fast-working and simple-programming iteration method is developed to minimize the objective functional. The method can be used in the core monitoring and control system for (a) power distribution calculations, (b) in- and ex-core detector calibration,more » (c) macro-cross sections or isotope distribution correction by experimental data, and (d) core and detector diagnostics.« less

  10. Results of the Verification of the Statistical Distribution Model of Microseismicity Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Cianciara, Aleksander

    2016-09-01

    The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.

  11. Measurement of global functional performance in patients with rheumatoid arthritis using rheumatology function tests

    PubMed Central

    Escalante, Agustín; Haas, Roy W; del Rincón, Inmaculada

    2004-01-01

    Outcome assessment in patients with rheumatoid arthritis (RA) includes measurement of physical function. We derived a scale to quantify global physical function in RA, using three performance-based rheumatology function tests (RFTs). We measured grip strength, walking velocity, and shirt button speed in consecutive RA patients attending scheduled appointments at six rheumatology clinics, repeating these measurements after a median interval of 1 year. We extracted the underlying latent variable using principal component factor analysis. We used the Bayesian information criterion to assess the global physical function scale's cross-sectional fit to criterion standards. The criteria were joint tenderness, swelling, and deformity, pain, physical disability, current work status, and vital status at 6 years after study enrolment. We computed Guyatt's responsiveness statistic for improvement according to the American College of Rheumatology (ACR) definition. Baseline functional performance data were available for 777 patients, and follow-up data were available for 681. Mean ± standard deviation for each RFT at baseline were: grip strength, 14 ± 10 kg; walking velocity, 194 ± 82 ft/min; and shirt button speed, 7.1 ± 3.8 buttons/min. Grip strength and walking velocity departed significantly from normality. The three RFTs loaded strongly on a single factor that explained ≥70% of their combined variance. We rescaled the factor to vary from 0 to 100. Its mean ± standard deviation was 41 ± 20, with a normal distribution. The new global scale had a stronger fit than the primary RFT to most of the criterion standards. It correlated more strongly with physical disability at follow-up and was more responsive to improvement defined according to the ACR20 and ACR50 definitions. We conclude that a performance-based physical function scale extracted from three RFTs has acceptable distributional and measurement properties and is responsive to clinically meaningful change. It provides a parsimonious scale to measure global physical function in RA. PMID:15225367

  12. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun

    2015-01-30

    Different protocols for calibrating electron pair distribution function (ePDF) measurements are explored and described for quantitative studies on nanomaterials. It is found that the most accurate approach to determine the camera length is to use a standard calibration sample of Au nanoparticles from the National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  13. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  14. Studies of air showers produced by primaries 10(16) eV using a combined scintillation and water-Cerenkov array

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Perrett, J. C.; Watson, A. A.

    1986-01-01

    An array of 8 x 1.0 sq m plastic scintillation counters and 13 water-Cerenkov detectors (1 to 13.5 sq m) were operated at the center of the Haverah Park array to study some features of air showers produced by 10(16) eV primaries. Measurements of the scintillator lateral distribution function, the water-Cerenkov lateral distribution function, and of the distance dependence of the Cerenkov/scintillator ratio are described.

  15. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  16. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  17. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  18. Measurements of the Angular Distributions of Muons from Υ Decays in pp¯ Collisions at s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2012-04-01

    The angular distributions of muons from Υ(1S,2S,3S)→μ+μ- decays are measured using data from pp¯ collisions at s=1.96TeV corresponding to an integrated luminosity of 6.7fb-1 and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and pT up to 40GeV/c, the angular distributions are found to be nearly isotropic.

  19. Entropy generation across Earth's collisionless bow shock.

    PubMed

    Parks, G K; Lee, E; McCarthy, M; Goldstein, M; Fu, S Y; Cao, J B; Canu, P; Lin, N; Wilber, M; Dandouras, I; Réme, H; Fazakerley, A

    2012-02-10

    Earth's bow shock is a collisionless shock wave but entropy has never been directly measured across it. The plasma experiments on Cluster and Double Star measure 3D plasma distributions upstream and downstream of the bow shock allowing calculation of Boltzmann's entropy function H and his famous H theorem, dH/dt≤0. The collisionless Boltzmann (Vlasov) equation predicts that the total entropy does not change if the distribution function across the shock becomes nonthermal, but it allows changes in the entropy density. Here, we present the first direct measurements of entropy density changes across Earth's bow shock and show that the results generally support the model of the Vlasov analysis. These observations are a starting point for a more sophisticated analysis that includes 3D computer modeling of collisionless shocks with input from observed particles, waves, and turbulences.

  20. Measurement of the W boson production charge asymmetry in proton-antiproton collisions

    NASA Astrophysics Data System (ADS)

    Han, Bo-Young

    We present a measurement of the W boson production charge asymmetry using the W → enu decay channel. We use data collected the Collider Detector at Fermilab (CDF) from pp¯ collisions at s = 1.96 TeV. The data were collected up to February 2006 (Run II) and represent an integrated luminosity of 1 fb-1. The experimental measurement of W production charge asymmetry is compared to higher order QCD predictions generated using MRST2006 and CTEQ6 parton distribution functions (PDF). The asymmetry provides new input on the momentum fraction dependence of the u and d quark parton distribution functions (PDF) within the proton over the fraction of proton's momentum range from 0.002 < x < 0.8 corresponding to -3.0 < yW < 3.0 at Q 2 ≈ M2W .

  1. Using field-particle correlations to study auroral electron acceleration in the LAPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2017-10-01

    Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.

  2. Inference of relativistic electron spectra from measurements of inverse Compton radiation

    NASA Astrophysics Data System (ADS)

    Craig, I. J. D.; Brown, J. C.

    1980-07-01

    The inference of relativistic electron spectra from spectral measurement of inverse Compton radiation is discussed for the case where the background photon spectrum is a Planck function. The problem is formulated in terms of an integral transform that relates the measured spectrum to the unknown electron distribution. A general inversion formula is used to provide a quantitative assessment of the information content of the spectral data. It is shown that the observations must generally be augmented by additional information if anything other than a rudimentary two or three parameter model of the source function is to be derived. It is also pointed out that since a similar equation governs the continuum spectra emitted by a distribution of black-body radiators, the analysis is relevant to the problem of stellar population synthesis from galactic spectra.

  3. ERS-1 and Seasat scatterometer measurements of ocean winds: Model functions and the directional distribution of short waves

    NASA Technical Reports Server (NTRS)

    Freilich, Michael H.; Dunbar, R. Scott

    1993-01-01

    Calculation of accurate vector winds from scatterometers requires knowledge of the relationship between backscatter cross-section and the geophysical variable of interest. As the detailed dynamics of wind generation of centimetric waves and radar-sea surface scattering at moderate incidence angles are not well known, empirical scatterometer model functions relating backscatter to winds must be developed. Less well appreciated is the fact that, given an accurate model function and some knowledge of the dominant scattering mechanisms, significant information on the amplitudes and directional distributions of centimetric roughness elements on the sea surface can be inferred. accurate scatterometer model functions can thus be used to investigate wind generation of short waves under realistic conditions. The present investigation involves developing an empirical model function for the C-band (5.3 GHz) ERS-1 scatterometer and comparing Ku-band model functions with the C-band model to infer information on the two-dimensional spectrum of centimetric roughness elements in the ocean. The C-band model function development is based on collocations of global backscatter measurements with operational surface analyses produced by meteorological agencies. Strengths and limitations of the method are discussed, and the resulting model function is validated in part through comparison with the actual distributions of backscatter cross-section triplets. Details of the directional modulation as well as the wind speed sensitivity at C-band are investigated. Analysis of persistent outliers in the data is used to infer the magnitudes of non-wind effects (such as atmospheric stratification, swell, etc.). The ERS-1 C-band instrument and the Seasat Ku-band (14.6 GHz) scatterometer both imaged waves of approximately 3.4 cm wavelength assuming that Bragg scattering is the dominant mechanism. Comparisons of the C-band and Ku-band model functions are used both to test the validity of the postulated Bragg mechanism and to investigate the directional distribution of the imaged waves under a variety of conditions where Bragg scatter is dominant.

  4. End-to-end distance and contour length distribution functions of DNA helices

    NASA Astrophysics Data System (ADS)

    Zoli, Marco

    2018-06-01

    I present a computational method to evaluate the end-to-end and the contour length distribution functions of short DNA molecules described by a mesoscopic Hamiltonian. The method generates a large statistical ensemble of possible configurations for each dimer in the sequence, selects the global equilibrium twist conformation for the molecule, and determines the average base pair distances along the molecule backbone. Integrating over the base pair radial and angular fluctuations, I derive the room temperature distribution functions as a function of the sequence length. The obtained values for the most probable end-to-end distance and contour length distance, providing a measure of the global molecule size, are used to examine the DNA flexibility at short length scales. It is found that, also in molecules with less than ˜60 base pairs, coiled configurations maintain a large statistical weight and, consistently, the persistence lengths may be much smaller than in kilo-base DNA.

  5. Bayesian functional integral method for inferring continuous data from discrete measurements.

    PubMed

    Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul

    2012-02-08

    Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Association between ethnicity and obesity with high-density lipoprotein (HDL) function and subclass distribution.

    PubMed

    Woudberg, Nicholas J; Goedecke, Julia H; Blackhurst, Dee; Frias, Miguel; James, Richard; Opie, Lionel H; Lecour, Sandrine

    2016-05-11

    Obesity and low high-density lipoprotein-cholesterol (HDL-C) levels are associated with cardiovascular risk. Surprisingly, despite a greater prevalence of obesity and lower HDL concentrations than white women, black South African women are relatively protected against ischaemic heart disease. We investigated whether this apparent discrepancy may be related to different HDL function and subclass distribution in black and white, normal-weight and obese South African women (n = 40). HDL functionality was assessed by measuring paraoxonase (PON) activity, platelet activating factor acetylhydrolase (PAF-AH) activity, Oxygen Radical Absorbance Capacity (ORAC) and quantification of the expression of vascular cell adhesion molecule in endothelial cells. PON-1 and PAF-AH expression was determined in isolated HDL and serum using Western blotting. Levels of large, intermediate and small HDL subclasses were measured using the Lipoprint® system. PON activity was lower in white compared to black women (0.49 ± 0.09 U/L vs 0.78 ± 0.10 U/L, p < 0.05), regardless of PON-1 protein levels. Obese black women had lower PAF-AH activity (9.34 ± 1.15 U/L vs 13.89 ± 1.21 U/L, p <0.05) and HDL-associated PAF-AH expression compared to obese white women. Compared to normal-weight women, obese women had lower large HDL, greater intermediate and small HDL; an effect that was more pronounced in white women than black women. There were no differences in antioxidant capacity or anti-inflammatory function across groups. Our data show that both obesity and ethnicity are associated with differences in HDL functionality, while obesity was associated with decreases in large HDL subclass distribution. Measuring HDL functionality and subclass may, therefore, be important factors to consider when assessing cardiovascular risk.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Afanasiev, S.; Aidala, C.

    Our report presents the measurement of cumulants (C n,n=1,...,4) of the net-charge distributions measured within pseudorapidity (|η|<0.35) in Au+Au collisions at √s NN=7.7–200GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C 1/C 2, C 3/C 1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do notmore » observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. These measured values of C 1/C 2 and C 3/C 1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. Moreover, the extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.« less

  8. Degradation data analysis based on a generalized Wiener process subject to measurement error

    NASA Astrophysics Data System (ADS)

    Li, Junxing; Wang, Zhihua; Zhang, Yongbo; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar

    2017-09-01

    Wiener processes have received considerable attention in degradation modeling over the last two decades. In this paper, we propose a generalized Wiener process degradation model that takes unit-to-unit variation, time-correlated structure and measurement error into considerations simultaneously. The constructed methodology subsumes a series of models studied in the literature as limiting cases. A simple method is given to determine the transformed time scale forms of the Wiener process degradation model. Then model parameters can be estimated based on a maximum likelihood estimation (MLE) method. The cumulative distribution function (CDF) and the probability distribution function (PDF) of the Wiener process with measurement errors are given based on the concept of the first hitting time (FHT). The percentiles of performance degradation (PD) and failure time distribution (FTD) are also obtained. Finally, a comprehensive simulation study is accomplished to demonstrate the necessity of incorporating measurement errors in the degradation model and the efficiency of the proposed model. Two illustrative real applications involving the degradation of carbon-film resistors and the wear of sliding metal are given. The comparative results show that the constructed approach can derive a reasonable result and an enhanced inference precision.

  9. Characterizing the Lyman-alpha forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka; Slosar, Anze

    2017-01-01

    The Lyman-alpha forest has become a powerful cosmological probe of the underlying matter distribution at high redshift. It is a highly non-linear field with much information present beyond the two-point statistics of the power spectrum. The flux probability distribution function (PDF) in particular has been used as a successful probe of small-scale physics. In addition to the cosmological evolution however, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over the binned PDF as is commonly done. Since the n-th coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. In addition, we use hydrodynamic cosmological simulations to demonstrate that in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a finite small number of well-measured quantities.

  10. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  11. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  12. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the main Maxwellian distribution (the bump-on-the-tail distribution function). For a range of parameters in these non-Maxwellian distributions, we compute the current collection to the probes. We compare the distribution function that was assumed a priori with the distribution function one would infer when applying standard triple probe theory to analyze the collected currents. For the assumed class of non-Maxwellian distribution functions this serves to illustrate the effect a non-Maxwellian plasma would have on results interpreted using the equilibrium triple probe current collection theory, allowing us to state the magnitudes of these deviations as a function of the assumed distribution function properties.

  13. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  14. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  15. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  16. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  17. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  18. Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane

    1999-01-01

    Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.

  19. Flow cytometry of human embryonic kidney cells: A light scattering approach

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Goolsby, C. L.; Todd, P. W.; Morrison, D. R.; Lewis, M. L.

    1985-01-01

    The mammalian kidney contains cells that transport water, convert vitamin D to active forms, synthesize hormones such a renin and erythropoietin, and produce enzymes such as urokinase, a plasminogen activator. Several of these functions are maintained by human embryonic kidney cells (HEK) cultivated in vitro. Biochemical study of these functions in their individual cell types in vitro requires purified populations of cells. Light-scattering activated cell sorting (LACS) was explored as a means of achieving such purifications. It was found that HEK cells at the first 1 to 5 passages in culture were heterogeneous with respect to 2-parameter light scattering intensity distribution, in which combined measurements included forward angle scattering (2.5 to 19 deg), 90 deg scattering, and time-of-flight size measurements. Size was measured at a resolution of 0.15 microns/channel in 256 channels using pulse-height independent pulse-width measurements. Two-parameter distributions combining these measurements were obtained for HEK cell subpopulations that had been purified by microgravity electrophoresis and subsequently propagated in culture. These distributions contained at least 3 subpopulations in all purified fractions, and results of experiments with prepurified cultured HEK cells indicated that subpopulations of living cells that were high in plasminogen-activator activity also contained the highest per cent of cells with high 90 deg light scatter intensity.

  20. Measurement of jet fragmentation in Pb+Pb and pp collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV with the ATLAS detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-06-08

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  1. Bayesian statistics and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koch, K. R.

    2018-03-01

    The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.

  2. Measurement and application of bidirectional reflectance distribution function

    NASA Astrophysics Data System (ADS)

    Liao, Fei; Li, Lin; Lu, Chengwen

    2016-10-01

    When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.

  3. Vacuum quantum stress tensor fluctuations: A diagonalization approach

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.

    2018-01-01

    Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.

  4. Investigating the age distribution of fracture discharge using multiple environmental tracers, Bedrichov Tunnel, Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, W. Payton; Hokr, Milan; Shao, Hua

    We investigated the transit time distribution (TTD) of discharge collected from fractures in the Bedrichov Tunnel, Czech Republic, using lumped parameter models and multiple environmental tracers. We then utilize time series of δ 18O, δ 2H and 3H along with CFC measurements from individual fractures in the Bedrichov Tunnel of the Czech Republic to investigate the TTD, and the uncertainty in estimated mean travel time in several fracture networks of varying length and discharge. We also compare several TTDs, including the dispersion distribution, the exponential distribution, and a developed TTD which includes the effects of matrix diffusion. The effect ofmore » seasonal recharge is explored by comparing several seasonal weighting functions to derive the historical recharge concentration. We identify best fit mean ages for each TTD by minimizing the error-weighted, multi-tracer χ2 residual for each seasonal weighting function. We use this methodology to test the ability of each TTD and seasonal input function to fit the observed tracer concentrations, and the effect of choosing different TTD and seasonal recharge functions on the mean age estimation. We find that the estimated mean transit time is a function of both the assumed TTD and seasonal weighting function. Best fits as measured by the χ2 value were achieved for the dispersion model using the seasonal input function developed here for two of the three modeled sites, while at the third site, equally good fits were achieved with the exponential model and the dispersion model and our seasonal input function. The average mean transit time for all TTDs and seasonal input functions converged to similar values at each location. The sensitivity of the estimated mean transit time to the seasonal weighting function was equal to that of the TTD. These results indicated that understanding seasonality of recharge is at least as important as the uncertainty in the flow path distribution in fracture networks and that unique identification of the TTD and mean transit time is difficult given the uncertainty in the recharge function. But, the mean transit time appears to be relatively robust to the structural model uncertainty. The results presented here should be applicable to other studies using environmental tracers to constrain flow and transport properties in fractured rock systems.« less

  5. Investigating the age distribution of fracture discharge using multiple environmental tracers, Bedrichov Tunnel, Czech Republic

    DOE PAGES

    Gardner, W. Payton; Hokr, Milan; Shao, Hua; ...

    2016-10-19

    We investigated the transit time distribution (TTD) of discharge collected from fractures in the Bedrichov Tunnel, Czech Republic, using lumped parameter models and multiple environmental tracers. We then utilize time series of δ 18O, δ 2H and 3H along with CFC measurements from individual fractures in the Bedrichov Tunnel of the Czech Republic to investigate the TTD, and the uncertainty in estimated mean travel time in several fracture networks of varying length and discharge. We also compare several TTDs, including the dispersion distribution, the exponential distribution, and a developed TTD which includes the effects of matrix diffusion. The effect ofmore » seasonal recharge is explored by comparing several seasonal weighting functions to derive the historical recharge concentration. We identify best fit mean ages for each TTD by minimizing the error-weighted, multi-tracer χ2 residual for each seasonal weighting function. We use this methodology to test the ability of each TTD and seasonal input function to fit the observed tracer concentrations, and the effect of choosing different TTD and seasonal recharge functions on the mean age estimation. We find that the estimated mean transit time is a function of both the assumed TTD and seasonal weighting function. Best fits as measured by the χ2 value were achieved for the dispersion model using the seasonal input function developed here for two of the three modeled sites, while at the third site, equally good fits were achieved with the exponential model and the dispersion model and our seasonal input function. The average mean transit time for all TTDs and seasonal input functions converged to similar values at each location. The sensitivity of the estimated mean transit time to the seasonal weighting function was equal to that of the TTD. These results indicated that understanding seasonality of recharge is at least as important as the uncertainty in the flow path distribution in fracture networks and that unique identification of the TTD and mean transit time is difficult given the uncertainty in the recharge function. But, the mean transit time appears to be relatively robust to the structural model uncertainty. The results presented here should be applicable to other studies using environmental tracers to constrain flow and transport properties in fractured rock systems.« less

  6. Planar Laser Imaging of Sprays for Liquid Rocket Studies

    NASA Technical Reports Server (NTRS)

    Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.

    1990-01-01

    A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.

  7. Characterization of technical surfaces by structure function analysis

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  8. On the distribution of the amplitudes of natural ELF emissions from measurements on the Kola peninsula.

    NASA Astrophysics Data System (ADS)

    Pchelkin, Vladimir; Beloglazov, Mikhail

    The distributions of the amplitudes of natural emissions of electromagnetic field in the Shu-mann resonance frequency range are investigated. From the data of Lovozero observatory daily variations of the number of overshoots of signal amplitude above given thresholds were con-structed. A possibility is discussed of applicability for the considered frequency range a known from the literature formula, which describes analytically the peak distribution of the spherics. We note the influence of magnetic disturbances on amplitude distribution function.

  9. Software Quality Measurement for Distributed Systems. Volume 3. Distributed Computing Systems: Impact on Software Quality.

    DTIC Science & Technology

    1983-07-01

    Distributed Computing Systems impact DrnwrR - aehR on Sotwar Quaity. PERFORMING 010. REPORT NUMBER 7. AUTNOW) S. CONTRACT OR GRANT "UMBER(*)IS ThomasY...C31 Application", "Space Systems Network", "Need for Distributed Database Management", and "Adaptive Routing". This is discussed in the last para ...data reduction, buffering, encryption, and error detection and correction functions. Examples of such data streams include imagery data, video

  10. Characterization of Cloud Water-Content Distribution

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  11. Exclusive η electroproduction at W >2 GeV with CLAS and transversity generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Turisini, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yurov, M.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-03-01

    The cross section of the exclusive η electroproduction reaction e p →e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /d t d Q2d xBd ϕη and structure functions σU=σT+ɛ σL,σT T , and σL T, as functions of t , were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t , both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The π0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.

  12. Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm.

    PubMed

    Wenger, Michael J; Gibson, Bradley S

    2004-08-01

    Processing capacity--defined as the relative ability to perform mental work in a unit of time--is a critical construct in cognitive psychology and is central to theories of visual attention. The unambiguous use of the construct, experimentally and theoretically, has been hindered by both conceptual confusions and the use of measures that are at best only coarsely mapped to the construct. However, more than 25 years ago, J. T. Townsend and F. G. Ashby (1978) suggested that the hazard function on the response time (RT) distribution offered a number of conceptual advantages as a measure of capacity. The present study suggests that a set of statistical techniques, well-known outside the cognitive and perceptual literatures, offers the ability to perform hypothesis tests on RT-distribution hazard functions. These techniques are introduced, and their use is illustrated in application to data from the contingent attentional capture paradigm.

  13. Application of constrained deconvolution technique for reconstruction of electron bunch profile with strongly non-Gaussian shape

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function.

  14. Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable

    ERIC Educational Resources Information Center

    du Toit, Stephen H. C.; Cudeck, Robert

    2009-01-01

    A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…

  15. The source of electrostatic fluctuations in the solar-wind

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gary, S. P.; Gosling, J. T.

    1979-01-01

    Solar wind electron and ion distribution functions measured simultaneously with or close to times of intense electrostatic fluctuations are subjected to a linear Vlasov stability analysis. Although all distributions tested were found to be stable, the analysis suggests that the ion beam instability is the most likely source of the fluctuations.

  16. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    PubMed

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  17. The size and shape of the attentional "spotlight" varies with differences in sports expertise.

    PubMed

    Hüttermann, Stefanie; Memmert, Daniel; Simons, Daniel J

    2014-06-01

    Focused attention enhances processing of some aspects of the world at the expense of unattended items. Although focused attention has been studied for decades, few studies have measured individual and group differences in how people distribute attention. In three studies, we explored differences in the breadth and distribution of attention as a function of athletic expertise. Study 1 found 25% greater attention breadth in expert athletes than in novices. Study 2 found that the distribution of focused attention for experts varied as a function of the type of athletic expertise: Experts in sports that demand greater horizontal distribution of attention (e.g., soccer) showed greater horizontal breadth of attention than did those whose sports demand more vertical attention (e.g., volleyball), and vice versa. Study 3 used a slightly modified design to replicate the results of Studies 1 and 2. Overall, the findings reveal a systematic association between the measured "shape" of focused attention in a laboratory task and expertise in a real-world skill. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements

    NASA Astrophysics Data System (ADS)

    Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David

    2018-05-01

    In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.

  19. Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-09-01

    Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.

  20. Phonological and acoustic bases for earliest grammatical category assignment: a cross-linguistic perspective.

    PubMed

    Shi, R; Morgan, J L; Allopenna, P

    1998-02-01

    Maternal infant-directed speech in Mandarin Chinese and Turkish (two mother-child dyads each; ages of children between 0;11 and 1;8) was examined to see if cues exist in input that might assist infants' assignment of words to lexical and functional item categories. Distributional, phonological, and acoustic measures were analysed. In each language, lexical and functional items (i.e. syllabic morphemes) differed significantly on numerous measures. Despite differences in mean values between categories, distributions of values typically displayed substantial overlap. However, simulations with self-organizing neural networks supported the conclusion that although individual dimensions had low cue validity, in each language multidimensional constellations of presyntactic cues are sufficient to guide assignment of words to rudimentary grammatical categories.

  1. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  2. Two and three-dimensional segmentation of hyperpolarized 3He magnetic resonance imaging of pulmonary gas distribution

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace

    2012-03-01

    A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.

  3. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  4. Component Analysis of Remanent Magnetization Curves: A Revisit with a New Model Distribution

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Suganuma, Y.; Fujii, M.

    2017-12-01

    Geological samples often consist of several magnetic components that have distinct origins. As the magnetic components are often indicative of their underlying geological and environmental processes, it is therefore desirable to identify individual components to extract associated information. This component analysis can be achieved using the so-called unmixing method, which fits a mixture model of certain end-member model distribution to the measured remanent magnetization curve. In earlier studies, the lognormal, skew generalized Gaussian and skewed Gaussian distributions have been used as the end-member model distribution in previous studies, which are performed on the gradient curve of remanent magnetization curves. However, gradient curves are sensitive to measurement noise as the differentiation of the measured curve amplifies noise, which could deteriorate the component analysis. Though either smoothing or filtering can be applied to reduce the noise before differentiation, their effect on biasing component analysis is vaguely addressed. In this study, we investigated a new model function that can be directly applied to the remanent magnetization curves and therefore avoid the differentiation. The new model function can provide more flexible shape than the lognormal distribution, which is a merit for modeling the coercivity distribution of complex magnetic component. We applied the unmixing method both to model and measured data, and compared the results with those obtained using other model distributions to better understand their interchangeability, applicability and limitation. The analyses on model data suggest that unmixing methods are inherently sensitive to noise, especially when the number of component is over two. It is, therefore, recommended to verify the reliability of component analysis by running multiple analyses with synthetic noise. Marine sediments and seafloor rocks are analyzed with the new model distribution. Given the same component number, the new model distribution can provide closer fits than the lognormal distribution evidenced by reduced residuals. Moreover, the new unmixing protocol is automated so that the users are freed from the labor of providing initial guesses for the parameters, which is also helpful to improve the subjectivity of component analysis.

  5. The heterogeneity of segmental dynamics of filled EPDM by (1)H transverse relaxation NMR.

    PubMed

    Moldovan, D; Fechete, R; Demco, D E; Culea, E; Blümich, B; Herrmann, V; Heinz, M

    2011-01-01

    Residual second moment of dipolar interactions M(2) and correlation time segmental dynamics distributions were measured by Hahn-echo decays in combination with inverse Laplace transform for a series of unfilled and filled EPDM samples as functions of carbon-black N683 filler content. The fillers-polymer chain interactions which dramatically restrict the mobility of bound rubber modify the dynamics of mobile chains. These changes depend on the filler content and can be evaluated from distributions of M(2). A dipolar filter was applied to eliminate the contribution of bound rubber. In the first approach the Hahn-echo decays were fitted with a theoretical relationship to obtain the average values of the (1)H residual second moment and correlation time <τ(c)>. For the mobile EPDM segments the power-law distribution of correlation function was compared to the exponential correlation function and found inadequate in the long-time regime. In the second approach a log-Gauss distribution for the correlation time was assumed. Furthermore, using an averaged value of the correlation time, the distributions of the residual second moment were determined using an inverse Laplace transform for the entire series of measured samples. The unfilled EPDM sample shows a bimodal distribution of residual second moments, which can be associated to the mobile polymer sub-chains (M(2) ≅ 6.1 rad (2) s(-2)) and the second one associated to the dangling chains M(2) ≅ 5.4 rad(2) s(-2)). By restraining the mobility of bound rubber, the carbon-black fillers induce diversity in the segmental dynamics like the apparition of a distinct mobile component and changes in the distribution of mobile and free-end polymer segments. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. The heterogeneity of segmental dynamics of filled EPDM by 1H transverse relaxation NMR

    NASA Astrophysics Data System (ADS)

    Moldovan, D.; Fechete, R.; Demco, D. E.; Culea, E.; Blümich, B.; Herrmann, V.; Heinz, M.

    2011-01-01

    Residual second moment of dipolar interactions M∼2 and correlation time segmental dynamics distributions were measured by Hahn-echo decays in combination with inverse Laplace transform for a series of unfilled and filled EPDM samples as functions of carbon-black N683 filler content. The fillers-polymer chain interactions which dramatically restrict the mobility of bound rubber modify the dynamics of mobile chains. These changes depend on the filler content and can be evaluated from distributions of M∼2. A dipolar filter was applied to eliminate the contribution of bound rubber. In the first approach the Hahn-echo decays were fitted with a theoretical relationship to obtain the average values of the 1H residual second moment and correlation time <τc>. For the mobile EPDM segments the power-law distribution of correlation function was compared to the exponential correlation function and found inadequate in the long-time regime. In the second approach a log-Gauss distribution for the correlation time was assumed. Furthermore, using an averaged value of the correlation time, the distributions of the residual second moment were determined using an inverse Laplace transform for the entire series of measured samples. The unfilled EPDM sample shows a bimodal distribution of residual second moments, which can be associated to the mobile polymer sub-chains (M∼2≅6.1 rad s) and the second one associated to the dangling chains M∼2≅5.4 rad s). By restraining the mobility of bound rubber, the carbon-black fillers induce diversity in the segmental dynamics like the apparition of a distinct mobile component and changes in the distribution of mobile and free-end polymer segments.

  7. Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Zhang, Jinjuan; Xu, Chang; Ren, Zhongzhou

    2017-05-01

    In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C 0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C 0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei. Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).

  8. Excitation functions of parameters extracted from three-source (net-)proton rapidity distributions in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    NASA Astrophysics Data System (ADS)

    Gao, Li-Na; Liu, Fu-Hu; Sun, Yan; Sun, Zhu; Lacey, Roy A.

    2017-03-01

    Experimental results of the rapidity spectra of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a three-source distribution. The values of the distribution width σC and fraction kC of the central rapidity region, and the distribution width σF and rapidity shift Δ y of the forward/backward rapidity regions, are then obtained. The excitation function of σC increases generally with increase of the center-of-mass energy per nucleon pair √{s_{NN}}. The excitation function of σF shows a saturation at √{s_{NN}}=8.8 GeV. The excitation function of kC shows a minimum at √{s_{NN}}=8.8 GeV and a saturation at √{s_{NN}} ≈ 17 GeV. The excitation function of Δ y increases linearly with ln(√{s_{NN}}) in the considered energy range.

  9. Measuring skew in average surface roughness as a function of surface preparation

    NASA Astrophysics Data System (ADS)

    Stahl, Mark T.

    2015-08-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  10. Measurement of the Transverse Single-Spin Asymmetry in p ↑ + p → W ± / Z 0 at RHIC

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-04-01

    In this paper, we present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √s = 500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. In conclusion, these data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  11. A study of the EMC effect using neutrino and antineutrino interactions in neon and deuterium

    NASA Astrophysics Data System (ADS)

    Guy, J.; Saitta, B.; van Apeldoorn, G.; Allport, P.; Angelini, C.; Armenise, N.; Baldini, A.; Berggren, M.; Bertrand, D.; Bobisut, F.; Brisson, V.; Bullock, F.; Calicchio, M.; Capiluppi, P.; Cirio, R.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Faccini-Turluer, M. L.; Fitch, P.; Frodesen, A. G.; Gerbier, G.; Giacomelli, G.; Hulth, P. O.; Jones, G. T.; Jongejans, B.; Kasper, P.; Klein, H.; Mandrioli, G.; Marage, P.; Marzari-Chiesa, A.; Middleton, R. P.; Miller, D. B.; Morrison, D. R. O.; Mobayyen, M. M.; O'Neale, S. W.; Neveu, M.; Parker, M. A.; Petiau, P.; Romero, A.; Rossi, A. M.; Sacton, J.; Sansum, A.; Sconza, A.; Simopoulou, E.; Schmitz, N.; Tenner, A.; Vallee, C.; van Eijndhoven, N.; Varvell, K.; Vayaki, A.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.

    1987-09-01

    Nearly 40000 neutrino and antineutrino interactions in BEBC are compared to measure the differences between neon and deuterium in the quark and antiquark distributions and in the nucleon structure functions. The ratio of Ne to D cross sections indicates some decrease between x˜0.2 and x˜0.6. The y distributions show there is no significant increase in the neon sea, but prefer a small decrease. Taken altogether, the x and y distributions and the measured total cross-sections indicate some change in the shape of the valence distributions. No significant dependence on A is observed for either the shape of the sea or the ratio of longitudinal to transverse cross-sections.

  12. Bragg-cell receiver study

    NASA Technical Reports Server (NTRS)

    Wilson, Lonnie A.

    1987-01-01

    Bragg-cell receivers are employed in specialized Electronic Warfare (EW) applications for the measurement of frequency. Bragg-cell receiver characteristics are fully characterized for simple RF emitter signals. This receiver is early in its development cycle when compared to the IFM receiver. Functional mathematical models are derived and presented in this report for the Bragg-cell receiver. Theoretical analysis is presented and digital computer signal processing results are presented for the Bragg-cell receiver. Probability density function analysis are performed for output frequency. Probability density function distributions are observed to depart from assumed distributions for wideband and complex RF signals. This analysis is significant for high resolution and fine grain EW Bragg-cell receiver systems.

  13. Wigner Function Reconstruction in Levitated Optomechanics

    NASA Astrophysics Data System (ADS)

    Rashid, Muddassar; Toroš, Marko; Ulbricht, Hendrik

    2017-10-01

    We demonstrate the reconstruction of theWigner function from marginal distributions of the motion of a single trapped particle using homodyne detection. We show that it is possible to generate quantum states of levitated optomechanical systems even under the efect of continuous measurement by the trapping laser light. We describe the opto-mechanical coupling for the case of the particle trapped by a free-space focused laser beam, explicitly for the case without an optical cavity. We use the scheme to reconstruct the Wigner function of experimental data in perfect agreement with the expected Gaussian distribution of a thermal state of motion. This opens a route for quantum state preparation in levitated optomechanics.

  14. Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster

    NASA Astrophysics Data System (ADS)

    Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.

    2018-01-01

    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.

  15. Measurement of lepton differential distributions and the top quark mass in t\\bar{t} production in pp collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2017-11-01

    This paper presents single lepton and dilepton kinematic distributions measured in dileptonic t\\bar{t} events produced in 20.2fb^{-1} of √{s}=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of {m_t^{pole}}=173.2± 0.9± 0.8± 1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

  16. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry

    NASA Astrophysics Data System (ADS)

    Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling

    2016-05-01

    Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.

  17. Measurement of lepton differential distributions and the top quark mass in $$t\\bar{t}$$ production in pp collisions at $$\\sqrt{s}=8$$  TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-11-25

    We present single lepton and dilepton kinematic distributions measured in dileptonic tmore » $$\\bar{t}$$ events produced in 20.2fb - 1 of √s=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. Furthermore, the cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m$$pole\\atop{t}$$=173.2±0.9±0.8±1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.« less

  18. On the continuity of the stationary state distribution of DPCM

    NASA Astrophysics Data System (ADS)

    Naraghi-Pour, Morteza; Neuhoff, David L.

    1990-03-01

    Continuity and singularity properties of the stationary state distribution of differential pulse code modulation (DPCM) are explored. Two-level DPCM (i.e., delta modulation) operating on a first-order autoregressive source is considered, and it is shown that, when the magnitude of the DPCM prediciton coefficient is between zero and one-half, the stationary state distribution is singularly continuous; i.e., it is not discrete but concentrates on an uncountable set with a Lebesgue measure of zero. Consequently, it cannot be represented with a probability density function. For prediction coefficients with magnitude greater than or equal to one-half, the distribution is pure, i.e., either absolutely continuous and representable with a density function, or singular. This problem is compared to the well-known and still substantially unsolved problem of symmetric Bernoulli convolutions.

  19. Application of stochastic particle swarm optimization algorithm to determine the graded refractive index distribution in participating media

    NASA Astrophysics Data System (ADS)

    Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2016-11-01

    Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.

  20. Network placement optimization for large-scale distributed system

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng

    2018-01-01

    The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    We present single lepton and dilepton kinematic distributions measured in dileptonic tmore » $$\\bar{t}$$ events produced in 20.2fb - 1 of √s=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. Furthermore, the cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m$$pole\\atop{t}$$=173.2±0.9±0.8±1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.« less

  2. Vertical distribution of ozone: a new method of determination using satellite measurements.

    PubMed

    Aruga, T; Igarashi, T

    1976-01-01

    A new method to determine the vertical distribution of atmospheric ozone over a wide range from the spectral measurement of backscattered solar uv radiation is proposed. Equations for the diffuse reflection in an inhomogeneous atmosphere are introduced, and some theoretical approximations are discussed. An inversion equation is formulated in such a way that the change of radiance at each wavelength, caused by the minute relative increment of ozone density at each altitude, is obtained exactly. The equation is solved by an iterative procedure using the weight function obtained in this work. The results of computer simulation indicate that the ozone distribution from the mesopause to the tropopause can be determined, and that although it is impossible to suggest exactly the complicated profile with fine structure, the smoothed ozone distribution and the total content can be determined with almost the same accuracy as the accuracies of measurement and theoretical calculation of the spectral intensity.

  3. Zenith angle distribution of cosmic ray showers measured with the Yakutsk array and its application to the analysis of arrival directions in equatorial coordinates

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2018-04-01

    The Yakutsk array data set in the energy interval (1017,1019) eV is revisited in order to interpret the zenith angle distribution of an extensive air shower event rate of ultra-high-energy cosmic rays. The close relation of the distribution to the attenuation of the main measurable parameter of showers, ρ600, is examined. Measured and expected distributions are used to analyze the arrival directions of cosmic rays on an equatorial map including the energy range below 1018 eV , which was previously avoided due to the reduced trigger efficiency of the array in the range. While the null hypothesis cannot be rejected with data from the Yakutsk array, an upper limit on the fraction of cosmic rays from a separable source in the uniform background is derived as a function of declination and energy.

  4. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  5. Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Xiang, He Wan; Xiong, Li Zhi

    1988-01-01

    The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.

  6. Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.

    The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum p T for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and p T up to 40 GeV/c, the angular distributions are found tomore » be nearly isotropic.« less

  7. Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-04-11

    The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum p T for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and p T up to 40 GeV/c, the angular distributions are found tomore » be nearly isotropic.« less

  8. Measurement of the Drell-Yan angular distribution in the dimuon channel using 2011 CMS data

    NASA Astrophysics Data System (ADS)

    Silvers, David I.

    The angular distributions of muons produced by the Drell-Yan process are measured as a function of dimuon transverse momentum in two ranges of rapidity. Events from pp collisions at sqrt( s) = 7 TeV were collected with the CMS detector using dimuon triggers and selected from data samples corresponding to 4.9 fb-1 of integrated luminosity. The two-dimensional angular distribution dN/dO of the negative muon in the Collins-Soper frame is fitted to determine the coefficients in a parametric form of the angular distribution. The measured coefficients are compared to next-to-leading order calculations. We observe that qq and leading order qg production dominate the Drell-Yan process at pT (mumu) <55 GeV/c, while higher-order qg production dominates the Drell-Yan process for 55< pT (mumu) <120 GeV/c.

  9. Dissociation and recombination of positive holes in minerals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Batllo, Francois; Freund, Minoru M.

    1990-01-01

    The formation mechanisms are described of positive holes - electronic defects in the O2 sublattice - with attention given to detecting the positive surface charge of minerals with these holes. Charge distribution analysis (CDA) is presented which measures dielectric polarization in an inhomogeneous field. CDA can be applied to the detection of the peroxide/superoxide functionality caused by positive holes on the surface. It is demonstrated with obsidian that the measurements provide data on O(-) mobility as a function of surface-charge carrier density and on O(-) generation as a function of temperature.

  10. Checking the statistical theory of liquids by ultraacoustic measurements

    NASA Technical Reports Server (NTRS)

    Dima, V. N.

    1974-01-01

    The manner of theoretically obtaining radial distribution functions 9(r) for n-hexane as a function of temperature is described. With the aid of function g(r) the coefficient of dynamic viscosity and the coefficient of volumetric viscosity for temperatures ranging from 213 K to 273 K were calculated. With the aid of the two coefficients of viscosity the coefficient of absorption of ultrasounds in n-hexane referred to the square of the frequency was determined. The same values were measured experimentally. Comparison of theory with experiments resulted in satisfactory agreement.

  11. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  12. The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

    PubMed Central

    Zheng, Xiliang; Wang, Jin

    2015-01-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  13. Experimental investigation of nearly monodispersed ternary Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} magnetic fluid

    NASA Astrophysics Data System (ADS)

    Parekh, K.; Upadhyay, R. V.; Mehta, R. V.; Aswal, V. K.

    2008-03-01

    The experimental investigations of a nearly monodispersed magnetic fluid, containing a ternary Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} (MZ5) magnetic fluid, are carried out using XRD, TEM, Small Angle Neutron Scattering (SANS) and a SQUID magnetometer. The XRD and TEM measurements give the particle size to be 7.5 and 8.4 nm respectively, and confirms the single phase cubic spinel structure. The size distribution retrieved from TEM is found to be very narrow (<10{%}). Room temperature magnetic measurement fits with the Langevin's function modified for the particle size distribution as well as for the particle-particle interaction parameter. M(H)-measurements as a function of field for different temperatures show that the system is superparamagnetic at room temperature and develops coercivity at 5 K. Figs 4, Refs 12.

  14. New device for accurate measurement of the x-ray intensity distribution of x-ray tube focal spots.

    PubMed

    Doi, K; Fromes, B; Rossmann, K

    1975-01-01

    A new device has been developed with which the focal spot distribution can be measured accurately. The alignment and localization of the focal spot relative to the device are accomplished by adjustment of three micrometer screws in three orthogonal directions and by comparison of red reference light spots with green fluorescent pinhole images at five locations. The standard deviations for evaluating the reproducibility of the adjustments in the horizontal and vertical directions were 0.2 and 0.5 mm, respectively. Measurements were made of the pinhole images as well as of the line-spread functions (LSFs) and modulation transfer functions (MTFs) for an x-ray tube with focal spots of 1-mm and 50-mum nominal size. The standard deviations for the LSF and MTF of the 1-mm focal spot were 0.017 and 0.010, respectively.

  15. Measurement of the W boson production charge asymmetry in p$$\\bar{p}$$ collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Bo-Young

    We present a measurement of the W boson production charge asymmetry using the W → ev decay channel. We use data collected the Collider Detector at Fermilab (CDF) from pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV. The data were collected up to February 2006 (Run II) and represent an integrated luminosity of 1 fb -1. The experimental measurement of W production charge asymmetry is compared to higher order QCD predictions generated using MRST2006 and CTEQ6 parton distribution functions (PDF). The asymmetry provides new input on the momentum fraction dependence of the u and d quark parton distribution functions (PDF) within the proton over the fraction of proton's momentum range from 0.002 < x < 0.8 corresponding to -3.0 < y W < 3.0 at Q 2 ~ M W 2.« less

  16. Characterization of the Electron Energy Distribution Function in a Penning Discharge

    NASA Astrophysics Data System (ADS)

    Skoutnev, Valentin; Dourbal, Paul; Raitses, Yevgeny

    2017-10-01

    Slow and fast sweeping Langmuir probe diagnostics were implemented to measure the electron energy distribution function (EEDF) in a cross-field Penning discharge undergoing rotating spoke phenomenon. The EEDF was measured using the Druyvesteyn method. Rotating spoke occurs in a variety of ExB devices and is characterized primarily by azimuthal light, density, and potential fluctuations on the order of a few kHz, but is theoretically still not well understood. Characterization of a time-resolved EEDF of the spoke would be important for understanding physical mechanisms responsible for the spoke and its effects on Penning discharges, Hall thrusters, sputtering magnetrons, and other ExB devices. In this work, preliminary results of measurements of the EEDF using slow and fast Langmuir probes that sweep below and above the fundamental spoke frequency will be discussed. This work was supported by the Air Force Office of Scientific Research (AFOSR).

  17. Simulation of an expanding plasma using the Boris algorithm

    NASA Astrophysics Data System (ADS)

    Neal, Luke; Aguirre, Evan; Steinberger, Thomas; Good, Timothy; Scime, Earl

    2017-10-01

    We present a Boris algorithm simulation in a cylindrical geometry of charged particle motion in a helicon plasma confined by a diverging magnetic field. Laboratory measurements of ion velocity distribution functions (ivdfs) provide evidence for acceleration of ions into the divergent field region in the center of the discharge. The increase in ion velocity is inconsistent with expectations for simple magnetic moment conservation given the magnetic field mirror ratio and is therefore attributed to the presence of a double layer in the literature. Using measured electric fields and ivdfs (at different radial locations across the entire plasma column) upstream and downstream of the divergent magnetic field region, we compare predictions for the downstream ivdfs to measurements. We also present predictions for the evolution of the electron velocity distribution function downstream of the divergent magnetic field. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.

  18. Electron Energization and Mixing Observed by MMS in the Vicinity of an Electron Diffusion Region During Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; hide

    2016-01-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  19. Polarized Raman spectroscopy of bone tissue: watch the scattering

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  20. Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection

    NASA Astrophysics Data System (ADS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; Giles, Barbara; Strangeway, Robert; Russell, Christopher; Khotyaintsev, Yuri; Burch, Jim; Moore, Thomas; Lavraud, Benoit; Phan, Tai; Avanov, Levon

    2016-06-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  1. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    PubMed

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  2. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  3. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  4. Measuring inequality: tools and an illustration.

    PubMed

    Williams, Ruth F G; Doessel, D P

    2006-05-22

    This paper examines an aspect of the problem of measuring inequality in health services. The measures that are commonly applied can be misleading because such measures obscure the difficulty in obtaining a complete ranking of distributions. The nature of the social welfare function underlying these measures is important. The overall object is to demonstrate that varying implications for the welfare of society result from inequality measures. Various tools for measuring a distribution are applied to some illustrative data on four distributions about mental health services. Although these data refer to this one aspect of health, the exercise is of broader relevance than mental health. The summary measures of dispersion conventionally used in empirical work are applied to the data here, such as the standard deviation, the coefficient of variation, the relative mean deviation and the Gini coefficient. Other, less commonly used measures also are applied, such as Theil's Index of Entropy, Atkinson's Measure (using two differing assumptions about the inequality aversion parameter). Lorenz curves are also drawn for these distributions. Distributions are shown to have differing rankings (in terms of which is more equal than another), depending on which measure is applied. The scope and content of the literature from the past decade about health inequalities and inequities suggest that the economic literature from the past 100 years about inequality and inequity may have been overlooked, generally speaking, in the health inequalities and inequity literature. An understanding of economic theory and economic method, partly introduced in this article, is helpful in analysing health inequality and inequity.

  5. Constraints on parton distribution from CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodek, A.; CDF Collaboration

    1995-10-01

    The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement withmore » the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.« less

  6. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  7. Raindrop intervalometer

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nicolaas; Hut, Rolf; ten Veldhuis, Marie-claire

    2017-04-01

    If one can assume that drop size distributions can be effectively described by a generalized gamma function [1], one can estimate this function on the basis of the distribution of time intervals between drops hitting a certain area. The arrival of a single drop is relatively easy to measure with simple consumer devices such as cameras or piezoelectric elements. Here we present an open-hardware design for the electronics and statistical processing of an intervalometer that measures time intervals between drop arrivals. The specific hardware in this case is a piezoelectric element in an appropriate housing, combined with an instrumentation op-amp and an Arduino processor. Although it would not be too difficult to simply register the arrival times of all drops, it is more practical to only report the main statistics. For this purpose, all intervals below a certain threshold during a reporting interval are summed and counted. We also sum the scaled squares, cubes, and fourth powers of the intervals. On the basis of the first four moments, one can estimate the corresponding generalized gamma function and obtain some sense of the accuracy of the underlying assumptions. Special attention is needed to determine the lower threshold of the drop sizes that can be measured. This minimum size often varies over the area being monitored, such as is the case for piezoelectric elements. We describe a simple method to determine these (distributed) minimal drop sizes and present a bootstrap method to make the necessary corrections. Reference [1] Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.

  8. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L.; CNRS, LAPLACE, F-31062 Toulouse; Mazouffre, S.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion meanmore » velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.« less

  9. LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.

    2002-11-01

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.

  10. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.

    PubMed

    Shizgal, Bernie D

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].

  11. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].

  12. Measurement of the jet fragmentation function and transverse profile in proton–proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-11-30

    The jet fragmentation function and transverse profile for jets with 25 GeV < p Tjet < 500 GeV and |η jet| < 1.2 produced in proton–proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb –1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measuredmore » fragmentation function. Furthermore, none of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.« less

  13. Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia

    2010-02-01

    We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).

  14. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  15. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  16. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  17. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  18. Electromagnetic Compatibility Testing Studies

    NASA Technical Reports Server (NTRS)

    Trost, Thomas F.; Mitra, Atindra K.

    1996-01-01

    This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.

  19. Diffusing-wave spectroscopy in a standard dynamic light scattering setup

    NASA Astrophysics Data System (ADS)

    Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.

    2017-12-01

    Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.

  20. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.

  1. NIST High Accuracy Reference Reflectometer-Spectrophotometer

    PubMed Central

    Proctor, James E.; Yvonne Barnes, P.

    1996-01-01

    A new reflectometer-spectrophotometer has been designed and constructed using state-of-the-art technology to enhance optical properties of materials measurements over the ultraviolet, visible, and near-infrared (UV-Vis-NIR) wavelength range (200 nm to 2500 nm). The instrument, Spectral Tri-function Automated Reference Reflectometer (STARR), is capable of measuring specular and diffuse reflectance, bidirectional reflectance distribution function (BRDF) of diffuse samples, and both diffuse and non-diffuse transmittance. Samples up to 30 cm by 30 cm can be measured. The instrument and its characterization are described. PMID:27805081

  2. Rehabilitation outcomes in children with cerebral palsy during a 2 year period

    PubMed Central

    İçağasıoğlu, Afitap; Mesci, Erkan; Yumusakhuylu, Yasemin; Turgut, Selin Turan; Murat, Sadiye

    2015-01-01

    [Purpose] To observe motor and functional progress of children with cerebral palsy during 2 years. [Subjects and Methods] Pediatric cerebral palsy patients aged 3–15 years (n = 35/69) with 24-month follow-up at our outpatient cerebral palsy clinic were evaluated retrospectively. The distribution of cerebral palsy types was as follows: diplegia (n = 19), hemiplegia (n = 4), and quadriplegia (n = 12). Participants were divided into 3 groups according to their Gross Motor Functional Classification System scores (i.e., mild, moderate, and severe). All participants were evaluated initially and at the final assessment 2 years later. During this time, patients were treated 3 times/week. Changes in motor and functional abilities were assessed based on Gross Motor Function Measure-88 and Wee Functional Independence Measure. [Results] Significant improvements were observed in Gross Motor Function Measure-88 and Wee Functional Independence Measure results in all 35 patients at the end of 2 years. The Gross Motor Function Measure-88 scores correlated with Wee Functional Independence Measure Scores. Marked increases in motor and functional capabilities in mild and moderate cerebral palsy patients were observed in the subgroup assessments, but not in those with severe cerebral palsy. [Conclusion] Rehabilitation may greatly help mild and moderate cerebral palsy patients achieve their full potential. PMID:26644677

  3. Revealing nonclassicality beyond Gaussian states via a single marginal distribution

    PubMed Central

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-01

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement. PMID:28077456

  4. Revealing nonclassicality beyond Gaussian states via a single marginal distribution.

    PubMed

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-31

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential-a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.

  5. Distributed Attentional Deficits in Chronic Methamphetamine Abusers: Evidence from the Attentional Network Task (ANT)

    ERIC Educational Resources Information Center

    Salo, Ruth; Gabay, Shai; Fassbender, Catherine; Henik, Avishai

    2011-01-01

    Objective: The goal of the present study was to examine distributed attentional functions in long-term but currently abstinent methamphetamine (MA) abusers using a task that measures attentional alertness, orienting, and conflict resolution. Methods: Thirty currently abstinent MA abusers (1 month-5 years) and 22 healthy non-substance using adults…

  6. Distinguishing Functional DNA Words; A Method for Measuring Clustering Levels

    NASA Astrophysics Data System (ADS)

    Moghaddasi, Hanieh; Khalifeh, Khosrow; Darooneh, Amir Hossein

    2017-01-01

    Functional DNA sub-sequences and genome elements are spatially clustered through the genome just as keywords in literary texts. Therefore, some of the methods for ranking words in texts can also be used to compare different DNA sub-sequences. In analogy with the literary texts, here we claim that the distribution of distances between the successive sub-sequences (words) is q-exponential which is the distribution function in non-extensive statistical mechanics. Thus the q-parameter can be used as a measure of words clustering levels. Here, we analyzed the distribution of distances between consecutive occurrences of 16 possible dinucleotides in human chromosomes to obtain their corresponding q-parameters. We found that CG as a biologically important two-letter word concerning its methylation, has the highest clustering level. This finding shows the predicting ability of the method in biology. We also proposed that chromosome 18 with the largest value of q-parameter for promoters of genes is more sensitive to dietary and lifestyle. We extended our study to compare the genome of some selected organisms and concluded that the clustering level of CGs increases in higher evolutionary organisms compared to lower ones.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. G.; Ning, C. G.; Zhang, S. F.

    The measurements of electron density distributions and binding-energy spectrum of the complete valence shell of cyclopentene (C{sub 5}H{sub 8}) using a binary (e,2e) electron momentum spectrometer are reported. The experimental momentum profiles of the valence orbitals are compared with the theoretical distributions calculated using Hartree-Fock and density-functional-theory (DFT) methods with various basis sets. The agreement between theory and experiment for the shape and intensity of the orbital electron momentum distributions is generally good. The DFT calculations employing B3LYP hybrid functional with a saturated and diffuse AUG-CC-PVTZ basis set provide the better descriptions of the experimental data. Some ''turn up'' effectsmore » in the low momentum region of the measured (e,2e) cross section compared with the calculations of 3a{sup ''}, 2a{sup ''}, and 3a{sup '} orbitals could be mainly attributed to distorted-wave effects. The pole strengths of the main ionization peaks from the orbitals in the inner valence are estimated.« less

  8. Analyses of Aircraft Measurement of Atmospheric Turbulence

    DTIC Science & Technology

    2009-04-16

    propagation models that utilize thermosonde measurements often adopt the “ onion -skin” assumption of horizontal homogeneity. But, radiosonde balloons...PD F( n L ) . Figure 7: Distributions of exponents, nX, for velocity and temperature structure function; XnXX rD  , where X =L,T,W, or

  9. Vertical changes in the probability distribution of downward irradiance within the near-surface ocean under sunny conditions

    NASA Astrophysics Data System (ADS)

    Gernez, Pierre; Stramski, Dariusz; Darecki, Miroslaw

    2011-07-01

    Time series measurements of fluctuations in underwater downward irradiance, Ed, within the green spectral band (532 nm) show that the probability distribution of instantaneous irradiance varies greatly as a function of depth within the near-surface ocean under sunny conditions. Because of intense light flashes caused by surface wave focusing, the near-surface probability distributions are highly skewed to the right and are heavy tailed. The coefficients of skewness and excess kurtosis at depths smaller than 1 m can exceed 3 and 20, respectively. We tested several probability models, such as lognormal, Gumbel, Fréchet, log-logistic, and Pareto, which are potentially suited to describe the highly skewed heavy-tailed distributions. We found that the models cannot approximate with consistently good accuracy the high irradiance values within the right tail of the experimental distribution where the probability of these values is less than 10%. This portion of the distribution corresponds approximately to light flashes with Ed > 1.5?, where ? is the time-averaged downward irradiance. However, the remaining part of the probability distribution covering all irradiance values smaller than the 90th percentile can be described with a reasonable accuracy (i.e., within 20%) with a lognormal model for all 86 measurements from the top 10 m of the ocean included in this analysis. As the intensity of irradiance fluctuations decreases with depth, the probability distribution tends toward a function symmetrical around the mean like the normal distribution. For the examined data set, the skewness and excess kurtosis assumed values very close to zero at a depth of about 10 m.

  10. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less

  11. Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations

    NASA Astrophysics Data System (ADS)

    Bovy Jo; Hogg, David W.; Roweis, Sam T.

    2011-06-01

    We generalize the well-known mixtures of Gaussians approach to density estimation and the accompanying Expectation-Maximization technique for finding the maximum likelihood parameters of the mixture to the case where each data point carries an individual d-dimensional uncertainty covariance and has unique missing data properties. This algorithm reconstructs the error-deconvolved or "underlying" distribution function common to all samples, even when the individual data points are samples from different distributions, obtained by convolving the underlying distribution with the heteroskedastic uncertainty distribution of the data point and projecting out the missing data directions. We show how this basic algorithm can be extended with conjugate priors on all of the model parameters and a "split-and-"erge- procedure designed to avoid local maxima of the likelihood. We demonstrate the full method by applying it to the problem of inferring the three-dimensional veloc! ity distribution of stars near the Sun from noisy two-dimensional, transverse velocity measurements from the Hipparcos satellite.

  12. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  13. Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Whitlow, S.; Talbot, R. W.

    2011-12-01

    Size distributions up to 10-micron aerosol diameter ( DP) of organic carbon (OC) and water-soluble organic carbon (WSOC) were measured at two sites in coastal New England, slightly inland at Thompson Farm (TF) and offshore at Isles of Shoals (IOS). Significant OC concentrations were measured across the full size distribution at TF and IOS, respectively. The WSOC fraction (WSOC/OC) was largest in the accumulation mode with values of 0.86 and 0.93 and smallest in the coarse mode with values of 0.61 and 0.79 at TF and IOS, respectively. Dicarboxylic acids containing up to five carbon atoms (C 5) were concentrated in droplet and accumulation mode aerosol with only minor contributions in the coarse mode. C 1-C 3 monocarboxylic acids were generally near or below detection limits. Results from proton nuclear magnetic resonance (H +-NMR) spectroscopy analyses showed that the organic functional group characterized by protons in the alpha position to an unsaturated carbon atoms ([H-C-C dbnd ]) was the dominant WSOC functionality at both TF and IOS, constituting 34 and 43% of carbon-weighted H +-NMR signal, respectively. Size distributions of each H +-NMR-resolved organic functionality are presented. Source apportionment using H +-NMR fingerprints is also presented, and results indicate that nearly all of the WSOC at TF and IOS spectroscopically resembled secondary organic aerosol, regardless of DP.

  14. Analysis of temperature-dependent neutron transmission and self-indication measurements on tantalum at 2-keV neutron energy

    NASA Technical Reports Server (NTRS)

    Semler, T. T.

    1973-01-01

    The method of pseudo-resonance cross sections is used to analyze published temperature-dependent neutron transmission and self-indication measurements on tantalum in the unresolved region. In the energy region analyzed, 1825.0 to 2017.0 eV, a direct application of the pseudo-resonance approach using a customary average strength function will not provide effective cross sections which fit the measured cross section behavior. Rather a local value of the strength function is required, and a set of resonances which model the measured behavior of the effective cross sections is derived. This derived set of resonance parameters adequately represents the observed resonance hehavior in this local energy region. Similar analyses for the measurements in other unresolved energy regions are necessary to obtain local resonance parameters for improved reactor calculations. This study suggests that Doppler coefficients calculated by sampling from grand average statistical distributions over the entire unresolved resonance region can be in error, since significant local variations in the statistical distributions are not taken into consideration.

  15. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma.

    PubMed

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.

  16. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.

  17. Variability of daily UV index in Jokioinen, Finland, in 1995-2015

    NASA Astrophysics Data System (ADS)

    Heikkilä, A.; Uusitalo, K.; Kärhä, P.; Vaskuri, A.; Lakkala, K.; Koskela, T.

    2017-02-01

    UV Index is a measure for UV radiation harmful for the human skin, developed and used to promote the sun awareness and protection of people. Monitoring programs conducted around the world have produced a number of long-term time series of UV irradiance. One of the longest time series of solar spectral UV irradiance in Europe has been obtained from the continuous measurements of Brewer #107 spectrophotometer in Jokioinen (lat. 60°44'N, lon. 23°30'E), Finland, over the years 1995-2015. We have used descriptive statistics and estimates of cumulative distribution functions, quantiles and probability density functions in the analysis of the time series of daily UV Index maxima. Seasonal differences in the estimated distributions and in the trends of the estimated quantiles are found.

  18. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less

  19. Estimate of uncertainties in polarized parton distributions

    NASA Astrophysics Data System (ADS)

    Miyama, M.; Goto, Y.; Hirai, M.; Kobayashi, H.; Kumano, S.; Morii, T.; Saito, N.; Shibata, T.-A.; Yamanishi, T.

    2001-10-01

    From \\chi^2 analysis of polarized deep inelastic scattering data, we determined polarized parton distribution functions (Y. Goto et al. (AAC), Phys. Rev. D 62, 34017 (2000).). In order to clarify the reliability of the obtained distributions, we should estimate uncertainties of the distributions. In this talk, we discuss the pol-PDF uncertainties by using a Hessian method. A Hessian matrix H_ij is given by second derivatives of the \\chi^2, and the error matrix \\varepsilon_ij is defined as the inverse matrix of H_ij. Using the error matrix, we calculate the error of a function F by (δ F)^2 = sum_i,j fracpartial Fpartial ai \\varepsilon_ij fracpartial Fpartial aj , where a_i,j are the parameters in the \\chi^2 analysis. Using this method, we show the uncertainties of the pol-PDF, structure functions g_1, and spin asymmetries A_1. Furthermore, we show a role of future experiments such as the RHIC-Spin. An important purpose of planned experiments in the near future is to determine the polarized gluon distribution function Δ g (x) in detail. We reanalyze the pol-PDF uncertainties including the gluon fake data which are expected to be given by the upcoming experiments. From this analysis, we discuss how much the uncertainties of Δ g (x) can be improved by such measurements.

  20. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    PubMed

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  1. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  2. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies: Cross Sections and Analyzing Powers

    NASA Astrophysics Data System (ADS)

    Hinterberger, F.; Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Büßer, K.; Busch, M.; Colberg, T.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jonas, E.; Krause, H.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Meinerzhagen, A.; Nähle, O.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power AN and the polarization correlation parameters ANN, ASS and ASL are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent dσ/dΩ and AN data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  3. Evaluation of measurement uncertainty of glucose in clinical chemistry.

    PubMed

    Berçik Inal, B; Koldas, M; Inal, H; Coskun, C; Gümüs, A; Döventas, Y

    2007-04-01

    The definition of the uncertainty of measurement used in the International Vocabulary of Basic and General Terms in Metrology (VIM) is a parameter associated with the result of a measurement, which characterizes the dispersion of the values that could reasonably be attributed to the measurand. Uncertainty of measurement comprises many components. In addition to every parameter, the measurement uncertainty is that a value should be given by all institutions that have been accredited. This value shows reliability of the measurement. GUM, published by NIST, contains uncertainty directions. Eurachem/CITAC Guide CG4 was also published by Eurachem/CITAC Working Group in the year 2000. Both of them offer a mathematical model, for uncertainty can be calculated. There are two types of uncertainty in measurement. Type A is the evaluation of uncertainty through the statistical analysis and type B is the evaluation of uncertainty through other means, for example, certificate reference material. Eurachem Guide uses four types of distribution functions: (1) rectangular distribution that gives limits without specifying a level of confidence (u(x)=a/ radical3) to a certificate; (2) triangular distribution that values near to the same point (u(x)=a/ radical6); (3) normal distribution in which an uncertainty is given in the form of a standard deviation s, a relative standard deviation s/ radicaln, or a coefficient of variance CV% without specifying the distribution (a = certificate value, u = standard uncertainty); and (4) confidence interval.

  4. Calculations of heavy ion charge state distributions for nonequilibrium conditions

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Hovestadt, D.

    1985-01-01

    Numerical calculations of the charge state distributions of test ions in a hot plasma under nonequilibrium conditions are presented. The mean ionic charges of heavy ions for finite residence times in an instantaneously heated plasma and for a non-Maxwellian electron distribution function are derived. The results are compared with measurements of the charge states of solar energetic particles, and it is found that neither of the two simple cases considered can explain the observations.

  5. Estimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign

    NASA Astrophysics Data System (ADS)

    Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, Markus

    2017-08-01

    We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ˜ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ˜ 1 km thickness and lying some kilometers apart from each other.

  6. Resilience-based optimal design of water distribution network

    NASA Astrophysics Data System (ADS)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  7. ISEE observations of low frequency waves and ion distribution function evolution in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Gary, S. P.

    1990-01-01

    This paper describes ISEE plasma and magnetic fluctuation observations during two crossings of the plasma sheet boundary layer (PSBL) in the earth's magnetotail. Distribution function observations show that the counterstreaming ion components undergo pitch-angle scattering and evolve into a shell distribution in velocity space. This evolution is correlated with the development of low frequency, low amplitude magnetic fluctuations. However, the measured wave amplitudes are insufficient to accomplish the observed degree of ion pitch-angle scatttering locally; the near-earth distributions may be the result of processes occurring much farther down the magnetotail. Results show a clear correlation between the ion component beta and the relative streaming speed of the two components, suggesting that electromagnetic ion/ion instabilities do play an important role in the scattering of PSBL ions.

  8. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya P. K.; Landis, David; Middleton, Elizabeth

    2012-01-01

    Climate change in tundra regions may alter vegetation species composition and ecosystem carbon balance. Remote sensing provides critical tools for monitoring these changes as optical signals provide a way to scale from plot measurements to regional patterns. Gas exchange measurements of pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012 0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Further, discriminant analysis of patch reflectance identifies five spectral bands that can separate each vegetation functional type as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance successfully unmixed cover fractions of the vegetation functional types. These functions, developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine regional variability in distribution of the vegetation functional types and from those distributions, the variability of LUE. Across the landscape, there was a fivefold variation in tundra LUE that was correlated to a spectral vegetation index developed to detect vegetation chlorophyll content.

  9. Maximum entropy approach to H -theory: Statistical mechanics of hierarchical systems

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Giovani L.; Salazar, Domingos S. P.; Macêdo, A. M. S.

    2018-02-01

    A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem—representing the region where the measurements are made—in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017), 10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

  10. Distributed health data networks: a practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care.

    PubMed

    Brown, Jeffrey S; Holmes, John H; Shah, Kiran; Hall, Ken; Lazarus, Ross; Platt, Richard

    2010-06-01

    Comparative effectiveness research, medical product safety evaluation, and quality measurement will require the ability to use electronic health data held by multiple organizations. There is no consensus about whether to create regional or national combined (eg, "all payer") databases for these purposes, or distributed data networks that leave most Protected Health Information and proprietary data in the possession of the original data holders. Demonstrate functions of a distributed research network that supports research needs and also address data holders concerns about participation. Key design functions included strong local control of data uses and a centralized web-based querying interface. We implemented a pilot distributed research network and evaluated the design considerations, utility for research, and the acceptability to data holders of methods for menu-driven querying. We developed and tested a central, web-based interface with supporting network software. Specific functions assessed include query formation and distribution, query execution and review, and aggregation of results. This pilot successfully evaluated temporal trends in medication use and diagnoses at 5 separate sites, demonstrating some of the possibilities of using a distributed research network. The pilot demonstrated the potential utility of the design, which addressed the major concerns of both users and data holders. No serious obstacles were identified that would prevent development of a fully functional, scalable network. Distributed networks are capable of addressing nearly all anticipated uses of routinely collected electronic healthcare data. Distributed networks would obviate the need for centralized databases, thus avoiding numerous obstacles.

  11. Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems.

    PubMed

    Vasconcelos, Giovani L; Salazar, Domingos S P; Macêdo, A M S

    2018-02-01

    A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

  12. Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2016-01-01

    The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer. However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size distribution both within a given rain event and across different varieties of rain events. Index Terms-drop size distribution, frequency scaling, propagation losses, radiowave propagation.

  13. Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2016-01-01

    The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer [1]). However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link [2]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size distribution both within a given rain event and across different varieties of rain events. Index Terms-drop size distribution, frequency scaling, propagation losses, radiowave propagation.

  14. Single-diffractive production of dijets within the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    Łuszczak, Marta; Maciuła, Rafał; Szczurek, Antoni; Babiarz, Izabela

    2017-09-01

    We discuss single-diffractive production of dijets. The cross section is calculated within the resolved Pomeron picture, for the first time in the kt-factorization approach, neglecting transverse momentum of the Pomeron. We use Kimber-Martin-Ryskin unintegrated parton (gluon, quark, antiquark) distributions in both the proton as well as in the Pomeron or subleading Reggeon. The unintegrated parton distributions are calculated based on conventional mmht2014nlo parton distribution functions in the proton and H1 Collaboration diffractive parton distribution functions used previously in the analysis of diffractive structure function and dijets at HERA. For comparison, we present results of calculations performed within the collinear-factorization approach. Our results remain those obtained in the next-to-leading-order approach. The calculation is (must be) supplemented by the so-called gap survival factor, which may, in general, depend on kinematical variables. We try to describe the existing data from Tevatron and make detailed predictions for possible LHC measurements. Several differential distributions are calculated. The E¯T, η ¯ and xp ¯ distributions are compared with the Tevatron data. A reasonable agreement is obtained for the first two distributions. The last one requires introducing a gap survival factor which depends on kinematical variables. We discuss how the phenomenological dependence on one kinematical variable may influence dependence on other variables such as E¯T and η ¯. Several distributions for the LHC are shown.

  15. Deeply Virtual Exclusive Processes and Generalized Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,

    2011-06-01

    The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,more » e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.« less

  16. Learning Probabilities From Random Observables in High Dimensions: The Maximum Entropy Distribution and Others

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Cocco, Simona; Monasson, Rémi

    2015-11-01

    We consider the problem of learning a target probability distribution over a set of N binary variables from the knowledge of the expectation values (with this target distribution) of M observables, drawn uniformly at random. The space of all probability distributions compatible with these M expectation values within some fixed accuracy, called version space, is studied. We introduce a biased measure over the version space, which gives a boost increasing exponentially with the entropy of the distributions and with an arbitrary inverse `temperature' Γ . The choice of Γ allows us to interpolate smoothly between the unbiased measure over all distributions in the version space (Γ =0) and the pointwise measure concentrated at the maximum entropy distribution (Γ → ∞ ). Using the replica method we compute the volume of the version space and other quantities of interest, such as the distance R between the target distribution and the center-of-mass distribution over the version space, as functions of α =(log M)/N and Γ for large N. Phase transitions at critical values of α are found, corresponding to qualitative improvements in the learning of the target distribution and to the decrease of the distance R. However, for fixed α the distance R does not vary with Γ which means that the maximum entropy distribution is not closer to the target distribution than any other distribution compatible with the observable values. Our results are confirmed by Monte Carlo sampling of the version space for small system sizes (N≤ 10).

  17. A reexamination of plasma measurements from the Mariner 5 Venus encounter

    NASA Technical Reports Server (NTRS)

    Shefer, R. E.; Lazarus, A. J.; Bridge, H. S.

    1979-01-01

    Mariner 5 plasma data from the Venus encounter have been analyzed with twice the time resolution of the original analysis of Bridge et al. (1967). The velocity distribution function for each spectrum is used to determine more precisely the locations of boundaries and characteristic flow parameters in the interaction region around the planet. A new region is identified in the flow located between magnetosheathlike plasma inside the shock front and an interior low-flux region near the geometrical shadow of the planet. The region is characterized by a wide velocity distribution function and a decrease in ion flux. Using the highest time resolution magnetic field data, it is proposed that rapid magnetic field fluctuations in this region may result in an artificial broadening of the distribution function. It is concluded that very high time resolution is required in future experiments in order to determine the true nature of the plasma in this region.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, Gavin; Sivak, David

    Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Renyi divergence.

  19. Statistics of baryon correlation functions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration

    2017-12-01

    A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.

  20. Dijet angular distributions in direct and resolved photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staino, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Frisken, W. R.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    Jet photoproduction, where the two highest transverse energy ( ETjet) jets have ETjet above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess.

  1. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  2. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    PubMed

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.

  3. Models of GexSe1-x

    NASA Astrophysics Data System (ADS)

    Malouin, Marc-André.; Mousseau, Normand

    2008-03-01

    We present numerical models of chalcogenide glasses constructed using the effective two and three body interaction potential developed by Mauro and Varshneya [1] combined with the activation-relaxation technique (ART nouveau) [2]. Structures are prepared starting from a random distribution, avoiding biases and crystalline remnants. Structural properties are studied mainly via characteristic system measurements including partial and total radial distribution functions, bond angle distributions, mean coordinations and bonds population. Results are shown for GexSe1-x for various x concentrations and compared to both experimental measurements and ab initio simulation results. [1] J.C. Mauro and A.K. Varshneya, J. Am. Ceram. Soc., 89 [7] 2323-6 (2006). [2] R. Malek and N. Mousseau, Phys. Rev. E 62, 7723 (2000).

  4. BATSE analysis techniques for probing the GRB spatial and luminosity distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.

    1992-01-01

    The Burst And Transient Source Experiment (BATSE) has measured homogeneity and isotropy parameters from an increasingly large sample of observed gamma-ray bursts (GRBs), while also maintaining a summary of the way in which the sky has been sampled. Measurement of both of these are necessary for any study of the BATSE data statistically, as they take into account the most serious observational selection effects known in the study of GRBs: beam-smearing and inhomogeneous, anisotropic sky sampling. Knowledge of these effects is important to analysis of GRB angular and intensity distributions. In addition to determining that the bursts are local, it is hoped that analysis of such distributions will allow boundaries to be placed on the true GRB spatial distribution and luminosity function. The technique for studying GRB spatial and luminosity distributions is direct. Results of BATSE analyses are compared to Monte Carlo models parameterized by a variety of spatial and luminosity characteristics.

  5. Proton structure functions at small x

    DOE PAGES

    Hentschinski, Martin

    2015-11-03

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F 2 and F L, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F 2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F 2 in the small x region, as measured at HERA. As a result, predictions for the structure function F L are found to be in agreement with the existing HERA data.« less

  6. The Inverted Student Density and Test Scores.

    ERIC Educational Resources Information Center

    Boldt, Robert F.

    The inverted density is one whose contour lines are spheroidal as in the normal distribution, but whose moments differ from those of the normal in that its conditional arrays are not homoscedastic, being quadratic functions of the values of the linear regression functions. It is also platykurtic, its measure of kurtosis ranging from that of the…

  7. Network analysis in detection of early-stage mild cognitive impairment

    NASA Astrophysics Data System (ADS)

    Ni, Huangjing; Qin, Jiaolong; Zhou, Luping; Zhao, Zhigen; Wang, Jun; Hou, Fengzhen

    2017-07-01

    The detection and intervention for early-stage mild cognitive impairment (EMCI) is of vital importance However, the pathology of EMCI remains largely unknown, making it be challenge to the clinical diagnosis. In this paper, the resting-state functional magnetic resonance imaging (rs-fMRI) data derived from EMCI patients and normal controls are analyzed using the complex network theory. We construct the functional connectivity (FC) networks and employ the local false discovery rate approach to successfully detect the abnormal functional connectivities appeared in the EMCI patients. Our results demonstrate the abnormal functional connectivities have appeared in the EMCI patients, and the affected brain regions are mainly distributed in the frontal and temporal lobes In addition, to quantitatively characterize the statistical properties of FCs in the complex network, we herein employ the entropy of the degree distribution (EDD) index and some other well-established measures, i.e., clustering coefficient (CC) and the efficiency of graph (EG). Eventually, we found that the EDD index, better than the widely used CC and EG measures, may serve as an assistant and potential marker for the detection of EMCI.

  8. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE PAGES

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.; ...

    2015-09-28

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  9. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  10. An analogy of the charge distribution on Julia sets with the Brownian motion

    NASA Astrophysics Data System (ADS)

    Lopes, Artur O.

    1989-09-01

    A way to compute the entropy of an invariant measure of a hyperbolic rational map from the information given by a Ruelle-Perron-Frobenius operator of a generic Holder-continuous function will be shown. This result was motivated by an analogy of the Brownian motion with the dynamical system given by a rational map and the maximal measure. In the case the rational map is a polynomial, then the maximal measure is the charge distribution in the Julia set. The main theorem of this paper can be seen as a large deviation result. It is a kind of Donsker-Varadhan formula for dynamical systems.

  11. Modeling Multi-Variate Gaussian Distributions and Analysis of Higgs Boson Couplings with the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Krohn, Olivia; Armbruster, Aaron; Gao, Yongsheng; Atlas Collaboration

    2017-01-01

    Software tools developed for the purpose of modeling CERN LHC pp collision data to aid in its interpretation are presented. Some measurements are not adequately described by a Gaussian distribution; thus an interpretation assuming Gaussian uncertainties will inevitably introduce bias, necessitating analytical tools to recreate and evaluate non-Gaussian features. One example is the measurements of Higgs boson production rates in different decay channels, and the interpretation of these measurements. The ratios of data to Standard Model expectations (μ) for five arbitrary signals were modeled by building five Poisson distributions with mixed signal contributions such that the measured values of μ are correlated. Algorithms were designed to recreate probability distribution functions of μ as multi-variate Gaussians, where the standard deviation (σ) and correlation coefficients (ρ) are parametrized. There was good success with modeling 1-D likelihood contours of μ, and the multi-dimensional distributions were well modeled within 1- σ but the model began to diverge after 2- σ due to unmerited assumptions in developing ρ. Future plans to improve the algorithms and develop a user-friendly analysis package will also be discussed. NSF International Research Experiences for Students

  12. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes.

    PubMed

    McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G

    2016-05-05

    Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.

  13. Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less

  14. Light scattering study of rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beuthan, J; Netz, U; Minet, O

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less

  15. Depth resolved investigations of boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  16. Does Data Distribution Change as a Function of Motor Skill Practice?

    ERIC Educational Resources Information Center

    Yan, Jin H.; Rodriguez, Ward A.; Thomas, Jerry R.

    2005-01-01

    The purpose of this study was to determine whether data distribution changes as a result of motor skill practice or learning. The data on three dependent measures (movement time; MT), percentage of movement time in primary submovement (PSB), and movement jerk (JEK) were collected at baseline and practice Blocks 1 to 5. Sixty 6-year-olds,…

  17. The Density Functional Theory of Flies: Predicting distributions of interacting active organisms

    NASA Astrophysics Data System (ADS)

    Kinkhabwala, Yunus; Valderrama, Juan; Cohen, Itai; Arias, Tomas

    On October 2nd, 2016, 52 people were crushed in a stampede when a crowd panicked at a religious gathering in Ethiopia. The ability to predict the state of a crowd and whether it is susceptible to such transitions could help prevent such catastrophes. While current techniques such as agent based models can predict transitions in emergent behaviors of crowds, the assumptions used to describe the agents are often ad hoc and the simulations are computationally expensive making their application to real-time crowd prediction challenging. Here, we pursue an orthogonal approach and ask whether a reduced set of variables, such as the local densities, are sufficient to describe the state of a crowd. Inspired by the theoretical framework of Density Functional Theory, we have developed a system that uses only measurements of local densities to extract two independent crowd behavior functions: (1) preferences for locations and (2) interactions between individuals. With these two functions, we have accurately predicted how a model system of walking Drosophila melanogaster distributes itself in an arbitrary 2D environment. In addition, this density-based approach measures properties of the crowd from only observations of the crowd itself without any knowledge of the detailed interactions and thus it can make predictions about the resulting distributions of these flies in arbitrary environments, in real-time. This research was supported in part by ARO W911NF-16-1-0433.

  18. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    PubMed

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  19. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    NASA Astrophysics Data System (ADS)

    Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.

  20. Nucleon localization and fragment formation in nuclear fission

    DOE PAGES

    Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.

    2016-12-27

    An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.

    An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less

  2. Inversion Analysis of Postseismic Deformation in Poroelastic Material Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kawamoto, S.; Ito, T.; Hirahara, K.

    2005-12-01

    Following a large earthquake, postseismic deformations in the focal source region have been observed by several geodetic measurements. To explain the postseismic deformations, researchers have proposed some physical mechanisms known as afterslip, viscoelastic relaxation and poroelastic rebound. There are a number of studies about postseismic deformations but for poroelastic rebound. So, we calculated the postseismic deformations caused by afterslip and poroelastic rebound using modified FEM code _eCAMBIOT3D_f originally developed by Geotech. Lab. Gunma University, Japan (2003). The postseismic deformations caused by both afterslip and poroelastic rebound are characteristically different from those caused only by afterslip. This suggests that the slip distributions on the fault estimated from geodetic measurements also change. Because of this, we developed the inversion method that accounts for both afterslip and poroelastic rebound using FEM to estimate the difference of slip distributions on the fault quantitatively. The inversion analysis takes following steps. First, we calculate the coseismic and postseismic response functions on each fault segment induced by the unit slip. Where postseismic response function indicate the poroelastic rebound. Next, we make the observation equations at each time step using the response functions and estimate the spatiotemporal distribution of slip on the fault. In solving this inverse problem, we assume the slip distributions on the fault are smooth in space and time except for rapid change (coseismic change). Because the hyperparameters that control the smoothness of spatial and temporal distributions of slip are needed, we determine the best hyperparameters using ABIC. In this presentation, we introduce the example of analysis results using this method.

  3. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  4. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.

    PubMed

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  5. Measurement of the electron charge asymmetry in pp[over ]-->W+X-->enu+X events at sqrt[s]=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalk, J M; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2008-11-21

    We present a measurement of the electron charge asymmetry in pp[over ]-->W+X-->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.

  6. Direct measurement of the W production charge asymmetry in pp collisions at square root s=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-05-08

    We present the first direct measurement of the W production charge asymmetry as a function of the W boson rapidity yW in pp collisions at sqrt[s]=1.96 TeV. We use a sample of W-->enu events in data from 1 fb-1 of integrated luminosity collected using the CDF II detector. In the region |yW|<3.0, this measurement is capable of constraining the ratio of up- and down-quark momentum distributions in the proton more directly than in previous measurements of the asymmetry that are functions of the charged-lepton pseudorapidity.

  7. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  8. Ion Dynamics in a Single and Dual Radio Frequency Sheath Measured by Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel Breckenridge

    Ion dynamics are investigated in a single and dual radio frequency sheath as a function of radius above a 30 cm diameter biased silicon wafer for the first time in an industrial inductively coupled (440 kHz, 500 W) plasma etch tool. Ion velocity distribution (IVD) function measurements in the argon plasma are taken using laser induced fluorescence (LIF). Planar sheets of laser light enter the chamber both parallel and perpendicular to the surface of the wafer in order to measure both parallel and perpendicular IVDs at thousands of spatial positions. A fast (30 ns exposure) CCD camera measures the resulting fluorescence with a spatial resolution of 0.4 mm. The dual-frequency bias on the wafer is comprised of a 2 MHz low frequency (LF) bias and a 19 MHz high frequency (HF) bias. The laser is phase locked to the LF bias and IVD measurements are taken at several different LF phases. Ion energy distribution (IED) function measurements and calculated moments are compared for several cases. For the LF case (no HF), the IEDs were found to be highly phase dependent and were varied radially up to 10%. Calculated mean velocity vectors showed large impact angles near the surface of the wafer with the largest angles observed near the wafer edge. The LF experimental results are compared with simulations designed specifically for this particular plasma tool and showed good qualitative agreement. For the dual frequency case, IEDs were measured at two disparate phases of the phase-locked LF bias. IEDs were found to be multi-peaked and were well-approximated by a sum of Maxwellian distributions. The calculated fluxes in the dual frequency case were found to be substantially more radially uniform than the single frequency bias case. For industrial applications, this radially uniform ion flux is evidently a trade off with the undesirable multi-peaked structure in the IEDs.

  9. Dorso-Lateral Prefrontal Cortex MRI Measurements and Cognitive Performance in Autism

    PubMed Central

    Griebling, Jessica; Minshew, Nancy J.; Bodner, Kimberly; Libove, Robin; Bansal, Rahul; Konasale, Prasad; Keshavan, Matcheri S.; Hardan, Antonio

    2012-01-01

    This study examined the relationships between volumetric measurements of frontal lobe structures and performance on executive function tasks in individuals with autism. MRI scans were obtained from 38 individuals with autism and 40 matched controls between the ages of 8 and 45 years. Executive function was assessed using neuropsychological measures including the Wisconsin Card Sorting Test and Tower of Hanoi. Differences in performance on the neuropsychological tests were found between the two groups. However, no differences in dorsolateral prefrontal cortex volumes were observed between groups. No correlations between volumetric measurements and performance on the neuropsychological tests were found. Findings from this study suggest that executive function deficits observed in autism are related to functional but not anatomical abnormalities of the frontal lobe. The absence of correlations suggests that executive dysfunction is not the result of focal brain alterations but, rather, is the result of a distributed neural network dysfunction. PMID:20097663

  10. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  11. Feasibility of an in situ measurement device for bubble size and distribution.

    PubMed

    Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-09-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles.

  12. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  13. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  14. Measuring Fission Fragment Mass Distributions as a Function of Incident Neutron Energy Using the fissionTPC

    NASA Astrophysics Data System (ADS)

    Gearhart, Joshua; Niffte Collaboration

    2017-09-01

    Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.

  15. Detection of smoothly distributed spatial outliers, with applications to identifying the distribution of parenchymal hyperinflation following an airway challenge in asthmatics.

    PubMed

    Thurman, Andrew L; Choi, Jiwoong; Choi, Sanghun; Lin, Ching-Long; Hoffman, Eric A; Lee, Chang Hyun; Chan, Kung-Sik

    2017-05-10

    Methacholine challenge tests are used to measure changes in pulmonary function that indicate symptoms of asthma. In addition to pulmonary function tests, which measure global changes in pulmonary function, computed tomography images taken at full inspiration before and after administration of methacholine provide local air volume changes (hyper-inflation post methacholine) at individual acinar units, indicating local airway hyperresponsiveness. Some of the acini may have extreme air volume changes relative to the global average, indicating hyperresponsiveness, and those extreme values may occur in clusters. We propose a Gaussian mixture model with a spatial smoothness penalty to improve prediction of hyperresponsive locations that occur in spatial clusters. A simulation study provides evidence that the spatial smoothness penalty improves prediction under different data-generating mechanisms. We apply this method to computed tomography data from Seoul National University Hospital on five healthy and ten asthmatic subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Cryo-scatter measurements of beryllium

    NASA Astrophysics Data System (ADS)

    Lippey, Barret; Krone-Schmidt, Wilfried

    1991-12-01

    Bi-directional Reflection Distribution Function measurements were performed as a function of cryogenic temperature for various substrates. Substrates investigated include HIPed and sputtered beryllium produced from different powders and by various manufacturing and polishing processes. In some samples investigated, the BRDF at 10.6 microns increased by a factor of 2 to 5 during cooling from 300 to 30 Kelvin. On repeated temperature cycling the change in BRDF appeared to be totally elastic. The cryo-scatter effect does not occur for all types of beryllium.

  17. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    PubMed

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  18. Testing methods of pressure distribution of bra cups on breasts soft tissue

    NASA Astrophysics Data System (ADS)

    Musilova, B.; Nemcokova, R.; Svoboda, M.

    2017-10-01

    Objective of this study is to evaluate testing methods of pressure distribution of bra cups on breasts soft tissue, the system which do not affect the space between the wearer's body surface and bra cups and thus do not influence the geometry of the measured body surface and thus investigate the functional performance of brassieres. Two measuring systems were used for the pressure comfort evaluating: 1) The pressure distribution of a wearing bra during 20 minutes on women's breasts has been directly measured using pressure sensor, a dielectricum which is elastic polyurethane foam bra cups. Twelve points were measured in bra cups. 2) Simultaneously the change of temperature in the same points bra was tested with the help of noncontact system the thermal imager. The results indicate that both of those systems can identify different pressure distribution at different points. The same size of bra designing features bra cups made from the same material and which is define by the help of same standardised body dimensions (bust and underbust) can cause different value of a compression on different shape of a woman´s breast soft tissue.

  19. The Center for Astrophysics Redshift Survey - Recent results

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, John P.

    1989-01-01

    Six strips of the CfA redshift survey extension are now complete. The data continue to support a picture in which galaxies are on thin sheets which nearly surround vast low-density voids. The largest structures are comparable with the extent of the survey. Voids like the one in Bootes are a common feature of the large-scale distribution of galaxies. The issue of fair samples of the galaxy distribution is discussed, examining statistical measures of the galaxy distribution including the two-point correlation functions.

  20. Lateral distributions of EAS muons (Eμ > 800 MeV) measured with the KASCADE-Grande Muon Tracking Detector in the primary energy range 1016 -1017 eV

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-05-01

    The KASCADE-Grande large area (128 m2) Muon Tracking Detector has been built with the aim to identify muons ( Eμthr = 800 MeV) in Extensive Air Showers by track measurements under 18 r.l. shielding. This detector provides high-accuracy angular information (approx. 0.3 °) for muons up to 700 m distance from the shower core. In this work we present the lateral density distributions of muons in EAS measured with the Muon Tracking Detector of the KASCADE-Grande experiment. The density is calculated by counting muon tracks in a muon-to-shower-axis distance range from 100 m to 610 m from showers with reconstructed energy of 1016 -1017 eV and zenith angle θ < 18 ° . In the distance range covered by the experiment, these distributions are well described by functions phenomenologically determined already in the fifties (of the last century) by Greisen. They are compared also with the distributions obtained with the KASCADE scintillator array (Eμthr = 230 MeV) and with distributions obtained using simulated showers.

  1. The probability density function (PDF) of Lagrangian Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, B.

    2012-12-01

    The statistical theory of Lagrangian turbulence is derived from the stochastic Navier-Stokes equation. Assuming that the noise in fully-developed turbulence is a generic noise determined by the general theorems in probability, the central limit theorem and the large deviation principle, we are able to formulate and solve the Kolmogorov-Hopf equation for the invariant measure of the stochastic Navier-Stokes equations. The intermittency corrections to the scaling exponents of the structure functions require a multiplicative (multipling the fluid velocity) noise in the stochastic Navier-Stokes equation. We let this multiplicative noise, in the equation, consists of a simple (Poisson) jump process and then show how the Feynmann-Kac formula produces the log-Poissonian processes, found by She and Leveque, Waymire and Dubrulle. These log-Poissonian processes give the intermittency corrections that agree with modern direct Navier-Stokes simulations (DNS) and experiments. The probability density function (PDF) plays a key role when direct Navier-Stokes simulations or experimental results are compared to theory. The statistical theory of turbulence is determined, including the scaling of the structure functions of turbulence, by the invariant measure of the Navier-Stokes equation and the PDFs for the various statistics (one-point, two-point, N-point) can be obtained by taking the trace of the corresponding invariant measures. Hopf derived in 1952 a functional equation for the characteristic function (Fourier transform) of the invariant measure. In distinction to the nonlinear Navier-Stokes equation, this is a linear functional differential equation. The PDFs obtained from the invariant measures for the velocity differences (two-point statistics) are shown to be the four parameter generalized hyperbolic distributions, found by Barndorff-Nilsen. These PDF have heavy tails and a convex peak at the origin. A suitable projection of the Kolmogorov-Hopf equations is the differential equation determining the generalized hyperbolic distributions. Then we compare these PDFs with DNS results and experimental data.

  2. Development of Pseudorandom Binary Arrays for Calibration of Surface Profile Metrology Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, S.K.; Takacs, P.; Soldate, P.

    2009-12-01

    Optical metrology tools, especially for short wavelengths (extreme ultraviolet and x-ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown point-spread function (PSF) of the instruments [G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, Bellingham, WA, 2001)] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account for because the PSF ismore » a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in the spatial frequency domain as a power spectral density (PSD) distribution [J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, Englewood, CO, 2005)]. For example, measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [E. L. Church et al., Opt. Eng. (Bellingham) 18, 125 (1979); J. C. Stover, Optical Scattering, 2nd ed. (SPIE Optical Engineering Press, Bellingham, WA, 1995)]. The distortion of the surface PSD distribution due to the PSF can be modeled with the modulation transfer function (MTF), which is defined over the spatial frequency bandwidth of the instrument. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the system under test. Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the measured and simulated PSD distributions gives the MTF of the instrument. The applicability of the MTF concept to phase map measurements with optical interferometric microscopes needs to be experimentally verified as the optical tool and algorithms may introduce nonlinear artifacts into the process. In previous work [V. V. Yashchuk et al., Proc. SPIE 6704, 670408 (2007); Valeriy V. Yashchuk et al., Opt. Eng. (Bellingham) 47, 073602 (2008)] the instrumental MTF of a surface profiler was precisely measured using reference test surfaces based on binary pseudorandom (BPR) gratings. Here, the authors present results of fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. BPR sequences are widely used in engineering and communication applications such as global position systems and wireless communication protocols. The ideal BPR pattern has a flat 'white noise' response over the entire range of spatial frequencies of interest. The BPR array used here is based on the uniformly redundant array (URA) prescription [E. E. Fenimore and T. M. Cannon, Appl. Opt. 17, 337 (1978)] initially used for x-ray and gamma ray astronomy applications. The URA's superior imaging capability originates from the fact that its cyclical autocorrelation function very closely approximates a delta function, which produces a flat PSD. Three different size BPR array patterns were fabricated by electron beam lithography and induction coupled plasma etching of silicon. The basic size units were 200, 400, and 600 nm. Two different etch processes were used, CF{sub 4}/Ar and HBr, which resulted in undercut and vertical sidewall profiles, respectively. The 2D BPR arrays were used as standard test surfaces for MTF calibration of the MicroMap{trademark}-570 interferometric microscope using all available objectives. The MicroMap{trademark}-570 interferometric microscope uses incoherent illumination from a tungsten filament source and common path modulated phase shifting interference to produce a set of interferograms detected on a change coupled device. Mathematical algorithms applied to the datasets yield the surface phase map. The HBr etched two-dimensional BPR arrays have proven to be a very effective calibration standard making possible direct calibration corrections without the need of additional calculation considerations, while departures from the ideal vertical sidewall require an additional correction term for the CF{sub 4}/Ar etched samples [Samuel K. Barber et al., Abstract to Optics and Photonics 2009: Optical Engineering and Applications Symposium, San Diego, CA, 2-6 August 2009]. Initial surface roughness of low cost 'prime' wafers limits low magnification calibration but should not be a limitation if better polished samples are used.« less

  3. Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Czarnetzki, Uwe

    2017-05-01

    Non-equilibrium distribution functions of electrons and ions play an important role in plasma physics. A prominent example is the kinetic Bohm criterion. Since its first introduction it has been controversial for theoretical reasons and due to the lack of experimental data, in particular on the ion distribution function. Here we resolve the theoretical as well as the experimental difficulties by an exact solution of the kinetic Boltzmann equation including charge exchange collisions and ionization. This also allows for the first time non-invasive measurement of spatially resolved ion velocity distributions, absolute values of the ion and electron densities, temperatures, and mean energies as well as the electric field and the plasma potential in the entire plasma. The non-invasive access to the spatially resolved distribution functions of electrons and ions is applied to the problem of the kinetic Bohm criterion. Theoretically a so far missing term in the criterion is derived and shown to be of key importance. With the new term the validity of the kinetic criterion at high collisionality and its agreement with the fluid picture are restored. All findings are supported by experimental data, theory and a numerical model with excellent agreement throughout.

  4. Cometary pick-up ions observed near Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.

    1986-01-01

    The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.

  5. Cometary pick-up ions observed near Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.; Galvin, A. B.

    1986-03-01

    The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.

  6. Removing the Impact of Correlated PSF Uncertainties in Weak Lensing

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-05-01

    Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.

  7. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  8. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    DTIC Science & Technology

    2016-04-01

    GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to

  9. Income distribution dependence of poverty measure: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Mallick, Sushanta K.

    2007-04-01

    Using a modified deprivation (or poverty) function, in this paper, we theoretically study the changes in poverty with respect to the ‘global’ mean and variance of the income distribution using Indian survey data. We show that when the income obeys a log-normal distribution, a rising mean income generally indicates a reduction in poverty while an increase in the variance of the income distribution increases poverty. This altruistic view for a developing economy, however, is not tenable anymore once the poverty index is found to follow a pareto distribution. Here although a rising mean income indicates a reduction in poverty, due to the presence of an inflexion point in the poverty function, there is a critical value of the variance below which poverty decreases with increasing variance while beyond this value, poverty undergoes a steep increase followed by a decrease with respect to higher variance. Identifying this inflexion point as the poverty line, we show that the pareto poverty function satisfies all three standard axioms of a poverty index [N.C. Kakwani, Econometrica 43 (1980) 437; A.K. Sen, Econometrica 44 (1976) 219] whereas the log-normal distribution falls short of this requisite. Following these results, we make quantitative predictions to correlate a developing with a developed economy.

  10. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    NASA Astrophysics Data System (ADS)

    Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.

    2017-10-01

    A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  11. A novel method for the investigation of liquid/liquid distribution coefficients and interface permeabilities applied to the water-octanol-drug system.

    PubMed

    Stein, Paul C; di Cagno, Massimiliano; Bauer-Brandl, Annette

    2011-09-01

    In this work a new, accurate and convenient technique for the measurement of distribution coefficients and membrane permeabilities based on nuclear magnetic resonance (NMR) is described. This method is a novel implementation of localized NMR spectroscopy and enables the simultaneous analysis of the drug content in the octanol and in the water phase without separation. For validation of the method, the distribution coefficients at pH = 7.4 of four active pharmaceutical ingredients (APIs), namely ibuprofen, ketoprofen, nadolol, and paracetamol (acetaminophen), were determined using a classical approach. These results were compared to the NMR experiments which are described in this work. For all substances, the respective distribution coefficients found with the two techniques coincided very well. Furthermore, the NMR experiments make it possible to follow the distribution of the drug between the phases as a function of position and time. Our results show that the technique, which is available on any modern NMR spectrometer, is well suited to the measurement of distribution coefficients. The experiments present also new insight into the dynamics of the water-octanol interface itself and permit measurement of the interface permeability.

  12. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE PAGES

    Singh, Andy; Luening, Katharina; Brennan, Sean; ...

    2017-01-01

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  13. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Andy; Luening, Katharina; Brennan, Sean

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  14. Discriminative analysis of non-linear brain connectivity for leukoaraiosis with resting-state fMRI

    NASA Astrophysics Data System (ADS)

    Lai, Youzhi; Xu, Lele; Yao, Li; Wu, Xia

    2015-03-01

    Leukoaraiosis (LA) describes diffuse white matter abnormalities on CT or MR brain scans, often seen in the normal elderly and in association with vascular risk factors such as hypertension, or in the context of cognitive impairment. The mechanism of cognitive dysfunction is still unclear. The recent clinical studies have revealed that the severity of LA was not corresponding to the cognitive level, and functional connectivity analysis is an appropriate method to detect the relation between LA and cognitive decline. However, existing functional connectivity analyses of LA have been mostly limited to linear associations. In this investigation, a novel measure utilizing the extended maximal information coefficient (eMIC) was applied to construct non-linear functional connectivity in 44 LA subjects (9 dementia, 25 mild cognitive impairment (MCI) and 10 cognitively normal (CN)). The strength of non-linear functional connections for the first 1% of discriminative power increased in MCI compared with CN and dementia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. In the multivariate pattern analysis with multiple classifiers, the non-linear functional connectivity mostly identified dementia, MCI and CN from LA with a relatively higher accuracy rate than the linear measure. Our findings revealed the non-linear functional connectivity provided useful discriminative power in classification of LA, and the spatial distributed changes between the non-linear and linear measure may indicate the underlying mechanism of cognitive dysfunction in LA.

  15. Discrete epidemic models with arbitrary stage distributions and applications to disease control.

    PubMed

    Hernandez-Ceron, Nancy; Feng, Zhilan; Castillo-Chavez, Carlos

    2013-10-01

    W.O. Kermack and A.G. McKendrick introduced in their fundamental paper, A Contribution to the Mathematical Theory of Epidemics, published in 1927, a deterministic model that captured the qualitative dynamic behavior of single infectious disease outbreaks. A Kermack–McKendrick discrete-time general framework, motivated by the emergence of a multitude of models used to forecast the dynamics of epidemics, is introduced in this manuscript. Results that allow us to measure quantitatively the role of classical and general distributions on disease dynamics are presented. The case of the geometric distribution is used to evaluate the impact of waiting-time distributions on epidemiological processes or public health interventions. In short, the geometric distribution is used to set up the baseline or null epidemiological model used to test the relevance of realistic stage-period distribution on the dynamics of single epidemic outbreaks. A final size relationship involving the control reproduction number, a function of transmission parameters and the means of distributions used to model disease or intervention control measures, is computed. Model results and simulations highlight the inconsistencies in forecasting that emerge from the use of specific parametric distributions. Examples, using the geometric, Poisson and binomial distributions, are used to highlight the impact of the choices made in quantifying the risk posed by single outbreaks and the relative importance of various control measures.

  16. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  17. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  18. Infrared fiber optic sensor for measurements of nonuniform temperature distributions

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham

    1992-04-01

    Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.

  19. Laser diffraction of acicular particles: practical applications

    NASA Astrophysics Data System (ADS)

    Scott, David M.; Matsuyama, Tatsushi

    2014-08-01

    Commercial laser diffraction instruments are widely used to measure particle size distribution (PSD), but the results are distorted for non-spherical (acicular) particles often encountered in practical applications. Consequently the distribution, which is reported in terms of equivalent spherical diameter, requires interpretation. For rod-like and plate-like particles, the PSD tends to be bi-modal, with the two modal sizes closely related to the median length and width, or width and thickness, of the particles. Furthermore, it is found that the bi-modal PSD for at least one instrument can typically be approximated by a bi-lognormal distribution. By fitting such a function to the reported distribution, one may extract quantitative information useful for process or product development. This approach is illustrated by examples of such measurement on industrial samples of polymer particles, crystals, bacteria, and clays.

  20. Optical filter highlighting spectral features part II: quantitative measurements of cosmetic foundation and assessment of their spatial distributions under realistic facial conditions.

    PubMed

    Nishino, Ken; Nakamura, Mutsuko; Matsumoto, Masayuki; Tanno, Osamu; Nakauchi, Shigeki

    2011-03-28

    We previously proposed a filter that could detect cosmetic foundations with high discrimination accuracy [Opt. Express 19, 6020 (2011)]. This study extends the filter's functionality to the quantification of the amount of foundation and applies the filter for the assessment of spatial distributions of foundation under realistic facial conditions. Human faces that are applied with quantitatively controlled amounts of cosmetic foundations were measured using the filter. A calibration curve between pixel values of the image and the amount of foundation was created. The optical filter was applied to visualize spatial foundation distributions under realistic facial conditions, which clearly indicated areas on the face where foundation remained even after cleansing. Results confirm that the proposed filter could visualize and nondestructively inspect the foundation distributions.

  1. The Differential cross section distribution of Drell-Yan dielectron pairs in the z boson mass region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiyeon

    We report on a measurement of the rapidity distribution, dσ/dy, for Z=Drell-Yan → ee events produced in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV. The data sample consists of 2.13 fb -1 corresponding to about 160,000 Z/Drell-Yan → ee candidates in the Z boson mass region collected by the Collider Detector at Fermilab. The dσ/dy distribution, which is measured over the full kinematic range for e +e - pairs in the invariant mass range 66 < M ee < 116 GeV/c 2, is compared with theory predictions. There is good agreement between the data and predictions of Quantum Chromodynamics in Next to Leading Order with the CTEQ6.1M Parton Distribution Functions.« less

  2. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  3. Event-by-event fluctuations and inclusive distributions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Koch, V.

    1999-06-01

    Event-by-event observables are compared with conventional inclusive measurements. We find that moments of event-by-event fluctuations are closely related to inclusive correlation functions. Implications for upcoming heavy ion experiments are discussed.

  4. Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-05-12

    The pseudorapidity distributions of dijets as a function of their average transverse momentum (more » $$p_\\mathrm{T}^\\text{ave}$$) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $$p_\\mathrm{T}^\\text{ave}$$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.« less

  5. Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.

    PubMed

    Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar

    2010-09-01

    A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.

  6. Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems.

    PubMed

    Varga, Imre; Pipek, János

    2003-08-01

    We discuss some properties of the generalized entropies, called Rényi entropies, and their application to the case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent; however, their differences are free from these divergences, thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corroborate our expectations.

  7. The spatial coherence function in scanning transmission electron microscopy and spectroscopy.

    PubMed

    Nguyen, D T; Findlay, S D; Etheridge, J

    2014-11-01

    We investigate the implications of the form of the spatial coherence function, also referred to as the effective source distribution, for quantitative analysis in scanning transmission electron microscopy, and in particular for interpreting the spatial origin of imaging and spectroscopy signals. These questions are explored using three different source distribution models applied to a GaAs crystal case study. The shape of the effective source distribution was found to have a strong influence not only on the scanning transmission electron microscopy (STEM) image contrast, but also on the distribution of the scattered electron wavefield and hence on the spatial origin of the detected electron intensities. The implications this has for measuring structure, composition and bonding at atomic resolution via annular dark field, X-ray and electron energy loss STEM imaging are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. What are the Shapes of Response Time Distributions in Visual Search?

    PubMed Central

    Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.

    2011-01-01

    Many visual search experiments measure reaction time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search. PMID:21090905

  9. Study of W boson production in pPb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randleconde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Arleo, F.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Mazza, G.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Tseng, S. Y.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasrstorey, S.; Senkin, S.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bierwagen, K.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-11-01

    The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 nb-1 at a nucleon-nucleon centre-of-mass energy of √{sNN} = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV/c, and as a function of the lepton pseudorapidity in the |ηlab | < 2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.

  10. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    PubMed

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  11. Bidirectional reflectance distribution function of diffuse extreme ultraviolet scatterers and extreme ultraviolet baffle materials.

    PubMed

    Newell, M P; Keski-Kuha, R A

    1997-08-01

    Bidirectional reflectance distribution function (BRDF) measurements of a number of diffuse extreme ultraviolet (EUV) scatterers and EUV baffle materials have been performed with the Goddard EUV scatterometer. BRDF data are presented for white Spectralon SRS-99 at 121.6 nm; the data exhibit a non-Lambertian nature and a total hemispherical reflectance lower than 0.15. Data are also presented for an evaporated Cu black sample, a black Spectralon SRS-02 sample, and a Martin Optical Black sample at wavelengths of 58.4 and 121.6 nm and for angles of incidence of 15 degrees and 45 degrees. Overall Martin Optical Black exhibited the lowest BRDF characteristic, with a total hemispherical reflectance of the order of 0.01 and measured BRDF values as low as 2 x 10(-3) sr(-1).

  12. Boer-Mulders effect in unpolarized SIDIS: An analysis of the COMPASS and HERMES data on the $$\\cos 2 \\phi$$ asymmetry

    DOE PAGES

    Vincenzo Barone; Melis, Stefano; Prokudin, Alexei

    2010-06-17

    We present a phenomenological analysis of themore » $$\\cos 2 \\phi$$ asymmetry recently measured by the COMPASS and HERMES collaborations in unpolarized semi-inclusive deep inelastic scattering. In the kinematical regimes explored by these experiments the asymmetry arises from transverse-spin and intrinsic transverse-momentum effects. We consider the leading-twist contribution, related to the so-called Boer-Mulders transverse-polarization distribution $$h_1^{\\perp}(x, k_T^2)$$, and the twist-4 Cahn contribution, involving unpolarized transverse-momentum distribution functions. We show that a reasonably good fit of the data is achieved with a Boer-Mulders function consistent with the main theoretical expectations. Lastly, our conclusion is that the COMPASS and HERMES measurements represent the first experimental evidence of the Boer-Mulders effect in SIDIS.« less

  13. An information measure for class discrimination. [in remote sensing of crop observation

    NASA Technical Reports Server (NTRS)

    Shen, S. S.; Badhwar, G. D.

    1986-01-01

    This article describes a separability measure for class discrimination. This measure is based on the Fisher information measure for estimating the mixing proportion of two classes. The Fisher information measure not only provides a means to assess quantitatively the information content in the features for separating classes, but also gives the lower bound for the variance of any unbiased estimate of the mixing proportion based on observations of the features. Unlike most commonly used separability measures, this measure is not dependent on the form of the probability distribution of the features and does not imply a specific estimation procedure. This is important because the probability distribution function that describes the data for a given class does not have simple analytic forms, such as a Gaussian. Results of applying this measure to compare the information content provided by three Landsat-derived feature vectors for the purpose of separating small grains from other crops are presented.

  14. Large-deviation properties of Brownian motion with dry friction.

    PubMed

    Chen, Yaming; Just, Wolfram

    2014-10-01

    We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.

  15. Three-dimensional autoradiographic localization of quench-corrected glycine receptor specific activity in the mouse brain using sup 3 H-strychnine as the ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.F.; O'Gorman, S.; Roe, A.W.

    1990-03-01

    The autoradiographic analysis of neurotransmitter receptor distribution is a powerful technique that provides extensive information on the localization of neurotransmitter systems. Computer methodologies are described for the analysis of autoradiographic material which include quench correction, 3-dimensional display, and quantification based on anatomical boundaries determined from the tissue sections. These methodologies are applied to the problem of the distribution of glycine receptors measured by 3H-strychnine binding in the mouse CNS. The most distinctive feature of this distribution is its marked caudorostral gradient. The highest densities of binding sites within this gradient were seen in somatic motor and sensory areas; high densitiesmore » of binding were seen in branchial efferent and special sensory areas. Moderate levels were seen in nuclei related to visceral function. Densities within the reticular formation paralleled the overall gradient with high to moderate levels of binding. The colliculi had low and the diencephalon had very low levels of binding. No binding was seen in the cerebellum or the telencephalon with the exception of the amygdala, which had very low levels of specific binding. This distribution of glycine receptors correlates well with the known functional distribution of glycine synaptic function. These data are illustrated in 3 dimensions and discussed in terms of the significance of the analysis techniques on this type of data as well as the functional significance of the distribution of glycine receptors.« less

  16. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE PAGES

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; ...

    2016-01-13

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  17. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  18. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  19. EXACT DISTRIBUTIONS OF INTRACLASS CORRELATION AND CRONBACH'S ALPHA WITH GAUSSIAN DATA AND GENERAL COVARIANCE.

    PubMed

    Kistner, Emily O; Muller, Keith E

    2004-09-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact results allow calculating the exact distribution function and other properties of intraclass correlation and Cronbach's alpha, for Gaussian data with any covariance pattern, not just compound symmetry. Probabilities are computed in terms of the distribution function of a weighted sum of independent chi-square random variables. New F approximations for the distribution functions of intraclass correlation and Cronbach's alpha are much simpler and faster to compute than the exact forms. Assuming the covariance matrix is known, the approximations typically provide sufficient accuracy, even with as few as ten observations. Either the exact or approximate distributions may be used to create confidence intervals around an estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly assuming that the covariance matrix is compound symmetric leads to accurate confidence intervals, as was expected from previously known results. However, assuming and estimating a general covariance matrix produces somewhat optimistically narrow confidence intervals with 10 observations. Increasing sample size to 100 gives essentially unbiased coverage. Incorrectly assuming compound symmetry leads to pessimistically large confidence intervals, with pessimism increasing with sample size. In contrast, incorrectly assuming general covariance introduces only a modest optimistic bias in small samples. Hence the new methods seem preferable for creating confidence intervals, except when compound symmetry definitely holds.

  20. Critical Conditions for Liquid Chromatography of Statistical Copolymers: Functionality Type and Composition Distribution Characterization by UP-LCCC/ESI-MS.

    PubMed

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2017-02-07

    Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.

  1. Sampling probability distributions of lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.

    2015-03-01

    One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.

  2. Bidirectional reflectance modeling of non-homogeneous plant canopies

    NASA Technical Reports Server (NTRS)

    Norman, John M.

    1986-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. Leaf bidirectional reflectance and transmittance distribution functions were measured for corn and soybean leaves. The measurements clearly show that leaves are complex scatterers and considerable specular reflectance is possible. Because of the character of leaf reflectance, true leaf reflectance is larger than the nadir reflectances that are normally used to represent leaves. A 3-dimensional reflectance model, named BIGAR (Bidirectional General Array Model), was developed and compared with measurements from corn and soybean. The model is based on the concept that heterogeneous canopies can be described by a combination of many subcanopies, which contain all the foliage, and these subcanopy envelopes can be characterized by ellipsoids of various sizes and shapes. The model/measurement comparison results indicate that this relatively simple model captures the essential character of row crop BRDF's. Finally, two soil BDRF models were developed: one represents soil particles as rectangular blocks and the other represents soil particles as spheres. The sphere model was found to be superior.

  3. Bidirectional reflectance distribution function /BRDF/ measurements of stray light suppression coatings for the Space Telescope /ST/

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1979-01-01

    The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.

  4. Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin

    2016-12-01

    The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.

  5. Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.

    1983-01-01

    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.

  6. Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.

    2015-09-01

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.

  7. Measurement of exclusive π(0) electroproduction structure functions and their relationship to transverse generalized parton distributions.

    PubMed

    Bedlinskiy, I; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Aghasyan, M; Amaryan, M J; Anghinolfi, M; Avakian, H; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Bennett, R P; Biselli, A S; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Forest, T A; Fradi, A; Garçon, M; Gevorgyan, N; Giovanetti, K L; Girod, F X; Gohn, W; Gothe, R W; Graham, L; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kuhn, S E; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Markov, N; Martinez, D; Mayer, M; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Saylor, N; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tian, Ye; Tkachenko, S; Ungaro, M; Vineyard, M F; Vlassov, A; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2012-09-14

    Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.0 to 4.6  GeV(2), -t up to 2  GeV(2), and x(B) from 0.1 to 0.58. Structure functions σ(T)+ϵσ(L), σ(TT), and σ(LT) were extracted as functions of t for each of 17 combinations of Q(2) and x(B). The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σ(T)+ϵσ(L) and fails to account for σ(TT) and σ(LT), while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π(0) electroproduction offers direct experimental access to the transversity GPDs.

  8. Measurement of Exclusive π0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2012-09-01

    Exclusive π0 electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q2, xB, t, and ϕπ, in the Q2 range from 1.0 to 4.6GeV2, -t up to 2GeV2, and xB from 0.1 to 0.58. Structure functions σT+ɛσL, σTT, and σLT were extracted as functions of t for each of 17 combinations of Q2 and xB. The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σT+ɛσL and fails to account for σTT and σLT, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π0 electroproduction offers direct experimental access to the transversity GPDs.

  9. Functional approach to high-throughput plant growth analysis

    PubMed Central

    2013-01-01

    Method Taking advantage of the current rapid development in imaging systems and computer vision algorithms, we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis, which produces better understanding of energy distribution in regards of the balance between growth and defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from top-view images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a nonlinear growth model is applied to generate growth curves, followed by functional data analysis. Results Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach, HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under fluctuating light conditions to repress leaf growth. Availability HPGA is available at http://www.msu.edu/~jinchen/HPGA. PMID:24565437

  10. Children's Media Comprehension: The Relationship between Media Platform, Executive Functioning Abilities, and Age

    ERIC Educational Resources Information Center

    Menkes, Susan M.

    2012-01-01

    Children's media comprehension was compared for material presented on television, computer, or touchscreen tablet. One hundred and thirty-two children were equally distributed across 12 groups defined by age (4- or 6-years-olds), gender, and the three media platforms. Executive functioning as measured by attentional control, cognitive…

  11. Red cell distribution width does not predict stroke severity or functional outcome.

    PubMed

    Ntaios, George; Gurer, Ozgur; Faouzi, Mohamed; Aubert, Carole; Michel, Patrik

    2012-01-01

    Red cell distribution width was recently identified as a predictor of cardiovascular and all-cause mortality in patients with previous stroke. Red cell distribution width is also higher in patients with stroke compared with those without. However, there are no data on the association of red cell distribution width, assessed during the acute phase of ischemic stroke, with stroke severity and functional outcome. In the present study, we sought to investigate this relationship and ascertain the main determinants of red cell distribution width in this population. We used data from the Acute Stroke Registry and Analysis of Lausanne for patients between January 2003 and December 2008. Red cell distribution width was generated at admission by the Sysmex XE-2100 automated cell counter from ethylene diamine tetraacetic acid blood samples stored at room temperature until measurement. An χ(2) -test was performed to compare frequencies of categorical variables between different red cell distribution width quartiles, and one-way analysis of variance for continuous variables. The effect of red cell distribution width on severity and functional outcome was investigated in univariate and multivariate robust regression analysis. Level of significance was set at 95%. There were 1504 patients (72±15·76 years, 43·9% females) included in the analysis. Red cell distribution width was significantly associated to NIHSS (β-value=0·24, P=0·01) and functional outcome (odds ratio=10·73 for poor outcome, P<0·001) at univariate analysis but not multivariate. Prehospital Rankin score (β=0·19, P<0·001), serum creatinine (β=0·008, P<0·001), hemoglobin (β=-0·009, P<0·001), mean platelet volume (β=0·09, P<0·05), age (β=0·02, P<0·001), low ejection fraction (β=0·66, P<0·001) and antihypertensive treatment (β=0·32, P<0·001) were independent determinants of red cell distribution width. Red cell distribution width, assessed during the early phase of acute ischemic stroke, does not predict severity or functional outcome. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

  12. Comparison of gridded energy analyzer and laser induced fluorescence measurements of a two-component ion distribution.

    PubMed

    Harvey, Z; Thakur, S Chakraborty; Hansen, A; Hardin, R; Przybysz, W S; Scime, E E

    2008-10-01

    We present ion velocity distribution function (IVDF) measurements obtained with a five grid retarding field energy analyzer (RFEA) and IVDF measurements obtained with laser induced fluorescence (LIF) for an expanding helicon plasma. The ion population consists of a background population and an energetic ion beam. When the RFEA measurements are corrected for acceleration due to the electric potential difference across the plasma sheath, we find that the RFEA measurements indicate a smaller background to beam density ratio and a much larger parallel ion temperature than the LIF. The energy of the ion beam is the same in both measurements. These results suggest that ion heating occurs during the transit of the background ions through the sheath and that LIF cannot detect the fraction of the ion beam whose metastable population has been eliminated by collisions.

  13. A Health Science Process Framework for Comprehensive Clinical Functional Assessment

    DTIC Science & Technology

    2014-02-01

    Services (CMS), a Research , Measurement, Assessment, Design, and Analysis (RMADA) IDIQ with the primary task order targeting improving the disability ...2014 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION

  14. Interpretation of environmental tracers in groundwater systems with stagnant water zones.

    PubMed

    Maloszewski, Piotr; Stichler, Willibald; Zuber, Andrzej

    2004-03-01

    Lumped-parameter models are commonly applied for determining the age of water from time records of transient environmental tracers. The simplest models (e.g. piston flow or exponential) are also applicable for dating based on the decay or accumulation of tracers in groundwater systems. The models are based on the assumption that the transit time distribution function (exit age distribution function) of the tracer particles in the investigated system adequately represents the distribution of flow lines and is described by a simple function. A chosen or fitted function (called the response function) describes the transit time distribution of a tracer which would be observed at the output (discharge area, spring, stream, or pumping wells) in the case of an instantaneous injection at the entrance (recharge area). Due to large space and time scales, response functions are not measurable in groundwater systems, therefore, functions known from other fields of science, mainly from chemical engineering, are usually used. The type of response function and the values of its parameters define the lumped-parameter model of a system. The main parameter is the mean transit time of tracer through the system, which under favourable conditions may represent the mean age of mobile water. The parameters of the model are found by fitting calculated concentrations to the experimental records of concentrations measured at the outlet. The mean transit time of tracer (often called the tracer age), whether equal to the mean age of water or not, serves in adequate combinations with other data for determining other useful parameters, e.g. the recharge rate or the content of water in the system. The transit time distribution and its mean value serve for confirmation or determination of the conceptual model of the system and/or estimation of its potential vulnerability to anthropogenic pollution. In the interpretation of environmental tracer data with the aid of the lumped-parameter models, the influence of diffusion exchange between mobile water and stagnant or quasi-stagnant water is seldom considered, though it leads to large differences between tracer and water ages. Therefore, the article is focused on the transit time distribution functions of the most common lumped-parameter models, particularly those applicable for the interpretation of environmental tracer data in double-porosity aquifers, or aquifers in which aquitard diffusion may play an important role. A case study is recalled for a confined aquifer in which the diffusion exchange with aquitard most probably strongly influenced the transport of environmental tracers. Another case study presented is related to the interpretation of environmental tracer data obtained from lysimeters installed in the unsaturated zone with a fraction of stagnant water.

  15. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  16. Nascent RNA kinetics: Transient and steady state behavior of models of transcription

    NASA Astrophysics Data System (ADS)

    Choubey, Sandeep

    2018-02-01

    Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elusive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical models of transcription and then experimentally test the predictions these models make for the distribution of mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements allow for counting the nascent mRNA number of a gene as a function of time at the single-inglr cell level. These measurements closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.

  17. Probability density functions characterizing PSC particle size distribution parameters for NAT and STS derived from in situ measurements between 1989 and 2010 above McMurdo Station, Antarctica, and between 1991-2004 above Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Deshler, Terry

    2016-04-01

    Balloon-borne optical particle counters were used to make in situ size resolved particle concentration measurements within polar stratospheric clouds (PSCs) over 20 years in the Antarctic and over 10 years in the Arctic. The measurements were made primarily during the late winter in the Antarctic and in the early and mid-winter in the Arctic. Measurements in early and mid-winter were also made during 5 years in the Antarctic. For the analysis bimodal lognormal size distributions are fit to 250 meter averages of the particle concentration data. The characteristics of these fits, along with temperature, water and nitric acid vapor mixing ratios, are used to classify the PSC observations as either NAT, STS, ice, or some mixture of these. The vapor mixing ratios are obtained from satellite when possible, otherwise assumptions are made. This classification of the data is used to construct probability density functions for NAT, STS, and ice number concentration, median radius and distribution width for mid and late winter clouds in the Antarctic and for early and mid-winter clouds in the Arctic. Additional analysis is focused on characterizing the temperature histories associated with the particle classes and the different time periods. The results from theses analyses will be presented, and should be useful to set bounds for retrievals of PSC properties from remote measurements, and to constrain model representations of PSCs.

  18. Distribution Functions of Sizes and Fluxes Determined from Supra-Arcade Downflows

    NASA Technical Reports Server (NTRS)

    McKenzie, D.; Savage, S.

    2011-01-01

    The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.

  19. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: Implications for resilience

    USGS Publications Warehouse

    Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.

    2014-01-01

    The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  20. Measurement of jet multiplicity distributions in [Formula: see text] production in pp collisions at [Formula: see text].

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Roland, B; Rougny, R; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Heracleous, N; Kalogeropoulos, A; Keaveney, J; Kim, T J; Lowette, S; Maes, M; Olbrechts, A; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Favart, L; Gay, A P R; Léonard, A; Marage, P E; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Garcia, G; Klein, B; Lellouch, J; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jez, P; Komm, M; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Liang, D; Liang, S; Meng, X; Plestina, R; Tao, J; Wang, X; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, Q; Li, W; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Mahmoud, M A; Mahrous, A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Juillot, P; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Calpas, B; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Geiser, A; Grebenyuk, A; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Hempel, M; Horton, D; Jung, H; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krämer, M; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Ntomari, E; Perrey, H; Petrukhin, A; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Stein, M; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Enderle, H; Erfle, J; Garutti, E; Goebel, K; Görner, M; Gosselink, M; Haller, J; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hartmann, F; Hauth, T; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Martschei, D; Mildner, H; Mozer, M U; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Williamson, S; Wolf, R; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Gouskos, L; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Jones, J; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mittal, M; Nishu, N; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Singh, A P; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Chatterjee, R M; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dewanjee, R K; Dugad, S; Arfaei, H; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Ferro, F; Lo Vetere, M; Musenich, R; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Biasotto, M; Branca, A; Dorigo, T; Dosselli, U; Fanzago, F; Galanti, M; Gasparini, F; Giubilato, P; Gozzelino, A; Gulmini, M; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Meneguzzo, A T; Michelotto, M; Pazzini, J; Pozzobon, N; Ronchese, P; Sgaravatto, M; Simonetto, F; Torassa, E; Tosi, M; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Montanino, D; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kim, T Y; Nam, S K; Kim, D H; Kim, G N; Kim, J E; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Doesburg, R; Reucroft, S; Ahmad, A; Ahmad, M; Asghar, M I; Butt, J; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Bunin, P; Gavrilenko, M; Golutvin, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Lanev, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Perfilov, M; Petrushanko, S; Savrin, V; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Willmott, C; Albajar, C; de Trocóniz, J F; Missiroli, M; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Mulders, M; Musella, P; Orsini, L; Palencia Cortezon, E; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Reece, W; Rolandi, G; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Treille, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Meister, D; Mohr, N; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Ronga, F J; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Favaro, C; Hinzmann, A; Hreus, T; Ivova Rikova, M; Kilminster, B; Millan Mejias, B; Ngadiuba, J; Robmann, P; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wang, M; Wilken, R; Asavapibhop, B; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Karapinar, G; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Ilic, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Richardson, C; Rohlf, J; Sperka, D; St John, J; Sulak, L; Alimena, J; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Kopecky, A; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Rutherford, B; Searle, M; Shalhout, S; Smith, J; Squires, M; Tripathi, M; Wilbur, S; Yohay, R; Andreev, V; Cline, D; Cousins, R; Erhan, S; Everaerts, P; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Lacroix, F; Liu, H; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Shrinivas, A; Sturdy, J; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Kovalskyi, D; Lebourgeois, M; Letts, J; Macneill, I; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Magaña Villalba, R; Mccoll, N; Pavlunin, V; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Kcira, D; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Eggert, N; Gibbons, L K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Ratnikova, N; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Field, R D; Fisher, M; Fu, Y; Furic, I K; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Gray, J; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Cremaldi, L M; Kroeger, R; Oliveros, S; Perera, L; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Dolen, J; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Nash, D; Orimoto, T; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Winer, B L; Wolfe, H; Wulsin, H W; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hunt, A; Jindal, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Ramirez Vargas, J E; Alagoz, E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; Yang, Z C; York, A; Bouhali, O; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Duric, S; Friis, E; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Woods, N

    The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton+jets decay channels using data corresponding to an integrated luminosity of 5.0[Formula: see text]. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the [Formula: see text] production is determined as a function of the additional jet multiplicity in the lepton+jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed.

Top