Parton distribution functions from reduced Ioffe-time distributions
NASA Astrophysics Data System (ADS)
Zhang, Jian-Hui; Chen, Jiunn-Wei; Monahan, Christopher
2018-04-01
We show that the correct way to extract parton distribution functions from the reduced Ioffe-time distribution, a ratio of the Ioffe-time distribution for a moving hadron and a hadron at rest, is through a factorization formula. This factorization exists because, at small distances, forming the ratio does not change the infrared behavior of the numerator, which is factorizable. We illustrate the effect of such a factorization by applying it to results in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.
Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less
Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.
2017-08-08
Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less
NASA Technical Reports Server (NTRS)
Fitzenreiter, R. J.; Scudder, J. D.; Klimas, A. J.
1990-01-01
A model which is consistent with the solar wind and shock surface boundary conditions for the foreshock electron distribution in the absence of wave-particle effects is formulated for an arbitrary location behind the magnetic tangent to the earth's bow shock. Variations of the gyrophase-averaged velocity distribution are compared and contrasted with in situ ISEE observations. It is found that magnetic mirroring of solar wind electrons is the most important process by which nonmonotonic reduced electron distributions in the foreshock are produced. Leakage of particles from the magnetosheath is shown to be relatively unimportant in determining reduced distributions that are nonmonotonic. The two-dimensional distribution function off the magnetic field direction is the crucial contribution in producing reduced distributions which have beams. The time scale for modification of the electron velocity distribution in velocity space can be significantly influenced by steady state spatial gradients in the background imposed by the curved shock geometry.
NASA Astrophysics Data System (ADS)
Yang, Zhen; Jiang, Jie
2016-04-01
Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.
A comparison of non-local electron transport models relevant to inertial confinement fusion
NASA Astrophysics Data System (ADS)
Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher
2017-10-01
We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Biswas, Raktim; Ahn, Jin Chul; Moon, Jeong Hwan; Kim, Jungbin; Choi, Young-Hoon; Park, So Young; Chung, Phil-Sang
2018-05-09
The overall goal is to study the effect of low-level laser therapy (LLLT) on membrane distribution of major water channel protein aquaporin 5 (AQP5) in salivary gland during hyperglycemia. Par C10 cells treated with high glucose (50 mM) showed a reduced membrane distribution of AQP5. The functional expression of AQP5 was downregulated due to intracellular Ca 2+ overload and ER stress. This reduction in AQP5 expression impairs water permeability and therefore results in hypo-salivation. A reduced salivary flow was also observed in streptozotocin (STZ)-induced diabetic mice model and the expression of AQP5 and phospho-AQP5 was downregulated. Low-level laser treatment with 850 nm (30 mW, 10 min = 18 J/cm 2 ) reduced ER stress and recovered AQP5 membrane distribution via serine phosphorylation in the cells. In the STZ-induced diabetic mouse, LLLT with 850 nm (60 J/cm 2 ) increased salivary flow and upregulated of AQP5 and p-AQP5. ER stress was also reduced via downregulation of caspase 12 and CHOP. In silico analysis confirmed that the serine 156 is one of the most favorable phosphorylation sites of AQP5 and may contribute to the stability of the protein. Therefore, this study suggests high glucose inhibits phosphorylation-dependent AQP5 membrane distribution. High glucose induces intracellular Ca 2+ overload and ER stress that disrupt AQP5 functional expression. Low-level laser therapy with 850 nm improves salivary function by increasing AQP5 membrane distribution in hyperglycemia-induced hyposalivation. Copyright © 2018. Published by Elsevier B.V.
Uncertainty of Polarized Parton Distributions
NASA Astrophysics Data System (ADS)
Hirai, M.; Goto, Y.; Horaguchi, T.; Kobayashi, H.; Kumano, S.; Miyama, M.; Saito, N.; Shibata, T.-A.
Polarized parton distribution functions are determined by a χ2 analysis of polarized deep inelastic experimental data. In this paper, uncertainty of obtained distribution functions is investigated by a Hessian method. We find that the uncertainty of the polarized gluon distribution is fairly large. Then, we estimate the gluon uncertainty by including the fake data which are generated from prompt photon process at RHIC. We observed that the uncertainty could be reduced with these data.
Tsallis Entropy and the Transition to Scaling in Fragmentation
NASA Astrophysics Data System (ADS)
Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.
2000-12-01
By using the maximum entropy principle with Tsallis entropy we obtain a fragment size distribution function which undergoes a transition to scaling. This distribution function reduces to those obtained by other authors using Shannon entropy. The treatment is easily generalisable to any process of fractioning with suitable constraints.
A strategy to load balancing for non-connectivity MapReduce job
NASA Astrophysics Data System (ADS)
Zhou, Huaping; Liu, Guangzong; Gui, Haixia
2017-09-01
MapReduce has been widely used in large scale and complex datasets as a kind of distributed programming model. Original Hash partitioning function in MapReduce often results the problem of data skew when data distribution is uneven. To solve the imbalance of data partitioning, we proposes a strategy to change the remaining partitioning index when data is skewed. In Map phase, we count the amount of data which will be distributed to each reducer, then Job Tracker monitor the global partitioning information and dynamically modify the original partitioning function according to the data skew model, so the Partitioner can change the index of these partitioning which will cause data skew to the other reducer that has less load in the next partitioning process, and can eventually balance the load of each node. Finally, we experimentally compare our method with existing methods on both synthetic and real datasets, the experimental results show our strategy can solve the problem of data skew with better stability and efficiency than Hash method and Sampling method for non-connectivity MapReduce task.
NASA Astrophysics Data System (ADS)
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks
Paz-Soldan, Carlos; Cooper, Christopher M.; Aleynikov, Pavel; ...
2017-06-22
Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature andmore » reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation ofHXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.« less
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.
An estimation of distribution method for infrared target detection based on Copulas
NASA Astrophysics Data System (ADS)
Wang, Shuo; Zhang, Yiqun
2015-10-01
Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.
NASA Technical Reports Server (NTRS)
Watkins, Charles E; Berman, Julian H
1956-01-01
This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.
Statistics of primordial density perturbations from discrete seed masses
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Bertschinger, Edmund
1991-01-01
The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.
NASA Astrophysics Data System (ADS)
Khajehei, S.; Madadgar, S.; Moradkhani, H.
2014-12-01
The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).
Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik
2015-02-17
Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.
NASA Astrophysics Data System (ADS)
Yang, Z.; Jiang, J.
2015-12-01
Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.
Yang, Zhen; Kappler, Andreas; Jiang, Jie
2016-11-15
Humic substances (HS) are redox-active organic compounds with a broad spectrum of molecular sizes and reducing capacities, that is, number of electrons donated or accepted. However, it is unknown which role the distribution of redox-active functional groups in different molecule sizes plays for HS redox reactions in varying pore sizes microenvironments. We used dialysis experiments to separate bulk humic acids (HA) into low molecular weight fractions (LMWF) and retentate, for example, the remaining HA in the dialysis bag. LMWF accounted for only 2% of the total organic carbon content of the HA. However, their reducing capacities per gram of carbon were up to 33 times greater than either those of the bulk HA or the retentate. For a structural/mechanistic understanding of the high reducing capacity of the LMWF, we used fluorescence spectroscopy. We found that the LWMF showed significant fluorescence intensities for quinone-like functional groups, as indicated by the quinoid π-π* transition, that are probably responsible for the high reducing capacities. Therefore, the small-sized HS fraction can play a major role for redox transformation of metals or pollutants trapped in soil micropores (<2.5 nm diameter).
Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber
NASA Astrophysics Data System (ADS)
Ding, Can; Yuan, Zhao; He, Junjia
2017-10-01
A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.
Metabolic networks evolve towards states of maximum entropy production.
Unrean, Pornkamol; Srienc, Friedrich
2011-11-01
A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. Copyright © 2011 Elsevier Inc. All rights reserved.
On the existence of a scaling relation in the evolution of cellular systems
NASA Astrophysics Data System (ADS)
Fortes, M. A.
1994-05-01
A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.
Tang, Ningfeng; Bamford, Penny; Jones, Jace; He, Min; Kane, Maureen A.; Mooney, Sandra M.; Bearer, Cynthia F.
2014-01-01
Background Fetal Alcohol Spectrum Disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol teratogenicity is the disruption of the function of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of ethanol on neurobehavior. We sought to determine if choline could prevent the effect of ethanol on L1 function using a simple experimental system. Methods Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution and neurite outgrowth were measured in the presence or absence of ethanol. Results Choline significantly reduced the effect of ethanol on L1 signaling, the distribution of L1 in lipid rafts and L1 mediated neurite outgrowth. However, choline supplemented ethanol exposed cultures remained significantly different than controls. Conclusions Choline pretreatment of CGN significantly reduces the disruption of L1 function by ethanol, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline. PMID:25421509
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4
2013-11-15
Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.« less
Sels, Dries; Brosens, Fons
2013-10-01
The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Ku, S.; Hager, R.; Chang, C. S.; ...
2016-04-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, S.; Hager, R.; Chang, C. S.
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, S., E-mail: sku@pppl.gov; Hager, R.; Chang, C.S.
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less
LaDow, Kathy; Schumann, Brenda L; Luse, Nicole; Warshawsky, Dave; Pickens, William L; Hoath, Steven B; Talaska, Glenn
2011-12-01
The dermal route is important in many occupational exposures. Some materials may reduce the barrier function of the skin to enhance absorption and effect on internal organs. We have reported previously that kerosene cleaning following treatment with used engine oil increased DNA adduct levels in the lungs of mice compared with animals treated with used oil alone. To investigate what other physiological parameters might be affected by kerosene, we conducted in vitro and in vivo measurements of skin barrier function. We also topically applied (3)H-BAP(100 nM in 25 μL acetone) and washed half the mice with 25 μL kerosene 1 hr after carcinogen application. Groups of four mice were euthanized from 1 to 72 hr after treatment. Skin, lungs, and livers were harvested from each animal and stored separately. Kerosene application reduced the barrier function of the skin in vitro beyond the effect of the acetone vehicle and the vehicle plus BAP. In vivo studies indicated that kerosene treatment reduced the barrier function at 4 and 8 hr post application and that the barrier function recovered at 24 hr after a single treatment. The fraction of the radiolabel remaining in the skin of animals treated with (3)H-BAP and washed with kerosene was significantly less than those not washed, beginning at 24 hr (p< 0.05). Fractional distribution to the lungs and livers of these animals became significantly elevated at this time. Kerosene treatment compromises dermal barrier function and the ability of the skin to retain water, enhances carcinogen absorption, and alters organ distribution. This appears to contribute to the increase in BAP DNA adducts we reported earlier.
Product of Ginibre matrices: Fuss-Catalan and Raney distributions
NASA Astrophysics Data System (ADS)
Penson, Karol A.; Życzkowski, Karol
2011-06-01
Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distributions Ps(x), such that their moments are equal to the Fuss-Catalan numbers of order s. We find a representation of the Fuss-Catalan distributions Ps(x) in terms of a combination of s hypergeometric functions of the type sFs-1. The explicit formula derived here is exact for an arbitrary positive integer s, and for s=1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two-parameter generalization of the Wigner semicircle law.
Product of Ginibre matrices: Fuss-Catalan and Raney distributions.
Penson, Karol A; Zyczkowski, Karol
2011-06-01
Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distributions P(s)(x), such that their moments are equal to the Fuss-Catalan numbers of order s. We find a representation of the Fuss-Catalan distributions P(s)(x) in terms of a combination of s hypergeometric functions of the type (s)F(s-1). The explicit formula derived here is exact for an arbitrary positive integer s, and for s=1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two-parameter generalization of the Wigner semicircle law.
Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizosphere that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacter...
Accardi, A.; Brady, L. T.; Melnitchouk, W.; ...
2016-06-20
A new set of leading twist parton distribution functions, referred to as "CJ15", is presented, which take advantage of developments in the theoretical treatment of nuclear corrections as well as new data. The analysis includes for the first time data on the free neutron structure function from Jefferson Lab, and new high-precision charged lepton and W-boson asymmetry data from Fermilab, which significantly reduce the uncertainty on the d/u ratio at large values of x.
A Discrete Global Grid System Programming Language Using MapReduce
NASA Astrophysics Data System (ADS)
Peterson, P.; Shatz, I.
2016-12-01
A discrete global grid system (DGGS) is a powerful mechanism for storing and integrating geospatial information. As a "pixelization" of the Earth, many image processing techniques lend themselves to the transformation of data values referenced to the DGGS cells. It has been shown that image algebra, as an example, and advanced algebra, like Fast Fourier Transformation, can be used on the DGGS tiling structure for geoprocessing and spatial analysis. MapReduce has been shown to provide advantages for processing and generating large data sets within distributed and parallel computing. The DGGS structure is ideally suited for big distributed Earth data. We proposed that basic expressions could be created to form the atoms of a generalized DGGS language using the MapReduce programming model. We created three very efficient expressions: Selectors (aka filter) - A selection function that generate a set of cells, cell collections, or geometries; Calculators (aka map) - A computational function (including quantization of raw measurements and data sources) that generate values in a DGGS cell; and Aggregators (aka reduce) - A function that generate spatial statistics from cell values within a cell. We found that these three basic MapReduce operations along with a forth function, the Iterator, for horizontal and vertical traversing of any DGGS structure, provided simple building block resulting in very efficient operations and processes that could be used with any DGGS. We provide examples and a demonstration of their effectiveness using the ISEA3H DGGS on the PYXIS Studio.
Tang, Ningfeng; Bamford, Penny; Jones, Jace; He, Min; Kane, Maureen A; Mooney, Sandra M; Bearer, Cynthia F
2014-11-01
Fetal alcohol spectrum disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol (EtOH) teratogenicity is the disruption of the functions of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of EtOH on neurobehavior. We sought to determine whether choline could prevent the effect of EtOH on L1 function using a simple experimental system. Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution, and neurite outgrowth were measured in the presence or absence of EtOH. Choline significantly reduced the effect of EtOH on L1 signaling, the distribution of L1 in lipid rafts and L1-mediated neurite outgrowth. However, choline supplemented EtOH-exposed cultures remained significantly different than controls. Choline pretreatment of CGN significantly reduces the disruption of L1 function by EtOH, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline. Copyright © 2014 by the Research Society on Alcoholism.
Ion-Acoustic Double-Layers in Plasmas with Nonthermal Electrons
NASA Astrophysics Data System (ADS)
Rios, L. A.; Galvão, R. M. O.
2014-12-01
A double layer (DL) consists of a positive/negative Debye sheath, connecting two quasineutral regions of a plasma. These nonlinear structures can be found in a variety of plasmas, from discharge tubes to space plasmas. It has applications to plasma processing and space propulsion, and its concept is also important for areas such as applied geophysics. In the present work we investigate the ion-acoustic double-layers (IADLs). It is believed that these structures are responsible for the acceleration of auroral electrons, for example. The plasma distributions near a DL are usually non-Maxwellian and can be modeled via a κ distribution function. In its reduced form, the standard κ distribution is equivalent to the distribution function obtained from the maximization of the Tsallis entropy, the q distribution. The parameters κ and q measure the deviation from the Maxwellian equilibrium ("nonthermality"), with -κ=1/(1-q) (in the limit κ → ∞ (q → 1) the Maxwellian distribution is recovered). The existence of obliquely propagating IADLs in magnetized two-electron plasmas is investigated, with the hot electron population modeled via a κ distribution function [1]. Our analysis shows that only subsonic and rarefactive DLs exist for the entire range of parameters investigated. The small amplitude DLs exist only for τ=Th/Tc greater than a critical value, which grows as κ decreases. We also observe that these structures exist only for large values of δ=Nh0/N0, but never for δ=1. In our model, which assumes a quasineutral condition, the Mach number M grows as θ decreases (θ is the angle between the directions of the external magnetic field and wave propagation). However, M as well as the DL amplitude are reduced as a consequence of nonthermality. The relation of the quasineutral condition and the functional form of the distribution function with the nonexistence of IADLs has also been analyzed and some interesting results have been obtained. A more detailed discussion about this topic will be presented during the conference. References: [1] L. A. Rios and R. M. O. Galvão, Phys. Plasmas 20, 112301 (2013).
A Density Functional for Liquid 3He Based on the Aziz Potential
NASA Astrophysics Data System (ADS)
Barranco, M.; Hernández, E. S.; Mayol, R.; Navarro, J.; Pi, M.; Szybisz, L.
2006-09-01
We propose a new class of density functionals for liquid 3He based on the Aziz helium-helium interaction screened at short distances by the microscopically calculated two-body distribution function g(r). Our aim is to reduce to a minumum the unavoidable phenomenological ingredients inherent to any density functional approach. Results for the homogeneous liquid and droplets are presented and discussed.
Solutions to an advanced functional partial differential equation of the pantograph type
Zaidi, Ali A.; Van Brunt, B.; Wake, G. C.
2015-01-01
A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained. PMID:26345391
Solutions to an advanced functional partial differential equation of the pantograph type.
Zaidi, Ali A; Van Brunt, B; Wake, G C
2015-07-08
A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained.
A distributed planning concept for Space Station payload operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey
1994-01-01
The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.
2014-09-01
peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a
NASA Astrophysics Data System (ADS)
Liu, Sha; Liu, Shi; Tong, Guowei
2017-11-01
In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.
Species, functional groups, and thresholds in ecological resilience
Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris
2012-01-01
The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions.
A dynamic re-partitioning strategy based on the distribution of key in Spark
NASA Astrophysics Data System (ADS)
Zhang, Tianyu; Lian, Xin
2018-05-01
Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.
Crop water production functions for grain sorghum and winter wheat
USDA-ARS?s Scientific Manuscript database
Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The objective was to develop relationships among weather parameters, water use, and grain productivity to produce functions forecasting grain yields of grain sorghum and w...
Crop water production functions of grain sorghum and winter wheat in Kansas and Texas
USDA-ARS?s Scientific Manuscript database
Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. Our study objective was to develop relationships among weather variables, water use, and grain productivity to produce production functions for forecasting grain yields of...
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
NASA Astrophysics Data System (ADS)
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2016-01-01
A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.
Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions
NASA Technical Reports Server (NTRS)
Rubinstein, R.; Greenberg, P. S.
1994-01-01
Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.
1982-01-01
A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.
NASA Astrophysics Data System (ADS)
Newman, David L.
2006-10-01
Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers and electron holes in Earth's auroral zone.
Impact of geometrical properties on permeability and fluid phase distribution in porous media
NASA Astrophysics Data System (ADS)
Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.
2008-09-01
To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.
NASA Astrophysics Data System (ADS)
Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.
2017-09-01
Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.
Baese-Berk, Melissa M.; Dilley, Laura C.; Schmidt, Stephanie; Morrill, Tuuli H.; Pitt, Mark A.
2016-01-01
Neil Armstrong insisted that his quote upon landing on the moon was misheard, and that he had said one small step for a man, instead of one small step for man. What he said is unclear in part because function words like a can be reduced and spectrally indistinguishable from the preceding context. Therefore, their presence can be ambiguous, and they may disappear perceptually depending on the rate of surrounding speech. Two experiments are presented examining production and perception of reduced tokens of for and for a in spontaneous speech. Experiment 1 investigates the distributions of several acoustic features of for and for a. The results suggest that the distributions of for and for a overlap substantially, both in terms of temporal and spectral characteristics. Experiment 2 examines perception of these same tokens when the context speaking rate differs. The perceptibility of the function word a varies as a function of this context speaking rate. These results demonstrate that substantial ambiguity exists in the original quote from Armstrong, and that this ambiguity may be understood through context speaking rate. PMID:27603209
Baese-Berk, Melissa M; Dilley, Laura C; Schmidt, Stephanie; Morrill, Tuuli H; Pitt, Mark A
2016-01-01
Neil Armstrong insisted that his quote upon landing on the moon was misheard, and that he had said one small step for a man, instead of one small step for man. What he said is unclear in part because function words like a can be reduced and spectrally indistinguishable from the preceding context. Therefore, their presence can be ambiguous, and they may disappear perceptually depending on the rate of surrounding speech. Two experiments are presented examining production and perception of reduced tokens of for and for a in spontaneous speech. Experiment 1 investigates the distributions of several acoustic features of for and for a. The results suggest that the distributions of for and for a overlap substantially, both in terms of temporal and spectral characteristics. Experiment 2 examines perception of these same tokens when the context speaking rate differs. The perceptibility of the function word a varies as a function of this context speaking rate. These results demonstrate that substantial ambiguity exists in the original quote from Armstrong, and that this ambiguity may be understood through context speaking rate.
Spectral decomposition of seismic data with reassigned smoothed pseudo Wigner-Ville distribution
NASA Astrophysics Data System (ADS)
Wu, Xiaoyang; Liu, Tianyou
2009-07-01
Seismic signals are nonstationary mainly due to absorption and attenuation of seismic energy in strata. Referring to spectral decomposition of seismic data, the conventional method using short-time Fourier transform (STFT) limits temporal and spectral resolution by a predefined window length. Continuous-wavelet transform (CWT) uses dilation and translation of a wavelet to produce a time-scale map. However, the wavelets utilized should be orthogonal in order to obtain a satisfactory resolution. The less applied, Wigner-Ville distribution (WVD) being superior in energy distribution concentration, is confronted with cross-terms interference (CTI) when signals are multi-component. In order to reduce the impact of CTI, Cohen class uses kernel function as low-pass filter. Nevertheless it also weakens energy concentration of auto-terms. In this paper, we employ smoothed pseudo Wigner-Ville distribution (SPWVD) with Gauss kernel function to reduce CTI in time and frequency domain, then reassign values of SPWVD (called reassigned SPWVD) according to the center of gravity of the considering energy region so that distribution concentration is maintained simultaneously. We conduct the method above on a multi-component synthetic seismic record and compare with STFT and CWT spectra. Two field examples reveal that RSPWVD potentially can be applied to detect low-frequency shadows caused by hydrocarbons and to delineate the space distribution of abnormal geological body more precisely.
Constraints on parton distribution from CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodek, A.; CDF Collaboration
1995-10-01
The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement withmore » the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.« less
NASA Technical Reports Server (NTRS)
Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.
1982-01-01
The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.
Probabilistic distance-based quantizer design for distributed estimation
NASA Astrophysics Data System (ADS)
Kim, Yoon Hak
2016-12-01
We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
2D He+ Pickup Ion Velocity Distribution Functions: STEREO PLASTIC Observations
NASA Astrophysics Data System (ADS)
Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.
2014-12-01
He+ pickup ions are either born from the ionization of interstellar neutral helium atoms inside our heliosphere, the so called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles close to the Sun, the so called inner-source of pickup ions. Until now, most observations of He+ pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ Velocity Distribution Function (VDF). It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In the light of recent observations, this assumption has found to be oversimplified and needs to be re-investigated. Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft we reconstruct a reduced form of the He+ VDF in 2 dimensions (see figure). The reduced form of the He+ VDF allows us to study the pitch-angle distribution and anisotropy of the He+ VDF as a function of the solar magnetic field, B. Our observations show clear signs of a significant anisotropy of the He+ VDF and even indicates that, at least for certain configurations of B, it is not even fully gyrotropic. Our results further suggest, that the observed velocity and pitch-angle of He+ depends strongly on the solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the history of B. Consequently, we argue that reduced 1D velocity spectra of He+ are insufficient to study quantities like the pitch-angle scattering rate, τ, or the adiabatic cooling index γ.
Application of two procedures for dual-point design of transonic airfoils
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.
1994-01-01
Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.
Arbour, Jessica Hilary; López-Fernández, Hernán
2013-01-01
Diversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids. Evolutionary patterns in multivariate functional morphospace were examined using a phylomorphospace approach, disparity-through-time analyses and by comparing Brownian motion (BM) and adaptive peak evolutionary models using maximum likelihood. The most species-rich and functionally disparate clade (CAS) expanded more efficiently in morphospace and evolved more rapidly compared with both BM expectations and its sister clade (GGD). Members of the CAS clade also exhibited an early burst in functional evolution that corresponds to the development of modern ecological roles and may have been related to the colonization of a novel adaptive peak characterized by fast oral jaw mechanics. Furthermore, reduced ecological opportunity following this early burst may have restricted functional evolution in the GGD clade, which is less species-rich and more ecologically specialized. Patterns of evolution in ecologically important functional traits are consistent with a pattern of adaptive radiation within the most diverse clade of Geophagini. PMID:23740780
Derivation of an eigenvalue probability density function relating to the Poincaré disk
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Krishnapur, Manjunath
2009-09-01
A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045-57) gives the eigenvalue probability density function for the top N × N sub-block of a Haar distributed matrix from U(N + n). In the case n >= N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A-1B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.
NASA Astrophysics Data System (ADS)
Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.
2018-05-01
Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.
Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.
2016-01-01
Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-10-01
Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.
Shizgal, Bernie D
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].
A development framework for artificial intelligence based distributed operations support systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1990-01-01
Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.
Bidirectional reflectance distribution function effects in ladar-based reflection tomography.
Jin, Xuemin; Levine, Robert Y
2009-07-20
Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.
NASA Technical Reports Server (NTRS)
Bathke, C. G.
1976-01-01
Electron energy distribution functions were calculated in a U235 plasma at 1 atmosphere for various plasma temperatures and neutron fluxes. The distributions are assumed to be a summation of a high energy tail and a Maxwellian distribution. The sources of energetic electrons considered are the fission-fragment induced ionization of uranium and the electron induced ionization of uranium. The calculation of the high energy tail is reduced to an electron slowing down calculation, from the most energetic source to the energy where the electron is assumed to be incorporated into the Maxwellian distribution. The pertinent collisional processes are electron-electron scattering and electron induced ionization and excitation of uranium. Two distinct methods were employed in the calculation of the distributions. One method is based upon the assumption of continuous slowing and yields a distribution inversely proportional to the stopping power. An iteration scheme is utilized to include the secondary electron avalanche. In the other method, a governing equation is derived without assuming continuous electron slowing. This equation is solved by a Monte Carlo technique.
Marko, Nicholas F.; Weil, Robert J.
2012-01-01
Introduction Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of deviations from the normal distribution for translational molecular oncology research. Methods We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling, functional annotation, and prospective molecular classification using a sixth cancer genome. Results Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30% variability in prospective, molecular tumor subclassification associated with this effect. Conclusions Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes, functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances, although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions of translational cancer gene expression analysis: that “small” departures from normality in the expression data distributions are analytically-insignificant and that “robust” gene-calling algorithms can fully compensate for these effects. PMID:23118863
Muscle glycogen and cell function--Location, location, location.
Ørtenblad, N; Nielsen, J
2015-12-01
The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Acoustic design by topology optimization
NASA Astrophysics Data System (ADS)
Dühring, Maria B.; Jensen, Jakob S.; Sigmund, Ole
2008-11-01
To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when using two barriers are achieved compared to utilizing conventional sound barriers.
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter; ...
2018-06-12
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...
2017-10-03
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
NASA Astrophysics Data System (ADS)
Goto, Shin-itiro; Umeno, Ken
2018-03-01
Maps on a parameter space for expressing distribution functions are exactly derived from the Perron-Frobenius equations for a generalized Boole transform family. Here the generalized Boole transform family is a one-parameter family of maps, where it is defined on a subset of the real line and its probability distribution function is the Cauchy distribution with some parameters. With this reduction, some relations between the statistical picture and the orbital one are shown. From the viewpoint of information geometry, the parameter space can be identified with a statistical manifold, and then it is shown that the derived maps can be characterized. Also, with an induced symplectic structure from a statistical structure, symplectic and information geometric aspects of the derived maps are discussed.
Lindqvist, Stina; Norling, Karl; Hulth, Stefan
2009-04-01
Mussel farming is considered a viable means for reducing coastal eutrophication. This study assessed the importance of bioturbation by recolonizing fauna for benthic solute fluxes and porewater distributions in manipulated mussel farm sediments. Three consecutive time-series flux incubations were performed during an experimental period of three weeks in sieved farm sediment treated with the brittle star Amphiura filiformis and the polychaete Nephtys sp. The functional behavior of Nephtys sp. and interactions between Nephtys sp. and the spontaneously colonizing spionid Malacoceros fuliginosus determined the biogeochemical response in the Nephtys sp. treatment. For example, the oxic zone was restricted and benthic nitrate and silicate fluxes were reduced compared to the brittle star treatment. A. filiformis seemed to enhance the bioadvective solute transport, although an increased supply of oxygen was due to the highly reducing conditions of the sediment mainly seen as secondary effects related to porewater distributions and benthic nutrient fluxes.
NASA Astrophysics Data System (ADS)
Osei, Richard
There are many problems associated with operating a data center. Some of these problems include data security, system performance, increasing infrastructure complexity, increasing storage utilization, keeping up with data growth, and increasing energy costs. Energy cost differs by location, and at most locations fluctuates over time. The rising cost of energy makes it harder for data centers to function properly and provide a good quality of service. With reduced energy cost, data centers will have longer lasting servers/equipment, higher availability of resources, better quality of service, a greener environment, and reduced service and software costs for consumers. Some of the ways that data centers have tried to using to reduce energy costs include dynamically switching on and off servers based on the number of users and some predefined conditions, the use of environmental monitoring sensors, and the use of dynamic voltage and frequency scaling (DVFS), which enables processors to run at different combinations of frequencies with voltages to reduce energy cost. This thesis presents another method by which energy cost at data centers could be reduced. This method involves the use of Ant Colony Optimization (ACO) on a Quadratic Assignment Problem (QAP) in assigning user request to servers in geo-distributed data centers. In this paper, an effort to reduce data center energy cost involves the use of front portals, which handle users' requests, were used as ants to find cost effective ways to assign users requests to a server in heterogeneous geo-distributed data centers. The simulation results indicate that the ACO for Optimal Server Activation and Task Placement algorithm reduces energy cost on a small and large number of users' requests in a geo-distributed data center and its performance increases as the input data grows. In a simulation with 3 geo-distributed data centers, and user's resource request ranging from 25,000 to 25,000,000, the ACO algorithm was able to reduce energy cost on an average of $.70 per second. The ACO for Optimal Server Activation and Task Placement algorithm has proven to work as an alternative or improvement in reducing energy cost in geo-distributed data centers.
Leherte, Laurence; Vercauteren, Daniel P
2014-02-01
Reduced point charge models of amino acids are designed, (i) from local extrema positions in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions, and (ii) from local maxima positions in promolecular electron density distribution functions. Corresponding charge values are fitted versus all-atom Amber99 MEPs. To easily generate reduced point charge models for protein structures, libraries of amino acid templates are built. The program GROMACS is used to generate stable Molecular Dynamics trajectories of an Ubiquitin-ligand complex (PDB: 1Q0W), under various implementation schemes, solvation, and temperature conditions. Point charges that are not located on atoms are considered as virtual sites with a nul mass and radius. The results illustrate how the intra- and inter-molecular H-bond interactions are affected by the degree of reduction of the point charge models and give directions for their implementation; a special attention to the atoms selected to locate the virtual sites and to the Coulomb-14 interactions is needed. Results obtained at various temperatures suggest that the use of reduced point charge models allows to probe local potential hyper-surface minima that are similar to the all-atom ones, but are characterized by lower energy barriers. It enables to generate various conformations of the protein complex more rapidly than the all-atom point charge representation. Copyright © 2013 Elsevier Inc. All rights reserved.
Generalized extreme gust wind speeds distributions
Cheng, E.; Yeung, C.
2002-01-01
Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.
Model-based optimization of near-field binary-pixelated beam shapers
Dorrer, C.; Hassett, J.
2017-01-23
The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by amore » factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beamshaping performance. Furthermore, this is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.« less
NASA Astrophysics Data System (ADS)
Rath, Kristin; Fierer, Noah; Rousk, Johannes
2017-04-01
Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.
Distributed intrusion detection system based on grid security model
NASA Astrophysics Data System (ADS)
Su, Jie; Liu, Yahui
2008-03-01
Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.
A Tool that Uses the SAS (registered trademark) PRX Functions to Fix Delimited Text Files
2015-07-07
service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries...indicates USA registration. Other brand and product names are trademarks of their respective companies. 20 Distribution A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2015-1635, 31 Mar 2015 ...including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services , Directorate for Information
2015-01-01
emissivity and the radiative intensity of the gas over a spectral band. The temperature is then calculated from the Planck function. The technique does not...pressure budget for cooling channels reduces pump horsepower and turbine inlet temperature DISTRIBUTION STATEMENT A – Approved for public release...distribution unlimited 4 Status of Modeling and Simulation • Existing data set for film cooling effectiveness consists of wall heat flux measurements • CFD
Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression
NASA Astrophysics Data System (ADS)
Daly, Scott J.
1989-08-01
The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.
Voronoi Tessellation for reducing the processing time of correlation functions
NASA Astrophysics Data System (ADS)
Cárdenas-Montes, Miguel; Sevilla-Noarbe, Ignacio
2018-01-01
The increase of data volume in Cosmology is motivating the search of new solutions for solving the difficulties associated with the large processing time and precision of calculations. This is specially true in the case of several relevant statistics of the galaxy distribution of the Large Scale Structure of the Universe, namely the two and three point angular correlation functions. For these, the processing time has critically grown with the increase of the size of the data sample. Beyond parallel implementations to overcome the barrier of processing time, space partitioning algorithms are necessary to reduce the computational load. These can delimit the elements involved in the correlation function estimation to those that can potentially contribute to the final result. In this work, Voronoi Tessellation is used to reduce the processing time of the two-point and three-point angular correlation functions. The results of this proof-of-concept show a significant reduction of the processing time when preprocessing the galaxy positions with Voronoi Tessellation.
Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli
2018-04-30
An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Adjustable Optical-Fiber Attenuator
NASA Technical Reports Server (NTRS)
Buzzetti, Mike F.
1994-01-01
Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.
NASA Astrophysics Data System (ADS)
Cho, Jeonghyun; Han, Cheolheui; Cho, Leesang; Cho, Jinsoo
2003-08-01
This paper treats the kernel function of an integral equation that relates a known or prescribed upwash distribution to an unknown lift distribution for a finite wing. The pressure kernel functions of the singular integral equation are summarized for all speed range in the Laplace transform domain. The sonic kernel function has been reduced to a form, which can be conveniently evaluated as a finite limit from both the subsonic and supersonic sides when the Mach number tends to one. Several examples are solved including rectangular wings, swept wings, a supersonic transport wing and a harmonically oscillating wing. Present results are given with other numerical data, showing continuous results through the unit Mach number. Computed results are in good agreement with other numerical results.
Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD
Cukic, Vesna; Begic, Amela
2014-01-01
Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, T. E.
1998-01-01
Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the en- tire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8) eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.
NASA Astrophysics Data System (ADS)
Shao, Lin; Peng, Luohan
2009-12-01
Although multiple scattering theories have been well developed, numerical calculation is complicated and only tabulated values have been available, which has caused inconvenience in practical use. We have found that a Pearson VII distribution function can be used to fit Lugujjo and Mayer's probability curves in describing the dechanneling phenomenon in backscattering analysis, over a wide range of disorder levels. Differentiation of the obtained function gives another function to calculate angular dispersion of the beam in the frameworks by Sigmund and Winterbon. The present work provides an easy calculation of both dechanneling probability and angular dispersion for any arbitrary combination of beam and target having a reduced thickness ⩾0.6, which can be implemented in modeling of channeling spectra. Furthermore, we used a Monte Carlo simulation program to calculate the deflection probability and compared them with previously tabulated data. A good agreement was reached.
An adaptive grid scheme using the boundary element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munipalli, R.; Anderson, D.A.
1996-09-01
A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less
Olmedilla-Alonso, Begoña; Jiménez-Colmenero, Francisco; Sánchez-Muniz, Francisco J
2013-12-01
This review deals with the two major aspects to be considered in the context of meat-based functional foods and human health. One involves the different strategies used to improve (increase or reduce) the presence of bioactive (healthy and unhealthy) compounds in meat and meat products in order to develop potential meat-based functional foods; these strategies are basically concerned with animal production practices, meat processing and storage, distribution and consumption conditions. Since the link between the consumption of those foods and their potentially beneficial effects (improving health and/or reducing the risk of several chronic diseases) needs to be demonstrated scientifically, the second aspect considered is related to intervention studies to examine the functional capacity of meat-based potentially functional foods in humans, discussing how the functionality of a food can be assessed in terms of its effects on health in relation to both target body functions and risk factors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dunkman, Andrew A.; Buckley, Mark R.; Mienaltowski, Michael J.; Adams, Sheila M.; Thomas, Stephen J.; Satchell, Lauren; Kumar, Akash; Pathmanathan, Lydia; Beason, David P.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.
2013-01-01
The aging population is at an increased risk of tendon injury and tendinopathy. Elucidating the molecular basis of tendon aging is crucial to understanding the age-related changes in structure and function in this vulnerable tissue. In this study, the structural and functional features of tendon aging are investigated. In addition, the roles of decorin and biglycan in the aging process were analyzed using transgenic mice at both mature and aged time points. Our hypothesis is that the increase in tendon injuries in the aging population is the result of altered structural properties that reduce the biomechanical function of the tendon and consequently increase susceptibility to injury. Decorin and biglycan are important regulators of tendon structure and therefore, we further hypothesized that decreased function in aged tendons is partly the result of altered decorin and biglycan expression. Biomechanical analyses of mature (day 150) and aged (day 570) patellar tendons revealed deteriorating viscoelastic properties with age. Histology and polarized light microscopy demonstrated decreased cellularity, alterations in tenocyte shape, and reduced collagen fiber alignment in the aged tendons. Ultrastructural analysis of fibril diameter distributions indicated an altered distribution in aged tendons with an increase of large diameter fibrils. Aged wild type tendons maintained expression of decorin which was associated with the structural and functional changes seen in aged tendons. Aged patellar tendons exhibited altered and generally inferior properties across multiple assays. However, decorin-null tendons exhibited significantly decreased effects of aging compared to the other genotypes. The amelioration of the functional deficits seen in the absence of decorin in aged tendons was associated with altered tendon fibril structure. Fibril diameter distributions in the decorin-null aged tendons were comparable to those observed in the mature wild type tendon with the absence of the subpopulation containing large diameter fibrils. Collectively, our findings provide evidence for age-dependent alterations in tendon architecture and functional activity, and further show that lack of stromal decorin attenuates these changes. PMID:23178232
ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANDI, J.T.; PLIVELICH, R.F.
2006-04-30
Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.
NASA Astrophysics Data System (ADS)
Bourlier, C.; Berginc, G.
2004-07-01
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.
Ramchandran, Lata; Luo, XiaoXia; Vasiljevic, Todor
2017-11-01
Modulating conditions during ultrafiltration of skim milk appears to be a feasible strategy to obtain milk protein concentrates (MPC) with tailored functionalities. Adjustment of pH and process temperature attenuated properties of casein micelle resulting in enhanced emulsification capacity. Additional pre-treatment options such as addition of calcium chelators can further impact on the functionality of MPC by modifying the calcium distribution and casein micelle integrity. The objective of the project was to establish effects of pre-treating skim milk with calcium chelators (EDTA or citrate) in concentrations between 10 to 30 mm prior to UF on the physical properties of the feed, corresponding retentates and dried MPC, including particle size, zeta potential and calcium distribution in skim milk and the corresponding retentates, as well as the physical functionalities such as solubility, heat stability and emulsifying properties. Addition of calcium chelators (EDTA or citrate), at levels 20-30 mm concentrations reduced casein micelle size as well as total, soluble and ionic calcium contents that resulted in MPC with enhanced solubility and heat stability. The emulsion capacity was, however, improved only with EDTA at 10 mm concentration. The enhanced functionality is attributed to the reduced particle size resulting from the removal of calcium from the retentate that could modify micellar casein to an extent sufficient to cause such improvements.
Discontinuous Galerkin algorithms for fully kinetic plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juno, J.; Hakim, A.; TenBarge, J.
Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less
Discontinuous Galerkin algorithms for fully kinetic plasmas
Juno, J.; Hakim, A.; TenBarge, J.; ...
2017-10-10
Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less
Phenomenology of the Z boson plus jet process at NNLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Liu, Xiaohui; Petriello, Frank
Here, we present a detailed phenomenological study of Z-boson production in association with a jet through next-to-next-to-leading order (NNLO) in perturbative QCD. Fiducial cross sections and differential distributions for both 8 TeV and 13 TeV LHC collisions are presented. We study the impact of different parton distribution functions (PDFs) on predictions for the Z + jet process. Upon inclusion of the NNLO corrections, the residual scale uncertainty is reduced such that both the total rate and the transverse momentum distributions can be used to discriminate between various PDF sets.
Relativity, nonextensivity, and extended power law distributions.
Silva, R; Lima, J A S
2005-11-01
A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.
Derivatives of logarithmic stationary distributions for policy gradient reinforcement learning.
Morimura, Tetsuro; Uchibe, Eiji; Yoshimoto, Junichiro; Peters, Jan; Doya, Kenji
2010-02-01
Most conventional policy gradient reinforcement learning (PGRL) algorithms neglect (or do not explicitly make use of) a term in the average reward gradient with respect to the policy parameter. That term involves the derivative of the stationary state distribution that corresponds to the sensitivity of its distribution to changes in the policy parameter. Although the bias introduced by this omission can be reduced by setting the forgetting rate gamma for the value functions close to 1, these algorithms do not permit gamma to be set exactly at gamma = 1. In this article, we propose a method for estimating the log stationary state distribution derivative (LSD) as a useful form of the derivative of the stationary state distribution through backward Markov chain formulation and a temporal difference learning framework. A new policy gradient (PG) framework with an LSD is also proposed, in which the average reward gradient can be estimated by setting gamma = 0, so it becomes unnecessary to learn the value functions. We also test the performance of the proposed algorithms using simple benchmark tasks and show that these can improve the performances of existing PG methods.
A comparison of decentralized, distributed, and centralized vibro-acoustic control.
Frampton, Kenneth D; Baumann, Oliver N; Gardonio, Paolo
2010-11-01
Direct velocity feedback control of structures is well known to increase structural damping and thus reduce vibration. In multi-channel systems the way in which the velocity signals are used to inform the actuators ranges from decentralized control, through distributed or clustered control to fully centralized control. The objective of distributed controllers is to exploit the anticipated performance advantage of the centralized control while maintaining the scalability, ease of implementation, and robustness of decentralized control. However, and in seeming contradiction, some investigations have concluded that decentralized control performs as well as distributed and centralized control, while other results have indicated that distributed control has significant performance advantages over decentralized control. The purpose of this work is to explain this seeming contradiction in results, to explore the effectiveness of decentralized, distributed, and centralized vibro-acoustic control, and to expand the concept of distributed control to include the distribution of the optimization process and the cost function employed.
Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain Networks.
Hashmi, Javeria A; Loggia, Marco L; Khan, Sheraz; Gao, Lei; Kim, Jieun; Napadow, Vitaly; Brown, Emery N; Akeju, Oluwaseun
2017-03-01
A clear understanding of the neural basis of consciousness is fundamental to research in clinical and basic neuroscience disciplines and anesthesia. Recently, decreased efficiency of information integration was suggested as a core network feature of propofol-induced unconsciousness. However, it is unclear whether this finding can be generalized to dexmedetomidine, which has a different molecular target. Dexmedetomidine was administered as a 1-μg/kg bolus over 10 min, followed by a 0.7-μg · kg · h infusion to healthy human volunteers (age range, 18 to 36 yr; n = 15). Resting-state functional magnetic resonance imaging data were acquired during baseline, dexmedetomidine-induced altered arousal, and recovery states. Zero-lag correlations between resting-state functional magnetic resonance imaging signals extracted from 131 brain parcellations were used to construct weighted brain networks. Network efficiency, degree distribution, and node strength were computed using graph analysis. Parcellated brain regions were also mapped to known resting-state networks to study functional connectivity changes. Dexmedetomidine significantly reduced the local and global efficiencies of graph theory-derived networks. Dexmedetomidine also reduced the average brain connectivity strength without impairing the degree distribution. Functional connectivity within and between all resting-state networks was modulated by dexmedetomidine. Dexmedetomidine is associated with a significant drop in the capacity for efficient information transmission at both the local and global levels. These changes result from reductions in the strength of connectivity and also manifest as reduced within and between resting-state network connectivity. These findings strengthen the hypothesis that conscious processing relies on an efficient system of information transfer in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadika, Zacharia; Dede, Elif; Govindaraju, Madhusudhan
MapReduce is increasingly becoming a popular framework, and a potent programming model. The most popular open source implementation of MapReduce, Hadoop, is based on the Hadoop Distributed File System (HDFS). However, as HDFS is not POSIX compliant, it cannot be fully leveraged by applications running on a majority of existing HPC environments such as Teragrid and NERSC. These HPC environments typicallysupport globally shared file systems such as NFS and GPFS. On such resourceful HPC infrastructures, the use of Hadoop not only creates compatibility issues, but also affects overall performance due to the added overhead of the HDFS. This paper notmore » only presents a MapReduce implementation directly suitable for HPC environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPCenvironments, but also allows for better performance in such settings. This paper shows the applicability and high performance of the MapReduce paradigm through MARIANE, an implementation designed for clustered and shared-disk file systems and as such not dedicated to a specific MapReduce solution. The paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in distributed environments over Apache Hadoop in a data intensive setting, on the Magellan testbed at the National Energy Research Scientific Computing Center (NERSC).« less
Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages
Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo
2016-01-01
Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. PMID:26888951
Quasi-parton distribution functions: A study in the diquark spectator model
Gamberg, Leonard; Kang, Zhong -Bo; Vitev, Ivan; ...
2015-02-12
A set of quasi-parton distribution functions (quasi-PDFs) have been recently proposed by Ji. Defined as the matrix elements of equal-time spatial correlations, they can be computed on the lattice and should reduce to the standard PDFs when the proton momentum P z is very large. Since taking the P z → ∞ limit is not feasible in lattice simulations, it is essential to provide guidance for which values of P z the quasi-PDFs are good approximations of standard PDFs. Within the framework of the spectator diquark model, we evaluate both the up and down quarks' quasi-PDFs and standard PDFs formore » all leading-twist distributions (unpolarized distribution f₁, helicity distribution g₁, and transversity distribution h₁). We find that, for intermediate parton momentum fractions x , quasi-PDFs are good approximations to standard PDFs (within 20–30%) when P z ≳ 1.5–2 GeV. On the other hand, for large x~1 much larger P z > 4 GeV is necessary to obtain a satisfactory agreement between the two sets. We further test the Soffer positivity bound, and find that it does not hold in general for quasi-PDFs.« less
Very High-Frequency (VHF) ionospheric scintillation fading measurements at Lima, Peru
NASA Technical Reports Server (NTRS)
Blank, H. A.; Golden, T. S.
1972-01-01
During the spring equinox of 1970, scintillating signals at VHF (136.4 MHz) were observed at Lima, Peru. The transmission originated from ATS 3 and was observed through a pair of antennas spaced 1200 feet apart on an east-west baseline. The empirical data were digitized, reduced, and analyzed. The results include amplitude probability density and distribution functions, time autocorrelation functions, cross correlation functions for the spaced antennas, and appropriate spectral density functions. Results show estimates of the statistics of the ground diffraction pattern to gain insight into gross ionospheric irregularity size, and irregularity velocity in the antenna planes.
Finite Element Analysis of Functionally Graded Material to Reduce Crazing in Transparent Armor
2015-09-01
Constraints 3 Results 4 Tensile Pressure (psi) 4 Conclusions and Path Forward 5 References 7 Distribution List 9 FIGURES 1 Pressure plot 1 2 3D...Digimat unit cell and 2D plane strain model for ABAQUS 2 3 Control and FGM models 3 4 Boundary conditions 4 5 Pressure results (time = 23.47 µs) 4...6 Pressure results 1 5 7 Pressure results 2 5 UNCLASSIFIED Approved for public release; distribution is unlimited. 1 INTRODUCTION
Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application
Zhang, Ping; Li, Wenjun; Sun, Hua
2016-01-01
Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747
Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application.
Zhang, Ping; Li, Wenjun; Sun, Hua
2016-01-01
Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy.
Computer simulations of dendrimer-polyelectrolyte complexes.
Pandav, Gunja; Ganesan, Venkat
2014-08-28
We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.
Distributed bragg reflector using AIGaN/GaN
Waldrip, Karen E.; Lee, Stephen R.; Han, Jung
2004-08-10
A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.
An evaluation of child passenger safety : the effectiveness and benefits of safety seats : summary
DOT National Transportation Integrated Search
1986-02-01
The purpose of child safety seats is to reduce the number of child passengers killed or injured in motor vehicle crashes. The seats function by absorbing and safely distributing crash impact loads over the child's body while holding the child in plac...
Functional network centrality in obesity: A resting-state and task fMRI study.
García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane
2015-09-30
Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Emoto, Akira; Fukuda, Takashi
2013-02-20
For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.
Barycentric parameterizations for isotropic BRDFs.
Stark, Michael M; Arvo, James; Smits, Brian
2005-01-01
A bidirectional reflectance distribution function (BRDF) is often expressed as a function of four real variables: two spherical coordinates in each of the the "incoming" and "outgoing" directions. However, many BRDFs reduce to functions of fewer variables. For example, isotropic reflection can be represented by a function of three variables. Some BRDF models can be reduced further. In this paper, we introduce new sets of coordinates which we use to reduce the dimensionality of several well-known analytic BRDFs as well as empirically measured BRDF data. The proposed coordinate systems are barycentric with respect to a triangular support with a direct physical interpretation. One coordinate set is based on the BRDF model proposed by Lafortune. Another set, based on a model of Ward, is associated with the "halfway" vector common in analytical BRDF formulas. Through these coordinate sets we establish lower bounds on the approximation error inherent in the models on which they are based. We present a third set of coordinates, not based on any analytical model, that performs well in approximating measured data. Finally, our proposed variables suggest novel ways of constructing and visualizing BRDFs.
Development of Protection and Control Unit for Distribution Substation
NASA Astrophysics Data System (ADS)
Iguchi, Fumiaki; Hayashi, Hideyuki; Takeuchi, Motohiro; Kido, Mitsuyasu; Kobayashi, Takashi; Yanaoka, Atsushi
The Recently, electronics and IT technologies have been rapidly innovated and have been introduced to power system protection & control system to achieve high reliability, maintainability and more functionality. Concerning the distribution substation application, digital relays have been applied for more than 10 years. Because of a number of electronic devices used for it, product cost becomes higher. Also, products installed during the past high-growth period will be at the end of lifetime and will be replaced. Therefore, replacing market is expected to grow and the reduction of cost is demanded. Considering above mentioned background, second generation digital protection and control unit as a successor is designed to have following concepts. Functional integration based on advanced digital technologies, Ethernet LAN based indoor communication network, cost reduction and downsizing. Pondering above concepts, integration of protection and control function is adopted in contrary to the functional segregation applied to the previous system in order to achieve one-unit concept. Also the adoption of Ethernet LAN for inter-unit communication is objective. This report shows the development of second-generation digital relay for distribution substation, which is equipped with control function and Ethernet LAN by reducing the size of auxiliary transformer unit and the same size as previous product is realized.
Geometric multiaxial representation of N -qubit mixed symmetric separable states
NASA Astrophysics Data System (ADS)
SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik
2017-08-01
The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.
Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui
2014-09-01
The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, A
2017-05-01
In a dental implant system, the value of stress and its distribution plays a pivotal role on the strength, durability and life of the implant-bone system. A typical implant consists of a Titanium core and a thin layer of biocompatible material such as the hydroxyapatite. This coating has a wide range of clinical applications in orthopedics and dentistry due to its biocompatibility and bioactivity characteristics. Low bonding strength and sudden variation of mechanical properties between the coating and the metallic layers are the main disadvantages of such common implants. To overcome these problems, a radial distributed functionally graded biomaterial (FGBM) was proposed in this paper and the effect of material property on the stress distribution around the dental implant-bone interface was studied. A three-dimensional finite element simulation was used to illustrate how the use of radial FGBM dental implant can reduce the maximum von Mises stress and, also the stress shielding effect in both the cortical and cancellous bones. The results, of course, give anybody an idea about optimized behaviors that can be achieved using such materials. The finite element solver was validated by familiar methods and the results were compared to previous works in the literature.
Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Turski, Andrzej J.
2011-11-01
The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepehri, Aliasghar; Loeffler, Troy D.; Chen, Bin, E-mail: binchen@lsu.edu
2014-08-21
A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model ofmore » alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.« less
Gayen, Bishakhdatta; Alam, Meheboob
2011-08-01
From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.
Distributed architecture and distributed processing mode in urban sewage treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.
Keown, Christopher L; Datko, Michael C; Chen, Colleen P; Maximo, José Omar; Jahedi, Afrooz; Müller, Ralph-Axel
2017-01-01
Despite abundant evidence of brain network anomalies in autism spectrum disorder (ASD), findings have varied from broad functional underconnectivity to broad overconnectivity. Rather than pursuing overly simplifying general hypotheses ('under' vs. 'over'), we tested the hypothesis of atypical network distribution in ASD (i.e., participation of unusual loci in distributed functional networks). We used a selective high-quality data subset from the ABIDE datashare (including 111 ASD and 174 typically developing [TD] participants) and several graph theory metrics. Resting state functional MRI data were preprocessed and analyzed for detection of low-frequency intrinsic signal correlations. Groups were tightly matched for available demographics and head motion. As hypothesized, the Rand Index (reflecting how similar network organization was to a normative set of networks) was significantly lower in ASD than TD participants. This was accounted for by globally reduced cohesion and density, but increased dispersion of networks. While differences in hub architecture did not survive correction, rich club connectivity (among the hubs) was increased in the ASD group. Our findings support the model of reduced network integration (connectivity with networks) and differentiation (or segregation; based on connectivity outside network boundaries) in ASD. While the findings applied at the global level, they were not equally robust across all networks and in one case (greater cohesion within ventral attention network in ASD) even reversed.
NASA Astrophysics Data System (ADS)
Wang, Jixin; Wang, Zhenyu; Yu, Xiangjun; Yao, Mingyao; Yao, Zongwei; Zhang, Erping
2012-09-01
Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probability distribution function (PDF) of transmission gears has many distributions centers; thus, its PDF cannot be well represented by just a single-peak function. For the purpose of representing the distribution characteristics of the complicated phenomenon accurately, this paper proposes a novel method to establish a mixture model. Based on linear regression models and correlation coefficients, the proposed method can be used to automatically select the best-fitting function in the mixture model. Coefficient of determination, the mean square error, and the maximum deviation are chosen and then used as judging criteria to describe the fitting precision between the theoretical distribution and the corresponding histogram of the available load data. The applicability of this modeling method is illustrated by the field testing data of a wheel loader. Meanwhile, the load spectra based on the mixture model are compiled. The comparison results show that the mixture model is more suitable for the description of the load-distribution characteristics. The proposed research improves the flexibility and intelligence of modeling, reduces the statistical error and enhances the fitting accuracy, and the load spectra complied by this method can better reflect the actual load characteristic of the gear component.
Component Analysis of Remanent Magnetization Curves: A Revisit with a New Model Distribution
NASA Astrophysics Data System (ADS)
Zhao, X.; Suganuma, Y.; Fujii, M.
2017-12-01
Geological samples often consist of several magnetic components that have distinct origins. As the magnetic components are often indicative of their underlying geological and environmental processes, it is therefore desirable to identify individual components to extract associated information. This component analysis can be achieved using the so-called unmixing method, which fits a mixture model of certain end-member model distribution to the measured remanent magnetization curve. In earlier studies, the lognormal, skew generalized Gaussian and skewed Gaussian distributions have been used as the end-member model distribution in previous studies, which are performed on the gradient curve of remanent magnetization curves. However, gradient curves are sensitive to measurement noise as the differentiation of the measured curve amplifies noise, which could deteriorate the component analysis. Though either smoothing or filtering can be applied to reduce the noise before differentiation, their effect on biasing component analysis is vaguely addressed. In this study, we investigated a new model function that can be directly applied to the remanent magnetization curves and therefore avoid the differentiation. The new model function can provide more flexible shape than the lognormal distribution, which is a merit for modeling the coercivity distribution of complex magnetic component. We applied the unmixing method both to model and measured data, and compared the results with those obtained using other model distributions to better understand their interchangeability, applicability and limitation. The analyses on model data suggest that unmixing methods are inherently sensitive to noise, especially when the number of component is over two. It is, therefore, recommended to verify the reliability of component analysis by running multiple analyses with synthetic noise. Marine sediments and seafloor rocks are analyzed with the new model distribution. Given the same component number, the new model distribution can provide closer fits than the lognormal distribution evidenced by reduced residuals. Moreover, the new unmixing protocol is automated so that the users are freed from the labor of providing initial guesses for the parameters, which is also helpful to improve the subjectivity of component analysis.
An information hidden model holding cover distributions
NASA Astrophysics Data System (ADS)
Fu, Min; Cai, Chao; Dai, Zuxu
2018-03-01
The goal of steganography is to embed secret data into a cover so no one apart from the sender and intended recipients can find the secret data. Usually, the way the cover changing was decided by a hidden function. There were no existing model could be used to find an optimal function which can greatly reduce the distortion the cover suffered. This paper considers the cover carrying secret message as a random Markov chain, taking the advantages of a deterministic relation between initial distributions and transferring matrix of the Markov chain, and takes the transferring matrix as a constriction to decrease statistical distortion the cover suffered in the process of information hiding. Furthermore, a hidden function is designed and the transferring matrix is also presented to be a matrix from the original cover to the stego cover. Experiment results show that the new model preserves a consistent statistical characterizations of original and stego cover.
Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus
NASA Technical Reports Server (NTRS)
Crawford, G. K.; Strangeway, R. J.; Russell, C. T.
1991-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.
Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...
2016-12-30
In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less
Roles of biology, chemistry, and physics in soil macroaggregate formation and stabilization
USDA-ARS?s Scientific Manuscript database
Soil functions or ecosystem services depend on the distribution of macro- (= 0.25 mm) and micro- (< 0.25 mm) aggregates and open space between aggregates. It is the arrangement of the aggregates and pore space which allows air and water movement in and out of soil; reduces compaction; and stimulates...
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo
2016-01-01
Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. Published by Oxford University Press on behalf of the Annals of Botany Company.
Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang
2014-08-01
This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
NASA Astrophysics Data System (ADS)
Zhang, Yonggen; Schaap, Marcel G.
2017-04-01
Pedotransfer functions (PTFs) have been widely used to predict soil hydraulic parameters in favor of expensive laboratory or field measurements. Rosetta (Schaap et al., 2001, denoted as Rosetta1) is one of many PTFs and is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method which allows the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), and their uncertainties. In this study, we present an improved set of hierarchical pedotransfer functions (Rosetta3) that unify the water retention and Ks submodels into one. Parameter uncertainty of the fit of the VG curve to the original retention data is used in the ANN calibration procedure to reduce bias of parameters predicted by the new PTF. One thousand bootstrap replicas were used to calibrate the new models compared to 60 or 100 in Rosetta1, thus allowing the uni-variate and bi-variate probability distributions of predicted parameters to be quantified in greater detail. We determined the optimal weights for VG parameters and Ks, the optimal number of hidden nodes in ANN, and the number of bootstrap replicas required for statistically stable estimates. Results show that matric potential-dependent bias was reduced significantly while root mean square error (RMSE) for water content were reduced modestly; RMSE for Ks was increased by 0.9% (H3w) to 3.3% (H5w) in the new models on log scale of Ks compared with the Rosetta1 model. It was found that estimated distributions of parameters were mildly non-Gaussian and could instead be described rather well with heavy-tailed α-stable distributions. On the other hand, arithmetic means had only a small estimation bias for most textures when compared with the mean-like "shift" parameter of the α-stable distributions. Arithmetic means and (co-)variances are therefore still recommended as summary statistics of the estimated distributions. However, it may be necessary to parameterize the distributions in different ways if the new estimates are used in stochastic analyses of vadose zone flow and transport. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code as well as additional documentation is available at: http://www.cals.arizona.edu/research/rosettav3.html.
Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering
NASA Technical Reports Server (NTRS)
Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)
2001-01-01
Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.
Etile, Fabrice
2014-03-01
This paper contributes to the debate over the effectiveness of education policies in reducing overall health inequalities as compared to public health actions directed at the less-educated. Recentered Influence Function (RIF) regressions are used to decompose the contribution of education to the changing distribution of Body Mass Index (BMI) in France, between 1981 and 2003, into a composition effect (the shift in population education due to a massive educational expansion), and a structure effect (a changing educational gradient in BMI). Educational expansion has reduced overall BMI inequality by 3.4% for women and 2.3% for men. However, the structure effect on its own has produced a 10.9% increase in overall inequality for women, due to a steeper education gradient starting from the second quartile of the distribution. This structure effect on overall inequality is also large (7.6%) for men, albeit insignificant as it remains concentrated in the last decile. Educational expansion policies can thus reduce overall BMI inequalities; but attention must still be paid to the BMI gradient in education even for policies addressing overall rather than socioeconomic health inequalities. Copyright © 2013 Elsevier B.V. All rights reserved.
Nachman, Gösta
2006-01-01
The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.
NASA Astrophysics Data System (ADS)
Jahn, J. M.; Denton, R. E.; Nose, M.; Bonnell, J. W.; Kurth, W. S.; Livadiotis, G.; Larsen, B.; Goldstein, J.
2016-12-01
Determining the total plasma density from ion data is essentially an impossible task for particle instruments. The lowest instrument energy threshold never includes the coldest particles (i.e., Emin> 0 eV), and any positive spacecraft charging—which is normal for a sunlit spacecraft—exacerbates the problem by shifting the detectable minimum energy to higher values. For ion data, traditionally field line resonance measurements of ULF waves in the magnetosphere have been used to determine the mass loading of magnetic field lines in this case. This approach delivers a reduced ion mass M that represents the mass ratio of all ions on a magnetic field line. For multi-species plasmas like the plasmasphere this bounds the problem, but it does not provide a unique solution. To at least estimate partial densities using particle instruments, one traditionally performs fits to the measured particle distribution functions under the assumption that the underlying particle distributions are Maxwellian. Uncertainties performing a fit aside, there is usually no possibility to detect a possible bi-Maxwellian distribution where one of the Maxwellians is very cold. The tail of such a distribution may fall completely below the low energy threshold of the measurement. In this paper we present a different approach to determining the fractional temperatures Ti and densities ni in a multi-species plasma. First, we describe and demonstrate an approach to determine Ti and ni that does not require fitting but relies more on the mathematical properties of the distribution functions. We apply our approach to Van Allen Probes measurements of the plasmaspheric H+, He+, and O+ distribution functions under the assumption that the particle distributions are Maxwellian. We compare our results to mass loading results from the Van Allen Probes field line resonance analyses (for composition) and to the total (electron) plasma density derived from the EFW and EMFISIS experiments. Then we expand our approach to allow for kappa distributions instead. While this introduces an additional degree of freedom and therefore requires fitting, our approach is still better constrained than the traditional Maxwell fitting and may hold the key to a better understanding of the true nature of plasmaspheric particle distributions.
NASA Astrophysics Data System (ADS)
McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.
2011-12-01
Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).
Technologies for unattended network operations
NASA Technical Reports Server (NTRS)
Jaworski, Allan; Odubiyi, Jide; Holdridge, Mark; Zuzek, John
1991-01-01
The necessary network management functions for a telecommunications, navigation and information management (TNIM) system in the framework of an extension of the ISO model for communications network management are described. Various technologies that could substantially reduce the need for TNIM network management, automate manpower intensive functions, and deal with synchronization and control at interplanetary distances are presented. Specific technologies addressed include the use of the ISO Common Management Interface Protocol, distributed artificial intelligence for network synchronization and fault management, and fault-tolerant systems engineering.
Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G
2015-01-14
We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions.
Jerke, Jonathan; Poirier, Bill
2018-03-14
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy-i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted-as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-09-01
Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.
Nohl, Hans; Gille, Lars
2005-01-01
Ubiquinone is inhomogenously distributed in subcellular biomembranes. Apart from mitochondria, where ubiquinone has bioenergetic and pathophysiological functions, unusually high levels of ubiquinone have also been reported in Golgi vesicles and lysosomes. In lysosomes, the interior differs from other organelles in its low pH value which is important to ensure optimal activity of hydrolytic enzymes. Since redox-cycling of ubiquinone is associated with the acceptance and release of protons, we assumed that ubiquinone is part of a redox chain contributing to unilateral proton distribution. A similar function of ubiquinone was earlier suggested by Crane to operate in Golgi vesicles. Support for the involvement of ubiquinone in a presumed couple of redox carriers came from our observation that almost 70% of total lysosomal ubiquinone was in the divalently reduced state. Further reduction was seen in the presence of external NADH. Analysis of the components involved in the transfer of reducing equivalents from cytosolic NADH to ubiquinone revealed the existence of an FAD-containing NADH dehydrogenase. The latter was found to reduce ubiquinone by means of a b-type cytochrome. Proton translocation into the interior was linked to the activity of the novel lysosomal redox chain. Oxygen was found to be the terminal electron acceptor, thereby also regulating acidification of the lysosomal matrix. In contrast to mitochondrial respiration, oxygen was only trivalently reduced giving rise to the release of HO radicals. The role of this novel proton-pumping redox chain and the significance of the associated ROS formation has to be elucidated.
Tornow, R P; Stilling, R; Zrenner, E
1999-10-01
To test the feasibility of scanning laser densitometry with a modified Rodenstock scanning laser ophthalmoscope (SLO) to measure the rod and cone photopigment distribution in patients with retinal diseases. Scanning laser densitometry was performed using a modified Rodenstock scanning laser ophthalmoscope. The distribution of the photopigments was calculated from dark adapted and bleached images taken with the 514 nm laser of the SLO. This wavelength is absorbed by rod and cone photopigments. Discrimination is possible due to their different spatial distribution. Additionally, to measure retinal sensitivity profiles, dark adapted two color static perimetry with a Tübinger manual perimeter was performed along the horizontal meridian with 1 degree spacing. A patient with retinitis pigmentosa had slightly reduced photopigment density within the central +/- 5 degrees but no detectable photopigment for eccentricities beyond 5 degrees. A patient with cone dystrophy had nearly normal pigment density beyond +/- 5 degrees, but considerably reduced photopigment density within the central +/- 5 degrees. Within the central +/- 5 degrees, the patient with retinitis pigmentosa had normal sensitivity for the red stimulus and reduced sensitivity for the green stimulus. There was no measurable function beyond 7 degrees. The patient with cone dystrophy had normal sensitivity for the green stimulus outside the foveal center and reduced sensitivity for the red stimulus at the foveal center. The results of color perimetry for this patient with a central scotoma were probably influenced by eccentric fixation. Scanning laser densitometry with a modified Rodenstock SLO is a useful method to assess the human photopigment distribution. Densitometry results were confirmed by dark adapted two color static perimetry. Photopigment distribution and retinal sensitivity profiles can be measured with high spatial resolution. This may help to measure exactly the temporal development of retinal diseases and to test the success of different therapeutic treatments. Both methods have limitations at the present state of development. However, some of these limitations can be overcome by further improving the instruments.
Li, Haijun; Li, Lan; Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang
2016-01-01
Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands our understanding of the functional characteristics of OSA, which may provide new insights into understanding the dysfunction and pathophysiology of OSA patients.
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
Distributed Operations Planning
NASA Technical Reports Server (NTRS)
Fox, Jason; Norris, Jeffrey; Powell, Mark; Rabe, Kenneth; Shams, Khawaja
2007-01-01
Maestro software provides a secure and distributed mission planning system for long-term missions in general, and the Mars Exploration Rover Mission (MER) specifically. Maestro, the successor to the Science Activity Planner, has a heavy emphasis on portability and distributed operations, and requires no data replication or expensive hardware, instead relying on a set of services functioning on JPL institutional servers. Maestro works on most current computers with network connections, including laptops. When browsing down-link data from a spacecraft, Maestro functions similarly to being on a Web browser. After authenticating the user, it connects to a database server to query an index of data products. It then contacts a Web server to download and display the actual data products. The software also includes collaboration support based upon a highly reliable messaging system. Modifications made to targets in one instance are quickly and securely transmitted to other instances of Maestro. The back end that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.
Adaptive Detector Arrays for Optical Communications Receivers
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Srinivasan, M.
2000-01-01
The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.
Brain MR image segmentation based on an improved active contour model
Meng, Xiangrui; Gu, Wenya; Zhang, Jianwei
2017-01-01
It is often a difficult task to accurately segment brain magnetic resonance (MR) images with intensity in-homogeneity and noise. This paper introduces a novel level set method for simultaneous brain MR image segmentation and intensity inhomogeneity correction. To reduce the effect of noise, novel anisotropic spatial information, which can preserve more details of edges and corners, is proposed by incorporating the inner relationships among the neighbor pixels. Then the proposed energy function uses the multivariate Student's t-distribution to fit the distribution of the intensities of each tissue. Furthermore, the proposed model utilizes Hidden Markov random fields to model the spatial correlation between neigh-boring pixels/voxels. The means of the multivariate Student's t-distribution can be adaptively estimated by multiplying a bias field to reduce the effect of intensity inhomogeneity. In the end, we reconstructed the energy function to be convex and calculated it by using the Split Bregman method, which allows our framework for random initialization, thereby allowing fully automated applications. Our method can obtain the final result in less than 1 second for 2D image with size 256 × 256 and less than 300 seconds for 3D image with size 256 × 256 × 171. The proposed method was compared to other state-of-the-art segmentation methods using both synthetic and clinical brain MR images and increased the accuracies of the results more than 3%. PMID:28854235
Ion behavior in low-power magnetically shielded and unshielded Hall thrusters
NASA Astrophysics Data System (ADS)
Grimaud, L.; Mazouffre, S.
2017-05-01
Magnetically shielded Hall thrusters achieve a longer lifespan than traditional Hall thrusters by reducing wall erosion. The lower erosion rate is attributed to a reduction of the high energy ion population impacting the walls. To investigate this phenomenon, the ion velocity distribution functions are measured with laser induced fluorescence at several points of interest in the magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The center of the discharge channel is probed to highlight the difference in plasma positioning between the shielded and unshielded thrusters. Erosion phenomena are investigated by taking measurements of the ion velocity distribution near the inner and outer wall as well as above the magnetic poles where some erosion is observed. The resulting distribution functions show a displacement of the acceleration region from inside the channel in the unshielded thruster to downstream of the exit plane in the ISCT200-MS. Near the walls, the unshielded thruster displays both a higher relative ion density as well as a significant fraction of the ions with velocities toward the walls compared to the shielded thruster. Higher proportions of high velocity ions are also observed. Those results are in accordance with the reduced erosion observed. Both shielded and unshielded thrusters have large populations of ions impacting the magnetic poles. The mechanism through which those ions are accelerated toward the magnetic poles has so far not been explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong QIn, Ronald Davidson
2011-07-18
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026; Davidson, Ronald C.
2011-05-15
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation.« less
NASA Astrophysics Data System (ADS)
Reimberg, Paulo; Bernardeau, Francis
2018-01-01
We present a formalism based on the large deviation principle (LDP) applied to cosmological density fields, and more specifically to the arbitrary functional of density profiles, and we apply it to the derivation of the cumulant generating function and one-point probability distribution function (PDF) of the aperture mass (Map ), a common observable for cosmic shear observations. We show that the LDP can indeed be used in practice for a much larger family of observables than previously envisioned, such as those built from continuous and nonlinear functionals of density profiles. Taking advantage of this formalism, we can extend previous results, which were based on crude definitions of the aperture mass, with top-hat windows and the use of the reduced shear approximation (replacing the reduced shear with the shear itself). We were precisely able to quantify how this latter approximation affects the Map statistical properties. In particular, we derive the corrective term for the skewness of the Map and reconstruct its one-point PDF.
Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G
2011-01-01
Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Shukla, Dinesh K.; Keehn, Brandon; Muller, Ralph-Axel
2011-01-01
Background: Previous diffusion tensor imaging (DTI) studies have shown white matter compromise in children and adults with autism spectrum disorder (ASD), which may relate to reduced connectivity and impaired function of distributed networks. However, tract-specific evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS)…
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W
2015-01-01
Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of "passive" CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.
2012-01-01
We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).
NASA Technical Reports Server (NTRS)
Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.
1998-01-01
A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.
A comparative study of the tail ion distribution with reduced Fokker-Planck models
NASA Astrophysics Data System (ADS)
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua; Berk, H. L.
2014-03-01
A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas and pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. While a significant reduction of the fusion reactivity in the hot spot compared to the nominal Maxwellian case is present, this reduction is found to be partially recovered by an increase of the fusion reactivity in the neighboring cold region.
A mission operations architecture for the 21st century
NASA Technical Reports Server (NTRS)
Tai, W.; Sweetnam, D.
1996-01-01
An operations architecture is proposed for low cost missions beyond the year 2000. The architecture consists of three elements: a service based architecture; a demand access automata; and distributed science hubs. The service based architecture is based on a set of standard multimission services that are defined, packaged and formalized by the deep space network and the advanced multi-mission operations system. The demand access automata is a suite of technologies which reduces the need to be in contact with the spacecraft, and thus reduces operating costs. The beacon signaling, the virtual emergency room, and the high efficiency tracking automata technologies are described. The distributed science hubs provide information system capabilities to the small science oriented flight teams: individual access to all traditional mission functions and services; multimedia intra-team communications, and automated direct transparent communications between the scientists and the instrument.
Han, Ruiming; Quinet, Muriel; André, Emilie; van Elteren, Johannes Teun; Destrebecq, Florence; Vogel-Mikuš, Katarina; Cui, Guangling; Debeljak, Marta; Lefèvre, Isabelle; Lutts, Stanley
2013-09-01
Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 μM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g(-1) DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.
Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites
Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia
2015-01-01
Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186
Oyerinde, Koyejo; Baravilala, Wame
2014-12-01
International guidelines and recommendations for availability and spatial distribution of emergency obstetric care services do not adequately address the challenges of providing emergency health services in island communities. The isolation and small population sizes that are typical of islands and remote populations limit the applicability of international guidelines in such communities. Universal access to emergency obstetric care services, when pregnant women encounter complications, is one of the three key strategies for reducing maternal and newborn mortality; the other two being family planning and skilled care during labor. The performance of selected lifesaving clinical interventions (signal functions) over a 3-month period is commonly used to assess and assign performance categories to health facilities but island communities might not have a large enough population to generate demand for all the signal functions over a 3-month period. Similarly, availability and spatial distribution recommendations are typically based on the size of catchment populations, but the populations of island communities tend to be sparsely distributed. With illustrations from six South Pacific Island states, we argue that the recommendation for availability of health facilities, that there should be at least five emergency obstetric care facilities (including at least one comprehensive facility) for every 500,000 population, and the recommendation for equitable distribution of health facilities, that all subnational areas meet the availability recommendation, can be substituted with a focus on access to blood transfusion and obstetric surgical care within 2 hours for all pregnant residents of islands. Island communities could replace the performance of signal functions over a 3-month period with a demonstrated capacity to perform signal functions if the need arises.
Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network
NASA Astrophysics Data System (ADS)
Oda, Akihiro; Nishi, Hiroaki
Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.
Lai-Cheong, Joey E; Parsons, Maddy; Tanaka, Akio; Ussar, Siegfried; South, Andrew P; Gomathy, Sethuraman; Mee, John B; Barbaroux, Jean-Baptiste; Techanukul, Tanasit; Almaani, Noor; Clements, Suzanne E; Hart, Ian R; McGrath, John A
2009-10-01
Kindler syndrome is an autosomal recessive disorder characterized by skin atrophy and blistering. It results from loss-of-function mutations in the FERMT1 gene encoding the focal adhesion protein, fermitin family homolog-1. How and why deficiency of fermitin family homolog-1 results in skin atrophy and blistering are unclear. In this study, we investigated the epidermal basement membrane and keratinocyte biology abnormalities in Kindler syndrome. We identified altered distribution of several basement membrane proteins, including types IV, VII, and XVII collagens and laminin-332 in Kindler syndrome skin. In addition, reduced immunolabeling intensity of epidermal cell markers such as beta1 and alpha6 integrins and cytokeratin 15 was noted. At the cellular level, there was loss of beta4 integrin immunolocalization and random distribution of laminin-332 in Kindler syndrome keratinocytes. Of note, active beta1 integrin was reduced but overexpression of fermitin family homolog-1 restored integrin activation and partially rescued the Kindler syndrome cellular phenotype. This study provides evidence that fermitin family homolog-1 is implicated in integrin activation and demonstrates that lack of this protein leads to pathological changes beyond focal adhesions, with disruption of several hemidesmosomal components and reduced expression of keratinocyte stem cell markers. These findings collectively provide novel data on the role of fermitin family homolog-1 in skin and further insight into the pathophysiology of Kindler syndrome.
Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel
2015-12-01
Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.
Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A
2017-01-01
In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. All the functions can be calculated using a quantum approach at a sufficient level of theory and their values can be determined in all lattice points for a molecule. Then, the molecules of a dataset can be superimposed in the lattice for the maximal coincidence (or minimal deviations) of the potentials (i) or the quantum functions (ii). The methods and criteria of the superimposition are discussed. After that a functional relationship between biological activity or property and characteristics of potentials (i) or functions (ii) is created. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Therefore, a set of 3D QSAR approaches for continual molecular interior study giving a lot of opportunities for virtual drug discovery, virtual screening and ligand-based drug design are invented. The continual elucidation of molecular structure is performed in the terms of intermolecular interactions potentials and in the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Using special functions to model the propagation of airborne diseases
NASA Astrophysics Data System (ADS)
Bolaños, Daniela
2014-06-01
Some special functions of the mathematical physics are using to obtain a mathematical model of the propagation of airborne diseases. In particular we study the propagation of tuberculosis in closed rooms and we model the propagation using the error function and the Bessel function. In the model, infected individual emit pathogens to the environment and this infect others individuals who absorb it. The evolution in time of the concentration of pathogens in the environment is computed in terms of error functions. The evolution in time of the number of susceptible individuals is expressed by a differential equation that contains the error function and it is solved numerically for different parametric simulations. The evolution in time of the number of infected individuals is plotted for each numerical simulation. On the other hand, the spatial distribution of the pathogen around the source of infection is represented by the Bessel function K0. The spatial and temporal distribution of the number of infected individuals is computed and plotted for some numerical simulations. All computations were made using software Computer algebra, specifically Maple. It is expected that the analytical results that we obtained allow the design of treatment rooms and ventilation systems that reduce the risk of spread of tuberculosis.
Methods and apparatus for analysis of chromatographic migration patterns
Stockham, Thomas G.; Ives, Jeffrey T.
1993-01-01
A method and apparatus for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means.
Riggs, G H; Schweitzer, L
1994-01-01
Various studies have suggested that glycoconjugates may influence connectivity and lamination in the developing central nervous system and may function as barriers to neuritic extension. It has been proposed that the peanut agglutinin lectin labels a glycoconjugate subserving a barrier function. We chose to investigate the distribution of this peanut-agglutinin-labelled glycoconjugate in the dorsal cochlear nucleus of the developing hamster since the development of the dorsal cochlear nucleus is well characterised and its axons obey laminar boundaries. The distribution of peanut agglutinin label throughout the cochlear nucleus delineated zones that cochlear axons fail to invade. In the dorsal cochlear nucleus, laminar differences were reduced on postnatal d 13 and virtually disappearing by postnatal d 23. Label in the molecular layer dissipated as axons and dendrites grew into this layer. These patterns of peanut agglutinin binding correspond to axonal ingrowth and are consistent with a barrier function for glycoconjugates in the molecular layer. Images Fig. 1 Fig. 2 Fig. 4 PMID:7961144
Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion
NASA Astrophysics Data System (ADS)
Zou, Cuiming; Kou, Kit Ian
2018-05-01
Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.
Anticipatory control of xenon in a pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Impink, A.J. Jr.
1987-02-10
A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less
Choosing a therapy electron accelerator target.
Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K
1979-01-01
Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.
Measuring skew in average surface roughness as a function of surface preparation
NASA Astrophysics Data System (ADS)
Stahl, Mark T.
2015-08-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less
Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements
NASA Technical Reports Server (NTRS)
Bakalyar, John A.; Jutte, Christine
2012-01-01
Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.
Functional diversity of soil invertebrates: a potential tool to explain N2O emission?
NASA Astrophysics Data System (ADS)
Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem
2017-04-01
Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, P<0.001). No proof was found to explain faunal-induced N2O emissions through differences in stimulated microbial activity. On the other hand, soil structural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.
Partonic quasidistributions of the proton and pion from transverse-momentum distributions
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Arriola, Enrique Ruiz
2018-02-01
The parton quasidistribution functions (QDFs) of Ji have been found by Radyushkin to be directly related to the transverse momentum distributions (TMDs), to the pseudodistributions, and to the Ioffe-time distributions (ITDs). This makes the QDF results at finite longitudinal momentum of the hadron interesting in their own right. Moreover, the QDF-TMD relation provides a gateway to the pertinent QCD evolution, with respect to the resolution scale Q , for the QDFs. Using the Kwieciński evolution equations and well established parametrizations at a low initial scale, we analyze the QCD evolution of quark and gluon QDF components of the proton and the pion. We discuss the resulting breaking of the longitudinal-transverse factorization and show that it has little impact on QDFs at the relatively low scales presently accessible on the lattice, but the effect is visible in reduced ITDs at sufficiently large values of the Ioffe time. Sum rules involving derivatives of ITDs and moments of the parton distribution functions (PDFs) are applied to the European Twisted Mass Collaboration lattice data. This allows us for a lattice determination of the transverse-momentum width of the TMDs from QDF studies.
Robust inference in the negative binomial regression model with an application to falls data.
Aeberhard, William H; Cantoni, Eva; Heritier, Stephane
2014-12-01
A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.
The Density Functional Theory of Flies: Predicting distributions of interacting active organisms
NASA Astrophysics Data System (ADS)
Kinkhabwala, Yunus; Valderrama, Juan; Cohen, Itai; Arias, Tomas
On October 2nd, 2016, 52 people were crushed in a stampede when a crowd panicked at a religious gathering in Ethiopia. The ability to predict the state of a crowd and whether it is susceptible to such transitions could help prevent such catastrophes. While current techniques such as agent based models can predict transitions in emergent behaviors of crowds, the assumptions used to describe the agents are often ad hoc and the simulations are computationally expensive making their application to real-time crowd prediction challenging. Here, we pursue an orthogonal approach and ask whether a reduced set of variables, such as the local densities, are sufficient to describe the state of a crowd. Inspired by the theoretical framework of Density Functional Theory, we have developed a system that uses only measurements of local densities to extract two independent crowd behavior functions: (1) preferences for locations and (2) interactions between individuals. With these two functions, we have accurately predicted how a model system of walking Drosophila melanogaster distributes itself in an arbitrary 2D environment. In addition, this density-based approach measures properties of the crowd from only observations of the crowd itself without any knowledge of the detailed interactions and thus it can make predictions about the resulting distributions of these flies in arbitrary environments, in real-time. This research was supported in part by ARO W911NF-16-1-0433.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Kang, Zeqing; Liang, Jianwen
2018-04-01
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.
Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.
1993-01-01
Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.
A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks
NASA Astrophysics Data System (ADS)
De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio
2016-05-01
This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.
Fox, Peter; Suidan, Makram T.
1990-01-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175
Fox, P; Suidan, M T
1990-04-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.
Improving Project Management with Simulation and Completion Distribution Functions
NASA Technical Reports Server (NTRS)
Cates, Grant R.
2004-01-01
Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. A major culprit in late projects is uncertainty, which most, if not all, projects are inherently subject to. This uncertainty resides in the estimates for activity durations, the occurrence of unplanned and unforeseen events, and the availability of critical resources. In response to this problem, this research developed a comprehensive simulation based methodology for conducting quantitative project completion time risk analysis. It is called the Project Assessment by Simulation Technique (PAST). This new tool enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used within PAST to determine the completion distribution function for the project of interest. The simulation is populated with both deterministic and stochastic elements. The deterministic inputs include planned project activities, precedence requirements, and resource requirements. The stochastic inputs include activity duration growth distributions, probabilities for events that can impact the project, and other dynamic constraints that may be placed upon project activities and milestones. These stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Repeating the simulation hundreds or thousands of times allows one to create the project completion distribution function. The Project Assessment by Simulation Technique was demonstrated to be effective for the on-going NASA project to assemble the International Space Station. Approximately $500 million per month is being spent on this project, which is scheduled to complete by 2010. NASA project stakeholders participated in determining and managing completion distribution functions produced from PAST. The first result was that project stakeholders improved project completion risk awareness. Secondly, using PAST, mitigation options were analyzed to improve project completion performance and reduce total project cost.
NASA Astrophysics Data System (ADS)
Chakrabarti, R.; Yogesh, V.
2016-04-01
We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.
Bosomprah, Samuel; Tatem, Andrew J; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe
2016-01-01
To provide clear policy directions for gaps in the provision of signal function services and sub-regions requiring priority attention using data from the 2010 Ghana Emergency Obstetric and Newborn Care (EmONC) survey. Using 2010 survey data, the fraction of facilities with only one or two signal functions missing was calculated for each facility type and EmONC designation. Thematic maps were used to provide insight into inequities in service provision. Of 1159 maternity facilities, 89 provided all the necessary basic or comprehensive EmONC signal functions 3months prior to the 2010 survey. Only 21% of facility-based births were in fully functioning EmONC facilities, but an additional 30% occurred in facilities missing one or two basic signal functions-most often assisted vaginal delivery and removal of retained products. Tackling these missing signal functions would extend births taking place in fully functioning facilities to over 50%. Subnational analyses based on estimated total pregnancies in each district revealed a pattern of inequity in service provision across the country. Upgrading facilities missing only one or two signal functions will allow Ghana to meet international standards for availability of EmONC services. Reducing maternal deaths will require high national priority given to addressing inequities in the distribution of EmONC services. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Description of atomic burials in compact globular proteins by Fermi-Dirac probability distributions.
Gomes, Antonio L C; de Rezende, Júlia R; Pereira de Araújo, Antônio F; Shakhnovich, Eugene I
2007-02-01
We perform a statistical analysis of atomic distributions as a function of the distance R from the molecular geometrical center in a nonredundant set of compact globular proteins. The number of atoms increases quadratically for small R, indicating a constant average density inside the core, reaches a maximum at a size-dependent distance R(max), and falls rapidly for larger R. The empirical curves turn out to be consistent with the volume increase of spherical concentric solid shells and a Fermi-Dirac distribution in which the distance R plays the role of an effective atomic energy epsilon(R) = R. The effective chemical potential mu governing the distribution increases with the number of residues, reflecting the size of the protein globule, while the temperature parameter beta decreases. Interestingly, betamu is not as strongly dependent on protein size and appears to be tuned to maintain approximately half of the atoms in the high density interior and the other half in the exterior region of rapidly decreasing density. A normalized size-independent distribution was obtained for the atomic probability as a function of the reduced distance, r = R/R(g), where R(g) is the radius of gyration. The global normalized Fermi distribution, F(r), can be reasonably decomposed in Fermi-like subdistributions for different atomic types tau, F(tau)(r), with Sigma(tau)F(tau)(r) = F(r), which depend on two additional parameters mu(tau) and h(tau). The chemical potential mu(tau) affects a scaling prefactor and depends on the overall frequency of the corresponding atomic type, while the maximum position of the subdistribution is determined by h(tau), which appears in a type-dependent atomic effective energy, epsilon(tau)(r) = h(tau)r, and is strongly correlated to available hydrophobicity scales. Better adjustments are obtained when the effective energy is not assumed to be necessarily linear, or epsilon(tau)*(r) = h(tau)*r(alpha,), in which case a correlation with hydrophobicity scales is found for the product alpha(tau)h(tau)*. These results indicate that compact globular proteins are consistent with a thermodynamic system governed by hydrophobic-like energy functions, with reduced distances from the geometrical center, reflecting atomic burials, and provide a conceptual framework for the eventual prediction from sequence of a few parameters from which whole atomic probability distributions and potentials of mean force can be reconstructed. Copyright 2006 Wiley-Liss, Inc.
A simulator for evaluating methods for the detection of lesion-deficit associations
NASA Technical Reports Server (NTRS)
Megalooikonomou, V.; Davatzikos, C.; Herskovits, E. H.
2000-01-01
Although much has been learned about the functional organization of the human brain through lesion-deficit analysis, the variety of statistical and image-processing methods developed for this purpose precludes a closed-form analysis of the statistical power of these systems. Therefore, we developed a lesion-deficit simulator (LDS), which generates artificial subjects, each of which consists of a set of functional deficits, and a brain image with lesions; the deficits and lesions conform to predefined distributions. We used probability distributions to model the number, sizes, and spatial distribution of lesions, to model the structure-function associations, and to model registration error. We used the LDS to evaluate, as examples, the effects of the complexities and strengths of lesion-deficit associations, and of registration error, on the power of lesion-deficit analysis. We measured the numbers of recovered associations from these simulated data, as a function of the number of subjects analyzed, the strengths and number of associations in the statistical model, the number of structures associated with a particular function, and the prior probabilities of structures being abnormal. The number of subjects required to recover the simulated lesion-deficit associations was found to have an inverse relationship to the strength of associations, and to the smallest probability in the structure-function model. The number of structures associated with a particular function (i.e., the complexity of associations) had a much greater effect on the performance of the analysis method than did the total number of associations. We also found that registration error of 5 mm or less reduces the number of associations discovered by approximately 13% compared to perfect registration. The LDS provides a flexible framework for evaluating many aspects of lesion-deficit analysis.
NASA Technical Reports Server (NTRS)
Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.
1993-01-01
The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.
Uncertainty Analysis of Simulated Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.
2012-12-01
Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOT National Transportation Integrated Search
2006-01-01
Problem: Work zones on heavily traveled divided highways present problems to motorists in the form of traffic delays and increased accident risks due to sometimes reduced motorist guidance, dense traffic, and other driving difficulties. To minimize t...
NASA Astrophysics Data System (ADS)
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2013-05-01
Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory
Niu, Yang; Dai, Zhonghua; Liu, Wenxue; Zhang, Cheng; Yang, Yanrui; Guo, Zhenzhen; Li, Xiaoyu; Xu, Chenchang; Huang, Xiahe; Wang, Yingchun; Shi, Yun S; Liu, Jia-Jia
2017-01-01
SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI: http://dx.doi.org/10.7554/eLife.20991.001 PMID:28134614
NASA Astrophysics Data System (ADS)
Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun
2017-07-01
In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, R. H.; Xu, X. Q.
2007-11-01
The ion distribution function in the H-mode pedestal region and outward across the magnetic separatrix is expected to have a substantial non-Maxwellian character owing to the large banana orbits and steep gradients in temperature and density. The 4D (2r,2v) version of the TEMPEST continuum gyrokinetic code is used with a Coulomb collision model to calculate the ion distribution in a single-null tokamak geometry throughout the pedestal/scrape-off-layer regions. The mean density, parallel velocity, and energy radial profiles are shown at various poloidal locations. The collisions cause neoclassical energy transport through the pedestal that is then lost to the divertor plates along the open field lines outside the separatrix. The resulting heat flux profiles at the inner and outer divertor plates are presented and discussed, including asymmetries that depend on the B-field direction. Of particular focus is the effect on ion profiles and fluxes of a radial electric field exhibiting a deep well just inside the separatrix, which reduces the width of the banana orbits by the well-known squeezing effect.
Investigation of runaway electron dissipation in DIII-D using a gamma ray imager
NASA Astrophysics Data System (ADS)
Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N.; Pace, D.; Taussig, D.
2017-10-01
We report the findings of a novel gamma ray imager (GRI) to study runaway electron (RE) dissipation in the quiescent regime on the DIII-D tokamak. The GRI measures the bremsstrahlung emission by RE providing information on RE energy spectrum and distribution across a poloidal cross-section. It consists of a lead pinhole camera illuminating a matrix of BGO detectors placed in the DIII-D mid-plane. The number of detectors was recently doubled to provide better spatial resolution and additional detector shielding was implemented to reduce un-collimated gamma flux and increase single-to-noise ratio. Under varying loop voltage, toroidal magnetic field and plasma density, a non-monotonic RE distribution function has been revealed as a result of the interplay between electric field, synchrotron radiation and collisional damping. A fraction of the high-energy RE population grows forming a bump at the RE distribution function while synchrotron radiation decreases. A possible destabilizing effect of Parail-Pogutse instability on the RE population will be also discussed. Work supported by the US DOE under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2018-04-01
The Yakutsk array data set in the energy interval (1017,1019) eV is revisited in order to interpret the zenith angle distribution of an extensive air shower event rate of ultra-high-energy cosmic rays. The close relation of the distribution to the attenuation of the main measurable parameter of showers, ρ600, is examined. Measured and expected distributions are used to analyze the arrival directions of cosmic rays on an equatorial map including the energy range below 1018 eV , which was previously avoided due to the reduced trigger efficiency of the array in the range. While the null hypothesis cannot be rejected with data from the Yakutsk array, an upper limit on the fraction of cosmic rays from a separable source in the uniform background is derived as a function of declination and energy.
Extending HPF for advanced data parallel applications
NASA Technical Reports Server (NTRS)
Chapman, Barbara; Mehrotra, Piyush; Zima, Hans
1994-01-01
The stated goal of High Performance Fortran (HPF) was to 'address the problems of writing data parallel programs where the distribution of data affects performance'. After examining the current version of the language we are led to the conclusion that HPF has not fully achieved this goal. While the basic distribution functions offered by the language - regular block, cyclic, and block cyclic distributions - can support regular numerical algorithms, advanced applications such as particle-in-cell codes or unstructured mesh solvers cannot be expressed adequately. We believe that this is a major weakness of HPF, significantly reducing its chances of becoming accepted in the numeric community. The paper discusses the data distribution and alignment issues in detail, points out some flaws in the basic language, and outlines possible future paths of development. Furthermore, we briefly deal with the issue of task parallelism and its integration with the data parallel paradigm of HPF.
Radial q-space sampling for DSI.
Baete, Steven H; Yutzy, Stephen; Boada, Fernando E
2016-09-01
Diffusion spectrum imaging (DSI) has been shown to be an effective tool for noninvasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI is used to improve the angular resolution and accuracy of the reconstructed orientation distribution functions. Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the orientation distribution functions at the same angular location by the Fourier slice theorem. Computer simulations and in vivo brain results demonstrate that radial diffusion spectrum imaging correctly estimates the orientation distribution functions when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. The nominal angular resolution of radial diffusion spectrum imaging depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. Magn Reson Med 76:769-780, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi
2006-05-05
Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.
Description of the SSF PMAD DC testbed control system data acquisition function
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Mackin, Michael; Wright, Theodore
1992-01-01
The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.
NASA Astrophysics Data System (ADS)
Martin, E. R.; Dou, S.; Lindsey, N.; Chang, J. P.; Biondi, B. C.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Robertson, M.; Ulrich, C.; Williams, E. F.
2016-12-01
Localized strong sources of noise in an array have been shown to cause artifacts in Green's function estimates obtained via cross-correlation. Their effect is often reduced through the use of cross-coherence. Beyond independent localized sources, temporally or spatially correlated sources of noise frequently occur in practice but violate basic assumptions of much of the theory behind ambient noise Green's function retrieval. These correlated noise sources can occur in urban environments due to transportation infrastructure, or in areas around industrial operations like pumps running at CO2 sequestration sites or oil and gas drilling sites. Better understanding of these artifacts should help us develop and justify methods for their automatic removal from Green's function estimates. We derive expected artifacts in cross-correlations from several distributions of correlated noise sources including point sources that are exact time-lagged repeats of each other and Gaussian-distributed in space and time with covariance that exponentially decays. Assuming the noise distribution stays stationary over time, the artifacts become more coherent as more ambient noise is included in the Green's function estimates. We support our results with simple computational models. We observed these artifacts in Green's function estimates from a 2015 ambient noise study in Fairbanks, AK where a trenched distributed acoustic sensing (DAS) array was deployed to collect ambient noise alongside a road with the goal of developing a permafrost thaw monitoring system. We found that joints in the road repeatedly being hit by cars travelling at roughly the speed limit led to artifacts similar to those expected when several points are time-lagged copies of each other. We also show test results of attenuating the effects of these sources during time-lapse monitoring of an active thaw test in the same location with noise detected by a 2D trenched DAS array.
Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun
2011-07-01
A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.
NASA Astrophysics Data System (ADS)
Coffey, W. T.; Kalmykov, Yu P.; Titov, S. V.; Mulligan, B. P.
2007-01-01
The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(planck4) and in the classical limit, planck → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived.
Fractals, malware, and data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.
2012-06-01
We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
Hu, Sixiao; Hsieh, You-Lo
2015-10-20
Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields.
Bortolon, A; Heidbrink, W W; Kramer, G J; Park, J-K; Fredrickson, E D; Lore, J D; Podestà, M
2013-06-28
The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Peter; Varghese, Philip; Goldstein, David
We extend a variance reduced discrete velocity method developed at UT Austin [1, 2] to gas mixtures with large mass ratios and flows with trace species. The mixture is stored as a collection of independent velocity distribution functions, each with a unique grid in velocity space. Different collision types (A-A, A-B, B-B, etc.) are treated independently, and the variance reduction scheme is formulated with different equilibrium functions for each separate collision type. The individual treatment of species enables increased focus on species important to the physics of the flow, even if the important species are present in trace amounts. Themore » method is verified through comparisons to Direct Simulation Monte Carlo computations and the computational workload per time step is investigated for the variance reduced method.« less
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama
2009-04-15
Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.
Distribution Route Planning of Clean Coal Based on Nearest Insertion Method
NASA Astrophysics Data System (ADS)
Wang, Yunrui
2018-01-01
Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.
Henneberry, Yumiko K.; Kraus, Tamara E.C.; Nico, Peter S.; Horwath, William R.
2012-01-01
The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.
Zheng, Weili; Ackley, Elena S; Martínez-Ramón, Manel; Posse, Stefan
2013-02-01
In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation. Copyright © 2013 Elsevier Inc. All rights reserved.
Wave and ion evolution downstream of quasi-perpendicular bow shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.
1995-01-01
Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.
Methods and apparatus for analysis of chromatographic migration patterns
Stockham, T.G.; Ives, J.T.
1993-12-28
A method and apparatus are presented for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means. 16 figures.
Gibbons, Richard A.; Dixon, Stephen N.; Pocock, David H.
1973-01-01
A specimen of intestinal glycoprotein isolated from the pig and two samples of dextran, all of which are polydisperse (that is, the preparations may be regarded as consisting of a continuous distribution of molecular weights), have been examined in the ultracentrifuge under meniscus-depletion conditions at equilibrium. They are compared with each other and with a glycoprotein from Cysticercus tenuicollis cyst fluid which is almost monodisperse. The quantity c−⅓ (c=concentration) is plotted against ξ (the reduced radius); this plot is linear when the molecular-weight distribution approximates to the `most probable', i.e. when Mn:Mw:Mz: M(z+1)....... is as 1:2:3:4: etc. The use of this plot, and related procedures, to evaluate qualitatively and semi-quantitatively molecular-weight distribution functions where they can be realistically approximated to Schulz distributions is discussed. The theoretical basis is given in an Appendix. PMID:4778265
Algebraic criteria for positive realness relative to the unit circle.
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1973-01-01
A definition is presented of the circle positive realness of real rational functions relative to the unit circle in the complex variable plane. The problem of testing this kind of positive reality is reduced to the algebraic problem of determining the distribution of zeros of a real polynomial with respect to and on the unit circle. Such reformulation of the problem avoids the search for explicit information about imaginary poles of rational functions. The stated algebraic problem is solved by applying the polynomial criteria of Marden (1966) and Jury (1964), and a completely recursive algorithm for circle positive realness is obtained.
Linear dispersion properties of ring velocity distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandas, Marek, E-mail: marek.vandas@asu.cas.cz; Hellinger, Petr; Institute of Atmospheric Physics, AS CR, Bocni II/1401, CZ-14100 Prague
2015-06-15
Linear properties of ring velocity distribution functions are investigated. The dispersion tensor in a form similar to the case of a Maxwellian distribution function, but for a general distribution function separable in velocities, is presented. Analytical forms of the dispersion tensor are derived for two cases of ring velocity distribution functions: one obtained from physical arguments and one for the usual, ad hoc ring distribution. The analytical expressions involve generalized hypergeometric, Kampé de Fériet functions of two arguments. For a set of plasma parameters, the two ring distribution functions are compared. At the parallel propagation with respect to the ambientmore » magnetic field, the two ring distributions give the same results identical to the corresponding bi-Maxwellian distribution. At oblique propagation, the two ring distributions give similar results only for strong instabilities, whereas for weak growth rates their predictions are significantly different; the two ring distributions have different marginal stability conditions.« less
NASA Technical Reports Server (NTRS)
Miles, R. F., Jr.
1986-01-01
A research and development (R&D) project often involves a number of decisions that must be made concerning which subset of systems or tasks are to be undertaken to achieve the goal of the R&D project. To help in this decision making, SIMRAND (SIMulation of Research ANd Development Projects) is a methodology for the selection of the optimal subset of systems or tasks to be undertaken on an R&D project. Using alternative networks, the SIMRAND methodology models the alternative subsets of systems or tasks under consideration. Each path through an alternative network represents one way of satisfying the project goals. Equations are developed that relate the system or task variables to the measure of reference. Uncertainty is incorporated by treating the variables of the equations probabilistically as random variables, with cumulative distribution functions assessed by technical experts. Analytical techniques of probability theory are used to reduce the complexity of the alternative networks. Cardinal utility functions over the measure of preference are assessed for the decision makers. A run of the SIMRAND Computer I Program combines, in a Monte Carlo simulation model, the network structure, the equations, the cumulative distribution functions, and the utility functions.
Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar
2018-02-01
In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 < E < 0.361 v / nm) covering non-linear response regime, and ionic salt concentration (0.049 < SC < 0.69 [M]) covering weak to strong Debye screening of the colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.
Lo, Chun-Yi Zac; Su, Tsung-Wei; Huang, Chu-Chung; Hung, Chia-Chun; Chen, Wei-Ling; Lan, Tsuo-Hung; Lin, Ching-Po; Bullmore, Edward T
2015-07-21
Schizophrenia is increasingly conceived as a disorder of brain network organization or dysconnectivity syndrome. Functional MRI (fMRI) networks in schizophrenia have been characterized by abnormally random topology. We tested the hypothesis that network randomization is an endophenotype of schizophrenia and therefore evident also in nonpsychotic relatives of patients. Head movement-corrected, resting-state fMRI data were acquired from 25 patients with schizophrenia, 25 first-degree relatives of patients, and 29 healthy volunteers. Graphs were used to model functional connectivity as a set of edges between regional nodes. We estimated the topological efficiency, clustering, degree distribution, resilience, and connection distance (in millimeters) of each functional network. The schizophrenic group demonstrated significant randomization of global network metrics (reduced clustering, greater efficiency), a shift in the degree distribution to a more homogeneous form (fewer hubs), a shift in the distance distribution (proportionally more long-distance edges), and greater resilience to targeted attack on network hubs. The networks of the relatives also demonstrated abnormal randomization and resilience compared with healthy volunteers, but they were typically less topologically abnormal than the patients' networks and did not have abnormal connection distances. We conclude that schizophrenia is associated with replicable and convergent evidence for functional network randomization, and a similar topological profile was evident also in nonpsychotic relatives, suggesting that this is a systems-level endophenotype or marker of familial risk. We speculate that the greater resilience of brain networks may confer some fitness advantages on nonpsychotic relatives that could explain persistence of this endophenotype in the population.
Inferring the distribution of mutational effects on fitness in Drosophila.
Loewe, Laurence; Charlesworth, Brian
2006-09-22
The properties of the distribution of deleterious mutational effects on fitness (DDME) are of fundamental importance for evolutionary genetics. Since it is extremely difficult to determine the nature of this distribution, several methods using various assumptions about the DDME have been developed, for the purpose of parameter estimation. We apply a newly developed method to DNA sequence polymorphism data from two Drosophila species and compare estimates of the parameters of the distribution of the heterozygous fitness effects of amino acid mutations for several different distribution functions. The results exclude normal and gamma distributions, since these predict too few effectively lethal mutations and power-law distributions as a result of predicting too many lethals. Only the lognormal distribution appears to fit both the diversity data and the frequency of lethals. This DDME arises naturally in complex systems when independent factors contribute multiplicatively to an increase in fitness-reducing damage. Several important parameters, such as the fraction of effectively neutral non-synonymous mutations and the harmonic mean of non-neutral selection coefficients, are robust to the form of the DDME. Our results suggest that the majority of non-synonymous mutations in Drosophila are under effective purifying selection.
Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min
2016-12-20
Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.
Bayesian functional integral method for inferring continuous data from discrete measurements.
Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul
2012-02-08
Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Kadlecek, Stephen; Hamedani, Hooman; Xu, Yinan; Emami, Kiarash; Xin, Yi; Ishii, Masaru; Rizi, Rahim
2013-10-01
Alveolar oxygen tension (Pao2) is sensitive to the interplay between local ventilation, perfusion, and alveolar-capillary membrane permeability, and thus reflects physiologic heterogeneity of healthy and diseased lung function. Several hyperpolarized helium ((3)He) magnetic resonance imaging (MRI)-based Pao2 mapping techniques have been reported, and considerable effort has gone toward reducing Pao2 measurement error. We present a new Pao2 imaging scheme, using parallel accelerated MRI, which significantly reduces measurement error. The proposed Pao2 mapping scheme was computer-simulated and was tested on both phantoms and five human subjects. Where possible, correspondence between actual local oxygen concentration and derived values was assessed for both bias (deviation from the true mean) and imaging artifact (deviation from the true spatial distribution). Phantom experiments demonstrated a significantly reduced coefficient of variation using the accelerated scheme. Simulation results support this observation and predict that correspondence between the true spatial distribution and the derived map is always superior using the accelerated scheme, although the improvement becomes less significant as the signal-to-noise ratio increases. Paired measurements in the human subjects, comparing accelerated and fully sampled schemes, show a reduced Pao2 distribution width for 41 of 46 slices. In contrast to proton MRI, acceleration of hyperpolarized imaging has no signal-to-noise penalty; its use in Pao2 measurement is therefore always beneficial. Comparison of multiple schemes shows that the benefit arises from a longer time-base during which oxygen-induced depolarization modifies the signal strength. Demonstration of the accelerated technique in human studies shows the feasibility of the method and suggests that measurement error is reduced here as well, particularly at low signal-to-noise levels. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Preparation of gold nanoparticles and determination of their particles size via different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia
Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be preparedmore » in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.« less
The Distribution of Galaxies’ Gravitational Field Stemming from Their Tidal Interaction
NASA Astrophysics Data System (ADS)
Stephanovich, Vladimir; Godłowski, Włodzimierz
2015-09-01
We calculate the distribution function of astronomical objects’ (like galaxies and/or smooth halos of different kinds) gravitational fields due to their tidal interaction. For that we apply the statistical method of Chandrasekhar, used originally to calculate the famous Holtzmark distribution. We show that in our approach the distribution function is never Gaussian, its form being dictated by the potential of interaction between objects. This calculation permits us to perform a theoretical analysis of the relation between angular momentum and mass (richness) of the galaxy clusters. To do so, we follow the ideas of Catelan & Theuns and Heavens & Peacock. The main difference is that here we reduce the problem to a discrete many-body case, where all physical properties of the system are determined by the interaction potential V({{\\boldsymbol{r}}}{ij}). The essence of reduction is that we use the multipole (up to quadrupole here) expansion of Newtonian potential so that all hydrodynamic, “extended” characteristics of an object, such as its density mass, are “integrated out,” leaving its “point-like” characteristics, such as mass and quadrupole moment. In that sense we do not distinguish between galaxies and smooth components such as halos. We compare our theoretical results with observational data.
Effects of payoff functions and preference distributions in an adaptive population
NASA Astrophysics Data System (ADS)
Yang, H. M.; Ting, Y. S.; Wong, K. Y. Michael
2008-03-01
Adaptive populations such as those in financial markets and distributed control can be modeled by the Minority Game. We consider how their dynamics depends on the agents’ initial preferences of strategies, when the agents use linear or quadratic payoff functions to evaluate their strategies. We find that the fluctuations of the population making certain decisions (the volatility) depends on the diversity of the distribution of the initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. In systems with linear payoffs, this results in dynamical transitions from vanishing volatility to a nonvanishing one. For low signal dimensions, the dynamical transitions for the different signals do not take place at the same critical diversity. Rather, a cascade of dynamical transitions takes place when the diversity is reduced. In contrast, no phase transitions are found in systems with the quadratic payoffs. Instead, a basin boundary of attraction separates two groups of samples in the space of the agents’ decisions. Initial states inside this boundary converge to small volatility, while those outside diverge to a large one. Furthermore, when the preference distribution becomes more polarized, the dynamics becomes more erratic. All the above results are supported by good agreement between simulations and theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Brian; Huque, Aminul; Rogers, Lindsey
In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less
Schwenke, Daryl O; Gray, Emily A; Pearson, James T; Sonobe, Takashi; Ishibashi-Ueda, Hatsue; Campillo, Isabel; Kangawa, Kenji; Umetani, Keiji; Shirai, Mikiyasu
2011-09-01
Ghrelin has cardioprotective properties and, recently, has been shown to improve endothelial function and reduce endothelin-1 (ET-1)-mediated vasoconstriction in peripheral vascular disease. Recently, we reported that ghrelin attenuates pulmonary hypertension (PH) caused by chronic hypoxia (CH), which we hypothesized in this study may be via suppression of the ET-1 pathway. We also aimed to determine whether ghrelin's ability to prevent alterations of the ET-1 pathway also prevented adverse changes in pulmonary blood flow distribution associated with PH. Sprague-Dawley rats were exposed to CH (10% O(2) for 2 weeks) with daily subcutaneous injections of ghrelin (150 μg/kg) or saline. Utilizing synchrotron radiation microangiography, we assessed pulmonary vessel branching structure, which is indicative of blood flow distribution, and dynamic changes in vascular responsiveness to (1) ET-1 (1 nmol/kg), (2) the ET-1(A) receptor antagonist, BQ-123 (1 mg/kg), and (3) ACh (3.0 μg kg⁻¹ min⁻¹). CH impaired blood flow distribution throughout the lung. However, this vessel "rarefaction" was attenuated in ghrelin-treated CH-rats. Moreover, ghrelin (1) reduced the magnitude of endothelial dysfunction, (2) prevented an increase in ET-1-mediated vasoconstriction, and (3) reduced pulmonary vascular remodeling and right ventricular hypertrophy-all adverse consequences associated with CH. These results highlight the beneficial effects of ghrelin for maintaining optimal lung perfusion in the face of a hypoxic insult. Further research is now required to establish whether ghrelin is also an effective therapy for restoring normal pulmonary hemodynamics in patients that already have established PH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bootsma, G. J., E-mail: Gregory.Bootsma@rmp.uhn.on.ca; Verhaegen, F.; Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4
2015-01-15
Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithmmore » which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearson’s correlation, r, proved to be a suitable GOF metric with strong correlation with the actual error of the scatter fit, S{sub F}. Fitting the scatter distribution to a limited sum of sine and cosine functions using a low-pass filtered fast Fourier transform provided a computationally efficient and accurate fit. The CMCF algorithm reduces the number of photon histories required by over four orders of magnitude. The simulated experiments showed that using a compensator reduced the computational time by a factor between 1.5 and 1.75. The scatter estimates for the simulated and measured data were computed between 35–93 s and 114–122 s, respectively, using 16 Intel Xeon cores (3.0 GHz). The CMCF scatter correction improved the contrast-to-noise ratio by 10%–50% and reduced the reconstruction error to under 3% for the simulated phantoms. Conclusions: The novel CMCF algorithm significantly reduces the computation time required to estimate the scatter distribution by reducing the statistical noise in the MC scatter estimate and limiting the number of projection angles that must be simulated. Using the scatter estimate provided by the CMCF algorithm to correct both simulated and real projection data showed improved reconstruction image quality.« less
The Focusing of Light Scattered from Diffuse Reflectors Using Phase Modulation
2012-03-22
was recently demonstrated for imaging otherwise hidden scene information through the collection and radiometric modeling of light reflecting off of...effectively reducing the radiometric model to that of the previously demonstrated dual photography, and leading to much-simplified results. This...angle. The fundamental geometric descriptor of reflectance is given by the bidirectional reflectance distribution function ( BRDF ) fr (θi, φi; θs, φs
An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Boyce, Lee
1997-01-01
This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.
NASA Astrophysics Data System (ADS)
Li, Chen; Requist, Ryan; Gross, E. K. U.
2018-02-01
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
A Bayesian sequential design using alpha spending function to control type I error.
Zhu, Han; Yu, Qingzhao
2017-10-01
We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.
Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette
2014-06-01
The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
On the optimal identification of tag sets in time-constrained RFID configurations.
Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel
2011-01-01
In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags.
The nitrate response of a lowland catchment and groundwater travel times
NASA Astrophysics Data System (ADS)
van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans
2010-05-01
Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface water network.
Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong
2018-02-01
Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multi-sensor Oceanographic Correlations for Pacific Hake Acoustic Survey Improvement
NASA Astrophysics Data System (ADS)
Brozen, M.; Hillyer, N.; Holt, B.; Armstrong, E. M.
2010-12-01
North Pacific hake (Merluccius productus), the most abundant groundfish along the Pacific coast of northwestern America, are an essential source of income for the coastal region from southern California to British Columbia, Canada. However, hake abundance and distribution are highly variable among years, exhibiting variance in both the north-south and east-west distribution as seen in the results from biannual acoustic surveys. This project is part of a larger undertaking, ultimately focused on the prediction of hake distribution to improve the distribution of survey effort and precision of stock assessments in the future. Four remotely sensed oceanographic variables are examined as a first step in improving our understanding the relationship between the intensity of coastal upwelling and other ocean dynamics, and the north-south summer hake distribution. Sea surface height, wind vectors, chlorophyll - a concentrations, and sea surface temperature were acquired from several satellites, including AVHRR, SeaWifs, TOPEX/Poseidon, Jason-1, Jason-2, SSM/I, ASMR-E, and QuikScat. Data were aligned to the same spatial and temporal resolution, and these re-gridded data were then analyzed using empirical orthogonal functions (EOFs). EOFs were used as a spatio-temporally compact representation of the data and to reduce the co-variability of the multiple time series in the dataset. The EOF results were plotted and acoustic survey results were overlaid to understand differences between regions. Although this pilot project used data from only a single year (2007), it demonstrated a methodology for reducing dimensionality of linearly related satellite variables that can used in future applications, and provided insight into multi-dimensional ocean characteristics important for hake distribution.
An integral conservative gridding--algorithm using Hermitian curve interpolation.
Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K
2008-11-07
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
NASA Astrophysics Data System (ADS)
Malinina, A. A.; Malinin, A. N.
2013-12-01
Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.
RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping
Ezpeleta, Santiago; Claver, José M.; Pérez-Solano, Juan J.; Martí, José V.
2015-01-01
Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken. PMID:26516862
Park, Hyeon Soo; Hwang, Yong Hyeon; Kim, Mun Ki; Hong, Gyeong Eun; Lee, Ho Jeong; Nagappan, Arulkumar; Yumnam, Silvia; Kim, Eun Hee; Heo, Jeong Doo; Lee, Sang Joon; Won, Chung Kil; Kim, Gon Sup
2015-01-01
Grifola frondosa (GF), distributed widely in far east Asia including Korea, is popularly used as traditional medicines and health supplementary foods, especially for enhancing the immune functions of the body. To extend the application of GF polysaccharides (GFP) for atopic dermatitis (AD), we investigated the effects of GFP on the 2,4-dinitrochlorobenzene-induced AD-like skin lesion in NC/Nga mice. GFP treatment significantly reduced the dorsa skin dermatitis score and combination treatment with GFP, and dexamethasone has a synergistic effect in AD-like skin lesion by reduced Serum IgE, mast cells infiltration, and cytokines expression. These results indicate that GFP suppressed the AD-like skin lesions by controlling the Th-1/Th-2-type cytokines in NC/Nga mice. These findings strongly suggest that GFP can be useful for AD patients as a novel therapeutic agent and might be used for corticosteroids replacement or supplement agent.
Distributing Data to Hand-Held Devices in a Wireless Network
NASA Technical Reports Server (NTRS)
Hodges, Mark; Simmons, Layne
2008-01-01
ADROIT is a developmental computer program for real-time distribution of complex data streams for display on Web-enabled, portable terminals held by members of an operational team of a spacecraft-command-and-control center who may be located away from the center. Examples of such terminals include personal data assistants, laptop computers, and cellular telephones. ADROIT would make it unnecessary to equip each terminal with platform- specific software for access to the data streams or with software that implements the information-sharing protocol used to deliver telemetry data to clients in the center. ADROIT is a combination of middleware plus software specific to the center. (Middleware enables one application program to communicate with another by performing such functions as conversion, translation, consolidation, and/or integration.) ADROIT translates a data stream (voice, video, or alphanumerical data) from the center into Extensible Markup Language, effectuates a subscription process to determine who gets what data when, and presents the data to each user in real time. Thus, ADROIT is expected to enable distribution of operations and to reduce the cost of operations by reducing the number of persons required to be in the center.
Health sector reform in Brazil: a case study of inequity.
Almeida, C; Travassos, C; Porto, S; Labra, M E
2000-01-01
Health sector reform in Brazil built the Unified Health System according to a dense body of administrative instruments for organizing decentralized service networks and institutionalizing a complex decision-making arena. This article focuses on the equity in health care services. Equity is defined as a principle governing distributive functions designed to reduce or offset socially unjust inequalities, and it is applied to evaluate the distribution of financial resources and the use of health services. Even though in the Constitution the term "equity" refers to equal opportunity of access for equal needs, the implemented policies have not guaranteed these rights. Underfunding, fiscal stress, and lack of priorities for the sector have contributed to a progressive deterioration of health care services, with continuing regressive tax collection and unequal distribution of financial resources among regions. The data suggest that despite regulatory measures to increase efficiency and reduce inequalities, delivery of health care services remains extremely unequal across the country. People in lower income groups experience more difficulties in getting access to health services. Utilization rates vary greatly by type of service among income groups, positions in the labor market, and levels of education.
Development of a Bio-nanobattery for Distributed Power Storage Systems
NASA Technical Reports Server (NTRS)
King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Park, Yeonjoon; Lillehei, Peter; Watt, Gerald D.; Davis, Robert; Harb, John N.
2004-01-01
Currently available power storage systems, such as those used to supply power to microelectronic devices, typically consist of a single centralized canister and a series of wires to supply electrical power to where it is needed in a circuit. As the size of electrical circuits and components become smaller, there exists a need for a distributed power system to reduce Joule heating, wiring, and to allow autonomous operation of the various functions performed by the circuit. Our research is being conducted to develop a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Both Co-ferritin and Fe-ferritin were synthesized and characterized as candidates for the bio-nanobattery. The reducing capability was determined as well as the half-cell electrical potentials, indicating an electrical output of nearly 0.5 V for the battery cell. Ferritins having other metallic cores are also being investigated, in order to increase the overall electrical output. Two dimensional ferritin arrays were also produced on various substrates, demonstrating the necessary building blocks for the bio-nanobattery. The bio-nanobattery will play a key role in moving to a distributed power storage system for electronic applications.
Improvements to the MST Thomson Scattering Diagnostic
NASA Astrophysics Data System (ADS)
Adams, D. T.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Kile, T.; Kubala, S. Z.; Jacobson, C. M.; Thomas, M. A.; Wallace, J. P.; Young, W. C.; MST Thomson Scattering Team
2017-10-01
Multiple upgrades to the MST Thomson Scattering diagnostic have been implemented to expand capabilities of the system. In the past, stray laser light prevented electron density measurements everywhere and temperature measurements for -z/a >0.75. To mitigate stray light, a new laser beamline is being commissioned that includes a longer entrance flight tube, close-fitting apertures, and baffles. A polarizer has been added to the collection optics to further reduce stray light. An absolute density calibration using Rayleigh scattering in argon will be performed. An insertable integrating sphere will provide a full-system spectral calibration as well as maps optical fibers to machine coordinates. Reduced transmission of the collection optics due to coatings from plasma-surface interactions is regularly monitored to inform timely replacements of the first lens. Long-wavelength filters have been installed to better characterize non-Maxwellian electron distribution features. Previous work has identified residual photons not described by a Maxwellian distribution during m =0 magnetic bursts. Further effort to characterize the distribution function will be described. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.
Antisense apolipoprotein B therapy: where do we stand?
Akdim, Fatima; Stroes, Erik S G; Kastelein, John J P
2007-08-01
Antisense oligonucleotides are novel therapeutic agents that reduce the number of specific mRNAs available for translation of the encoded protein. ISIS 301012 is an antisense oligonucleotide developed to reduce the hepatic synthesis of apolipoprotein B-100. Apolipoprotein B-100 is made in the liver, and antisense oligonucleotides preferentially distribute to that organ, so antisense apolipoprotein B-100 may have potential as an efficacious lipid-lowering agent. Recently, in healthy volunteers and in mild dyslipidaemic patients, this strategy as monotherapy or in conjunction with statins has shown unparalleled efficacy in reducing apolipoprotein B-100 and LDL-cholesterol. Tolerance for this novel therapy is encouraging and safety concerns currently only relate to mild injection-site reactions and rare liver-function test abnormalities. It should be noted, however, that these safety results were obtained in relatively few individuals. ISIS 301012 has initially shown promising results in experimental animal models, and in clinical trials in humans. Besides the effect of reducing apolipoprotein B-100 and LDL-cholesterol, this compound also significantly lowers plasma triglycerides. Safety concerns related to the drug include increased liver-function tests. To date no evidence of hepatic steatosis has been reported. Nonetheless, clinical trials of longer duration are required to demonstrate further safety.
Zhu, Xiao Fang; Lei, Gui Jie; Wang, Zhi Wei; Shi, Yuan Zhi; Braam, Janet; Li, Gui Xin; Zheng, Shao Jian
2013-01-01
Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution within plant cells, and plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively. PMID:23776189
NASA Astrophysics Data System (ADS)
Korovin, Iakov S.; Tkachenko, Maxim G.
2018-03-01
In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
Estimate feedstock processability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amorelli, A.; Amos, Y.D.; Halsig, C.P.
1992-06-01
Currently, one of the major environmental pressures is to further reduce sulfur levels in middle distillate products. This paper reports that the key to this is understanding reactivities of individual sulfur components in the feedstocks to be treated. The major sulfur species in middle distillates is aromatic compounds, predominantly benzothiophenes and dibenzothiophenes. However, in straight run materials, significant quantities of aliphatic sulfur compounds and further higher boiling benzothiophenes are also expected. Simultaneous simulated distillation with a gas chromatograph microwave-induced plasma atomic emission detector (SIMDIS/AED) is used for middle distillate characterization of sulfur distribution as a function of boiling point. Itmore » is able to discriminate between middle distillate feed types such as cracked and straight run gas oils, and has shown that similar feeds, with different total sulfur contents (unevenly distributed throughout a feedstock), have the same normalized sulfur distribution.« less
An uncertainty-based distributed fault detection mechanism for wireless sensor networks.
Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong
2014-04-25
Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio.
Small, Scott R; Hensley, Sarah E; Cook, Paige L; Stevens, Rebecca A; Rogge, Renee D; Meding, John B; Berend, Michael E
2017-02-01
Short-stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem-length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry and (2) if short-stemmed components exhibit primary stability on par with clinically successful designs. Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion was then compared with reduced lateral shoulder short stem and short tapered-wedge designs in cyclic axial and torsional testing. Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as a function of reduced stem length within the same component design. Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short-stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Use of multiple functional traits of protozoa for bioassessment of marine pollution.
Zhong, Xiaoxiao; Xu, Guangjian; Xu, Henglong
2017-06-30
Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States
NASA Astrophysics Data System (ADS)
Chatterjee, Arpita
2018-02-01
We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation (\\hat {a}) and creation (\\hat {a}^{\\dagger }) operators of the type (s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.
Wave drag as the objective function in transonic fighter wing optimization
NASA Technical Reports Server (NTRS)
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
Virtual detector theory for strong-field atomic ionization
NASA Astrophysics Data System (ADS)
Wang, Xu; Tian, Justin; Eberly, J. H.
2018-04-01
A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.
Simulation and optimization of faceted structure for illumination
NASA Astrophysics Data System (ADS)
Liu, Lihong; Engel, Thierry; Flury, Manuel
2016-04-01
The re-direction of incoherent light using a surface containing only facets with specific angular values is proposed. A new photometric approach is adopted since the size of each facet is large in comparison with the wavelength. A reflective configuration is employed to avoid the dispersion problems of materials. The irradiance distribution of the reflected beam is determined by the angular position of each facet. In order to obtain the specific irradiance distribution, the angular position of each facet is optimized using Zemax OpticStudio 15 software. A detector is placed in the direction which is perpendicular to the reflected beam. According to the incoherent irradiance distribution on the detector, a merit function needs to be defined to pilot the optimization process. The two dimensional angular position of each facet is defined as a variable which is optimized within a specified varying range. Because the merit function needs to be updated, a macro program is carried out to update this function within Zemax. In order to reduce the complexity of the manual operation, an automatic optimization approach is established. Zemax is in charge of performing the optimization task and sending back the irradiance data to Matlab for further analysis. Several simulation results are given for the verification of the optimization method. The simulation results are compared to those obtained with the LightTools software in order to verify our optimization method.
A new approach to simulating collisionless dark matter fluids
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom; Kaehler, Ralf
2013-09-01
Recently, we have shown how current cosmological N-body codes already follow the fine grained phase-space information of the dark matter fluid. Using a tetrahedral tessellation of the three-dimensional manifold that describes perfectly cold fluids in six-dimensional phase space, the phase-space distribution function can be followed throughout the simulation. This allows one to project the distribution function into configuration space to obtain highly accurate densities, velocities and velocity dispersions. Here, we exploit this technique to show first steps on how to devise an improved particle-mesh technique. At its heart, the new method thus relies on a piecewise linear approximation of the phase-space distribution function rather than the usual particle discretization. We use pseudo-particles that approximate the masses of the tetrahedral cells up to quadrupolar order as the locations for cloud-in-cell (CIC) deposit instead of the particle locations themselves as in standard CIC deposit. We demonstrate that this modification already gives much improved stability and more accurate dynamics of the collisionless dark matter fluid at high force and low mass resolution. We demonstrate the validity and advantages of this method with various test problems as well as hot/warm dark matter simulations which have been known to exhibit artificial fragmentation. This completely unphysical behaviour is much reduced in the new approach. The current limitations of our approach are discussed in detail and future improvements are outlined.
NASA Technical Reports Server (NTRS)
Chow, L. S. H.; Cheng, H. S.
1976-01-01
The Christensen theory of a stochastic model for hydrodynamic lubrication of rough surfaces was extended to elastohydrodynamic lubrication between two rollers. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the rms surface roughness, were obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure was shown to decrease slightly by considering longitudinal surface roughness. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely wide slider bearing. Using the flow balance concept, the perturbed Reynolds equation, was derived and solved for the perturbed pressure distribution. In addition, Cheng's numerical scheme was modified to incorporate a single two-dimensional elastic asperity on the stationary surface. The perturbed pressures obtained by these three different models were compared.
Distribution of Drug Molecules in Lipid Membranes: Neutron Diffraction and MD Simulations.
NASA Astrophysics Data System (ADS)
Boggara, Mohan; Mihailescu, Ella; Krishnamoorti, Ramanan
2009-03-01
Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. In this study, using neutron diffraction, the DOPC lipid bilayer structure (with and without drug) as well as the distribution of a model NSAID (Ibuprofen) as a function of its position along the membrane normal was obtained at sub-nanometer resolution. It was found that the bilayer thickness reduces as the drug is added. Further, the results are successfully compared with atomistic Molecular Dynamics simulations. Based on this successful comparison and motivated by atomic details from MD, quasi-molecular modeling of the lipid membrane is being carried out and will be presented. The above study is expected to provide an effective methodology to design drug delivery nanoparticles based on a variety of soft condensed matter such as lipids or polymers.
NASA Technical Reports Server (NTRS)
Ferri, A.; Roffe, G.
1975-01-01
A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.
Visualizing Time-Varying Distribution Data in EOS Application
NASA Technical Reports Server (NTRS)
Shen, Han-Wei
2004-01-01
In this research, we have developed several novel visualization methods for spatial probability density function data. Our focus has been on 2D spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We developed novel clustering algorithms as a means to reduce the information contained in these datasets; and investigated different ways of interpreting and clustering the data.
Nett Warrior: Initial Operational Test and Evaluation Report
2015-05-01
smartphone modified for military purposes. The version of the EUD used in the IOT&E was developed by Samsung and is referred to as the Note 2; the...a secure radio to the Soldier Radio Waveform (SRW) network and enables communicate among different echelons using voice, data, and Position Location...must function together if the data and information collected by Nett Warrior are to be distributed and used effectively. Reduce the number of
Five years of full-scale utility demonstration of pulsed energization of electric precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, S.A.; Jacobus, P.L.; Casey, P.J.
1996-11-01
In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less
The glia doctrine: addressing the role of glial cells in healthy brain ageing.
Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone
2013-10-01
Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications.
Cai, Zhixiang; Zhang, Hongbin; Wei, Yue; Cong, Fengsong
2017-06-12
Nanomaterials, including gold, silver, and magnetic nanoparticles, carbon, and mesoporous materials, possess unique physiochemical and biological properties, thus offering promising applications in biomedicine, such as in drug delivery, biosensing, molecular imaging, and therapy. Recent advances in nanotechnology have improved the features and properties of nanomaterials. However, these nanomaterials are potentially cytotoxic and demonstrate a lack of cell-specific function. Thus, they have been functionalized with various polymers, especially polysaccharides, to reduce toxicity and improve biocompatibility and stability under physiological conditions. In particular, nanomaterials have been widely functionalized with hyaluronan (HA) to enhance their distribution in specific cells and tissues. This review highlights the most recent advances on HA-functionalized nanomaterials for biotechnological and biomedical applications, as nanocarriers in drug delivery, contrast agents in molecular imaging, and diagnostic agents in cancer therapy. A critical evaluation of barriers affecting the use of HA-functionalized nanomaterials is also discussed, and insights into the outlook of the field are explored.
Sripada, Chandra Sekhar; Kessler, Daniel; Welsh, Robert; Angstadt, Michael; Liberzon, Israel; Phan, K Luan; Scott, Clayton
2013-11-01
Methylphenidate is a psychostimulant medication that produces improvements in functions associated with multiple neurocognitive systems. To investigate the potentially distributed effects of methylphenidate on the brain's intrinsic network architecture, we coupled resting state imaging with multivariate pattern classification. In a within-subject, double-blind, placebo-controlled, randomized, counterbalanced, cross-over design, 32 healthy human volunteers received either methylphenidate or placebo prior to two fMRI resting state scans separated by approximately one week. Resting state connectomes were generated by placing regions of interest at regular intervals throughout the brain, and these connectomes were submitted for support vector machine analysis. We found that methylphenidate produces a distributed, reliably detected, multivariate neural signature. Methylphenidate effects were evident across multiple resting state networks, especially visual, somatomotor, and default networks. Methylphenidate reduced coupling within visual and somatomotor networks. In addition, default network exhibited decoupling with several task positive networks, consistent with methylphenidate modulation of the competitive relationship between these networks. These results suggest that connectivity changes within and between large-scale networks are potentially involved in the mechanisms by which methylphenidate improves attention functioning. Copyright © 2013 Elsevier Inc. All rights reserved.
Limited distal organelles and synaptic function in extensive monoaminergic innervation.
Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2017-08-01
Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.
Thomas, Gregory W; Rael, Leonard T; Hausburg, Melissa; Frederick, Elizabeth D; Brody, Edward; Bar-Or, David
2016-09-30
It has long been appreciated that the microtubule network plays a critical role in endothelial cell function. Chemical inhibition of tubulin polymerization has been shown to drastically increases endothelial permeability via interactions with the actin cytoskeleton. Conversely, stabilization of microtubules significantly decreases vascular permeability. The purpose of this investigation was to determine if the low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) alters endothelial cell cytoskeletal dynamics and function. To investigate this, human retinal endothelial cells (HREC) were treated with LMWF5A and the acetylation of α-tubulin was determined by immunofluorescent staining and immunoblotting. In addition, permeability assays were performed to evaluate functional changes. We found that HREC treated with LMWF5A exhibit a rapid increase in the amount and distribution of acetylated α-tubulin. This was accompanied by a reduction in macromolecular permeability. Calcium depletion and inhibition of PI3-kinase reduced LMWF5A-induced acetylation while p38 MAPK inhibition potentiated this effect. These findings suggest that LMWF5A mediates changes in the microtubule network and reduces transcytosis in HREC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
Yu, Peng; Shaw, Chad A
2014-06-01
The Dirichlet-multinomial (DMN) distribution is a fundamental model for multicategory count data with overdispersion. This distribution has many uses in bioinformatics including applications to metagenomics data, transctriptomics and alternative splicing. The DMN distribution reduces to the multinomial distribution when the overdispersion parameter ψ is 0. Unfortunately, numerical computation of the DMN log-likelihood function by conventional methods results in instability in the neighborhood of [Formula: see text]. An alternative formulation circumvents this instability, but it leads to long runtimes that make it impractical for large count data common in bioinformatics. We have developed a new method for computation of the DMN log-likelihood to solve the instability problem without incurring long runtimes. The new approach is composed of a novel formula and an algorithm to extend its applicability. Our numerical experiments show that this new method both improves the accuracy of log-likelihood evaluation and the runtime by several orders of magnitude, especially in high-count data situations that are common in deep sequencing data. Using real metagenomic data, our method achieves manyfold runtime improvement. Our method increases the feasibility of using the DMN distribution to model many high-throughput problems in bioinformatics. We have included in our work an R package giving access to this method and a vingette applying this approach to metagenomic data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo
2017-11-01
Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.
Tellez, Jason A; Schmidt, Jason D
2011-08-20
The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma-gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne, MC; Archambault, L; CHU de Quebec, Quebec, Quebec
2014-06-15
Purpose: Intensity modulated radiation therapy always requires compromises between PTV coverage and organs at risk (OAR) sparing. We previously developed metrics that correlate doses to OAR to specific patients’ morphology using stochastic frontier analysis (SFA). Here, we aim to examine the validity of this approach using a large set of realistically simulated dosimetric and geometric data. Methods: SFA describes a set of treatment plans as an asymmetric distribution with respect to a frontier defining optimal plans. Eighty head and neck IMRT plans were used to establish a metric predicting the mean dose to parotids as a function of simple geometricmore » parameters. A database of 140 parotids was used as a basis distribution to simulate physically plausible data of geometry and dose. Distributions comprising between 20 and 5000 were simulated and the SFA was applied to obtain new frontiers, which were compared to the original frontier. Results: It was possible to simulate distributions consistent with the original dataset. Below 160 organs, the SFA could not always describe distributions as asymmetric: a few cases showed a Gaussian or half-Gaussian distribution. In order to converge to a stable solution, the number of organs in a distribution must ideally be above 100, but in many cases stable parameters could be achieved with as low as 60 samples of organ data. Mean RMS value of the error of new frontiers was significantly reduced when additional organs are used. Conclusion: The number of organs in a distribution showed to have an impact on the effectiveness of the model. It is always possible to obtain a frontier, but if the number of organs in the distribution is small (< 160), it may not represent de lowest dose achievable. These results will be used to determine number of cases necessary to adapt the model to other organs.« less
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark T.
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.
Stochastic Investigation of Natural Frequency for Functionally Graded Plates
NASA Astrophysics Data System (ADS)
Karsh, P. K.; Mukhopadhyay, T.; Dey, S.
2018-03-01
This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.
A new treatment for frostbite sequelae; Botulinum toxin
Norheim, Arne Johan; Mercer, James; Musial, Frauke; de Weerd, Louis
2017-01-01
ABSTRACT Frostbite sequelae are a relevant occupational injury outcome for soldiers in arctic environments. A Caucasian male soldier suffered frostbite to both hands during a military winter exercise. He developed sensory-motor disturbances and cold hypersensitivity. Angiography and thermography revealed impaired blood flow while Quantitative Sensory Testing indicated impaired somato-sensory nerve function. Two years after the initial event, he received an off label treatment with Botulinum toxin distributed around the neurovascular bundles of each finger. After treatment, cold sensitivity was reduced while blood flow and somato-sensory nerve function improved. The successful treatment enabled the soldier to successfully pursue his career in the army. PMID:28452678
NASA Astrophysics Data System (ADS)
Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.
We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.
The Control of Welding Deformation of the Three-Section Arm of Placing Boom of HB48B Pump Truck
NASA Astrophysics Data System (ADS)
Wang, Zhi-ling
2018-02-01
The concrete pump truck is the construction equipment of conveying concrete with self contained base plate and distributing boom. It integrates the pump transport mechanism of the concrete pump, and the hydraulic roll-folding type distributing boom used to distribute materials, and the supporting mechanism into the automobile chassis, and it is the concrete conveying equipment with high efficient and the functions of driving, pumping, and distributing materials. The placing boom of the concrete pump truck is the main force member in the pump parts with bearing great pressure, and its stress condition is complex. Taking the HB48B placing boom as an example, this paper analyzes and studies the deformation produced by placing boom of pump truck, and then obtains some main factors affecting the welding deformation. Through the riveter “joint” size, we controlled the process parameters, post-welding processing, and other aspects. These measures had some practical significance to prevent, control, and reduce the deformation of welding.
Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles.
Fernandez, Michael; Wilson, Hugh F; Barnard, Amanda S
2017-01-05
The magnitude and complexity of the structural and functional data available on nanomaterials requires data analytics, statistical analysis and information technology to drive discovery. We demonstrate that multivariate statistical analysis can recognise the sets of truly significant nanostructures and their most relevant properties in heterogeneous ensembles with different probability distributions. The prototypical and archetypal nanostructures of five virtual ensembles of Si quantum dots (SiQDs) with Boltzmann, frequency, normal, Poisson and random distributions are identified using clustering and archetypal analysis, where we find that their diversity is defined by size and shape, regardless of the type of distribution. At the complex hull of the SiQD ensembles, simple configuration archetypes can efficiently describe a large number of SiQDs, whereas more complex shapes are needed to represent the average ordering of the ensembles. This approach provides a route towards the characterisation of computationally intractable virtual nanomaterial spaces, which can convert big data into smart data, and significantly reduce the workload to simulate experimentally relevant virtual samples.
Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee
2017-11-28
A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower extremities. NCT02843828 .
Pre-coalescence scaling of graphene island sizes
NASA Astrophysics Data System (ADS)
Das, Shantanu; Drucker, Jeff
2018-05-01
Graphene grown using cold-wall chemical vapor deposition on Cu surfaces follows a classical nucleation and growth mechanism. Following nucleation at the earliest growth stages, isolated crystallites grow, impinge, and coalesce to form a continuous layer. During the pre-coalescence growth regime, the size distributions of graphene crystallites exhibit scaling of the form N(s) = θ/⟨s⟩2 g(s/⟨s⟩), where s is the island area, θ is the graphene coverage, ⟨s⟩ is the average island area, N is the areal density, and g(x) is a scaling function. For graphene grown on Cu surfaces that have been annealed in a reducing Ar + H2 ambient, excellent data collapse onto a universal Avrami scaling function is observed irrespective of graphene coverage, surface roughness, or Cu grain size. This result is interpreted to indicate attachment-limited growth and desorption of diffusing C-containing species. Graphene grown on Cu surfaces that were annealed in a non-reducing environment exhibits a qualitatively different scaling function, indicating diffusion-limited growth with a lower attachment barrier combined with C detachment from the graphene edges.
Blenau, W; Balfanz, S; Baumann, A
2000-03-01
Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.
Renormalizability of quasiparton distribution functions
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei; ...
2017-11-21
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
Renormalizability of quasiparton distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
Multi-objective optimal dispatch of distributed energy resources
NASA Astrophysics Data System (ADS)
Longe, Ayomide
This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.
NASA Astrophysics Data System (ADS)
Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn
2014-02-01
This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.
Cooley, Richard L.
1993-01-01
Calibration data (observed values corresponding to model-computed values of dependent variables) are incorporated into a general method of computing exact Scheffé-type confidence intervals analogous to the confidence intervals developed in part 1 (Cooley, this issue) for a function of parameters derived from a groundwater flow model. Parameter uncertainty is specified by a distribution of parameters conditioned on the calibration data. This distribution was obtained as a posterior distribution by applying Bayes' theorem to the hydrogeologically derived prior distribution of parameters from part 1 and a distribution of differences between the calibration data and corresponding model-computed dependent variables. Tests show that the new confidence intervals can be much smaller than the intervals of part 1 because the prior parameter variance-covariance structure is altered so that combinations of parameters that give poor model fit to the data are unlikely. The confidence intervals of part 1 and the new confidence intervals can be effectively employed in a sequential method of model construction whereby new information is used to reduce confidence interval widths at each stage.
The role of ground water in water-supply emergency planning
NASA Astrophysics Data System (ADS)
Reichard, E. G.; Li, Z.; Hermans, C.
2008-12-01
Catastrophic events, such as earthquakes or floods, can result in water-supply disruptions. Such disruptions can cause large economic losses and pose threats to public health. Water managers seek to develop cost- effective strategies for reducing these risks and ensuring water security. In many areas, ground water can play an important role in such water-supply emergency planning. We present a probabilistic framework for estimating the hydraulic impacts and associated costs of using ground water as a backup supply in the event of a disruption in imported-water deliveries. We also estimate the benefits of ground-water management strategies, such as artificial recharge, in terms of reduced costs of responding to water-supply emergencies. The magnitude of these benefits will depend on the expected severity and duration of the imported-water disruption, the functioning of the hydrogeologic system, and economic parameters. We apply the framework to address water-supply emergency planning in the Los Angeles area. A simulation model is used to generate response functions, which relate emergency ground-water pumpage to potential adverse effects, such as increased pumping lifts, subsidence, and seawater intrusion. These response functions are incorporated into a Monte Carlo analysis, along with cost coefficients and information on the probable severity of the disruption. Disruption severity is represented by a probability distribution, which can be elicited from water managers. In the example, the primary emergency-related benefits of artificial recharge are reductions in potential subsidence costs. The framework could be extended to consider additional engineering factors (e.g., well capacities and integrity of local distribution systems), institutional arrangements, and regulatory requirements.
Toth, Michael J; Callahan, Damien M; Miller, Mark S; Tourville, Timothy W; Hackett, Sarah B; Couch, Marion E; Dittus, Kim
2016-12-01
Cancer patients frequently experience weight loss, with negative consequences for functionality and prognosis. The extent to which muscle atrophy contributes to weight loss, however, is not clear, as few studies have directly measured muscle fiber morphology in cancer patients. Whole body and regional tissue composition were measured, along with the cross-sectional area (CSA) and fiber type of mechanically-isolated, single muscle fibers, in 19 cancer patients (8 with a history of weight loss, 11 weight-stable) and 15 non-diseased controls. Whole body fat mass was reduced in cancer patients with a history of weight loss, but no differences in whole body or leg fat-free mass were apparent. In contrast, reductions (∼20%) in single muscle fiber CSA were found in both slow-twitch, myosin heavy chain (MHC) I and fast-twitch, MHC IIA fibers in both weight-stable patients and those with a history of weight loss. Fiber type distribution showed a shift towards a fast-twitch phenotype compared to controls, which may preserve muscle function in cancer patients despite atrophy, as positive relationships were found between the fractions of hybrid MHC IIAX and I/IIA fibers and 6-min walk performance. Our results suggest that, although not apparent from whole body or regional measurements, cancer is associated with reduced skeletal muscle fiber size independent of weight loss history and a shift towards fast-twitch fibers, phenotypes that resemble adaptations to muscle disuse. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Birman, Victor; Byrd, Larry W.
2008-02-01
The interest to functionally graded materials (FGM) and structures has been generated by their potential advantages, including enhanced thermal properties, reduced or eliminated delamination concerns, a potential for an improved stress distribution, etc. Various aspects of the processing, design, micromechanics and analysis of FGM have been outlined in a number of reviews, mentioned here are [1-3]. In particular, functionally graded panels may be advantageous compared to their conventional counterparts in numerous applications. However, a typical FGM panel is asymmetric about its middle plane resulting in lower buckling loads and fundamental frequencies as well as higher stresses and deformations than the counterpart with a symmetric distribution of the same constituents. The reduced stiffness of FGM panels can be compensated by reinforcing them with stringers. For example, metallic stringers at the metal-rich surface of a FGM ceramic-metal panel may provide an efficient solution enabling a designer to increase both buckling loads as well as natural frequencies. The list of studies on optimization of FGM is extensive as could be anticipated for such tailored structural elements. For example, recent papers by Batra and his collaborators present optimization of the natural frequencies of a FGM plate through material grading [4] and through the graded fiber orientation [5]. The present paper is concerned with an optimum design of the system of stringers for a specified FGM panel. The task is to design the lightest system of stringers enabling the panel to achieve prescribed buckling loads or fundamental frequency.
Selective Attention in Pigeon Temporal Discrimination.
Subramaniam, Shrinidhi; Kyonka, Elizabeth
2017-07-27
Cues can vary in how informative they are about when specific outcomes, such as food availability, will occur. This study was an experimental investigation of the functional relation between cue informativeness and temporal discrimination in a peak-interval (PI) procedure. Each session consisted of fixed-interval (FI) 2-s and 4-s schedules of food and occasional, 12-s PI trials during which pecks had no programmed consequences. Across conditions, the phi (ϕ) correlation between key light color and FI schedule value was manipulated. Red and green key lights signaled the onset of either or both FI schedules. Different colors were either predictive (ϕ = 1), moderately predictive (ϕ = 0.2-0.8), or not predictive (ϕ = 0) of a specific FI schedule. This study tested the hypothesis that temporal discrimination is a function of the momentary conditional probability of food; that is, pigeons peck the most at either 2 s or 4 s when ϕ = 1 and peck at both intervals when ϕ < 1. Response distributions were bimodal Gaussian curves; distributions from red- and green-key PI trials converged when ϕ ≤ 0.6. Peak times estimated by summed Gaussian functions, averaged across conditions and pigeons, were 1.85 s and 3.87 s, however, pigeons did not always maximize the momentary probability of food. When key light color was highly correlated with FI schedules (ϕ ≥ 0.6), estimates of peak times indicated that temporal discrimination accuracy was reduced at the unlikely interval, but not the likely interval. The mechanism of this reduced temporal discrimination accuracy could be interpreted as an attentional process.
Potential energy distribution function and its application to the problem of evaporation
NASA Astrophysics Data System (ADS)
Gerasimov, D. N.; Yurin, E. I.
2017-10-01
Distribution function on potential energy in a strong correlated system can be calculated analytically. In an equilibrium system (for instance, in the bulk of the liquid) this distribution function depends only on temperature and mean potential energy, which can be found through the specific heat of vaporization. At the surface of the liquid this distribution function differs significantly, but its shape still satisfies analytical correlation. Distribution function on potential energy nearby the evaporation surface can be used instead of the work function of the atom of the liquid.
Unifying distribution functions: some lesser known distributions.
Moya-Cessa, J R; Moya-Cessa, H; Berriel-Valdos, L R; Aguilar-Loreto, O; Barberis-Blostein, P
2008-08-01
We show that there is a way to unify distribution functions that describe simultaneously a classical signal in space and (spatial) frequency and position and momentum for a quantum system. Probably the most well known of them is the Wigner distribution function. We show how to unify functions of the Cohen class, Rihaczek's complex energy function, and Husimi and Glauber-Sudarshan distribution functions. We do this by showing how they may be obtained from ordered forms of creation and annihilation operators and by obtaining them in terms of expectation values in different eigenbases.
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
NASA Astrophysics Data System (ADS)
He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming
2014-10-01
Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.
Self-consistent Langmuir waves in resonantly driven thermal plasmas
NASA Astrophysics Data System (ADS)
Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.
2007-12-01
The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.
Experience with an integrated control and monitoring system at the El Segundo generating station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papilla, R.P.; McKinley, J.H.; Blanco, M.A.
1992-01-01
This paper describes the EPRI/Southern California Edison (SCE) El Segundo Integrated Control and Monitoring System (ICMS) project and relates key project experiences. The ICMS project is a cost-shared effort between EPRI and SCE designed to address the issues involved with integrating power plant diagnostic and condition monitoring with control. A digital distributed control system retrofit for SCE's El Segundo Units 3 and 4 provided the case study. although many utilities have retrofitted power plant units with distributed control systems (DCS's) and have applied diagnostics and monitoring programs to improve operations and performance, the approach taken in this project, that is,more » integrating the monitoring function with the control function, is profoundly new and unique. Over the life of the El Segundo ICMS, SCE expects to realize savings form life optimization, increased operating flexibility, improved heat rate, reduced NO{sub x} emissions, and lower maintenance costs. These savings are expected to be significant over the life of the system.« less
Diagnosing entropy production and dissipation in fully kinetic plasmas
NASA Astrophysics Data System (ADS)
Juno, J.; TenBarge, J. M.; Hakim, A.; Dorland, W.
2017-12-01
Many plasma systems, from the core of a tokamak to the outer heliosphere, are weakly collisional and thus most accurately described by kinetic theory. The typical approach to solving the kinetic equation has been the particle-in-cell algorithm, which, while a powerful tool, introduces counting noise into the particle distribution function. The counting noise is particularly problematic when attempting to study grand challenge problems such as entropy production from phenomena like shocks and turbulence. In this poster, we present studies of entropy production and dissipation processes present in simple turbulence and shock calculations using the continuum Vlasov-Maxwell solver in the Gkeyll framework. Particular emphasis is placed on a novel diagnostic, the field-particle correlation, which is especially efficient at separating the secular energy transfer into its constituent components, for example, cyclotron damping, Landau damping, or transit-time damping, when applied to a noise-free distribution function. Using reduced systems such as completely transverse electromagnetic shocks, we also explore the signatures of perpendicular, non-resonant, energization mechanisms.
Sproule, Michael K. J.
2017-01-01
Neural heterogeneities are seen ubiquitously within the brain and greatly complicate classification efforts. Here we tested whether the responses of an anatomically well-characterized sensory neuron population to natural stimuli could be used for functional classification. To do so, we recorded from pyramidal cells within the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus in response to natural electro-communication stimuli as these cells can be anatomically classified into six different types. We then used two independent methodologies to functionally classify responses: one relies of reducing the dimensionality of a feature space while the other directly compares the responses themselves. Both methodologies gave rise to qualitatively similar results: while ON and OFF-type cells could easily be distinguished from one another, ELL pyramidal neuron responses are actually distributed along a continuum rather than forming distinct clusters due to heterogeneities. We discuss the implications of our results for neural coding and highlight some potential advantages. PMID:28384244
Goerg, Georg M.
2015-01-01
I present a parametric, bijective transformation to generate heavy tail versions of arbitrary random variables. The tail behavior of this heavy tail Lambert W × F X random variable depends on a tail parameter δ ≥ 0: for δ = 0, Y ≡ X, for δ > 0 Y has heavier tails than X. For X being Gaussian it reduces to Tukey's h distribution. The Lambert W function provides an explicit inverse transformation, which can thus remove heavy tails from observed data. It also provides closed-form expressions for the cumulative distribution (cdf) and probability density function (pdf). As a special case, these yield analytic expression for Tukey's h pdf and cdf. Parameters can be estimated by maximum likelihood and applications to S&P 500 log-returns demonstrate the usefulness of the presented methodology. The R package LambertW implements most of the introduced methodology and is publicly available on CRAN. PMID:26380372
Disk storage management for LHCb based on Data Popularity estimator
NASA Astrophysics Data System (ADS)
Hushchyn, Mikhail; Charpentier, Philippe; Ustyuzhanin, Andrey
2015-12-01
This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times for jobs using this data.
Censored data treatment using additional information in intelligent medical systems
NASA Astrophysics Data System (ADS)
Zenkova, Z. N.
2015-11-01
Statistical procedures are a very important and significant part of modern intelligent medical systems. They are used for proceeding, mining and analysis of different types of the data about patients and their diseases; help to make various decisions, regarding the diagnosis, treatment, medication or surgery, etc. In many cases the data can be censored or incomplete. It is a well-known fact that censorship considerably reduces the efficiency of statistical procedures. In this paper the author makes a brief review of the approaches which allow improvement of the procedures using additional information, and describes a modified estimation of an unknown cumulative distribution function involving additional information about a quantile which is known exactly. The additional information is used by applying a projection of a classical estimator to a set of estimators with certain properties. The Kaplan-Meier estimator is considered as an estimator of the unknown cumulative distribution function, the properties of the modified estimator are investigated for a case of a single right censorship by means of simulations.
NASA Technical Reports Server (NTRS)
Griner, D. B.
1979-01-01
The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.
Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data
NASA Astrophysics Data System (ADS)
Glüsenkamp, Thorsten
2018-06-01
Parameter estimation in HEP experiments often involves Monte Carlo simulation to model the experimental response function. A typical application are forward-folding likelihood analyses with re-weighting, or time-consuming minimization schemes with a new simulation set for each parameter value. Problematically, the finite size of such Monte Carlo samples carries intrinsic uncertainty that can lead to a substantial bias in parameter estimation if it is neglected and the sample size is small. We introduce a probabilistic treatment of this problem by replacing the usual likelihood functions with novel generalized probability distributions that incorporate the finite statistics via suitable marginalization. These new PDFs are analytic, and can be used to replace the Poisson, multinomial, and sample-based unbinned likelihoods, which covers many use cases in high-energy physics. In the limit of infinite statistics, they reduce to the respective standard probability distributions. In the general case of arbitrary Monte Carlo weights, the expressions involve the fourth Lauricella function FD, for which we find a new finite-sum representation in a certain parameter setting. The result also represents an exact form for Carlson's Dirichlet average Rn with n > 0, and thereby an efficient way to calculate the probability generating function of the Dirichlet-multinomial distribution, the extended divided difference of a monomial, or arbitrary moments of univariate B-splines. We demonstrate the bias reduction of our approach with a typical toy Monte Carlo problem, estimating the normalization of a peak in a falling energy spectrum, and compare the results with previously published methods from the literature.
Te Beest, D E; Paveley, N D; Shaw, M W; van den Bosch, F
2013-07-01
A method is presented to calculate economic optimum fungicide doses accounting for the risk aversion of growers responding to variability in disease severity between crops. Simple dose-response and disease-yield loss functions are used to estimate net disease-related costs (fungicide cost plus disease-induced yield loss) as a function of dose and untreated severity. With fairly general assumptions about the shapes of the probability distribution of disease severity and the other functions involved, we show that a choice of fungicide dose which minimizes net costs, on average, across seasons results in occasional large net costs caused by inadequate control in high disease seasons. This may be unacceptable to a grower with limited capital. A risk-averse grower can choose to reduce the size and frequency of such losses by applying a higher dose as insurance. For example, a grower may decide to accept "high-loss" years 1 year in 10 or 1 year in 20 (i.e., specifying a proportion of years in which disease severity and net costs will be above a specified level). Our analysis shows that taking into account disease severity variation and risk aversion will usually increase the dose applied by an economically rational grower. The analysis is illustrated with data on Septoria tritici leaf blotch of wheat caused by Mycosphaerella graminicola. Observations from untreated field plots at sites across England over 3 years were used to estimate the probability distribution of disease severities at mid-grain filling. In the absence of a fully reliable disease forecasting scheme, reducing the frequency of high-loss years requires substantially higher doses to be applied to all crops. Disease-resistant cultivars reduce both the optimal dose at all levels of risk and the disease-related costs at all doses.
Li, Chen; Requist, Ryan; Gross, E K U
2018-02-28
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = R c , where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical R c by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M -1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇ R χ(R) and ∇ R n(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
Liebergesell, Mario; Stahl, Ulrike; Freiberg, Martin; Welk, Erik; Kattge, Jens; Cornelissen, J. Hans C.; Peñuelas, Josep
2016-01-01
Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning. PMID:26848836
Integration of internet of things to reduce various losses of jatropha seed supply chain
NASA Astrophysics Data System (ADS)
Srinivasan, S. P.; Anitha, J.; Vijayakumar, R.
2017-06-01
The evolution of bio fuel supply chain has revolutionized the organization by restructuring the practices of the traditional management. A flexible distribution system is becoming the need of our society. The main focus of this paper is to integrate IoT technologies into a cultivation, extraction and management of Jatropha seed. It was noticed that major set-back of farmers due to poor supply chain integration. The various losses like information about the Jatropha seed availability, the location of esterification plants and distribution details are identified through this IoT. This enables the farmers to reorganize the land resources, yield estimation and distribution functions. The wastage and the scarcity of energy can be tackled by using the smart phone technologies. This paper is proposes a conceptual frame work on various losses involved in the supply chain of Jatropha seed.
NASA Astrophysics Data System (ADS)
Wu, Yunna; Chen, Kaifeng; Xu, Hu; Xu, Chuanbo; Zhang, Haobo; Yang, Meng
2017-12-01
There is insufficient research relating to offshore wind farm site selection in China. The current methods for site selection have some defects. First, information loss is caused by two aspects: the implicit assumption that the probability distribution on the interval number is uniform; and ignoring the value of decision makers' (DMs') common opinion on the criteria information evaluation. Secondly, the difference in DMs' utility function has failed to receive attention. An innovative method is proposed in this article to solve these drawbacks. First, a new form of interval number and its weighted operator are proposed to reflect the uncertainty and reduce information loss. Secondly, a new stochastic dominance degree is proposed to quantify the interval number with a probability distribution. Thirdly, a two-stage method integrating the weighted operator with stochastic dominance degree is proposed to evaluate the alternatives. Finally, a case from China proves the effectiveness of this method.
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
Wormholes and the cosmological constant problem.
NASA Astrophysics Data System (ADS)
Klebanov, I.
The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.
An Uncertainty-Based Distributed Fault Detection Mechanism for Wireless Sensor Networks
Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong
2014-01-01
Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio. PMID:24776937
Optimal allocation of testing resources for statistical simulations
NASA Astrophysics Data System (ADS)
Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick
2015-07-01
Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.
NASA Astrophysics Data System (ADS)
Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong
2017-02-01
Minocycline is an antibiotic regularly prescribed to treat acne vulgaris. The only commercially available minocycline comes in an oral dosage form, which often results in systemic adverse effects. A topical minocycline composition (BPX-01) was developed to provide localized and targeted delivery to the epidermis and pilosebaceous unit where acne-related bacteria, Propionibacterium acnes (P. acnes), reside. As minocycline is a known fluorophore, fluorescence microscopy was performed to investigate its potential use in visualizing minocycline distribution within tissues. BPX-01 with various concentrations of minocycline, was applied topically to freshly excised human facial skin specimens. Spatial distribution of minocycline and its fluorescence intensity within the stratum corneum, epidermis, dermis, and pilosebaceous unit were assessed. The resulting fluorescence intensity data as a function of minocycline concentration may indicate clinically relevant therapeutic doses of topical BPX-01 needed to kill P. acnes and reduce inflammation for successful clinical outcomes.
Borri, Marco; Schmidt, Maria A; Powell, Ceri; Koh, Dow-Mu; Riddell, Angela M; Partridge, Mike; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L; Leach, Martin O
2015-01-01
To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters) of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment. The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4). Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters. The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4), determined with cluster validation, produced the best separation between reducing and non-reducing clusters. The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.
Coenzyme Q supplementation in pulmonary arterial hypertension
Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.
2014-01-01
Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165
Dose to mass for evaluation and optimization of lung cancer radiation therapy.
Tyler Watkins, William; Moore, Joseph A; Hugo, Geoffrey D; Siebers, Jeffrey V
2017-11-01
To evaluate potential organ at risk dose-sparing by using dose-mass-histogram (DMH) objective functions compared with dose-volume-histogram (DVH) objective functions. Treatment plans were retrospectively optimized for 10 locally advanced non-small cell lung cancer patients based on DVH and DMH objectives. DMH-objectives were the same as DVH objectives, but with mass replacing volume. Plans were normalized to dose to 95% of the PTV volume (PTV-D95v) or mass (PTV-D95m). For a given optimized dose, DVH and DMH were intercompared to ascertain dose-to-volume vs. dose-to-mass differences. Additionally, the optimized doses were intercompared using DVH and DMH metrics to ascertain differences in optimized plans. Mean dose to volume, D v ‾, mean dose to mass, D M ‾, and fluence maps were intercompared. For a given dose distribution, DVH and DMH differ by >5% in heterogeneous structures. In homogeneous structures including heart and spinal cord, DVH and DMH are nearly equivalent. At fixed PTV-D95v, DMH-optimization did not significantly reduce dose to OARs but reduced PTV-D v ‾ by 0.20±0.2Gy (p=0.02) and PTV-D M ‾ by 0.23±0.3Gy (p=0.02). Plans normalized to PTV-D95m also result in minor PTV dose reductions and esophageal dose sparing (D v ‾ reduced 0.45±0.5Gy, p=0.02 and D M ‾ reduced 0.44±0.5Gy, p=0.02) compared to DVH-optimized plans. Optimized fluence map comparisons indicate that DMH optimization reduces dose in the periphery of lung PTVs. DVH- and DMH-dose indices differ by >5% in lung and lung target volumes for fixed dose distributions, but optimizing DMH did not reduce dose to OARs. The primary difference observed in DVH- and DMH-optimized plans were variations in fluence to the periphery of lung target PTVs, where low density lung surrounds tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Beckman, Noelle G.
2013-01-01
Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions. PMID:23843965
Customized Body Mapping to Facilitate the Ergonomic Design of Sportswear.
Cao, Mingliang; Li, Yi; Guo, Yueping; Yao, Lei; Pan, Zhigeng
2016-01-01
A successful high-performance sportswear design that considers human factors should result in a significant increase in thermal comfort and reduce energy loss. The authors describe a body-mapping approach that facilitates the effective ergonomic design of sportswear. Their general framework can be customized based on the functional requirements of various sports and sportswear, the desired combination and selection of mapping areas for the human body, and customized quantitative data distribution of target physiological indicators.
Design evolution of a low shock release nut
NASA Technical Reports Server (NTRS)
Otth, D. H.; Gordon, W.
1976-01-01
Design improvements and detailed functional analyses are reviewed to trace the development of a pyroactuated release device with segmented thread design from its intermediate design into one that reduces the levels of shock spectra generated during its operation by 50%. Comparisons of shock output and internal load distribution are presented, along with descriptions of mechanical operation for both designs. Results also show the potential areas where design development activity can gain further progress in lowering actuation shock levels.
Coherent optical monolithic phased-array antenna steering system
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1994-01-01
An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.
Nitrogen Incorporation Effects On Site-Controlled Quantum Dots
NASA Astrophysics Data System (ADS)
Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Pelucchi, E.
2011-12-01
We report here on the optical properties of site-controlled diluted nitride In0.25Ga0.75As1-xNx quantum dots grown by metalorganic vapour phase epitaxy (MOVPE). We show photoluminescence energy shift as a function of nitrogen precursor U-dimethylhydrazine, with a maximum value of 35 meV achieved. Optical features, substantially different from the counterpart nitrogen-free dots, are presented: an antibinding biexciton, a large distribution of lifetimes, significantly reduced fine structure splitting.
Impact of Alloy Fluctuations on Radiative and Auger Recombination in InGaN Quantum Wells
NASA Astrophysics Data System (ADS)
Jones, Christina; Teng, Chu-Hsiang; Yan, Qimin; Ku, Pei-Cheng; Kioupakis, Emmanouil
Light-emitting diodes (LEDs) based on indium gallium nitride (InGaN) are important for efficient solid-state lighting (2014 Nobel Prize in Physics). Despite its many successes, InGaN suffers from issues that reduce the efficiency of devices at high power, such as the green gap and efficiency droop. The origin of the droop has been attributed to Auger recombination, mediated by carrier scattering due to phonons and alloy disorder. Additionally, InGaN exhibits atomic-scale composition fluctuations that localize carriers and may affect the efficiency. In this work, we study the effect of local composition fluctuations on the radiative recombination rate, Auger recombination rate, and efficiency of InGaN/GaN quantum wells. We apply k.p calculations to simulate band edges and wave functions of quantum wells with fluctuating alloy distributions based on atom probe tomography data, and we evaluate double and triple overlaps of electron and hole wave functions. We compare results for quantum wells with fluctuating alloy distributions to those with uniform alloy compositions and to published work. Our results demonstrate that alloy-composition fluctuations aggravate the efficiency-droop and green-gap problems and further reduce LED efficiency at high power. We acknowledge the NSF CAREER award DMR-1254314, the NSF Graduate Research Fellowship Program DGE-1256260, and the DOE NERSC facility (DE-AC02-05CH11231).
Rinaldi, Mauro A.; Patel, Ashish B.; Park, Jaeseok; Lee, Koeun; Strader, Lucia C.; Bartel, Bonnie
2016-01-01
Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana. This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development. PMID:27605050
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Gordeeva, N. M.
2017-09-01
We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
Olmez, Hülya Kaptan; Aran, Necla
2005-02-01
Mathematical models describing the growth kinetic parameters (lag phase duration and growth rate) of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations were obtained in this study. In order to get a residual distribution closer to a normal distribution, the natural logarithm of the growth kinetic parameters were used in modeling. For reasons of parsimony, the polynomial models were reduced to contain only the coefficients significant at a level of p
NASA Astrophysics Data System (ADS)
Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.
2015-03-01
Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.
Li, Q; He, Y L; Wang, Y; Tao, W Q
2007-11-01
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium
NASA Technical Reports Server (NTRS)
Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter
2013-01-01
This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.
Acute spinal cord injury changes the disposition of some, but not all drugs given intravenously.
García-López, P; Martínez-Cruz, A; Guízar-Sahagún, G; Castañeda-Hernández, G
2007-09-01
Experimental laboratory investigations in paraplegic rats. In order to understand why acute spinal cord injury (SCI) changes the disposition of some, but not all drugs given intravenously (i.v.), pharmacokinetic parameters of drugs with different pharmacological properties were evaluated to determine the influence of SCI on physiological processes such as distribution, metabolism and excretion. Mexico City, Mexico. Rats were subjected to severe SCI (contusion) at T-9 level; pharmacokinetic studies of phenacetin, naproxen or gentamicin were performed 24 h after. These drugs were not chosen as markers because of their therapeutic properties, but because of their pharmacokinetic characteristics. Additional studies including plasma proteins, liver and renal function tests, and micro-vascular hepatic blood flow, were also performed at the same time after injury. Acute SCI significantly reduced distribution of drugs with intermediate and low binding to plasma proteins (phenacetin 30% and gentamicin 10%, respectively), but distribution did not change when naproxen - a drug highly bound to plasma proteins (99%) - was used, in absence of changes in plasma proteins. Metabolism was significantly altered only for a drug with liver blood flow - limited clearance (phenacetin) and not for a drug with liver capacity-limited clearance (naproxen). The liver function test did not change, whereas the hepatic micro-vascular blood flow significantly decreased after SCI. Renal excretion, evaluated by gentamicin clearance, was significantly reduced as a consequence of SCI, without significant changes in serum creatinine. Changes in drug disposition associated to acute SCI are complex and generalization is not possible. They are highly dependent on each drug properties as well as on the altered physiological processes. Results motivate the quest for strategies to improve disposition of selective i.v. drugs during spinal shock, in an effort to avoid therapeutic failure.
Brazhe, Nadezda A.; Treiman, Marek; Brazhe, Alexey R.; Find, Ninett L.; Maksimov, Georgy V.; Sosnovtseva, Olga V.
2012-01-01
This paper presents a nonivasive approach to study redox state of reduced cytochromes , and of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes , and . The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes , and in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes , and in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data. PMID:22957018
Evaluation of Apache Hadoop for parallel data analysis with ROOT
NASA Astrophysics Data System (ADS)
Lehrack, S.; Duckeck, G.; Ebke, J.
2014-06-01
The Apache Hadoop software is a Java based framework for distributed processing of large data sets across clusters of computers, using the Hadoop file system (HDFS) for data storage and backup and MapReduce as a processing platform. Hadoop is primarily designed for processing large textual data sets which can be processed in arbitrary chunks, and must be adapted to the use case of processing binary data files which cannot be split automatically. However, Hadoop offers attractive features in terms of fault tolerance, task supervision and control, multi-user functionality and job management. For this reason, we evaluated Apache Hadoop as an alternative approach to PROOF for ROOT data analysis. Two alternatives in distributing analysis data were discussed: either the data was stored in HDFS and processed with MapReduce, or the data was accessed via a standard Grid storage system (dCache Tier-2) and MapReduce was used only as execution back-end. The focus in the measurements were on the one hand to safely store analysis data on HDFS with reasonable data rates and on the other hand to process data fast and reliably with MapReduce. In the evaluation of the HDFS, read/write data rates from local Hadoop cluster have been measured and compared to standard data rates from the local NFS installation. In the evaluation of MapReduce, realistic ROOT analyses have been used and event rates have been compared to PROOF.
Boyd, Charlotte; Castillo, Ramiro; Hunt, George L; Punt, André E; VanBlaricom, Glenn R; Weimerskirch, Henri; Bertrand, Sophie
2015-11-01
Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey. We analysed contemporaneous data on the diving locations of two seabird species, the shallow-diving Peruvian Booby (Sula variegata) and deeper diving Guanay Cormorant (Phalacrocorax bougainvilliorum), and the abundance and depth distribution of their main prey, Peruvian anchoveta (Engraulis ringens). Based on this unique data set, we developed resource selection functions to test the hypothesis that the probability of seabird diving behaviour at a given location is a function of the relative abundance of prey in the upper water column. For both species, we show that the probability of diving behaviour is mostly explained by the distribution of prey at shallow depths. While the probability of diving behaviour increases sharply with prey abundance at relatively low levels of abundance, support for including abundance in addition to the depth distribution of prey is weak, suggesting that prey abundance was not a major factor determining the location of diving behaviour during the study period. The study thus highlights the importance of the depth distribution of prey for two species of seabird with different diving capabilities. The results complement previous research that points towards the importance of oceanographic processes that enhance the accessibility of prey to seabirds. The implications are that locations where prey is predictably found at accessible depths may be more important for surface foragers, such as seabirds, than locations where prey is predictably abundant. Analysis of the relative importance of abundance and accessibility is essential for the design and evaluation of effective management responses to reduced prey availability for seabirds and other top predators in marine systems. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Stripe nonuniformity correction for infrared imaging system based on single image optimization
NASA Astrophysics Data System (ADS)
Hua, Weiping; Zhao, Jufeng; Cui, Guangmang; Gong, Xiaoli; Ge, Peng; Zhang, Jiang; Xu, Zhihai
2018-06-01
Infrared imaging is often disturbed by stripe nonuniformity noise. Scene-based correction method can effectively reduce the impact of stripe noise. In this paper, a stripe nonuniformity correction method based on differential constraint is proposed. Firstly, the gray distribution of stripe nonuniformity is analyzed and the penalty function is constructed by the difference of horizontal gradient and vertical gradient. With the weight function, the penalty function is optimized to obtain the corrected image. Comparing with other single-frame approaches, experiments show that the proposed method performs better in both subjective and objective analysis, and does less damage to edge and detail. Meanwhile, the proposed method runs faster. We have also discussed the differences between the proposed idea and multi-frame methods. Our method is finally well applied in hardware system.
The Role of Subsurface Oxygen on Cu Surfaces for CO 2 Electrochemical Reduction
Fields, Meredith; Hong, Xin; Norskov, Jens K.; ...
2018-06-12
Under ambient conditions, copper with oxygen near the surface displays strengthened CO 2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO 2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity ofmore » crystalline Cu.« less
The Role of Subsurface Oxygen on Cu Surfaces for CO 2 Electrochemical Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Meredith; Hong, Xin; Norskov, Jens K.
Under ambient conditions, copper with oxygen near the surface displays strengthened CO 2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO 2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity ofmore » crystalline Cu.« less
Monte Carlo modeling of single-molecule cytoplasmic dynein.
Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C
2005-08-23
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.
Modeling the resilience of critical infrastructure: the role of network dependencies.
Guidotti, Roberto; Chmielewski, Hana; Unnikrishnan, Vipin; Gardoni, Paolo; McAllister, Therese; van de Lindt, John
2016-01-01
Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities' well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure.
Sykes, Steven E.
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis. PMID:23125353
Sykes, Steven E; Hajduk, Stephen L
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.
Modeling the resilience of critical infrastructure: the role of network dependencies
Guidotti, Roberto; Chmielewski, Hana; Unnikrishnan, Vipin; Gardoni, Paolo; McAllister, Therese; van de Lindt, John
2017-01-01
Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities’ well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure. PMID:28825037
Functional approach to high-throughput plant growth analysis
2013-01-01
Method Taking advantage of the current rapid development in imaging systems and computer vision algorithms, we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis, which produces better understanding of energy distribution in regards of the balance between growth and defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from top-view images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a nonlinear growth model is applied to generate growth curves, followed by functional data analysis. Results Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach, HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under fluctuating light conditions to repress leaf growth. Availability HPGA is available at http://www.msu.edu/~jinchen/HPGA. PMID:24565437
Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields
NASA Astrophysics Data System (ADS)
Catto, P. J.; Lee, J.; Ram, A. K.
2017-10-01
The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.
NASA Astrophysics Data System (ADS)
Akatsuka, Hiroshi; Tanaka, Yoshinori
2016-09-01
We reconsider electron temperature of non-equilibrium plasmas on the basis of thermodynamics and statistical physics. Following our previous study on the oxygen plasma in GEC 2015, we discuss the common issue for the nitrogen plasma. First, we solve the Boltzmann equation to obtain the electron energy distribution function (EEDF) F(ɛ) of the nitrogen plasma as a function of the reduced electric field E / N . We also simultaneously solve the chemical kinetic equations of some essential excite species of nitrogen molecules and atoms, including vibrational distribution function (VDF). Next, we calculate the electron mean energy as U = < ɛ > =∫0∞ɛF(ɛ) dɛ and entropy S = - k∫0∞F(ɛ) ln [ F(ɛ) ] dɛ for each value of E / N . Then, we can obtain the electron temperature as Testat =[ ∂S / ∂U ] - 1 . After that, we discuss the difference between Testat and the kinetic temperature Tekin ≡(2 / 3) < ɛ > , as well as the temperature given as a slope of the calculated EEDF for each value of E / N . We found Testat is close to the slope at ɛ 4 eV in the EEPF.
Muntifering, Brittany; Blair, Sarah Jane; Gong, Cajer; ...
2015-12-30
Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiation-induced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. Furthermore, these mechanisms suggest limited ability to reduce swelling, despite the stabilitymore » of the nanostructure.« less
Collisionless distribution function for the relativistic force-free Harris sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, C. R.; Neukirch, T.
A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less
Phase space effects on fast ion distribution function modeling in tokamaks
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.
2016-05-01
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.
Impact of cholesterol on voids in phospholipid membranes
NASA Astrophysics Data System (ADS)
Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo
2004-12-01
Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.
Phase space effects on fast ion distribution function modeling in tokamaks
White, R. B. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkova, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, N. N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-06-01
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.
Scheduling policies of intelligent sensors and sensor/actuators in flexible structures
NASA Astrophysics Data System (ADS)
Demetriou, Michael A.; Potami, Raffaele
2006-03-01
In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.
Mondrinos, Mark J.; Knight, Linda C.; Kennedy, Paul A.; Wu, Jichuan; Kauffman, Matthew; Baker, Sandy T.; Wolfson, Marla R.
2015-01-01
Sepsis and sepsis-induced lung injury remain a leading cause of death in intensive care units. We identified protein kinase C-δ (PKCδ) as a critical regulator of the acute inflammatory response and demonstrated that PKCδ inhibition was lung-protective in a rodent sepsis model, suggesting that targeting PKCδ is a potential strategy for preserving pulmonary function in the setting of indirect lung injury. In this study, whole-body organ biodistribution and pulmonary cellular distribution of a transactivator of transcription (TAT)–conjugated PKCδ inhibitory peptide (PKCδ-TAT) was determined following intratracheal (IT) delivery in control and septic [cecal ligation and puncture (CLP)] rats to ascertain the impact of disease pathology on biodistribution and efficacy. There was negligible lung uptake of radiolabeled peptide upon intravenous delivery [<1% initial dose (ID)], whereas IT administration resulted in lung retention of >65% ID with minimal uptake in liver or kidney (<2% ID). IT delivery of a fluorescent-tagged (tetramethylrhodamine-PKCδ-TAT) peptide demonstrated uniform spatial distribution and cellular uptake throughout the peripheral lung. IT delivery of PKCδ-TAT at the time of CLP surgery significantly reduced PKCδ activation (tyrosine phosphorylation, nuclear translocation and cleavage) and acute lung inflammation, resulting in improved lung function and gas exchange. Importantly, peptide efficacy was similar when delivered at 4 hours post-CLP, demonstrating therapeutic relevance. Conversely, spatial lung distribution and efficacy were significantly impaired at 8 hours post-CLP, which corresponded to marked histopathological progression of lung injury. These studies establish a functional connection between peptide spatial distribution, inflammatory histopathology in the lung, and efficacy of this anti-inflammatory peptide. PMID:26243739
Determination of material distribution in heading process of small bimetallic bar
NASA Astrophysics Data System (ADS)
Presz, Wojciech; Cacko, Robert
2018-05-01
The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
The "Let's Get Alarmed!" initiative: a smoke alarm giveaway programme.
DiGuiseppi, C; Slater, S; Roberts, I; Adams, L; Sculpher, M; Wade, A; McCarthy, M
1999-09-01
To reduce fires and fire related injuries by increasing the prevalence of functioning smoke alarms in high risk households. The programme was delivered in an inner London area with above average material deprivation and below average smoke alarm ownership. The target population included low income and rental households and households with elderly persons or young children. Forty wards, averaging 4000 households each, were randomised to intervention or control status. Free smoke alarms and fire safety information were distributed in intervention wards by community groups and workers as part of routine activities and by paid workers who visited target neighbourhoods. Recipients provided data on household age distribution and housing tenure. Programme costs were documented from a societal perspective. Data are being collected on smoke alarm ownership and function, and on fires and related injuries and their costs. Community and paid workers distributed 20,050 smoke alarms, potentially sufficient to increase smoke alarm ownership by 50% in intervention wards. Compared with the total study population, recipients included greater proportions of low income and rental households and households including children under 5 years or adults aged 65 and older. Total programme costs were 145,087 Pounds. It is possible to implement a large scale smoke alarm giveaway programme targeted to high risk households in a densely populated, multicultural, materially deprived community. The programme's effects on the prevalence of installed and functioning alarms and the incidence of fires and fire related injuries, and its cost effectiveness, are being evaluated as a randomized controlled trial.
Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L
2013-01-01
Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a-priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency. PMID:23473798
Ambient Noise Interferometry and Surface Wave Array Tomography: Promises and Problems
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Yao, H.; de Hoop, M. V.; Campman, X.; Solna, K.
2008-12-01
In the late 1990ies most seismologists would have frowned at the possibility of doing high-resolution surface wave tomography with noise instead of with signal associated with ballistic source-receiver propagation. Some may still do, but surface wave tomography with Green's functions estimated through ambient noise interferometry ('sourceless tomography') has transformed from a curiosity into one of the (almost) standard tools for analysis of data from dense seismograph arrays. Indeed, spectacular applications of ambient noise surface wave tomography have recently been published. For example, application to data from arrays in SE Tibet revealed structures in the crust beneath the Tibetan plateau that could not be resolved by traditional tomography (Yao et al., GJI, 2006, 2008). While the approach is conceptually simple, in application the proverbial devil is in the detail. Full reconstruction of the Green's function requires that the wavefields used are diffusive and that ambient noise energy is evenly distributed in the spatial dimensions of interest. In the field, these conditions are not usually met, and (frequency dependent) non-uniformity of the noise sources may lead to incomplete reconstruction of the Green's function. Furthermore, ambient noise distributions can be time-dependent, and seasonal variations have been documented. Naive use of empirical Green's functions may produce (unknown) bias in the tomographic models. The degrading effect on EGFs of the directionality of noise distribution forms particular challenges for applications beyond isotropic surface wave inversions, such as inversions for (azimuthal) anisotropy and attempts to use higher modes (or body waves). Incomplete Green's function reconstruction can (probably) not be prevented, but it may be possible to reduce the problem and - at least - understand the degree of incomplete reconstruction and prevent it from degrading the tomographic model. We will present examples of Rayleigh wave inversions and discuss strategies to mitigate effects of incomplete Green's function reconstruction on tomographic images.
Expression of the degree of polarization based on the geometrical optics pBRDF model.
Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng
2017-02-01
An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1989-01-01
It is possible to calculate expectation values and transition probabilities from the Wigner phase-space distribution function. Based on the canonical transformation properties of the Wigner function, an algorithm is developed for calculating these quantities in quantum optics for coherent and squeezed states. It is shown that the expectation value of a dynamical variable can be written in terms of its vacuum expectation value of the canonically transformed variable. Parallel-axis theorems are established for the photon number and its variant. It is also shown that the transition probability between two squeezed states can be reduced to that of the transition from one squeezed state to vacuum.
Smart Networked Elements in Support of ISHM
NASA Technical Reports Server (NTRS)
Oostdyk, Rebecca; Mata, Carlos; Perotti, Jose M.
2008-01-01
At the core of ISHM is the ability to extract information and knowledge from raw data. Conventional data acquisition systems sample and convert physical measurements to engineering units, which higher-level systems use to derive health and information about processes and systems. Although health management is essential at the top level, there are considerable advantages to implementing health-related functions at the sensor level. The distribution of processing to lower levels reduces bandwidth requirements, enhances data fusion, and improves the resolution for detection and isolation of failures in a system, subsystem, component, or process. The Smart Networked Element (SNE) has been developed to implement intelligent functions and algorithms at the sensor level in support of ISHM.
NASA Technical Reports Server (NTRS)
Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.
1986-01-01
The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.
Optimal feedback control of turbulent channel flow
NASA Technical Reports Server (NTRS)
Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz
1993-01-01
Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.
Niskanen, Ilpo; Peiponen, Kai-Erik; Räty, Jukka
2010-05-01
Using a multifunction spectrophotometer, the refractive index of a pigment can be estimated by measuring the backscattering of light from the pigment in immersion liquids having slightly different refractive indices. A simple theoretical Gaussian function model related to the optical path distribution is introduced that makes it possible to describe quantitatively the backscattering signal from transparent pigments using a set of only a few immersion liquids. With the aid of the data fitting by a Gaussian function, the measurement time of the refractive index of the pigment can be reduced. The backscattering measurement technique is suggested to be useful in industrial measurement environments of pigments.
Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-02-01
Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Optimization of removal function in computer controlled optical surfacing
NASA Astrophysics Data System (ADS)
Chen, Xi; Guo, Peiji; Ren, Jianfeng
2010-10-01
The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high-frequency error.
Microarray-based analysis of survival of soil microbial community during ozonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Van Nostrand, Joy D.; He, Zhili
A 15 h ozonation was performed on bioremediated soil to remove recalcitrant residual oil. To monitor the survival of indigenous microorganisms in the soil during in-situ chemical oxidation(ISCO) culturing and a functional genearray, GeoChip, was used to examine the functional genes and structure of the microbial community during ozonation (0h, 2h, 4h, 6h, 10hand15h). Breakthrough ozonation decreased the population of cultivable heterotrophic bacteria by about 3 orders of magnitude. The total functional gene abundance and diversity decreased during ozonation, as the number of functional genes was reduced by 48percent after 15 h. However, functional genes were evenly distributed during ozonationmore » as judged by the Shannon-Weaver Evenness index. A sharp decrease in gene number was observed in the first 6 h of ozonation followed by a slower decrease in the next 9 h, which was consistent with microbial populations measured by a culture based method. Functional genes involved in carbon, nitrogen, phosphors and sulfur cycling, metal resistance and organic remediation were detected in all samples. Though the pattern of gene categories detected was similar for all time points, hierarchica lcluster of all functional genes and major functional categories all showed a time-serial pattern. Bacteria, archaea and fungi decreased by 96.1percent, 95.1percent and 91.3percent, respectively, after 15 h ozonation. Delta proteobacteria, which were reduced by 94.3percent, showed the highest resistance to ozonation while Actinobacteria, reduced by 96.3percent, showed the lowest resistance. Microorganisms similar to Rhodothermus, Obesumbacterium, Staphylothermus, Gluconobacter, and Enterococcus were dominant at all time points. Functional genes related to petroleum degradation decreased 1~;;2 orders of magnitude. Most of the key functional genes were still detected after ozonation, allowing a rapid recovery of the microbial community after ozonation. While ozone had a large impact on the indigenous soil microorganisms, a fraction of the key functional gene-containing microorganisms survived during ozonation and kept the community functional.« less
2011-01-01
Background Organizational improvement of neonatal intensive care units requires strict monitoring of preterm infants, including routine assessment of physiological functions of the gastrointestinal system and optimized procedures for the definition of appropriate discharge timing. Methods We conducted a prospective study on the effect of osteopathic manipulative treatment in a cohort of N = 350 consecutive premature infants admitted to a neonatal intensive care unit without any major complication between 2005 and 2008. In addition to ordinary care, N = 162 subjects received osteopathic treatment. Endpoints of the study were differences between study and control groups in terms of excessive length of stay and gastrointestinal symptoms, defined as the upper quartiles in the distribution of the overall population. Statistical analysis was based on crude and adjusted odds ratios from multivariate logistic regression. Results Baseline characteristics were evenly distributed across treated/control groups, except for the rate of infants unable to be oral fed at admission, significantly higher among those undergoing osteopathic care (p = .03). Osteopathic treatment was significantly associated with a reduced risk of an average daily occurrence of gut symptoms per subject above .44 (OR = 0.45; 0.26-0.74). Gestational age lower or equal to 32 weeks, birth weight lower or equal to 1700 grams and no milk consumption at admission were associated with higher rates of length of stay in the unit of at least 28 days, while osteopathic treatment significantly reduced such risk (OR = 0.22;0.09-0.51). Conclusions In a population of premature infants, osteopathic manipulative treatment showed to reduce a high occurrence of gastrointestinal symptoms and an excessive length of stay in the NICU. Randomized control studies are needed to generalize these results to a broad population of high risk newborns. PMID:21711535
Chauvet, Sylvain; Boonen, Marielle; Chevallet, Mireille; Jarvis, Louis; Abebe, Addis; Benharouga, Mohamed; Faller, Peter; Jadot, Michel; Bouron, Alexandre
2015-11-01
The Na(+)/K(+)-ATPase interacts with the non-selective cation channels TRPC6 but the functional consequences of this association are unknown. Experiments performed with HEK cells over-expressing TRPC6 channels showed that inhibiting the activity of the Na(+)/K(+)-ATPase with ouabain reduced the amount of TRPC6 proteins and depressed Ca(2+) entry through TRPC6. This effect, not mimicked by membrane depolarization with KCl, was abolished by sucrose and bafilomycin-A, and was partially sensitive to the intracellular Ca(2+) chelator BAPTA/AM. Biotinylation and subcellular fractionation experiments showed that ouabain caused a multifaceted redistribution of TRPC6 to the plasma membrane and to an endo/lysosomal compartment where they were degraded. The amyloid beta peptide Aβ(1-40), another inhibitor of the Na(+)/K(+)-ATPase, but not the shorter peptide Aβ1-16, reduced TRPC6 protein levels and depressed TRPC6-mediated responses. In cortical neurons from embryonic mice, ouabain, veratridine (an opener of voltage-gated Na(+) channel), and Aβ(1-40) reduced TRPC6-mediated Ca(2+) responses whereas Aβ(1-16) was ineffective. Furthermore, when Aβ(1-40) was co-added together with zinc acetate it could no longer control TRPC6 activity. Altogether, this work shows the existence of a functional coupling between the Na(+)/K(+)-ATPase and TRPC6. It also suggests that the abundance, distribution and activity of TRPC6 can be regulated by cardiotonic steroids like ouabain and the naturally occurring peptide Aβ(1-40) which underlines the pathophysiological significance of these processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Strandgaard, Trine; Foder, Solveig; Heuck, Anders; Ernst, Erik; Nielsen, Morten S.; Lykke-Hartmann, Karin
2017-01-01
Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1. PMID:29034232
Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K
2013-07-15
The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.
Double Wigner distribution function of a first-order optical system with a hard-edge aperture.
Pan, Weiqing
2008-01-01
The effect of an apertured optical system on Wigner distribution can be expressed as a superposition integral of the input Wigner distribution function and the double Wigner distribution function of the apertured optical system. By introducing a hard aperture function into a finite sum of complex Gaussian functions, the double Wigner distribution functions of a first-order optical system with a hard aperture outside and inside it are derived. As an example of application, the analytical expressions of the Wigner distribution for a Gaussian beam passing through a spatial filtering optical system with an internal hard aperture are obtained. The analytical results are also compared with the numerical integral results, and they show that the analytical results are proper and ascendant.
NASA Astrophysics Data System (ADS)
Ortega, R.; Gutierrez, E.; Carciumaru, D. D.; Huesca-Perez, E.
2017-12-01
We present a method to compute the conditional and no-conditional probability density function (PDF) of the finite fault distance distribution (FFDD). Two cases are described: lines and areas. The case of lines has a simple analytical solution while, in the case of areas, the geometrical probability of a fault based on the strike, dip, and fault segment vertices is obtained using the projection of spheres in a piecewise rectangular surface. The cumulative distribution is computed by measuring the projection of a sphere of radius r in an effective area using an algorithm that estimates the area of a circle within a rectangle. In addition, we introduce the finite fault distance metrics. This distance is the distance where the maximum stress release occurs within the fault plane and generates a peak ground motion. Later, we can apply the appropriate ground motion prediction equations (GMPE) for PSHA. The conditional probability of distance given magnitude is also presented using different scaling laws. A simple model of constant distribution of the centroid at the geometrical mean is discussed, in this model hazard is reduced at the edges because the effective size is reduced. Nowadays there is a trend of using extended source distances in PSHA, however it is not possible to separate the fault geometry from the GMPE. With this new approach, it is possible to add fault rupture models separating geometrical and propagation effects.
FE analysis of conceptual hybrid composite endodontic post designs in anterior teeth.
Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; Lanzotti, Antonio; Watts, David C; Ausiello, Pietro
2018-04-24
To assess conceptual designs of dental posts consisting of polyetherimide (PEI) reinforced with carbon (C) and glass (G) glass fibers in endodontically treated anterior teeth. 3D tessellated CAD and geometric models of endodontically treated anterior teeth were generated from Micro-CT scan images. Model C-G/PEI composite posts with different Young's moduli were analyzed by Finite Element (FE) methods post A (57.7GPa), post B (31.6GPa), post C (from 57.7 to 9.0GPa in the coronal-apical direction). A load of 50N was applied at 45° to the longitudinal axis of the tooth, acting on the palatal surface of the crown. The maximum principal stress distribution was determined along the post and at the interface between the post and the surrounding structure. Post C, with Young's modulus decreasing from 57.7 to 9.0GPa in the coronal-apical direction, reduced the maximum principal stress distribution in the restored tooth. Post C gave reduced stress and the most uniform stress distribution with no stress concentration, compared to the other C-G/PEI composite posts. The FE analysis confirmed the ability of the functionally graded post to dissipate stress from the coronal to the apical end. Hence actual (physical) C-G/PEI posts could permit optimization of stress distributions in endodontically treated anterior teeth. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Energy Management of Smart Distribution Systems
NASA Astrophysics Data System (ADS)
Ansari, Bananeh
Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy management scheme together with resilience assessment increases the distribution system operator's preparedness for emergency events.
[Resources of Lycium species and related research progress].
Dong, Jing-Zhou; Yang, Jun-Jun; Wang, Ying
2008-09-01
Solanaceae Lycium speices are deciduous shrubs. In ancient Chinese medicine works, Lycium plants are described to work well in nourshing liver and kidney, enhancing eyesight, enriching blood, invigorating sex, reducing rheumatism and so on. More of their functions such as immunity improvement, anti-oxydation, anti-aging, anti-cancer, growth stumulation, hemopoiesis enhancing, incretion regulating, blood sugar reducing, bearing improvement and many other new functions are conformed in modern clinic researches. Lycium is also widely used in brewing, beverage and many other products. The world Lycium-related researches are mostly on Lycium species genesis and evolution, sexual evolution, active ingredient separation and pharmacological effects. The future research direction is indicated in this article, molecular evolution and systematics rather than traditional taxonomy will do better in explanation of present global distribution of Lycium species; comparative genomics research on Lycium will be a whole new way to deep gene resources exploration; relationship of genetic diversity and active ingredient variation on L. barbarum and L. chinense will lay theory basis for new germplasm development, breeding, cultivation and production regionalization.
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh
1998-01-01
An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.
Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel
2018-04-28
In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.
Xenon-Ion Drilling of Tungsten Films
NASA Technical Reports Server (NTRS)
Garner, C. E.
1986-01-01
High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.
Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography
Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier
2015-01-01
This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371
Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.
Zalvidea, D; Sicre, E E
1998-06-10
A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.
NASA Astrophysics Data System (ADS)
Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi
2017-06-01
To guarantee the safety, high efficiency and long lifetime for lithium-ion battery, an advanced battery management system requires a physics-meaningful yet computationally efficient battery model. The pseudo-two dimensional (P2D) electrochemical model can provide physical information about the lithium concentration and potential distributions across the cell dimension. However, the extensive computation burden caused by the temporal and spatial discretization limits its real-time application. In this research, we propose a new simplified electrochemical model (SEM) by modifying the boundary conditions for electrolyte diffusion equations, which significantly facilitates the analytical solving process. Then to obtain a reduced order transfer function, the Padé approximation method is adopted to simplify the derived transcendental impedance solution. The proposed model with the reduced order transfer function can be briefly computable and preserve physical meanings through the presence of parameters such as the solid/electrolyte diffusion coefficients (Ds&De) and particle radius. The simulation illustrates that the proposed simplified model maintains high accuracy for electrolyte phase concentration (Ce) predictions, saying 0.8% and 0.24% modeling error respectively, when compared to the rigorous model under 1C-rate pulse charge/discharge and urban dynamometer driving schedule (UDDS) profiles. Meanwhile, this simplified model yields significantly reduced computational burden, which benefits its real-time application.
Distinct roles for Ste20-like kinase SLK in muscle function and regeneration
2013-01-01
Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977
NASA Astrophysics Data System (ADS)
Shevchenko, O. Yu.
2013-06-01
The formulas directly connecting parton distribution functions and fragmentation functions at the next-to-leading-order QCD with the same quantities at the leading order are derived. These formulas are universal, i.e., have the same form for all kinds of parton distribution functions and fragmentation functions, differing only in the respective splitting functions entering there.
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
Shi, Hongli; Yang, Zhi; Luo, Shuqian
2017-01-01
The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.
Studies of the Intrinsic Complexities of Magnetotail Ion Distributions: Theory and Observations
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha
1998-01-01
This year we have studied the relationship between the structure seen in measured distribution functions and the detailed magnetospheric configuration. Results from our recent studies using time-dependent large-scale kinetic (LSK) calculations are used to infer the sources of the ions in the velocity distribution functions measured by a single spacecraft (Geotail). Our results strongly indicate that the different ion sources and acceleration mechanisms producing a measured distribution function can explain this structure. Moreover, individual structures within distribution functions were traced back to single sources. We also confirmed the fractal nature of ion distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Roselaine da S.; Camilo, Fernanda F.; Bizeto, Marcos A., E-mail: mabizeto@unifesp.br
The incorporation of noble metals in the pores of mesoporous silicas might produce materials with interesting catalytic and sensing capabilities, but the proper control of pore filling and the avoidance of nanoparticles migration to outside the pores are processes not yet completely understood. In this work, we evaluated the role of –SH and –SO{sub 3}H groups post-grafted into MCM-41 on the production of silver nanoparticles by using 1-butanol as reducing agent. Thiol groups were the most efficient on promoting the formation of nanoparticles within the pores. Conversely, sulfonic groups establish electrostatic interactions with silver cations that preclude the formation ofmore » nanoparticle in yields comparable to thiol groups. MCM-41 without functional groups did not have good affinity to silver and the nanoparticles are produced outside the pores. This study showed the importance on selecting an adequate surface functional group in order to obtain silver nanoparticles filling the pores of MCM-41. - Graphical abstract: Silver nanoparticles formation inside the pores of sulfur-groups functionalized mesoporous silica. - Highlights: • Silver nanoparticles formation inside the pores of mesoporous silica. • n-butanol as reducing agent of impregnated silver cations. • Tuning the silica surface properties by grafting sulfur-based functional groups. • Influence on the loading and distribution of the nanoparticles through the pores.« less
Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo
2014-05-02
General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).
Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K
2011-12-01
Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen
2015-01-01
To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980
Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y
2016-07-26
One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.
Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations
NASA Astrophysics Data System (ADS)
Cideciyan, Artur V.; Swider, Malgorzata; Aleman, Tomas S.; Roman, Marisa I.; Sumaroka, Alexander; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.
2007-05-01
The health of the retinal pigment epithelium (RPE) can be estimated with autofluorescence (AF) imaging of lipofuscin, which accumulates as a byproduct of retinal exposure to light. Lipofuscin may be toxic to the RPE, and its toxicity may be enhanced by short-wavelength (SW) illumination. The high-intensity and SW excitation light used in conventional AF imaging could, at least in principle, increase the rate of lipofuscin accumulation and/or increase its toxicity. We considered two reduced-illuminance AF imaging (RAFI) methods as alternatives to conventional AF imaging. RAFI methods use either near-infrared (NIR) light or reduced-radiance SW illumination for excitation of fluorophores. We quantified the distribution of RAFI signals in relation to retinal structure and function in patients with the prototypical lipofuscin accumulation disease caused by mutations in ABCA4. There was evidence for two subclinical stages of macular ABCA4 disease involving hyperautofluorescence of both SW- and NIR-RAFI with and without associated loss of visual function. Use of RAFI methods and microperimetry in future clinical trials involving lipofuscinopathies should allow quantification of subclinical disease expression and progression without subjecting the diseased retina/RPE to undue light exposure.
Bonobos Protect and Console Friends and Kin
Palagi, Elisabetta; Norscia, Ivan
2013-01-01
Post-conflict third-party affiliation has been reported to have different functional meanings, one of them being consolation. Here, we tested the main hypotheses that have been put forth to explain the presence of this phenomenon at a functional level in the bonobo: Self-Protection Hypothesis, Victim-Protection Hypothesis, Relationship-Repair or Substitute for Reconciliation Hypothesis, and Consolation Hypothesis. By analyzing the data collected over 10 years, we investigated what factors affected the distribution of both spontaneous third party affiliation (initiated by the bystander) and solicited third party affiliation (initiated by the victim). We considered factors related to the individual features (sex, rank, age) of victim and bystander, their relationship quality (kinship, affiliation), and the effect that third party affiliation had on the victim (such as protection against further attacks and anxiety reduction). Both spontaneous and solicited third party affiliation reduced the probability of further aggression by group members on the victim (Victim-Protection Hypothesis supported). Yet, only spontaneous affiliation reduced victim anxiety (measured via self-scratching), thus suggesting that the spontaneous gesture – more than the protection itself – works in calming the distressed subject. The victim may perceive the motivational autonomy of the bystander, who does not require an invitation to provide post-conflict affiliative contact. Moreover, spontaneous - but not solicited - third party affiliation was affected by the bond between consoler and victim, being the relationship between consoler and aggressor irrelevant to the phenomenon distribution (Consolation Hypothesis supported). Spontaneous affiliation followed the empathic gradient described for humans, being mostly offered to kin, then friends, then acquaintances. Overall, our findings do not only indicate the consolatory function of spontaneous third-party affiliation but they also suggest that consolation in the bonobo may be an empathy-based phenomenon. PMID:24223924
Autobiographical memory and structural brain changes in chronic phase TBI.
Esopenko, Carrie; Levine, Brian
2017-04-01
Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bonobos protect and console friends and kin.
Palagi, Elisabetta; Norscia, Ivan
2013-01-01
Post-conflict third-party affiliation has been reported to have different functional meanings, one of them being consolation. Here, we tested the main hypotheses that have been put forth to explain the presence of this phenomenon at a functional level in the bonobo: Self-Protection Hypothesis, Victim-Protection Hypothesis, Relationship-Repair or Substitute for Reconciliation Hypothesis, and Consolation Hypothesis. By analyzing the data collected over 10 years, we investigated what factors affected the distribution of both spontaneous third party affiliation (initiated by the bystander) and solicited third party affiliation (initiated by the victim). We considered factors related to the individual features (sex, rank, age) of victim and bystander, their relationship quality (kinship, affiliation), and the effect that third party affiliation had on the victim (such as protection against further attacks and anxiety reduction). Both spontaneous and solicited third party affiliation reduced the probability of further aggression by group members on the victim (Victim-Protection Hypothesis supported). Yet, only spontaneous affiliation reduced victim anxiety (measured via self-scratching), thus suggesting that the spontaneous gesture--more than the protection itself--works in calming the distressed subject. The victim may perceive the motivational autonomy of the bystander, who does not require an invitation to provide post-conflict affiliative contact. Moreover, spontaneous--but not solicited--third party affiliation was affected by the bond between consoler and victim, being the relationship between consoler and aggressor irrelevant to the phenomenon distribution (Consolation Hypothesis supported). Spontaneous affiliation followed the empathic gradient described for humans, being mostly offered to kin, then friends, then acquaintances. Overall, our findings do not only indicate the consolatory function of spontaneous third-party affiliation but they also suggest that consolation in the bonobo may be an empathy-based phenomenon.
A new approach for beam hardening correction based on the local spectrum distributions
NASA Astrophysics Data System (ADS)
Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza
2015-09-01
Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called "beam hardening". The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile.
Hierarchical clustering in chameleon f(R) gravity
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Li, Baojiu; Frenk, Carlos S.; Cole, Shaun
2013-11-01
We use a suite of high-resolution state-of-the-art N-body dark matter simulations of chameleon f(R) gravity to study the higher order volume-averaged correlation functions overline{ξ _n} together with the hierarchical nth-order correlation amplitudes S_n=overline{ξ }_n/overline{ξ }_2^{n-1} and density distribution functions (PDF). We show that under the non-linear modifications of gravity the hierarchical scaling of the reduced cumulants is preserved. This is however characterized by significant changes in the values of both overline{ξ _n} and Sn and their scale dependence with respect to General Relativity gravity (GR). In addition, we measure a significant increase of the non-linear σ8 parameter reaching 14, 5 and 0.5 per cent in excess of the GR value for the three flavours of our f(R) models. We further note that the values of the reduced cumulants up to order n = 9 are significantly increased in f(R) gravity for all our models at small scales R ≲ 30 h-1 Mpc. In contrast, the values of the hierarchical amplitudes, Sn, are smaller in f(R) indicating that the modified gravity density distribution functions are deviating from the GR case. Furthermore, we find that the redshift evolution of relative deviations of the f(R) hierarchical correlation amplitudes is fastest at high and moderate redshifts 1 ≤ z ≤ 4. The growth of these deviations significantly slows down in the low-redshift universe. We also compute the PDFs and show that for scales below ˜20 h-1 Mpc, they are significantly shifted in f(R) gravity towards the low densities. Finally, we discuss the implications of our theoretical predictions for measurements of the hierarchical clustering in galaxy redshift surveys, including the important problems of the galaxy biasing and redshift space distortions.
Optimizing the Placement of Burnable Poisons in PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Serkan; Ivanov, Kostadin; Levine, Samuel
2005-07-15
The principal focus of this work is on developing a practical tool for designing the minimum amount of burnable poisons (BPs) for a pressurized water reactor using a typical Three Mile Island Unit 1 2-yr cycle as the reference design. The results of this study are to be applied to future reload designs. A new method, the Modified Power Shape Forced Diffusion (MPSFD) method, is presented that initially computes the BP cross section to force the power distribution into a desired shape. The method employs a simple formula that expresses the BP cross section as a function of the differencemore » between the calculated radial power distributions (RPDs) and the limit set for the maximum RPD. This method places BPs into all fresh fuel assemblies (FAs) having an RPD greater than the limit. The MPSFD method then reduces the BP content by reducing the BPs in fresh FAs with the lowest RPDs. Finally, the minimum BP content is attained via a heuristic fine-tuning procedure.This new BP design program has been automated by incorporating the new MPSFD method in conjunction with the heuristic fine-tuning program. The program has automatically produced excellent results for the reference core, and has the potential to reduce fuel costs and save manpower.« less
Beyond Zipf's Law: The Lavalette Rank Function and Its Properties.
Fontanelli, Oscar; Miramontes, Pedro; Yang, Yaning; Cocho, Germinal; Li, Wentian
Although Zipf's law is widespread in natural and social data, one often encounters situations where one or both ends of the ranked data deviate from the power-law function. Previously we proposed the Beta rank function to improve the fitting of data which does not follow a perfect Zipf's law. Here we show that when the two parameters in the Beta rank function have the same value, the Lavalette rank function, the probability density function can be derived analytically. We also show both computationally and analytically that Lavalette distribution is approximately equal, though not identical, to the lognormal distribution. We illustrate the utility of Lavalette rank function in several datasets. We also address three analysis issues on the statistical testing of Lavalette fitting function, comparison between Zipf's law and lognormal distribution through Lavalette function, and comparison between lognormal distribution and Lavalette distribution.
Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle
2013-01-01
Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897
Energy distribution functions of kilovolt ions in a modified Penning discharge
NASA Technical Reports Server (NTRS)
Roth, J. R.
1972-01-01
The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated.
Hichri, Echrak; Abriel, Hugues; Kucera, Jan P
2018-02-15
It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation and decreased peak I Na at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na + channel distribution. In the intercalated disc computer model, redistributing the Na + channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na + channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac I Na , and our simulations reveal the functional role of the aggregation of Na + channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Bootsma, Gregory J.
X-ray scatter in cone-beam computed tomography (CBCT) is known to reduce image quality by introducing image artifacts, reducing contrast, and limiting computed tomography (CT) number accuracy. The extent of the effect of x-ray scatter on CBCT image quality is determined by the shape and magnitude of the scatter distribution in the projections. A method to allay the effects of scatter is imperative to enable application of CBCT to solve a wider domain of clinical problems. The work contained herein proposes such a method. A characterization of the scatter distribution through the use of a validated Monte Carlo (MC) model is carried out. The effects of imaging parameters and compensators on the scatter distribution are investigated. The spectral frequency components of the scatter distribution in CBCT projection sets are analyzed using Fourier analysis and found to reside predominately in the low frequency domain. The exact frequency extents of the scatter distribution are explored for different imaging configurations and patient geometries. Based on the Fourier analysis it is hypothesized the scatter distribution can be represented by a finite sum of sine and cosine functions. The fitting of MC scatter distribution estimates enables the reduction of the MC computation time by diminishing the number of photon tracks required by over three orders of magnitude. The fitting method is incorporated into a novel scatter correction method using an algorithm that simultaneously combines multiple MC scatter simulations. Running concurrent MC simulations while simultaneously fitting the results allows for the physical accuracy and flexibility of MC methods to be maintained while enhancing the overall efficiency. CBCT projection set scatter estimates, using the algorithm, are computed on the order of 1--2 minutes instead of hours or days. Resulting scatter corrected reconstructions show a reduction in artifacts and improvement in tissue contrast and voxel value accuracy.
Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P
2015-01-01
Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.
Polarization of photons scattered by electrons in any spectral distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo, E-mail: jiangyg@ihep.ac.cn
On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incidentmore » bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.« less
Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks
Guo, Kehua; Zhang, Ping; Ma, Jianhua
2016-01-01
Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson; Krishnamurthy, Thiagaraja; Sykes, Nancy P.; Elishakoff, Isaac
1993-01-01
Computations were performed to determine the effect of an overall bow-type imperfection on the reliability of structural panels under combined compression and shear loadings. A panel's reliability is the probability that it will perform the intended function - in this case, carry a given load without buckling or exceeding in-plane strain allowables. For a panel loaded in compression, a small initial bow can cause large bending stresses that reduce both the buckling load and the load at which strain allowables are exceeded; hence, the bow reduces the reliability of the panel. In this report, analytical studies on two stiffened panels quantified that effect. The bow is in the shape of a half-sine wave along the length of the panel. The size e of the bow at panel midlength is taken to be the single random variable. Several probability density distributions for e are examined to determine the sensitivity of the reliability to details of the bow statistics. In addition, the effects of quality control are explored with truncated distributions.
Green synthesis of gold nanoparticles using plant extracts as reducing agents
Elia, Paz; Zach, Raya; Hazan, Sharon; Kolusheva, Sofiya; Porat, Ze’ev; Zeiri, Yehuda
2014-01-01
Gold nanoparticles (GNPs) were prepared using four different plant extracts as reducing and stabilizing agents. The extracts were obtained from the following plants: Salvia officinalis, Lippia citriodora, Pelargonium graveolens and Punica granatum. The size distributions of the GNPs were measured using three different methods: dynamic light scattering, nanoparticle-tracking analysis and analysis of scanning electron microscopy images. The three methods yielded similar size distributions. Biocompatibility was examined by correlation of L-cell growth in the presence of different amounts of GNPs. All GNPs showed good biocompatibility and good stability for over 3 weeks. Therefore, they can be used for imaging and drug-delivery applications in the human body. High-resolution transmission electron microscopy was used to view the shapes of the larger GNPs, while infrared spectroscopy was employed to characterize the various functional groups in the organic layer that stabilize the particles. Finally, active ingredients in the plant extract that might be involved in the formation of GNPs are proposed, based on experiments with pure antioxidants that are known to exist in that plant. PMID:25187704
Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Du, Ming
2018-03-22
In this study, the effects of limited hydrolysis and/or high-pressure homogenization (HPH) treatment in acid conditions on the functional properties of oyster protein isolates (OPI) were studied. Protein solubility, surface hydrophobicity, particle size distribution, zeta potential, foaming, and emulsifying properties were evaluated. The results showed that acid treatment led to the dissociation and unfolding of OPI. Subsequent treatment such as limited proteolysis, HPH, and their combination remarkably improved the functional properties of OPI. Acid treatment produced flexible aggregates, as well as reduced particle size and solubility. On the contrary, limited hydrolysis increased the solubility of OPI. Furthermore, HPH enhanced the effectiveness of the above treatments. The emulsifying and foaming properties of acid- or hydrolysis-treated OPI significantly improved. In conclusion, a combination of acid treatment, limited proteolysis, and HPH improved the functional properties of OPI. The improvements in the functional properties of OPI could potentiate the use of oyster protein and its hydrolysates in the food industry.
Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P
1999-01-01
Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712
Borri, Marco; Schmidt, Maria A.; Powell, Ceri; Koh, Dow-Mu; Riddell, Angela M.; Partridge, Mike; Bhide, Shreerang A.; Nutting, Christopher M.; Harrington, Kevin J.; Newbold, Katie L.; Leach, Martin O.
2015-01-01
Purpose To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters) of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment. Material and Methods The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4). Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters. Results The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4), determined with cluster validation, produced the best separation between reducing and non-reducing clusters. Conclusion The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes. PMID:26398888
Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.
Cox, Louis Anthony Tony
2018-07-01
Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.
Dennis, Andrew J; Westcott, David A
2006-10-01
The process of seed dispersal has a profound effect on vegetation structure and diversity in tropical forests. However, our understanding of the process and our ability to predict its outcomes at a community scale are limited by the frequently large number of interactions associated with it. Here, we outline an approach to dealing with this complexity that reduces the number of unique interactions considered by classifying the participants according to their functional similarity. We derived a classification of dispersers based on the nature of the dispersal service they provide to plants. We described the quantities of fruit handled, the quality of handling and the diversity of plants to which the service is provided. We used ten broad disperser traits to group 26 detailed measures for each disperser. We then applied this approach to vertebrate dispersers in Australia's tropical forests. Using this we also develop a classification that may be more generally applicable. For each disperser, data relating to each trait was obtained either from the field or published literature. First, we identified dispersers whose service outcomes were so distinct that statistical analysis was not required and assigned them to functional groups. The remaining dispersers were assigned to functional groups using cluster analysis. The combined processes created 15 functional groups from 65 vertebrate dispersers in Australian tropical forests. Our approach--grouping dispersers on the basis of the type of dispersal service provided and the fruit types it is provided to--represents a means of reducing the complexity encountered in tropical seed dispersal systems and could be effectively applied in community level studies. It also represents a useful tool for exploring changes in dispersal services when the distribution and abundance of animal populations change due to human impacts.
Variational Gaussian approximation for Poisson data
NASA Astrophysics Data System (ADS)
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Zhang, Yan; You, Jia; Ren, Wenyan; Lin, Xinhua
2013-01-01
The highly conserved janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a well-known signaling system that is involved in many biological processes. In Drosophila, this signaling cascade is activated by ligands of the Unpaired (Upd) family. Therefore, the regulation of Upd distribution is one of the key issues in controlling the JAK/STAT signaling activity and function. Heparan sulfate proteoglycans (HSPGs) are macromolecules that regulate the distribution of many ligand proteins including Wingless, Hedgehog and Decapentaplegic (Dpp). Here we show that during Drosophila eye development, HSPGs are also required in normal Upd distribution and JAK/STAT signaling activity. Loss of HSPG biosynthesis enzyme Brother of tout-velu (Botv), Sulfateless (Sfl), or glypicans Division abnormally delayed (Dally) and Dally-like protein (Dlp) led to reduced levels of extracellular Upd and reduction in JAK/STAT signaling activity. Overexpression of dally resulted in the accumulation of Upd and up-regulation of the signaling activity. Luciferase assay also showed that Dally promotes JAK/STAT signaling activity, and is dependent on its heparin sulfate chains. These data suggest that Dally and Dlp are essential for Upd distribution and JAK/STAT signaling activity. PMID:23313126
NASA Astrophysics Data System (ADS)
Satrio, Reza Indra; Subiyanto
2018-03-01
The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.
Kutch, Jason J; Ichesco, Eric; Hampson, Johnson P; Labus, Jennifer S; Farmer, Melissa A; Martucci, Katherine T; Ness, Timothy J; Deutsch, Georg; Apkarian, A Vania; Mackey, Sean C; Klumpp, David J; Schaeffer, Anthony J; Rodriguez, Larissa V; Kreder, Karl J; Buchwald, Dedra; Andriole, Gerald L; Lai, H Henry; Mullins, Chris; Kusek, John W; Landis, J Richard; Mayer, Emeran A; Clemens, J Quentin; Clauw, Daniel J; Harris, Richard E
2017-10-01
Chronic pain is often measured with a severity score that overlooks its spatial distribution across the body. This widespread pain is believed to be a marker of centralization, a central nervous system process that decouples pain perception from nociceptive input. Here, we investigated whether centralization is manifested at the level of the brain using data from 1079 participants in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network (MAPP) study. Participants with a clinical diagnosis of urological chronic pelvic pain syndrome (UCPPS) were compared to pain-free controls and patients with fibromyalgia, the prototypical centralized pain disorder. Participants completed questionnaires capturing pain severity, function, and a body map of pain. A subset (UCPPS N = 110; fibromyalgia N = 23; healthy control N = 49) underwent functional and structural magnetic resonance imaging. Patients with UCPPS reported pain ranging from localized (pelvic) to widespread (throughout the body). Patients with widespread UCPPS displayed increased brain gray matter volume and functional connectivity involving sensorimotor and insular cortices (P < 0.05 corrected). These changes translated across disease diagnoses as identical outcomes were present in patients with fibromyalgia but not pain-free controls. Widespread pain was also associated with reduced physical and mental function independent of pain severity. Brain pathology in patients with centralized pain is related to pain distribution throughout the body. These patients may benefit from interventions targeting the central nervous system.
NASA Astrophysics Data System (ADS)
Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar
2018-05-01
Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Strong potential wave functions with elastic channel distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macek, J.; Taulbjerg, K.
1989-06-01
The strong-potential Born approximation is analyzed in a channel-distorted-wave approach. Channel-distorted SPB wave functions are reduced to a conventional form in which the standard off-energy-shell factor /ital g/ has been replaced by a modified factor ..gamma.., which represents a suitable average of /ital g/ over the momentum distribution of the distorted-channel function. The modified factor is evaluated in a physically realistic model for the distortion potential, and it is found that ..gamma.. is well represented by a slowly varying phase factor. The channel-distorted SPB approximation is accordingly identical to the impulse approximation if the phase variation of ..gamma.. can bemore » ignored. This is generally the case in applications to radiative electron capture and to a good approximation for ordinary capture at not too small velocities.« less
NASA Technical Reports Server (NTRS)
Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.
1994-01-01
Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).
The impact of the LHC Z-boson transverse momentum data on PDF determinations
Boughezal, Radja; Guffanti, Alberto; Petriello, Frank; ...
2017-07-26
The LHC has recently released precise measurements of the transverse momentum distribution of the Z-boson that provide a unique constraint on the structure of the proton. Theoretical developments now allow the prediction of these observables through next-to-next-to-leading order (NNLO) in perturbative QCD. In this work we study the impact of incorporating these latest advances into a determination of parton distribution functions (PDFs) through NNLO including the recent ATLAS and CMS 7 TeV and 8 TeV p T Z data. We investigate the consistency of these measurements in a global fit to the available data and quantify the impact of includingmore » the p T Z distributions on the PDFs. Finally, the inclusion of these new data sets significantly reduces the uncertainties on select parton distributions and the corresponding parton-parton luminosities. In particular, we find that the p T Z data ultimately leads to a reduction of the PDF uncertainty on the gluon-fusion and vector-boson fusion Higgs production cross sections by about 30%, while keeping the central values nearly unchanged.« less
Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry Kok Yen; Teoh, Swee-Hin
2014-06-25
Synthetic polymers used in tissue engineering require functionalization with bioactive molecules to elicit specific physiological reactions. These additives must be homogeneously dispersed in order to achieve enhanced composite mechanical performance and uniform cellular response. This work demonstrates the use of a solvent-free powder processing technique to form osteoinductive scaffolds from cryomilled polycaprolactone (PCL) and tricalcium phosphate (TCP). Cryomilling is performed to achieve micrometer-sized distribution of PCL and reduce melt viscosity, thus improving TCP distribution and improving structural integrity. A breakthrough is achieved in the successful fabrication of 70 weight percentage of TCP into a continuous film structure. Following compaction and melting, PCL/TCP composite scaffolds are found to display uniform distribution of TCP throughout the PCL matrix regardless of composition. Homogeneous spatial distribution is also achieved in fabricated 3D scaffolds. When seeded onto powder-processed PCL/TCP films, mesenchymal stem cells are found to undergo robust and uniform osteogenic differentiation, indicating the potential application of this approach to biofunctionalize scaffolds for tissue engineering applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extended q -Gaussian and q -exponential distributions from gamma random variables
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2015-05-01
The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.
Xing, Weiyi; Yang, Wei; Yang, Wenjie; Hu, Qihang; Si, Jingyu; Lu, Hongdian; Yang, Benhong; Song, Lei; Hu, Yuan; Yuen, Richard K K
2016-10-05
Aminated multiwalled carbon nanotubes (A-MWCNT) were reacted with diphenylphosphinic chloride (DPP-Cl) to prepare the functionalized MWCNT (DPPA-MWCNT). A-MWCNT and DPPA-MWCNT were respectively mixed with polystyrene (PS) to obtain composites through the melt compounding method. SEM observations demonstrated that the DPPA-MWCNT nanofillers were more uniformly distributed within the PS matrix than A-MWCNT. PS/DPPA-MWCNT showed improved thermal stability, glass transition temperature, and tensile strength in comparison with PS/A-MWCNT, resulting from good dispersion and interfacial interactions between DPPA-MWCNT and PS matrix. The incorporation of DPPA-MWCNT to PS significantly reduced peak heat release rate, smoke production rate, and carbon monoxide and carbon dioxide release in cone calorimeter tests. The enhanced fire-retardant properties should be ascribed to the barrier effect of carbon nanotubes, which could provide enough time for DPPA-MWCNT and its functionalized groups to trap the degrading polymer radicals to catalyze char formation. The char layer served as an efficient insulating barrier to reduce the exposure of polymer matrix to an external heat source as well as retarding the flammable gases from feeding the flame.
A statistical study of gyro-averaging effects in a reduced model of drift-wave transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, Julio; Del-Castillo-Negrete, Diego B.; Sokolov, Igor M.
2016-08-25
Here, a statistical study of finite Larmor radius (FLR) effects on transport driven by electrostatic driftwaves is presented. The study is based on a reduced discrete Hamiltonian dynamical system known as the gyro-averaged standard map (GSM). In this system, FLR effects are incorporated through the gyro-averaging of a simplified weak-turbulence model of electrostatic fluctuations. Formally, the GSM is a modified version of the standard map in which the perturbation amplitude, K 0, becomes K 0J 0(more » $$\\hat{p}$$), where J 0 is the zeroth-order Bessel function and $$\\hat{p}$$ s the Larmor radius. Assuming a Maxwellian probability density function (pdf) for $$\\hat{p}$$ , we compute analytically and numerically the pdf and the cumulative distribution function of the effective drift-wave perturba- tion amplitude K 0J 0($$\\hat{p}$$). Using these results, we compute the probability of loss of confinement (i.e., global chaos), P c provides an upper bound for the escape rate, and that P t rovides a good estimate of the particle trapping rate. Lastly. the analytical results are compared with direct numerical Monte-Carlo simulations of particle transport.« less
Haufe, Sven; Haas, Verena; Utz, Wolfgang; Birkenfeld, Andreas L; Jeran, Stephanie; Böhnke, Jana; Mähler, Anja; Luft, Friedrich C; Schulz-Menger, Jeanette; Boschmann, Michael; Jordan, Jens; Engeli, Stefan
2013-11-01
Weight loss reduces abdominal and intrahepatic fat, thereby improving metabolic and cardiovascular risk. Yet, many patients regain weight after successful diet-induced weight loss. Long-term changes in abdominal and liver fat, along with liver test results and insulin resistance, are not known. We analyzed 50 overweight to obese subjects (46 ± 9 years of age; BMI, 32.5 ± 3.3 kg/m2; women, 77%) who had participated in a 6-month hypocaloric diet and were randomized to either reduced carbohydrates or reduced fat content. Before, directly after diet, and at an average of 24 (range, 17-36) months follow-up, we assessed body fat distribution by magnetic resonance imaging and markers of liver function and insulin resistance. Body weight decreased with diet but had increased again at follow-up. Subjects also partially regained abdominal subcutaneous and visceral adipose tissue. In contrast, intrahepatic fat decreased with diet and remained reduced at follow-up (7.8 ± 9.8% [baseline], 4.5 ± 5.9% [6 months], and 4.7 ± 5.9% [follow-up]). Similar patterns were observed for markers of liver function, whole-body insulin sensitivity, and hepatic insulin resistance. Changes in intrahepatic fat und intrahepatic function were independent of macronutrient composition during intervention and were most effective in subjects with nonalcoholic fatty liver disease at baseline. A 6-month hypocaloric diet induced improvements in hepatic fat, liver test results, and insulin resistance despite regaining of weight up to 2 years after the active intervention. Body weight and adiposity measurements may underestimate beneficial long-term effects of dietary interventions.
Uniqueness of thermodynamic projector and kinetic basis of molecular individualism
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.
2004-05-01
Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.
Fink, Cornelia; Weigel, Roswitha; Hembes, Tanja; Lauke-Wettwer, Heidrun; Kliesch, Sabine; Bergmann, Martin; Brehm, Ralph H
2006-01-01
Abstract Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function. PMID:17217619
2014-03-27
ii List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii I...t, E) Wigner Distribution Function ii List of Acronyms Acronym Definition WDF Wigner Distribution Function PES Potential Energy Surface DPAL Diode
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
NASA Astrophysics Data System (ADS)
Zainudin, W. N. R. A.; Ramli, N. A.
2017-09-01
In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.
Energy distribution functions of kilovolt ions in a modified Penning discharge.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1973-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.
Energy distribution functions of kilovolt ions in a modified Penning discharge.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1972-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.
Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein.
Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B
2014-02-21
Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.
Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein
Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B.
2015-01-01
Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapes made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target; and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses. PMID:24385607
Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization
D'Agostino, V.; Greene, E.A.; Passarella, G.; Vurro, M.
1998-01-01
Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579
A new family of distribution functions for spherical galaxies
NASA Astrophysics Data System (ADS)
Gerhard, Ortwin E.
1991-06-01
The present study describes a new family of anisotropic distribution functions for stellar systems designed to keep control of the orbit distribution at fixed energy. These are quasi-separable functions of energy and angular momentum, and they are specified in terms of a circularity function h(x) which fixes the distribution of orbits on the potential's energy surfaces outside some anisotropy radius. Detailed results are presented for a particular set of radially anisotropic circularity functions h-alpha(x). In the scale-free logarithmic potential, exact analytic solutions are shown to exist for all scale-free circularity functions. Intrinsic and projected velocity dispersions are calculated and the expected properties are presented in extensive tables and graphs. Several applications of the quasi-separable distribution functions are discussed. They include the effects of anisotropy or a dark halo on line-broadening functions, the radial orbit instability in anisotropic spherical systems, and violent relaxation in spherical collapse.
Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data
NASA Astrophysics Data System (ADS)
Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.
2017-12-01
This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode
ERIC Educational Resources Information Center
Balasooriya, Uditha; Li, Jackie; Low, Chan Kee
2012-01-01
For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the…
Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study
Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer
2014-01-01
Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (p<0.01). Conclusions Functional dysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948
dftools: Distribution function fitting
NASA Astrophysics Data System (ADS)
Obreschkow, Danail
2018-05-01
dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.
NASA Astrophysics Data System (ADS)
Lepikhin, N. D.; Popov, N. A.; Starikovskaia, S. M.
2018-05-01
Fast gas heating is studied experimentally and numerically using pulsed nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures under the conditions of high specific deposited energy (up to 1 eV/molecule) and high reduced electric fields (100–300 Td). Deposited energy, electric field and gas temperature are measured as functions of time. The radial distribution of active species is analyzed experimentally. The roles of processes involving {{{N}}}2({{B}}) ={{{N}}}2({{{B}}}3{{{\\Pi }}}{{g}},{{{W}}}3{{{Δ }}}{{u}},{{B}}{{\\prime} }3{{{Σ }}}{{u}}-), {{{N}}}2({{{A}}}3{{{Σ }}}{{u}}+) and N(2D) excited nitrogen species leading to heat release are analyzed using numerical modeling in the framework of 1D axial approximation.
Optimal charge control strategies for stationary photovoltaic battery systems
NASA Astrophysics Data System (ADS)
Li, Jiahao; Danzer, Michael A.
2014-07-01
Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.
Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D
2009-09-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.
Development of an establishment scheme for a DGVM
NASA Astrophysics Data System (ADS)
Song, Xiang; Zeng, Xiaodong; Zhu, Jiawen; Shao, Pu
2016-07-01
Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling establishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.
Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Seibel, B.
2016-02-01
Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.
TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Xiong, Z; Shankar, A
Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Efficient Iris Recognition Based on Optimal Subfeature Selection and Weighted Subregion Fusion
Deng, Ning
2014-01-01
In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, andMMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity. PMID:24683317
Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty
Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.
2016-09-12
Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less
Distribution of Cathepsin D Activity between Lysosomes and a Soluble Fraction of Marinating Brine.
Szymczak, Mariusz
2016-08-01
This paper is the first ever to describe the phenomenon of bimodal distribution of cathepsin D in the lysosomal and soluble fractions of brine left after herring marinating. Up to 2 times higher cathepsin D activity was observed in the lysosome fraction. Activity of cathepsin D in brine increased according to the logarithmic function during low frequency-high power ultrasounds treatment or according to the linear function after multiple freezing-thawing of brine. Activity enhancement was achieved only in the brine devoid of lipids and suspension. Study results show also that measurement of lysosomal cathepsin D activity in the marinating brine requires also determining cathepsin E activity. Decreasing pore size of microfilter from 2.7 to 0.3 μm significantly reduced the lysosome content in the brine. The presence of lysosomes and the possibility of their separation as well as the likely release of cathepsins shall be considered during industrial application of the marinating brine, as new cathepsins preparations in fish and meat technology. © 2016 Institute of Food Technologists®
Reducing Interpolation Artifacts for Mutual Information Based Image Registration
Soleimani, H.; Khosravifard, M.A.
2011-01-01
Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673
Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.
Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less
Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.
Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E
2015-09-01
Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.
Effect of anode position on the performance characteristics of a low-power cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Gao, Yuanyuan; Liu, Hui; Hu, Peng; Huang, Hongyan; Yu, Daren
2017-06-01
In this paper, the design of a new cylindrical Hall thruster (CHT) is presented. Its anode is separated from the gas distributor, which is made of ceramic. The effect of the anode position on the performance characteristics of the CHT was investigated by mounting a series of anodes with different radii inside the CHT. It is found that progressively positioning the anode away from the axis along the radial direction increases the ion current and reduces the electron current. Meanwhile, the peak energy in the ion energy distribution function increases, and the shape of the ion energy distribution function noticeably narrows; the ion beam in the plume converges. It is suggested that moving the anode away from the axis may strengthen the electron confinement, thus optimizing the ionization efficiency. Additionally, the electric field near the anode appears to deflect toward the axis, which may promote the collimation of the ion beam in the plume. As a result, the overall performance of the CHT is significantly enhanced in our proposed design.
NASA Astrophysics Data System (ADS)
Goharipour, Muhammad; Khanpour, Hamzeh; Guzey, Vadim
2018-04-01
We present GKG18-DPDFs, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the xFitter framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections measurements. We study the impact of the H1/ZEUS combined data by producing a variety of determinations based on reduced data sets. We find that these data sets have a significant impact on the diffractive PDFs with some substantial reductions in uncertainties. The predictions based on the extracted diffractive PDFs are compared to the analyzed diffractive DIS data and with other determinations of the diffractive PDFs.
Perpendicular dynamics of runaway electrons in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gomez, I.; Martin-Solis, J. R.; Sanchez, R.
2012-10-15
In this paper, it will be shown that the runaway phenomenon in tokamak plasmas cannot be reduced to a one-dimensional problem, based on the competence between electric field acceleration and collisional friction losses in the parallel direction. A Langevin approach, including collisional diffusion in velocity space, will be used to analyze the two-dimensional runaway electron dynamics. An investigation of the runaway probability in velocity space will yield a criterion for runaway, which will be shown to be consistent with the results provided by the more simple test particle description of the runaway dynamics [Fuchs et al., Phys. Fluids 29, 2931more » (1986)]. Electron perpendicular collisional scattering will be found to play an important role, relaxing the conditions for runaway. Moreover, electron pitch angle scattering perpendicularly broadens the runaway distribution function, increasing the electron population in the runaway plateau region in comparison with what it should be expected from electron acceleration in the parallel direction only. The perpendicular broadening of the runaway distribution function, its dependence on the plasma parameters, and the resulting enhancement of the runaway production rate will be discussed.« less
Efficient iris recognition based on optimal subfeature selection and weighted subregion fusion.
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; He, Fei; Wang, Hongye; Deng, Ning
2014-01-01
In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, and MMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity.
Zheng, Yajun; Li, Yan
2018-08-15
Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1978-01-01
Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.
NASA Astrophysics Data System (ADS)
Attard, Phil
The second moment of the Lennard-Jones local field distribution in a hard-sphere fluid is evaluated using the PY3 three-particle distribution function. An approximation due to Lado that avoids the explicit calculation of the latter is shown to be accurate. Partial results are also given for certain cavity-hard-sphere radial distribution functions that occur in a closest particle expansion for the local field.
NASA Astrophysics Data System (ADS)
Yokozawa, M.; Kawai, Y.; Toda, M.
2016-12-01
The increase in extreme climate episodes associated with ongoing climate change may induce extensive damage to terrestrial ecosystems, changing plant functional traits that regulate ecosystem carbon budget. Over the last two decades, an advanced observational operation of tower-based eddy covariance has enhanced our ability to understand spatial and temporal features of ecosystem carbon exchange worldwide. In contrast, there remain several unresolved issues regarding plant function responses to extreme climate episodes and the resulting effects on the terrestrial carbon balance. In this work, we examined the effects of an extreme climatic event (typhoon) on plant functional traits of a cool-temperate forest in Japan using a model data fusion technique. We used a semi-process model to describes the time changes in net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystem based on the distributions of foliage and size of an individual in a plant population, assuming the diameter profile and the pipe model theory (Shinozaki et al., 1964). The canopy photosynthesis model (Yokozawa et al., 1996) provides us the vertical distribution of gross photosynthetic rates within stand. It can allow us to examine the differences in photosynthetic rate with plant functional traits changed by climate disturbance. The DREAM(ZS) algorithm (ter Braak & Vrugt, 2008) was used to estimate the model parameters. To reduce the effects of heteroscedastic error, a generalized likelihood function was adopted (Schoup & Vrugt, 2010). The estimated annual parameter which represents the initial slope of light-photosynthetic rate curve, significantly changed after typhoon disturbance in 2004. Time changes in the profile of the maximum photosynthetic rate also shows the intensive response to the disturbance. After the disturbance, the values at upper foliage layer are higher than at lower foliage layer in contrast to that before disturbance. Specifically, just after disturbance in 2004b-5a, the value at uppermost foliage layer was estimated to be the highest value. It implies that the plant population recovered the damage by changing the distribution of leaves having different functional traits, i.e. resilient behavior.
A decentralized mechanism for improving the functional robustness of distribution networks.
Shi, Benyun; Liu, Jiming
2012-10-01
Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.
O'Muircheartaigh, Jonathan; Keller, Simon S.; Barker, Gareth J.; Richardson, Mark P.
2015-01-01
There is an increasing awareness of the involvement of thalamic connectivity on higher level cortical functioning in the human brain. This is reflected by the influence of thalamic stimulation on cortical activity and behavior as well as apparently cortical lesion syndromes occurring as a function of small thalamic insults. Here, we attempt to noninvasively test the correspondence of structural and functional connectivity of the human thalamus using diffusion-weighted and resting-state functional MRI. Using a large sample of 102 adults, we apply tensor independent component analysis to diffusion MRI tractography data to blindly parcellate bilateral thalamus according to diffusion tractography-defined structural connectivity. Using resting-state functional MRI collected in the same subjects, we show that the resulting structurally defined thalamic regions map to spatially distinct, and anatomically predictable, whole-brain functional networks in the same subjects. Although there was significant variability in the functional connectivity patterns, the resulting 51 structural and functional patterns could broadly be reduced to a subset of 7 similar core network types. These networks were distinct from typical cortical resting-state networks. Importantly, these networks were distributed across the brain and, in a subset, map extremely well to known thalamocortico-basal-ganglial loops. PMID:25899706
Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; ...
2016-02-18
The functionalization of graphene oxide (GO) and graphene by TiO 2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO 2 and TiO 2 under H 2 reduction. Sequential Rietveld refinement was employed to gain insight intomore » the evolution of crystal growth of TiO 2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less
Simulation study of entropy production in the one-dimensional Vlasov system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Zongliang, E-mail: liangliang1223@gmail.com; Wang, Shaojie
2016-07-15
The coarse-grain averaged distribution function of the one-dimensional Vlasov system is obtained by numerical simulation. The entropy productions in cases of the random field, the linear Landau damping, and the bump-on-tail instability are computed with the coarse-grain averaged distribution function. The computed entropy production is converged with increasing length of coarse-grain average. When the distribution function differs slightly from a Maxwellian distribution, the converged value agrees with the result computed by using the definition of thermodynamic entropy. The length of the coarse-grain average to compute the coarse-grain averaged distribution function is discussed.
NASA Astrophysics Data System (ADS)
Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; Marvasti, Seyedehsafoura Sedigh
2015-12-01
Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of-the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. These results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate "sub-ecosystem-scale" parameterizations.
NASA Astrophysics Data System (ADS)
Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.
2009-08-01
Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.
Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-06
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.
Edge effect modeling of small tool polishing in planetary movement
NASA Astrophysics Data System (ADS)
Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng
2018-03-01
As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects
Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear
NASA Astrophysics Data System (ADS)
Niu, Ben; Zhang, Jiaming; Wei, Junjie
2018-05-01
In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.
NASA Astrophysics Data System (ADS)
McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.
2014-10-01
A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.
Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.
2007-01-01
Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Allard, R.; Mack, B.; Bayoumi, M. M.
1989-01-01
Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure.
Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee
2007-02-01
Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.
Praznik, Werner; Huber, Anton
2005-09-25
A major capability of polysaccharides in aqueous media is their tendency for aggregation and dynamic formation of supermolecular structures. Even extended dissolution processes will not eliminate these structures which dominate many analytical approaches, in particular absolute molecular weight determinations referring to light scattering data. An alternative approach for determination of de facto molecular weight for glucans with free terminal hemiacetal functionality (reducing end group) has been adjusted from carbohydrates for midrange and high-dp glucans: quantitative and stabilized labeling as aminopyridyl-derivatives (AP-glucans) and subsequent analysis of SEC-separated elution profiles based on simultaneously monitored mass and molar fractions by refractive index and fluorescence detection. SEC-DRI/FL of AP-glucans proved as an appropriate approach for determination of de facto molecular weight of constituting glucan molecules even in the presence of supermolecular structures for non-branched (pullulan), branched (dextran), narrow distributed and broad distributed and for mixes of compact and loose packed polymer coils (starch glucan hydrolizate).
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.