Tedersoo, Leho; Sadam, Ave; Zambrano, Milton; Valencia, Renato; Bahram, Mohammad
2010-04-01
Information about the diversity of tropical microbes, including fungi is relatively scarce. This study addresses the diversity, spatial distribution and host preference of ectomycorrhizal fungi (EcMF) in a neotropical rainforest site in North East Ecuador. DNA sequence analysis of both symbionts revealed relatively low richness of EcMF as compared with the richness of temperate regions that contrasts with high plant (including host) diversity. EcMF community was positively autocorrelated up to 8.5+/-1.0-m distance-roughly corresponding to the canopy and potentially rooting area of host individuals. Coccoloba (Polygonaceae), Guapira and Neea (Nyctaginaceae) differed by their most frequent EcMF. Two-thirds of these EcMF preferred one of the host genera, a feature uncommon in boreal forests. Scattered distribution of hosts probably accounts for the low EcMF richness. This study demonstrates that the diversity of plants and their mycorrhizal fungi is not always related and host preference among EcMF can be substantial outside the temperate zone.
Chilli thrips, Scirtothrips dorsalis: A potential threat to cotton production in the USA
USDA-ARS?s Scientific Manuscript database
Several greenhouse studies including host preference, age specific abundance, within plant distribution and seasonal abundance of a newly introduced thrips pest, Scirtothrips dorsalis Hood, were conducted to evaluate its pest status on cotton. Cotton was found to be the most preferred host among the...
Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove.
Sousa, Mariana M DE; Colpo, Karine D
2017-01-01
It is not unusual to find epiphytic bromeliads in mangroves, but most studies on mangrove vegetation do not record their presence. This study aimed to evaluate the diversity and distribution of epiphytic bromeliads in a subtropical mangrove. The richness, abundance and life form (atmospheric and tank) of bromeliads were recorded and compared among host tree species and waterline proximity. The effects of diameter and height of host trees on the abundance of bromeliads were also assessed. The mangrove was composed of Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. We recorded seven bromeliad species of the genera Tillandsia and Vriesea. The waterline proximity did not affect the abundance or diversity of bromeliads, but atmospheric forms were predominant near the waterline, whereas tank bromeliads were more frequent in the interior of the mangrove. The three mangrove species hosted bromeliads, but L. racemosa was the preferred host. The species composition showed that the distribution of bromeliads is more related to the host species than to the distance from the waterline. Bromeliad abundance increased with tree size. Bromeliads can be biological indicators of ecosystem health; therefore, inventories and host tree preferences are necessary knowledge for an adequate management of sensitive ecosystems as mangroves.
McCarty, Amanda T; Sotka, Erik E
2013-08-01
The ecological impacts of generalist herbivores depend on feeding preferences, which can vary across and within herbivore species. Among mesoherbivores, geographic variation in host use can occur because host plants have a more restricted geographic distribution than does the herbivore, or there is local evolution in host preference, or both. We tested the role of local evolution using the marine amphipod Ampithoe longimana by rearing multiple amphipod populations from three regions (subtropical Florida, warm-temperate North Carolina and cold-temperate New England) and assaying their feeding preferences toward ten seaweeds that occur in some but not all regions. Six of the ten seaweeds produce anti-herbivore secondary metabolites, and we detected geographic variation in feeding preference toward five (Dictyota menstrualis, Dictyota ciliolata, Fucus distichus, Chondrus crispus and Padina gymnospora, but not Caulerpa sertularioides). Amphipod populations that co-occur with a chemically-rich seaweed tended to have stronger feeding preferences for that seaweed, relative to populations that do not co-occur with the seaweed. A direct test indicated that geographic variation in feeding preference toward one seaweed (D. ciliolata) is mediated by feeding tolerance for lipophilic secondary metabolites. Among the four seaweeds that produce no known secondary metabolites (Acanthophora, Ectocarpus, Gracilaria and Hincksia/Feldmannia spp.), we detected no geographic variation in feeding preference. Thus, populations are more likely to evolve greater feeding preferences for local hosts when those hosts produce secondary metabolites. Microevolution of feeding behaviors of generalist marine consumers likely depends on the availability and identity of local hosts and the strength of their chemical defenses.
Suárez-Esquivel, Marcela; Baker, Kate S.; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo
2017-01-01
Abstract Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97–99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. PMID:28854602
Suárez-Esquivel, Marcela; Baker, Kate S; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R; Moreno, Edgardo; Guzmán-Verri, Caterina
2017-07-01
Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97-99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Islam, M Khyrul; Alim, M Abdul; Tsuji, Naotoshi; Mondal, M Motahar Hussain
2006-01-01
To study the distribution, host-preference and population density of ixodid ticks in Bangladesh, an attempt was made to collect adult ticks from various host animals in three distinct topographic zones, viz. flood plains, hills and steppe 'Barind'. Five species of ixodid ticks were recorded, namely, Boophilus microplus (56.3%), Haemaphysalis bispinosa (11.3%), Rhipicephalus sanguineus (14.7%), Hyalomma anatolicum anatolicum (15.0%) and Amblyomma testudinarium (2.8%). The data showed that B. microplus occurred predominantly on cattle (42.4%). The other hosts involved were buffaloes (12.5%), goats (25.5%) and pigs (8.2%). H. bispinosa mostly parasitized goats (31.5%) rather than cattle (12.0%) and buffaloes (10.8%). R. sanguineus was principally a dog tick (27.4%) but also parasitized cattle (10.8%) and goats (6.8%). H. a. anatolicum was restricted to cattle (19.2%) and A. testudinarium was found on both cattle (4.4%) and pigs (2.3%). These results indicate that ixodid ticks are not strictly host-specific except for H. a. anatolicum. The population density of these ticks was significantly (p < 0.01) influenced by the changing of seasons. B. microplus, H. bispinosa and R. sanguineus were by far the most widely distributed species; the distribution of H. a. anatolicum was restricted to the steppe 'Barind tract' and A. testudinarium was found in the hilly regions only.
Lo Iacono, Giovanni; Robin, Charlotte A.; Newton, J. Richard; Gubbins, Simon; Wood, James L. N.
2013-01-01
Understanding the influence of non-susceptible hosts on vector-borne disease transmission is an important epidemiological problem. However, investigation of its impact can be complicated by uncertainty in the location of the hosts. Estimating the risk of transmission of African horse sickness (AHS) in Great Britain (GB), a virus transmitted by Culicoides biting midges, provides an insightful example because: (i) the patterns of risk are expected to be influenced by the presence of non-susceptible vertebrate hosts (cattle and sheep) and (ii) incomplete information on the spatial distribution of horses is available because the GB National Equine Database records owner, rather than horse, locations. Here, we combine land-use data with available horse owner distributions and, using a Bayesian approach, infer a realistic distribution for the location of horses. We estimate the risk of an outbreak of AHS in GB, using the basic reproduction number (R0), and demonstrate that mapping owner addresses as a proxy for horse location significantly underestimates the risk. We clarify the role of non-susceptible vertebrate hosts by showing that the risk of disease in the presence of many hosts (susceptible and non-susceptible) can be ultimately reduced to two fundamental factors: first, the abundance of vectors and how this depends on host density, and, second, the differential feeding preference of vectors among animal species. PMID:23594817
Matthew A. Paschen; Nathan M. Schiff; Matthew D. Ginzel
2012-01-01
Little is known of the role semiochemicals play in the mating systems of longhorned beetles (Coleoptera: Cerambycidae) in the primitive subfamily Prioninae. Mallodon dasystomus (Say), the hardwood stump borer, is a widely distributed prionine native to the southern US. Preferred hosts of M. dasystomus include oak, sweetgum,...
Characteristics determining host suitability for a generalist parasite.
Stokke, Bård G; Ratikainen, Irja I; Moksnes, Arne; Røskaft, Eivin; Schulze-Hagen, Karl; Leech, David I; Møller, Anders Pape; Fossøy, Frode
2018-04-19
Host quality is critical for parasites. The common cuckoo Cuculus canorus is a generalist avian brood parasite, but individual females show strong preference for a specific host species. Here, we use three extensive datasets to investigate different host characteristics determining cuckoo host selection at the species level: (i) 1871 population-specific parasitism rates collected across Europe; (ii) 14 K cases of parasitism in the United Kingdom; and (iii) 16 K cases of parasitism in Germany, with data collected during the period 1735-2013. We find highly consistent effects of the different host species traits across our three datasets: the cuckoo prefers passerine host species of intermediate size that breed in grass- or shrubland and that feed their nestlings with insects, and avoids species that nest in cavities. Based on these results, we construct a novel host suitability index for all passerine species breeding in Europe, and show that host species known to have a corresponding cuckoo host race (gens) rank among the most suitable hosts in Europe. The distribution of our suitability index shows that host species cannot be classified as suitable or not but rather range within a continuum of suitability.
Thermo-orientation and the movement of feather-feeding lice on hosts.
Harbison, Christopher W; Boughton, Rachel M
2014-08-01
Temperature variation on the host is known to influence ectoparasite distributions. Ectoparasites may also use temperature gradients between host regions when moving on the host; however, tests are rare. Feather-feeding wing lice (Phthiraptera: Ischnocera) spend the majority of their time on the flight feathers of their avian hosts where they insert their bodies between feather barbs to escape host preening. However, because wing lice feed on downy abdominal feathers, they must repeatedly migrate between the flight feathers and body regions of their hosts. We performed a series of experiments that tested thermo-orientation in wing lice and evaluated its potential use during louse migrations between host regions. We found that wing lice can rapidly and accurately locate nearby heat targets that approximate host temperatures (37 C), demonstrating a capacity for directed thermo-orientation. We next tested the preference of wing lice for temperatures found along migration routes between bird flight feathers and their body regions. Wing lice could distinguish between temperatures found within distinct bird regions, and lice that had recently fed preferred the cooler temperatures (32 C), similar to those within bird flight feathers where they typically reside. However, when starved for 18-20 hr, wing lice shifted their preferences toward temperatures typical of bird body regions where they feed (36 C), demonstrating an ability to use thermal cues when moving between bird regions. We discuss the use of thermal cues during louse migration and microhabitat selection, as well as other potential impacts of thermo-orientation on host-parasite interactions.
USDA-ARS?s Scientific Manuscript database
Stomoxys calcitrans (L.) is a biting fly of extreme economic importance and can cause adverse economic effects on host animals. Within zoological parks, hosts may include practically any accessible animal (e.g., sheep, goats, cows, camels, equines, primates, canids, and felids). In many animals, e....
Density-dependent sex ratio and sex-specific preference for host traits in parasitic bat flies.
Szentiványi, Tamara; Vincze, Orsolya; Estók, Péter
2017-08-29
Deviation of sex ratios from unity in wild animal populations has recently been demonstrated to be far more prevalent than previously thought. Ectoparasites are prominent examples of this bias, given that their sex ratios vary from strongly female- to strongly male-biased both among hosts and at the metapopulation level. To date our knowledge is very limited on how and why these biased sex ratios develop. It was suggested that sex ratio and sex-specific aggregation of ectoparasites might be shaped by the ecology, behaviour and physiology of both hosts and their parasites. Here we investigate a highly specialised, hematophagous bat fly species with strong potential to move between hosts, arguably limited inbreeding effects, off-host developmental stages and extended parental care. We collected a total of 796 Nycteribia kolenatii bat flies from 147 individual bats using fumigation and subsequently determined their sex. We report a balanced sex ratio at the metapopulation level and a highly variable sex ratio among infrapopulations ranging from 100% male to 100% female. We show that infrapopulation sex ratio is not random and is highly correlated with infrapopulation size. Sex ratio is highly male biased in small and highly female biased in large infrapopulations. We show that this pattern is most probably the result of sex-specific preference in bat flies for host traits, most likely combined with a higher mobility of males. We demonstrate that female bat flies exert a strong preference for high host body condition and female hosts, while the distribution of males is more even. Our results suggest that locally biased sex ratios can develop due to sex-specific habitat preference of parasites. Moreover, it is apparent that the sex of both hosts and parasites need to be accounted for when a better understanding of host-parasite systems is targeted.
Segura, Diego F; Nussenbaum, Ana L; Viscarret, Mariana M; Devescovi, Francisco; Bachmann, Guillermo E; Corley, Juan C; Ovruski, Sergio M; Cladera, Jorge L
2016-01-01
Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging.
Segura, Diego F.; Nussenbaum, Ana L.; Viscarret, Mariana M.; Devescovi, Francisco; Bachmann, Guillermo E.; Corley, Juan C.; Ovruski, Sergio M.; Cladera, Jorge L.
2016-01-01
Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging. PMID:27007298
Phylogenetic congruence between subtropical trees and their associated fungi.
Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao
2016-12-01
Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.
Aguirre, Helmuth; de Almeida, Luis Felipe; Shaw, Scott Richard; Sarmiento, Carlos E
2015-01-01
A comprehensive key for 75 species of Meteorus distributed across 15 Neotropical countries is presented. Eleven new species from Bolivia, Costa Rica and Ecuador are described: Meteorusalbistigma, Meteoruscarolae, Meteoruseurysaccavorus, Meteorusfallacavus, Meteorusflavistigma, Meteorushaimowitzi, Meteorusmagnoculus, Meteorusmartinezi, Meteorusmicrocavus, Meteorusnoctuivorus and Meteorusorion. Expanded range distributions are recorded for Meteorusandreae, Meteorusfarallonensis, Meteorusguineverae, Meteorusjerodi, Meteoruskraussi, Meteoruspapiliovorus and Meteorusquimbayensis. The host of Meteorusjerodi is reported for the first time: a noctuid larva feeding on Asteraceae. Meteoruspapiliovorus is recorded attacking Papilionidae larvae in Ecuador, therefore displaying a similar host family preference as formerly documented from Costa Rica and Colombia.
Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua
2007-08-01
The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.
Dorn, Nathan J; Cronin, Greg; Lodge, David M
2001-08-01
Although host preferences in phytophagous insects may be generated by several factors, few studies have simultaneously examined several potential host choice determinants. In this study we tested the impact of the following potential host choice determinants on host preference of the semi-aquatic lepidopteran Munroessa gyralis (Pyralidae): growth on different host plants; protein content, polyphenolic content, toughness, and chemical extracts of different host plants; prior feeding experience; and predation pressure on the caterpillar by fishes. Two water lilies, Brasenia schreberi and Nymphaea odorata, were preferred in cafeteria-style feeding experiments over 14 other species of vascular plants. The most preferred water lily (Brasenia) also afforded the fastest growth relative to three other species on which growth was measured. Feeding preferences across species were unrelated to protein content, polyphenolic content, or toughness. Domiciles constructed by caterpillars from leaf fragments were protective from field assemblages of fishes, but domiciles made from preferred or unpreferred host species conferred no significant protection from fish in the laboratory. Caterpillars responded positively to chemical cues of water lilies, and prior feeding experience increased preference for an otherwise unpreferred water lily (Nuphar advena) within the life-span of individual caterpillars. M. gyralis is a generalist herbivore exhibiting modest preference induction and preferences for and among members of the family Nymphaeaceae. Our results suggest that relative growth rates, chemical cues, and previous feeding experience are important factors determining feeding preference. Protein content, polyphenolic content, and toughness appear less important, and the importance of fish predators remains in question. As pupation seems to occur exclusively on Nymphaea, we suggest that host use may be restricted due to life-stage-specific developmental constraints that are not apparent from the results of growth or preference assays. It is currently unknown how often specific life-stages may restrict host use, but our work suggests this as a potentially important area of inquiry.
Host range, host ecology, and distribution of more than 11800 fish parasite species
Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.
2013-01-01
Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.
USDA-ARS?s Scientific Manuscript database
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri, vector ...
García-Robledo, Carlos; Horvitz, Carol C
2012-01-01
Specialization of insect herbivores to one or a few host plants stimulated the development of two hypotheses on how natural selection should shape oviposition preferences: The “mother knows best” principle suggests that females prefer to oviposit on hosts that increase offspring survival. The “optimal bad motherhood” principle predicts that females prefer to oviposit on hosts that increase their own longevity. In insects colonizing novel host plants, current theory predicts that initial preferences of insect herbivores should be maladaptive, leading to ecological traps. Ecological trap theory does not take into account the fact that insect lineages frequently switch hosts at both ecological and evolutionary time scales. Therefore, the behavior of insect herbivores facing novel hosts is also shaped by natural selection. Using a study system in which four Cephaloleia beetles are currently expanding their diets from native to exotic plants in the order Zingiberales, we determined if initial oviposition preferences are conservative, maladaptive, or follow the patterns predicted by the “mother knows best” or the “optimal bad motherhood” principles. Interactions with novel hosts generated parent–offspring conflicts. Larval survival was higher on native hosts. However, adult generally lived longer on novel hosts. In Cephaloleia beetles, oviposition preferences are usually associated with hosts that increase larval survival, female fecundity, and population growth. In most cases, Cephaloleia oviposition preferences follow the expectations of the “mothers knows best” principle. PMID:22957153
Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael
2015-01-01
The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.
Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae)
Suetsugu, Kenji; Kawakita, Atsushi; Kato, Makoto
2008-01-01
Background and Aims Thesium chinense is a hemiparasitic plant that is common in grassland habitats of eastern Asia. Although the physiology of Thesium has been well studied in attempts to control its weedy habit, there have been few ecological investigations of its parasitic life history. Thesium chinense is thought to parasitize species of Poaceae, but evidence remains circumstantial. Methods A vegetation survey was conducted to test whether any plant species occurs significantly more often in plots with T. chinense than expected. In addition, haustorial connections were examined directly by excavating the roots and post-attachment host selectivity was evaluated by comparing the observed numbers of haustoria on different hosts against those expected according to the relative below-ground biomass. Haustorium sizes were also compared among host species. Key Results Only two of the 38 species recorded, Lespedeza juncea and Eragrostis curvula, occurred more often in plots with Thesium than expected. In contrast to this, T. chinense parasitized 22 plant species in 11 families, corresponding to 57·9 % of plant species found at the study site. Haustoria were non-randomly distributed among host species, suggesting that there is some post-attachment host selectivity. Thesium chinense generally preferred the Poaceae, although haustoria formed on the Fabaceae were larger than those on other hosts. Conclusions This is the first quantitative investigation of the host range and selectivity of hemiparasitic plants of the Santalales. The preference for Fabaceae as hosts may be linked to the greater nutrient availability in these nitrogen-fixing plants. PMID:18492736
A Locus in Drosophila sechellia Affecting Tolerance of a Host Plant Toxin
Hungate, Eric A.; Earley, Eric J.; Boussy, Ian A.; Turissini, David A.; Ting, Chau-Ti; Moran, Jennifer R.; Wu, Mao-Lien; Wu, Chung-I; Jones, Corbin D.
2013-01-01
Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host’s defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia’s toxins. PMID:24037270
Maia, Carla; Dionísio, Lídia; Afonso, Maria Odete; Neto, Luís; Cristóvão, José Manuel; Campino, Lenea
2013-01-01
The Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta. In one P. perniciosus female, L. infantum DNA was detected. Blood meal tests showed that this species had no host preferences and was an opportunistic feeder. An overall canine leishmaniasis (CanL) seroprevalence of 16.06% was found; the seroprevalence was 3.88% in dogs housed in kennels and 40.63% in dogs that attended veterinary clinics. The simultaneous occurrence of dogs and P. perniciosus infected with L. infantum in the AR indicates that the region continues to be an endemic area for CanL. Our results reinforce the need for the systematic spatial distribution of phlebotomine populations and their Leishmania infection rates and the need to simultaneously perform pathogen monitoring in both invertebrate and vertebrate hosts to investigate the transmission, distribution and spreading of Leishmania infection. PMID:23827997
Stockton, Dara G.; Martini, Xavier; Patt, Joseph M.; Stelinski, Lukasz L.
2016-01-01
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored. PMID:26930355
Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L
2016-01-01
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.
Host specificity in bat ectoparasites: a natural experiment.
Seneviratne, Sampath S; Fernando, H Chandrika; Udagama-Randeniya, Preethi V
2009-07-15
We undertook a field study to determine patterns of specialisation of ectoparasites in cave-dwelling bats in Sri Lanka. The hypothesis tested was that strict host specificity (monoxeny) could evolve through the development of differential species preferences through association with the different host groups. Three species of cave-dwelling bats were chosen to represent a wide range of host-parasite associations (monoxeny to polyxeny), and both sympatric and allopatric roosting assemblages. Of the eight caves selected, six caves were "allopatric" roosts where two of each housed only one of the three host species examined: Rousettus leschenaulti (Pteropodidae), Rhinolophus rouxi and Hipposideros speoris (Rhinolophidae). The remaining two caves were "sympatric" roosts and housed all three host species. Thirty bats of each species were examined for ectoparasites in each cave, which resulted in a collection of nycteribiid and streblid flies, an ischnopsyllid bat flea, argasid and ixodid ticks, and mites belonging to three families. The host specificity of bat parasites showed a trend to monoxeny in which 70% of the 30 species reported were monoxenous. Odds ratios derived from chi(2)-tests revealed two levels of host preferences in less-specific parasites (i) the parasite was found on two host species under conditions of both host sympatry and host allopatry, with a preference for a single host in the case of host sympatry and (ii) the preference for a single host was very high, hence under conditions of host sympatry, it was confined to the preferred host only. However, under conditions of host allopatry, it utilized both hosts. There appears to be an increasing prevalence in host preferences of the parasites toward confinement to a single host species. The ecological isolation of the bat hosts and a long history of host-parasite co-existence could have contributed to an overall tendency of bat ectoparasites to become specialists, here reflected in the high percentage of monoxeny.
Chan, Benny K K; Xu, Guang; Kim, Hyun Kyong; Park, Jin-Ho; Kim, Won
2018-01-01
Corals and their associated fauna are extremely diverse in tropical waters and form major reefs. In the high-latitude temperate zone, corals living near their distribution limit are considered marginal communities because they are particularly extremely sensitive to environmental and climatic changes. In this study, we examined the diversity and host usage of coral-associated barnacles on Jeju Island, Korea, the northern coral distribution limit in the East China Sea. In this study, only three coral-associated barnacles-from two genera in two subfamilies-were collected. The Pyrgomatinid barnacles Cantellius arcuatus and Cantellius cf. euspinulosum were found only on the corals Montipora millepora and Alveopora japonica, respectively. The Megatrematinid barnacle Pyrgomina oulastreae, relatively a generalist, was found on Psammocora spp. (both profundacella and albopicta) and Oulastrea crispata corals. The host usage of these three barnacles does not overlap. DNA barcode sequences of the C. arcuatus specimens collected in the present study matched those collected in Kochi in Japan, Taiwan, Malaysia and Papua New Guinea, suggesting that this species has a wide geographical distribution. C. arcuatus covers a wider host range in Taiwan waters, inhabiting Montipora spp. and Porites spp., which suggests that the host specificity of coral-associated barnacles varies with host availability. C. cf. euspinulosum probably has a very narrow distribution and host usage. The sequences of C. cf. euspinulosum on Jeju Island do not match those of any known sequences of Cantellius barnacles in the Indo-Pacific region. P. oulastreae probably prefers cold water because it has been reported in temperate regions. Coral-associated barnacles in marginal communities have considerably lower diversity than their subtropical and tropical counterparts. When host availability is limited, marginal coral-associated barnacles exhibit higher host specificity than those in subtropical and tropical reef systems.
Li Li; Daniel R. Miller; Jianghua Sun
2010-01-01
1. Numerous studies have reported the effects of learning or experience on parasitoid host preference and location. However, the integration of pre-imaginal and adult experiences on the subsequent host preference and adult/offspring performance has been rarely tested in hostâparasite interactions. 2. We present direct evidence that theses two kinds of experiences...
Peripheral and Central Olfactory Tuning in a Moth
Ong, Rose C.
2012-01-01
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866
Testing Two Methods that Relate Herbivorous Insects to Host Plants
White, Peter J. T.
2013-01-01
Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830
Aguirre, Helmuth; de Almeida, Luis Felipe; Shaw, Scott Richard; Sarmiento, Carlos E.
2015-01-01
Abstract A comprehensive key for 75 species of Meteorus distributed across 15 Neotropical countries is presented. Eleven new species from Bolivia, Costa Rica and Ecuador are described: Meteorus albistigma, Meteorus carolae, Meteorus eurysaccavorus, Meteorus fallacavus, Meteorus flavistigma, Meteorus haimowitzi, Meteorus magnoculus, Meteorus martinezi, Meteorus microcavus, Meteorus noctuivorus and Meteorus orion. Expanded range distributions are recorded for Meteorus andreae, Meteorus farallonensis, Meteorus guineverae, Meteorus jerodi, Meteorus kraussi, Meteorus papiliovorus and Meteorus quimbayensis. The host of Meteorus jerodi is reported for the first time: a noctuid larva feeding on Asteraceae. Meteorus papiliovorus is recorded attacking Papilionidae larvae in Ecuador, therefore displaying a similar host family preference as formerly documented from Costa Rica and Colombia. PMID:25878531
Brown, Leone M; Breed, Greg A; Severns, Paul M; Crone, Elizabeth E
2017-02-01
Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference-performance studies to integrate vital rates across all life stages for evaluating herbivore-host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.
Birke, A; Aluja, M
2017-12-04
The preference-performance hypothesis (PPH) has widely been used to explain host exploitation patterns by phytophagous insects. However, this hypothesis often fails in the case of polyphagous species when compared with specialists. One explanation, validated by the information-processing hypothesis (IPH), considers that polyphagous insects are unable to process a large array of cues, which hinders females from distinguishing between high- and low- quality hosts. Here we analyzed Anastrepha ludens female host preference and offspring performance, and tested if neuronal limitations could possibly play a role in the incapacity of the polyphagous A. ludens to make 'accurate decisions' and therefore partially explain mismatches related to PPH. Results testing the PPH by correlating female preference to six naturally occurring hosts and its offspring outcomes show that A. ludens females oviposited greater proportions of eggs on fruit according to hierarchical preferences. Infestation level was low in white sapote, the preferential and seemingly putative ancestral host, likely due to sapote defence mechanisms. Pupal weight and adult size were lower when A. ludens larvae developed in guava (conditional host that was artificially infested) and peach, a lower ranked host compared with 'Marsh' grapefruit, white sapote, and 'Manila' mango (three preferred hosts). Larvae reared in 'Manzano' pepper, a low-ranked host, performed better than in peach and guava. Results testing the IPH, show that polyphagous A. ludens females were less accurate when discerning between a non natural host (guava) when compared with a preferred, natural host (grapefruit): error rate was significantly higher, number of oviposited fruit in a 6-h period was extremely low, time searching and ovipositing took longer, and pupae recovery was extremely low. Our findings indicate that both hypotheses tested are complementary and help better understand host use by A. ludens. However, we also discuss the complexity of polyphagy considering other factors such as plant resistance/defence mechanisms which are not fully addressed in both theories tested.
Ennen, Joshua R.; Qualls, Carl P.
2011-01-01
The distribution of the gopher tortoise tick (Amblyomma tuberculatum) has been considered intrinsically linked to the distribution of its primary host, gopher tortoises (Gopherus polyphemus). However, the presence of G. polyphemus does not always equate to the presence of A. tuberculatum. There is a paucity of data on the ecology, habitat preferences, and distribution of A. tuberculatum. The goals of this study were to assess the distribution of A. tuberculatum in southern Mississippi and to determine which, if any, habitat parameters explain the distribution pattern of A. tuberculatum. During 2006-2007, we examined 13 G. polyphemus populations in southern Mississippi for the presence of A. tuberculatum, and we measured a suite of habitat parameters at each site. Only 23% of the G. polyphemus populations supported A. tuberculatum, suggesting a more restricted distribution than its host. The results of our multivariate analyses identified several habitat variables, e.g., depth of sand and percentage of sand in the topsoil and burrow apron, as being important in discriminating between sites with, and without, A. tuberculatum. Amblyomma tuberculatum was only found at sites with a mean sand depth of >100 cm and a mean percentage of topsoil and burrow apron sand composition >94.0 and 92.4, respectively. Thus, environmental factors, and not just its host's range, seem to influence the distribution of A. tuberculatum.
Ennen, J.R.; Qualls, C.P.
2011-01-01
The distribution of the gopher tortoise tick (Amblyomma tuberculatum) has been considered intrinsically linked to the distribution of its primary host, gopher tortoises (Gopherus polyphemus). However, the presence of G. polyphemus does not always equate to the presence of A. tuberculatum. There is a paucity of data on the ecology, habitat preferences, and distribution of A. tuberculatum. The goals of this study were to assess the distribution of A. tuberculatum in southern Mississippi and to determine which, if any, habitat parameters explain the distribution pattern of A. tuberculatum. During 2006-2007, we examined 13 G. polyphemus populations in southern Mississippi for the presence of A. tuberculatum, and we measured a suite of habitat parameters at each site. Only 23% of the G. polyphemus populations supported A. tuberculatum, suggesting a more restricted distribution than its host. The results of our multivariate analyses identified several habitat variables, e.g., depth of sand and percentage of sand in the topsoil and burrow apron, as being important in discriminating between sites with, and without, A. tuberculatum. Amblyomma tuberculatum was only found at sites with a mean sand depth of >100 cm and a mean percentage of topsoil and burrow apron sand composition >94.0 and 92.4, respectively. Thus, environmental factors, and not just its host's range, seem to influence the distribution of A. tuberculatum. ?? American Society of Parasitologists 2011.
Li, Qinglong; Yang, Mingsheng; Liu, Yunxiang; Wei, Cong
2015-01-01
The cicada Meimuna mongolica (Distant) (Hemiptera: Cicadidae) is one of the most important pests of economic forest in Guanzhong Plain of Shaanxi Province, China. Information about ecological characteristics and some sustainable control measures of this species is urgently required for its control. In this study, nymphal instars, morphological variation, vertical distribution, and population density in soil, and emergence phenology of nymphs of M. mongolica on three main host plants (Pinus tabuliformis Carr., Populus tomentosa Carr., and Pyrus xerophila Yü) were studied, based on combined morphological and molecular identification, investigation of the first-instar nymphs hatched from eggs and others excavated from soil, and investigation of exuviae in the adult emergence period. Five nymphal instars of M. mongolica were redetermined according to the distribution plots of the head capsule widths of the nymphs. Nymphs of third and fourth instars showed morphological variation, which is closely related to host-plant association. The mean densities of nymphs in soil under the three host plants were significantly different, indicating a distinct host preference. The nymphs could extend their distribution from the 0–10 cm soil layer to the 51–60 cm soil layer underground but not beyond 60 cm soil layer under all the three host plants. The 21–30 cm soil layer under all the three host plants has the highest nymphal population density. The sex ratio of the entire population was nearly 50:50, but males dominated in the early half of the duration of the emergence. These ecological characteristics of M. mongolica could provide important information for sustainable control measures.
Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Pierre Duval; Roberto A. Lindig-Cisneros
2012-01-01
Abies religiosa (HBK) Schl. & Cham. (oyamel fir) is distributed in conifer-dominated mountain forests at high altitudes along the Trans-Mexican Volcanic Belt. This fir is the preferred host for overwintering monarch butterfly (Danaus plexippus) migratory populations which habitually congregate within a few stands now located inside a Monarch Butterfly Biosphere...
USDA-ARS?s Scientific Manuscript database
This study aimed to assess the extent and distribution of members of the Fusarium graminearum species complex (FGSC) associated with cereals grown in southern Brazil between 2009 and 2012. The total collection comprised 1,127 isolates, which were divided into four collections obtained from: 1) disea...
Lee, Jin-Won; Noh, Hee-Jin; Lee, Yunkyoung; Kwon, Young-Soo; Kim, Chang-Hoe; Yoo, Jeong-Chil
2014-09-01
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.
Zepeda-Paulo, Francisca; Lavandero, Blas; Mahéo, Frédérique; Dion, Emilie; Outreman, Yannick; Simon, Jean-Christophe; Figueroa, Christian C
2015-01-01
Host recognition and use in female parasitoids strongly relies on host fidelity, a plastic behavior which can significantly restrict the host preferences of parasitoids, thus reducing the gene flow between parasitoid populations attacking different insect hosts. However, the effect of migrant males on the genetic differentiation of populations has been frequently ignored in parasitoids, despite its known impact on gene flow between populations. Hence, we studied the extent of gene flow mediated by female and male parasitoids by assessing sibship relationships among parasitoids within and between populations, and its impact on geographic and host-associated differentiation in the aphid parasitoid Aphidius ervi. We report evidences of a high gene flow among parasitoid populations on different aphid hosts and geographic locations. The high gene flow among parasitoid populations was found to be largely male mediated, suggested by significant differences in the distribution of full-sib and paternal half-sib dyads of parasitoid populations. PMID:26078852
Short-term volunteer health trips: aligning host community preferences and organizer practices
Rozier, Michael D.; Lasker, Judith N.; Compton, Bruce
2017-01-01
ABSTRACT Background: Short-term medical missions (STMMs) are quite common and largely understood to be a response to health needs in low-income countries. Yet most information about STMM practices is anecdotal. Even less is known about the preferences of in-country host communities regarding STMMs. Objective: We aimed to gather enough quantitative and qualitative information from both STMM organizers and host community staff to compare dominant practices of organizers as well as preferences of host community staff. We use these data to discover differences between practices and preferences and suggest ways in which STMMs can be more responsive to the communities they serve. Methods: Researchers gathered online survey responses from 334 STMM organizers and conducted interviews to determine existing practices. Similar methods were used to collect 49 online survey responses from, and conduct 75 interviews with, host community staff. Results: Organizer practices and host community staff preferences are different in several areas. Organizers admit to minimal screening and preparation of volunteers whereas host staff have clear ideas of topics that should be covered in preparation, including culture and basic language skills. Organizers prioritize provision of clinical care during trips whereas host staff prioritize capacity building. Practices and preferences also differ in relation to the length of STMMs, the nature of the partnership itself, and the type of assessment and evaluation that is needed. Conclusions: The large amount of data gathered for this study allows us to confidently say that organizer practices are often not aligned with host community staff preferences. Several concrete changes can be made to STMMs to bring practices more in line with the desires of the communities they serve. PMID:28218547
Host-seeking strategies of mosquito disease vectors.
Day, Jonathan F
2005-12-01
Disease transmission by arthropods normally requires at least 2 host contacts. During the first, a pathogen (nematode, protozoan, or virus) is acquired along with the blood from an infected vertebrate host. The pathogen penetrates the vector's midgut and infects a variety of tissues, where replication may occur during an extrinsic incubation period lasting 3-30, days depending on vector and parasite physiology and ambient temperature. Following salivary-gland infection, the pathogen is usually transmitted to additional susceptible vertebrate hosts during future probing or blood feeding. The host-seeking strategies used by arthropod vectors can, in part, affect the efficiency of disease transmission. Vector abundance, seasonal distribution, habitat and host preference, and susceptibility to infection are all important components of disease-transmission cycles. Examples of 3 mosquito vectors of human disease are presented here to highlight the diversity of host seeking and to show how specific behaviors may influence disease-transmission cycles. In the African tropics, Anopheles gambiae s.s. is an efficient vector of human malaria due to its remarkably focused preference for human blood. Aedes aegypti is the main vector of dengue viruses in the New and Old World tropics and subtropics. This mosquito has evolved a domestic lifestyle and shares human habitations throughout much of its range. It prospers in settings where humans are its main source of blood. In south Florida, Culex nigripalpus is the major vector of St. Louis encephalitis (SLE) and West Nile (WN) viruses. This mosquito is opportunistic and blood feeds on virtually any available vertebrate host. It serves as an arboviral vector, in part, due to its ability to produce large populations in a short period of time. These 3 host-seeking and blood-feeding strategies make the specialist, as well as the opportunist, equally dangerous disease vectors.
Gutowski, Jerzy M.; Sućko, Krzysztof; Zub, Karol; Bohdan, Adam
2014-01-01
Abstract We analyzed habitat requirements of Boros schneideri (Panzer, 1796) (Coleoptera: Boridae) in the natural forests of the continental biogeographical region, using data collected in the Białowieża Forest. This species has been found on the six host trees, but it preferred dead, standing pine trees, characterized by large diameter, moderately moist and moist phloem but avoided trees in sunny locations. It occurred mostly in mesic and wet coniferous forests. This species demonstrated preferences for old tree stands (over 140-yr old), and its occurrence in younger tree-stand age classes (minimum 31–40-yr old) was not significantly different from random distribution. B. schneideri occupied more frequently locations distant from the forest edge, which were less affected by logging. Considering habitat requirements, character of occurrence, and decreasing number of occupied locations in the whole range of distribution, this species can be treated as relict of primeval forests. PMID:25527586
Correa, Margarita C. G.; Lombaert, Eric; Malausa, Thibaut; Crochard, Didier; Alvear, Andrés; Zaviezo, Tania; Palero, Ferran
2015-01-01
The present study aimed to characterize the distribution of mealybug species along Chilean agro-ecosystems and to determine the relative impact of host plant, management strategy, geography and micro-environment on shaping the distribution and genetic structure of the obscure mealybug Pseudococcus viburni. An extensive survey was completed using DNA barcoding methods to identify Chilean mealybugs to the species level. Moreover, a fine-scale study of Ps. viburni genetic diversity and population structure was carried out, genotyping 529 Ps. viburni individuals with 21 microsatellite markers. Samples from 16 localities were analyzed using Bayesian and spatially-explicit methods and the genetic dataset was confronted to host-plant, management and environmental data. Chilean crops were found to be infested by Ps. viburni, Pseudococcus meridionalis, Pseudococcus longispinus and Planococcus citri, with Ps. viburni and Ps. meridionalis showing contrasting distribution and host-plant preference patterns. Ps. viburni samples presented low genetic diversity levels but high genetic differentiation. While no significant genetic variance could be assigned to host-plant or management strategy, climate and geography were found to correlate significantly with genetic differentiation levels. The genetic characterization of Ps. viburni within Chile will contribute to future studies tracing back the origin and improving the management of this worldwide invader. PMID:26559636
Loss of adaptive variation during evolutionary responses to climate change.
Buckley, James; Bridle, Jon R
2014-10-01
The changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change. The recent poleward range expansion of the UK brown argus butterfly has been associated with a shift in female preference from its main host plant, rockrose (Cistaceae), onto Geraniaceae host plants throughout its new distribution. Using reciprocal transplants onto natural host plants across the UK range, we demonstrate reduced fitness of females from recently colonised Geraniaceae-dominated habitat when moved to ancestral rockrose habitats. By contrast, individuals from ancestral rockrose habitats show no reduction in fitness on Geraniaceae. Climate-driven range expansion in this species is therefore associated with the rapid evolution of biotic interactions and a significant loss of adaptive variation. © 2014 John Wiley & Sons Ltd/CNRS.
Petit, Christophe; Le Ru, Bruno; Dupas, Stéphane; Frérot, Brigitte; Ahuya, Peter; Kaiser-Arnauld, Laure; Harry, Myriam; Calatayud, Paul-André
2015-01-01
In Lepidoptera, host plant selection is first conditioned by oviposition site preference of adult females followed by feeding site preference of larvae. Dietary experience to plant volatile cues can induce larval and adult host plant preference. We investigated how the parent’s and self-experience induce host preference in adult females and larvae of three lepidopteran stem borer species with different host plant ranges, namely the polyphagous Sesamia nonagrioides, the oligophagous Busseola fusca and the monophagous Busseola nairobica, and whether this induction can be linked to a neurophysiological phenotypic plasticity. The three species were conditioned to artificial diet enriched with vanillin from the neonate larvae to the adult stage during two generations. Thereafter, two-choice tests on both larvae and adults using a Y-tube olfactometer and electrophysiological (electroantennography [EAG] recordings) experiments on adults were carried out. In the polyphagous species, the induction of preference for a new olfactory cue (vanillin) by females and 3rd instar larvae was determined by parents’ and self-experiences, without any modification of the sensitivity of the females antennae. No preference induction was found in the oligophagous and monophagous species. Our results suggest that lepidopteran stem borers may acquire preferences for new olfactory cues from the larval to the adult stage as described by Hopkins’ host selection principle (HHSP), neo-Hopkins’ principle, and the concept of ‘chemical legacy.’ PMID:26288070
Murdock, Courtney C; Adler, Peter H; Frank, Jared; Perkins, Susan L
2015-06-25
Molecular studies have suggested that the true diversity of Leucocytozoon (Apicomplexa: Haemospororida) species well exceeds the approximately 35 currently described taxa. Further, the degree of host-specificity may vary substantially among lineages. Parasite distribution can be influenced by the ability of the parasite to infect a host, vector preferences for certain avian hosts, or other factors such as microhabitat requirements that increase the probability that vertebrate hosts and vectors are in frequent contact with each other. Whereas most studies of haemosporidians have focused on passerine hosts, sampling vectors in the same habitats may allow the detection of other lineages affecting other hosts. We sampled abundant, ornithophilic black flies (Simuliidae) across a variety of sites and habitats in the Colorado Rocky Mountains throughout the summer of 2007. Black flies were screened with PCR using Leucocytozoon-specific primers that amplify a portion of the cytochrome b gene, and the sequences were compared to the haplotypes in the MalAvi database. Infections of Leucocytozoon from birds sampled in the same area were also included. We recovered 33 unique haplotypes from the black flies in this study area, which represented a large phylogenetic diversity of Leucocytozoon parasites. However, there were no clear patterns of avian host species or geography for the distribution of Leucocytozoon haplotypes in the phylogeny. Sampling host-seeking vectors is a useful way to obtain a wide variety of avian haemosporidian haplotypes from a given area and may prove useful for understanding the global patterns of host, parasite, and vector associations of these ubiquitous and diverse parasites.
Host plant utilization in the comma butterfly: sources of variation and evolutionary implications.
Janz, Niklas; Nylin, Sören; Wedell, Nina
1994-09-01
A major challenge in the study of insect-host plant interactions is to understand how the different aspects of offspring performance interact to produce a preference hierarchy in the ovipositing females. In this paper we investigate host plant preference of the polyphagous butterfly Polygonia c-album (Lepidoptera: Nymphalidae) and compare it with several aspects of the life history of its offspring (growth rate, development time, adult size, survival and female fecundity). Females and offspring were tested on four naturally used host plants (Urtica dioica, Ulmus glabra, Salix caprea, and Betula pubescens). There was substantial individual variation in host plant preference, including reversals in rank order, but the differences were largely confined to differences in the ranking of Urtica dioica and S. caprea. Different aspects of performance on these two plants gave conflicting and complementary results, implying a trade-off between short development time on U. dioica, and larger size and higher fecundity on S. caprea. As all performance components showed low individual variation the large variation in host plant preference was interpreted as due to alternative oviposition strategies on the basis of similar 'performance hierarchies'. This indicates that the larval performance component of host-plant utilization may be more conservative to evolutionary change than the preference of ovipositing females. Possible macro-evolutionary implications of this are discussed.
Liana habitat and host preferences in northern temperate forests
Leicht-Young, S. A.; Pavlovic, N.B.; Frohnapple, K.J.; Grundel, R.
2010-01-01
Lianas and other climbers are important ecological and structural components of forest communities. Like other plants, their abundance in a given habitat depends on a variety of factors, such as light, soil moisture and nutrients. However, since lianas require external support, host tree characteristics also influence their distribution. Lianas are conspicuous life forms in tropical regions, but in temperate areas, where they are less prominent, little is known about factors that control their distributions in these forests. We surveyed the climbing plant species in 20 mature (100 years and greater) forested habitats in the Midwest USA at a variety of levels from simple presence/absence, to ground layer abundances, to those species that had ascended trees. We also examined attributes of the tree species with climbers attached to them. Using cluster analysis, we distinguished five different tree communities in our survey locations. We determined that 25% of the trees we surveyed had one or more lianas attached to it, with Parthenocissus quinquefolia (Virginia creeper) the most common climbing species encountered. Canopy cover and soil attributes both influenced climber species presence/absence and ground layer climber abundance. The proportion of liana species of a given climbing type (roots, stem twiner, tendril climber) was significantly related to the DBH of the host tree, with more root climbers and fewer stem and tendril climbers on large trees. In general, the DBH of climbing lianas had a significant positive relationship to the DBH of the host tree; however this varied by the identity of the liana and the tree species. The greater the DBH of the host tree, the higher the probability that it was colonized by one or more lianas, with tree species such as Pinus banksiana (jack pine) and Quercus alba (white oak) being more susceptible to liana colonization than others. Finally, some liana species such as Celastrus scandens (American bittersweet) showed a preference for certain tree species (i.e., P. banksiana) as hosts. The information obtained about the relationship between the tree and climber community in this study provides insight into some of the factors that influence liana distributions in understudied temperate forest habitats and how lianas contribute to the structure of these mature forests. In addition, these data can provide a point of comparison to other liana communities in both temperate and tropical regions.
Fowler-Finn, K D; Cruz, D C; Rodríguez, R L
2017-01-01
Many animals exhibit social plasticity - changes in phenotype or behaviour in response to experience with conspecifics that change how evolutionary processes like sexual selection play out. Here, we asked whether social plasticity arising from variation in local population density in male advertisement signals and female mate preferences influences the form of sexual selection. We manipulated local density and determined whether this changed how the distribution of male signals overlapped with female preferences - the signal preference relationship. We specifically look at the shape of female mate preference functions, which, when compared to signal distributions, provide hypotheses about the form of sexual selection. We used Enchenopa binotata treehoppers, a group of plant-feeding insects that exhibit natural variation in local densities across individual host plants, populations, species and years. We measured male signal frequency and female preference functions across the density treatments. We found that male signals varied across local social groups, but not according to local density. By contrast, female preferences varied with local density - favouring higher signal frequencies in denser environments. Thus, local density changes the signal-preference relationship and, consequently, the expected form of sexual selection. We found no influence of sex ratio on the signal-preference relationship. Our findings suggest that plasticity arising from variation in local group density and composition can alter the form of sexual selection with potentially important consequences both for the maintenance of variation and for speciation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Pfleger, Brian F; Lennen, Rebecca M
2013-12-31
Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.
Castro, Ricardo; Santos, Maria João
2013-10-01
Parasites are affected by the environment where their hosts live, having a specific distribution among their hosts and occupying a well-defined microhabitat. The present work aims to describe the metazoan ectoparasite fauna of Scomber scombrus, namely its distribution at the macro- and microhabitat levels. For that, fish from two different Portuguese regions, Matosinhos (n = 40) and Figueira da Foz (n = 39), were examined for macroectoparasites. S. scombrus of Matosinhos presented four different parasite species, whilst fish from Figueira da Foz presented five species. All parasites belonged to Monogenea, Copepoda, or Isopoda. The main differences between infection levels of fish from the two localities were found in Grubea cochlear (higher infection levels in Matosinhos) and Caligus pelamydis (where the highest values were found in Figueira da Foz). Regarding the microhabitat of the reported ectoparasites, it could be seen that every species has a very specific distribution within the host: G. cochlear and Kuhnia scombri have a preference for the inner medial areas of gills, Kuhnia sprostonae for the pseudobranchs, and C. pelamydis for the internal wall of opercula. The numerical and functional responses to interspecific competition were absent. These results support the idea that the parasite driving forces of community structure are the reinforcement of reproductive barriers and the enhancement of chances to mate.
Vozárová, Z; Kamencayová, M; Glasa, M; Subr, Z
2013-01-01
Plum pox virus (PPV) isolates of the strain PPV-M prevalently infect peaches under natural conditions in Middle Europe. Comparison of complete genome sequences obtained from subisolates of a PPV-M isolate maintained experimentally over a 6-year period in different Prunus host species and passaged in Nicotiana benthamiana was performed with the aim to highlight the mutations potentially connected with the virus-host adaptation. The results showed that the lowest number of non-silent mutations was accumulated in PPV-M maintained in peach (original host species), approximately two times higher diversity was recorded in plum, apricot and N. benthamiana, indicating the genetic determination of the PPV host preference. The sequence variability of Prunus subisolates was distributed more or less evenly along the PPV genome and no amino acid motif could be outlined as responsible for the host adaptation. In N. benthamiana the mutations were accumulated notably in the P1 and P3 genes indicating their non-essentiality in the infection of this experimental host plant.
Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco
2017-06-01
The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Lardeux, Frédéric; Loayza, Paola; Bouchité, Bernard; Chavez, Tamara
2007-01-01
Background The Human Blood Index (HBI, proportion of bloodmeals of a mosquito population obtained from man) is relevant to epidemiological assessment and to the modification of measures to interrupt malaria transmission since the vectorial capacity of the vector varies as the square of the HBI. Anopheles pseudopunctipennis is a main malaria vector in South America. Unfortunately, few data exist concerning HBI values in its range of distribution and none from Bolivia where this species is considered as an important malaria vector in the central Andes. Methods The host choice of An. pseudopunctipennis has been studied in Mataral, a characteristic village of the central Andes of Bolivia. Mosquito host feeding preference experiments (equal accessibility to host in homogenous environment) were monitored using baited mosquito nets in latin square designs. Host feeding selection experiments (natural feeding pattern in heterogeneous environment) was measured by bloodmeal analysis, using ELISA to determine the origin of blood. Mosquito bloodmeals were collected on various occasions, using various techniques in a variety of sampling sites. A survey of the possible blood sources has also been carried out in the village. Data were analysed with the forage ratio method. Results An. pseudopunctipennis chooses amongst hosts. Sheep, goats, donkeys and humans are the preferred hosts, while dogs, pigs and chicken are rarely bitten. An. pseudopunctipennis has an opportunistic behaviour, in particular within the preferred hosts. The HBI in Mataral is ≈40% and in the central Andes, may range from 30–50%, in accordance to other findings. A high proportion of mixed meals were encountered (8%), and cryptic meals are likely more numerous. There was no difference amongst the HBI from parous and nulliparous mosquitoes. Conclusion Forage ratio analysis is a powerful tool to interpret mosquito host choices. However, refinements in sampling strategies are still needed to derive accurate and precise HBIs that could be computed to compare or follow epidemiological situations. The low antropophily of An. pseudopunctipennis, associated with changing environmental conditions, leads to unstable malaria (Plasmodium vivax) transmission in the central Andes. The opportunistic behaviour of this vector may be used to attract mosquitoes to insecticide. Zooprophylaxis is a promising alternative control strategy. PMID:17241459
Bauman, David; Raspé, Olivier; Meerts, Pierre; Degreef, Jérôme; Ilunga Muledi, Jonathan; Drouet, Thomas
2016-10-01
Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[Localization of larvae of Neotrombicula (N) monticola (Trombiculidae) ticks on the vertebrates].
Chirov, P A; Kharadov, A V
2007-01-01
The specific features of distribution of Neotrombicula (N) monticola Schluger et Davidov, 1967 on small mammals were studied in the Tien Shan montains (Kirghiz ridge). N. (N ) monticola was found to occur in all the places under study. Nine species of mammals (pigmy white-toothed shrew, dwarf hamster, tamarisk gerbil, Turkestan rat, long-tailed mouse, Tien Shan, Kirghiz, and silver voles, and wood mouse) were established to be feeders of larvae of the ticks. N. (N) monticola larvae were detected in three topographic zones and seven portions of the body of vertebral hosts. The inner auricle is the major site of tick attachment to the host. Preference of N. (N) monticola in selecting the host is likely to be based on the morphophysiological features of partners.
Fidelity and Promiscuity in an Ant-Plant Mutualism: A Case Study of Triplaris and Pseudomyrmex
Sanchez, Adriana
2015-01-01
The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism but no molecular studies have examined this association to date. In this study, the interspecific relationships of Triplaris were reconstructed using five molecular markers (two chloroplast and three nuclear), and the relationships of the associated Pseudomyrmex using two molecular regions (one mitochondrial and one nuclear). A data set including all known collections of plant hosts and resident ants was also compiled. The pattern of distribution of both organisms reveals that there are varying degrees of host specificity; most ants show broader host usage (promiscuous) but one species (P. dendroicus) is faithful to a single species of Triplaris. In most ant-plant interactions, host usage is not specific at the species level and preferences may result from geographical or ecological sorting. The specificity of P. dendroicus could be based on chemical recognition of the host they were raised on. PMID:26630384
Barber, Nicholas A
2010-04-01
Insect herbivore abundances on host plants are influenced by both plant traits and the physical environment in which that plant grows. This study examined the role of the physical light environment and foliage characteristics in determining abundance of the lacebug Corythuca arcuata Say (Hemiptera: Tingidae) on Quercus alba L. I censused adult C. arcuata across a growing season, quantified leaf characteristics, and measured canopy cover over understory branches of mature Q. alba. Using an information-theoretic approach, a priori hypotheses of the relationship between light, plant traits, and C. arcuata abundance was evaluated. Abundance was best predicted by light environment and carbon content. Adult C. arcuata prefer trees growing under an open canopy and trees with low carbon content; abundance also positively correlated with leaf water content. Although carbon and water did not vary with light in this study, low carbon and high water content are often associated with shadier conditions, suggesting that C. arcuata faces a trade-off between preferences for physical habitat conditions and host plant characteristics.
M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns
1998-01-01
Populations of the basidiomycete Heterobasidion annosum display varying degrees, of intersterility and differential host specialization. At least three intersterility groups have been formally described, each characterized by a range of "preferred" hosts. It has been hypothesized that processes of host-pathogen compatibility may have been...
Gutowski, Jerzy M; Sućko, Krzysztof; Zub, Karol; Bohdan, Adam
2014-01-01
We analyzed habitat requirements of Boros schneideri (Panzer, 1796) (Coleoptera: Boridae) in the natural forests of the continental biogeographical region, using data collected in the Białowieża Forest. This species has been found on the six host trees, but it preferred dead, standing pine trees, characterized by large diameter, moderately moist and moist phloem but avoided trees in sunny locations. It occurred mostly in mesic and wet coniferous forests. This species demonstrated preferences for old tree stands (over 140-yr old), and its occurrence in younger tree-stand age classes (minimum 31-40-yr old) was not significantly different from random distribution. B. schneideri occupied more frequently locations distant from the forest edge, which were less affected by logging. Considering habitat requirements, character of occurrence, and decreasing number of occupied locations in the whole range of distribution, this species can be treated as relict of primeval forests. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Adaptation to different host plant ages facilitates insect divergence without a host shift
Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke
2015-01-01
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220
USDA-ARS?s Scientific Manuscript database
The genus Brucella encompasses a group of gram negative bacteria that survive almost exclusively in infected hosts with preference for localization in intracellular compartments of cells. The genus has traditionally been divided into species based on microbe characteristics and host preference, bu...
USDA-ARS?s Scientific Manuscript database
Brucella are intracellular pathogens that cause reproductive losses in animals and zoonotic infections in people. Although named by preferred host species, members of the Brucella genus are capable of infecting multiple species. In preferred hosts, clinical symptoms are generally minimal whereas m...
Wang, Hua; Guo, Wen-Fei; Zhang, Peng-Jun; Wu, Zhi-Yi; Liu, Shu-Sheng
2008-03-01
In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and alpha-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.
Method for gas bubble and void control and removal from metals
Van Siclen, Clinton D.; Wright, Richard N.
1996-01-01
A method for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy.
Leaf Quality and the Host Preferences of Gypsy Moth in the Northern Deciduous Forest
Martin J. Lechowicz
1983-01-01
Both gypsy morh host preferences and the foliage characteristics thaL have been implicated as factors in host selection were monitored from 1979 to 1982 in a Quercus-Acer-Ostrya forest near Montreal, Quebec. The preliminary analyses of these data suggest the hypothesis that gypsy moth larvae preferentially attack trees that have high sugar:tannin...
Substrate preferences of epiphytic bromeliads: an experimental approach
NASA Astrophysics Data System (ADS)
Zotz, Gerhard; Vollrath, Birgit
2002-05-01
Based on the known vertical distributions of three epiphyte species we tested the hypothesis that observed interspecific differences are determined at a very early ontogenetic stage. We attached 1296 first-year seedlings of the three species Guzmania monostachya, Tillandsia fasciculata, and Vriesea sanguinolenta (Bromeliaceae) to substrates differing in orientation and relative position within the crown of the host tree, Annona glabra. Surprisingly, we found no evidence for differential mortality on different substrate types for any of the three species. Hence, differences in vertical distribution cannot be explained by interspecific differences in site-specific survival at this stage. This suggests that spatial distribution patterns are determined even earlier, probably resulting from species differences in seed dispersal or during germination.
Wojdak, Jeremy M; Clay, Letitia; Moore, Sadé; Williams, Taylore; Belden, Lisa K
2013-02-01
Many trematodes infect a single mollusk species as their first intermediate host, and then infect a variety of second intermediate host species. Determining the factors that shape host specificity is an important step towards understanding trematode infection dynamics. Toward this end, we studied two pond snails (Physa gyrina and Helisoma trivolvis) that can be infected as second intermediate hosts by the trematode Echinostoma trivolvis lineage a (ETa). We performed laboratory preference trials with ETa cercariae in the presence of both snail species and also characterized host suitability by quantifying encystment and excystment success for each host species alone. We tested the prediction that trematodes might preferentially infect species other than their obligate first intermediate host (in this case, H. trivolvis) as second intermediate hosts to avoid potentially greater host mortality associated with residing in first intermediate hosts. In our experiments, ETa had roughly equivalent encystment success in Helisoma and Physa snails, but greater excystment success in Physa, when offered each species in isolation. Also, the presence of the symbiotic oligochaete Chaetogaster limnaei in a subset of Helisoma snails reduced encystment success in those individuals. When both hosts were present, we found dramatically reduced infection prevalence and intensity in Helisoma-ETa cercariae strongly preferred Physa. Thus, the presence of either an alternative host, or a predator of free-living parasites, offered protection for Helisoma snails from E. trivolvis lineage a infection.
Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.
Preston, J F; Dickson, D W; Maruniak, J E; Nong, G; Brito, J A; Schmidt, L M; Giblin-Davis, R M
2003-06-01
Pasteuria spp. include endospore-forming bacterial pathogens of cladoceran crustaceans and plant-parasitic nematodes. Propagation of these nematode pathogens requires attachment of soilborne endospores to nematode hosts, infection, growth, sporulation, and release of endospores to repeat the cycle of infection and propagation. The ability of these bacteria to suppress the levels of plant-parasitic nematodes in the field has made them particularly promising candidates for biocontrol of nematode diseases of plants. Genes encoding 16S ribosomal RNA have been sequenced for the cladoceran (water flea) parasite and type species, Pasteuria ramosa, and for Pasteuria spp. isolated from root-knot (Meloidogyne arenaria race 1 and Meloidogyne sp.), soybean cyst (Heterodera glycines), and sting (Belonolaimus longicaudatus) nematodes. These have provided a phylogenetic basis for their designation to a distinct clade within the family Alicyclobacillaceae of the gram-positive endospore-forming bacteria. Two apparent biotypes of P. penetrans demonstrating a host preference for different Meloidogyne spp. showed identical 16S rDNA sequences, suggesting host-recognition evolves within a given species. The sequences of genes encoding sporulation transcription factors, sigE and sigF, from P. penetrans biotype P-20 show different phylogenetic relationships to other endospore-forming bacteria, supporting their application to further discriminate Pasteuria spp. and biotypes. Distribution of an adhesin-associated epitope on polypeptides from different Pasteuria isolates provides an immunochemical approach to differentiate species and biotypes with specific host preferences. Application of bioinformatics to genomic data, as well as further characterization of the biochemical basis for host recognition, will facilitate development of Pasteuria spp. as benign alternatives to chemical nematicides.
Hiebeler, David E; Audibert, Andrew; Strubell, Emma; Michaud, Isaac J
2017-04-07
Beginning in 2001, many instances of malicious software known as Internet worms have been using biological strategies such as hierarchical dispersal to seek out and spread to new susceptible hosts more efficiently. We measured the distribution of potentially susceptible hosts in the space of Internet addresses to determine their clustering. We have used the results to construct a full-size simulated Internet with 2 32 hosts with mean and variance of susceptible hosts chosen to match our measurements at multiple spatial scales. Epidemiological simulations of outbreaks among the roughly 2.8×10 6 susceptible hosts on this full-sized network show that local preference scanning greatly increases the chances for an infected host to locate and infect other susceptible hosts by a factor of as much as several hundred. However, once deploying this strategy, the overall success of a worm is relatively insensitive to the details of its dispersal strategy over a wide range of parameters. In addition, although using localized interactions may allow malicious software to spread more rapidly or to more hosts on average, it can also lead to increased variability in infection levels among replicate simulations. Using such dispersal strategies may therefore be a high risk, high reward strategy for the authors of such software. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular mechanisms of retroviral integration site selection
Kvaratskhelia, Mamuka; Sharma, Amit; Larue, Ross C.; Serrao, Erik; Engelman, Alan
2014-01-01
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic. PMID:25147212
Miller, Ezer; Huppert, Amit
2013-01-01
Multihost vector-borne infectious diseases form a significant fraction of the global infectious disease burden. In this study we explore the relationship between host diversity, vector behavior, and disease risk. To this end, we have developed a new dynamic model which includes two distinct host species and one vector species with variable preferences. With the aid of the model we were able to compute the basic reproductive rate, R 0, a well-established measure of disease risk that serves as a threshold parameter for disease outbreak. The model analysis reveals that the system has two different qualitative behaviors: (i) the well-known dilution effect, where the maximal R0 is obtained in a community which consists a single host (ii) a new amplification effect, denoted by us as diversity amplification, where the maximal R0 is attained in a community which consists both hosts. The model analysis extends on previous results by underlining the mechanism of both, diversity amplification and the dilution, and specifies the exact conditions for their occurrence. We have found that diversity amplification occurs where the vector prefers the host with the highest transmission ability, and dilution is obtained when the vector does not show any preference, or it prefers to bite the host with the lower transmission ability. The mechanisms of dilution and diversity amplification are able to account for the different and contradictory patterns often observed in nature (i.e., in some cases disease risk is increased while in other is decreased when the diversity is increased). Implication of the diversity amplification mechanism also challenges current premises about the interaction between biodiversity, climate change, and disease risk and calls for retrospective thinking in planning intervention policies aimed at protecting the preferred host species.
orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET.
DeGennaro, Matthew; McBride, Carolyn S; Seeholzer, Laura; Nakagawa, Takao; Dennis, Emily J; Goldman, Chloe; Jasinskiene, Nijole; James, Anthony A; Vosshall, Leslie B
2013-06-27
Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever. Specific host odours probably drive this strong preference because other attractive cues, including body heat and exhaled carbon dioxide (CO2), are common to all warm-blooded hosts. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs), membrane proteins that form heteromeric odour-gated ion channels comprising a variable ligand-selective subunit and an obligate co-receptor called Orco (ref. 6). Here we use zinc-finger nucleases to generate targeted mutations in the orco gene of A. aegypti to examine the contribution of Orco and the odorant receptor pathway to mosquito host selection and sensitivity to the insect repellent DEET (N,N-diethyl-meta-toluamide). orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the odorant receptor pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.
Host Preferences of Gypsy Moth on a New Frontier of Infestation
David A. Gansner; Owen W. Herrick; Owen W. Herrick
1985-01-01
Knowing what gypsy moth likes to eat can aid forest managers in making cost-effective control decisions. A recent 5-year study of defoliation in central Pennsylvania gives an up-to-date index of host species preferences. Chestnut oak is the most preferred species. Following in relatively close order are the other oaks and aspen. Hardwood species that rank low on the...
Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P C; Ovaa, Huib; Drag, Marcin; Lima, Christopher D; Huang, Tony T
2015-06-01
Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.
Infracommunity dynamics of chiggers (Trombiculidae) parasitic on a rodent.
Barnard, Karlien; Krasnov, Boris R; Goff, Lee; Matthee, Sonja
2015-11-01
We studied the structure of chigger mite (Trombiculidae) communities parasitic on a South African rodent, Rhabdomys pumilio. We aimed to determine whether: (a) different chigger species differ in preferences for certain body areas of a host and (b) chigger assemblages among body areas of the same host individual, are structured and if so, whether the structure of these assemblages is aggregative or segregative. Rhabdomys pumilio is parasitized by seven chigger species belonging to six genera. The three most abundant species (Leptotrombidium sp. nr. muridium, Schoutedenichia sp. and Neoschoengastia sp. A) displayed a non-random distribution across the host body, with the two most abundant species (L. sp. nr. muridium and Schoutedenichia sp.) significantly associated with the tail area. In addition, whenever non-randomness of chigger co-occurrence in the same body area was recorded, it indicated positive but not negative co-occurrences of different species. This might be due to similarity of chigger species in resource needs and strategies to avoid host defence efforts.
Method for gas bubble and void control and removal from metals
Siclen, C.D. Van; Wright, R.N.
1996-02-06
A method is described for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy. 2 figs.
Occurrence and distribution of Giardia species in wild rodents in Germany.
Helmy, Yosra A; Spierling, Nastasja G; Schmidt, Sabrina; Rosenfeld, Ulrike M; Reil, Daniela; Imholt, Christian; Jacob, Jens; Ulrich, Rainer G; Aebischer, Toni; Klotz, Christian
2018-03-27
Giardiasis is an important gastrointestinal parasitic disease in humans and other mammals caused by the protozoan Giardia duodenalis. This species complex is represented by genetically distinct groups (assemblages A-H) with varying zoonotic potential and host preferences. Wild rodents can harbor potentially zoonotic assemblages A and B, and the rodent-specific assemblage G. Other Giardia spp. found in these animals are Giardia muris and Giardia microti. For the latter, only limited information on genetic typing is available. It has been speculated that wild rodents might represent an important reservoir for parasites causing human giardiasis. The aim of this study was to investigate the occurrence and distribution of Giardia spp. and assemblage types in wild rodents from different study sites in Germany. Screening of 577 wild rodents of the genera Apodemus, Microtus and Myodes, sampled at eleven study sites in Germany, revealed a high overall Giardia prevalence. Giardia species determination at the SSU rDNA gene locus revealed that Apodemus mice, depending on species, were predominantly infected with one of two distinct G. muris sequence types. Giardia microti was the predominant parasite species found in voles of the genera Microtus and Myodes. Only a few animals were positive for potentially zoonotic G. duodenalis. Subtyping at the beta-giardin (bg) and glutamine dehydrogenase (gdh) genes strongly supported the existence of different phylogenetic subgroups of G. microti that are preferentially harbored by distinct host species. The present study highlights the preference of G. muris for Apodemus, and G. microti for Microtus and Myodes hosts and argues for a very low prevalence of zoonotic G. duodenalis assemblages in wild rodents in Germany. It also provides evidence that G. muris and G. microti subdivide into several phylogenetically distinguishable subgroups, each of which appears to be preferentially harbored by species of a particular rodent host genus. Finally, the study expands the database of sequences relevant for sequence typing of G. muris and G. microti isolates which will greatly help future analyses of these parasites' population structure.
Host specificity of Argulus coregoni (Crustacea: Branchiura) increases at maturation.
Mikheev, V N; Pasternak, A F; Valtonen, E T
2007-11-01
We tested the hypothesis that host specificity in ectoparasites does not depend exclusively on the features of the host but also on surrounding habitats, using 2 fish ectoparasites, Argulus coregoni and A. foliaceus (Crustacea: Branchiura), occurring sympatrically in Finnish lakes. Although these parasites are considered to be of low specificity, we found that the larger of the 2 species, A. coregoni developed a pronounced preference for salmonid hosts at the beginning of maturation (defined by the presence of copulating specimens). Argulus foliaceus infects a much wider range of fish hosts. We showed that specialization of A. coregoni on salmonids does not necessarily result from incompatibility with other fishes, but could instead reflect higher sensitivity of oxygen depletion compared with A. foliaceus. Adult A. coregoni may meet these demands by attaching to salmonids, the typical inhabitants of well-aerated waters. Young parasites of both species showed little host specificity and attached mainly to fishes with higher body reflectivity. In host choice experiments, A. coregoni of 4-5 mm length preferred salmonids (rainbow trout) to cyprinids (roach) irrespective of the type of fish host, on which it had been previously grown in the laboratory. We suggest that such an innate ontogenetic shift in host preference maintains the major part of the parasite population on its principal host, ensuring successful reproduction within suitable habitats.
Kaur, Tarandeep; Bhat, Rohini; Khajuria, Manu; Vyas, Ruchika; Kumari, Anika; Nadda, Gireesh; Vishwakarma, Ram; Vyas, Dhiraj
2016-09-01
Plutella xylostella L. is a notorious pest of cruciferous crops causing worldwide losses of $4-5 billion per year. Developing classical biological control to this pest include an introduction of host plants that act as natural enemies showing deviation from the preference-performance regimen in the evolutionary ecology of plant-insect interactions. The present study was designed to understand the role of glucosinolate-myrosinase system during P. xylostella interactions with a novel host. Adult moth preference and larval performance study were conducted on a novel host Lepidium latifolium L. (LL) that has high sinigrin content and was compared with its laboratory host Arabidopsis thaliana (AT). The glucosinolate-myrosinase system was studied in a time course experiment during larval feeding in choice and no-choice experiments. Adult moths visit and prefers LL over AT for oviposition. Conversely, LL leaves were not preferred and proved detrimental for P. xylostella larvae. Aliphatic and indolic glucosinolates were found to decrease significantly (p≤0.05) in AT during initial 12h of P. xylostella challenge, whereas, they were not affected in LL. Also, MYB transcription factor expression and myrosinase activity in LL do not suggest a typical host response to a specialist insect. This preference-performance mismatch of P. xylostella on LL mediated by glucosinolate pattern suggests that this novel plant could be utilized in P. xylostella management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modulation of Host Learning in Aedes aegypti Mosquitoes.
Vinauger, Clément; Lahondère, Chloé; Wolff, Gabriella H; Locke, Lauren T; Liaw, Jessica E; Parrish, Jay Z; Akbari, Omar S; Dickinson, Michael H; Riffell, Jeffrey A
2018-02-05
How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Host shift and speciation in a coral-feeding nudibranch
Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G
2006-01-01
While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995
Bartošová-Sojková, Pavla; Lövy, Alena; Reed, Cecile C; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S; Fiala, Ivan
2018-01-01
Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as well as tidal water exchange may be additional crucial variables affecting the dispersal and associated population structure of C. cottoidii.
Reed, Cecile C.; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S.; Fiala, Ivan
2018-01-01
Introduction Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Material and methods Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Results and discussion Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as well as tidal water exchange may be additional crucial variables affecting the dispersal and associated population structure of C. cottoidii. PMID:29561884
Yang, P.; Foote, D.; Alyokhin, A.V.; Lenz, L.; Messing, R.H.
2002-01-01
The abundance of mymarid parasitoids attacking the two-spotted leafhopper (Sophonia rufofascia [Kuoh and Kuoh]), a polyphagous pest recently adventive to Hawaii, was monitored using yellow sticky cards deployed in several areas on the islands of Kauai and Hawaii. The yellow cards captured Chaetomymar sp. nr bagicha Narayanan, Subba Rao, & Kaur and Schizophragma bicolor (Dozier), both adventive species, and Polynema sp. Haliday, which is endemic to Hawaii (Hymenoptera: Mymaridae). The former two species were most abundant at all sites. On Kauai, there was a negative correlation between the captures of C. sp. nr bagicha and those of Polynema sp. Throughout the season, the increase in parasitoid numbers generally followed the increase in leafhopper numbers. C. sp. nr. bagicha and S. bicolor showed distinct habitat preferences. Removal of Myrica faya Aiton, an invasive weed that is a highly preferred two-spotted leafhopper host, decreased the overall numbers of captured parasitoids, but led to a twofold increase in the ratio of trapped parasitoids/hosts in weed-free areas. ?? 2002 Elsevier Science (USA).
Can preference for oviposition sites initiate reproductive isolation in Callosobruchus maculatus?
Rova, Emma; Björklund, Mats
2011-01-31
Theory has identified a variety of evolutionary processes that may lead to speciation. Our study includes selection experiments using different host plants and test key predictions concerning models of speciation based on host plant choice, such as the evolution of host use (preference and performance) and assortative mating. This study shows that after only ten generations of selection on different resources/hosts in allopatry, strains of the seed beetle Callosobruchus maculatus develop new resource preferences and show resource-dependent assortative mating when given the possibility to choose mates and resources during secondary contact. The resulting reduced gene flow between the different strains remained for two generations after contact before being overrun by disassortative mating. We show that reduced gene flow can evolve in a population due to a link between host preference and assortative mating, although this result was not found in all lines. However, consistent with models of speciation, assortative mating alone is not sufficient to maintain reproductive isolation when individuals disperse freely between hosts. We conclude that the evolution of reproductive isolation in this system cannot proceed without selection against hybrids. Other possible factors facilitating the evolution of isolation would be longer periods of allopatry, the build up of local adaptation or reduced migration upon secondary contact.
Christopher Asaro; Brian T. Sullivan; M.J. Dalusky; C. Wayne Berisford
2004-01-01
Ovipositing female Nantucket pine tip moth, Rhyacionia frustrana, prefer loblolly pine, Pinus taeda L., to slash pine, Pinus elliottii Englem. except during the first spring following planting of seedlings. Host discrimination by R. frustrana increases as seedlings develop, suggesting that...
Schäpers, Alexander; Petrén, Hampus; Wheat, Christopher W.; Wiklund, Christer
2017-01-01
Reproducibility is a scientific cornerstone. Many recent studies, however, describe a reproducibility crisis and call for assessments of reproducibility across scientific domains. Here, we explore the reproducibility of a classic ecological experiment—that of assessing female host plant preference and acceptance in phytophagous insects, a group in which host specialization is a key driver of diversification. We exposed multiple cohorts of Pieris napi butterflies from the same population to traditional host acceptance and preference tests on three Brassicaceae host species. Whereas the host plant rank order was highly reproducible, the propensity to oviposit on low-ranked hosts varied significantly even among cohorts exposed to similar conditions. Much variation could be attributed to among-cohort variation in female fecundity, a trait strongly correlated both to female size and to the size of the nuptial gift a female receives during mating. Small males provide small spermatophores, and in our experiment small females that mated with small males had a disproportionally low propensity to oviposit on low-ranked hosts. Hence, our results provide empirical support to the theoretical prediction that female host utilization is strongly affected by non-genetic, environmental variation, and that such variation can affect the reproducibility of ecological experiments even under seemingly identical conditions. PMID:28202813
Carasel, I Alexandru; Yamnitz, Carl R; Winter, Rudolph K; Gokel, George W
2010-12-03
The F(-), Cl(-), and Br(-) binding selectivity of bis(p-nitroanilide)s of dipicolinic and isophthalic acids was studied by using competitive electrospray mass spectrometry and UV-Visible spectroscopy. Both hosts prefer binding Cl(-) over either F(-) or Br(-). Host deprotonation was observed to some extent in all experiments in which the host was exposed to halide ions. When F(-) was present, host deprotonation was often the major process, whereas little deprotonation was observed by Cl(-) or Br(-), which preferred complexation. A solution of either host changed color when mixed with a F(-), H(2)PO(4)(-), di- or triphenylacetate solution.
Faccoli, M; Favaro, R
2016-06-01
The Asian long-horned beetle (ALB), Anoplophora glabripennis (Motschulsky), is a highly polyphagous invasive pest with a broad range of host species, but showing relevant differences between infestation areas. Host preference and host colonization (female fecundity, egg and larval survival) were assessed in a population in Northern Italy by choice and no-choice experiments conducted in both field and laboratory conditions. During 5 years of field observations, ALB was found to infest seven genera of trees: Acer, Aesculus, Betula, Populus, Prunus, Salix and Ulmus. However, Acer, Betula, Ulmus and Salix resulted to be the preferred hosts corresponding to 97.5% (1112) of the 1140 infested trees. In both laboratory and field trials carried out on these four host genera, no-choice experiments recorded the highest host colonization of A. glabripennis on Acer trees, with the highest number of laid eggs and the lowest egg and larval mortality. Ulmus and Salix showed a lower number of laid eggs during laboratory choice test, but egg and larval mortality had mean values similar to Acer. On the contrary, despite the high number of Betula trees felled during the eradication plan carried out in the infestation area, this tree species showed the lowest beetle suitability in terms of number of laid eggs and insect survival. An overestimation of the number of infested Betula occurring during the tree survey may explain the discordance between high number of infested Betula and low beetle suitability. Instead, the large number of infested Acer recorded in the field was probably due to the high abundance of these trees occurring in parks and gardens within the infestation area and to the low adult dispersal of A. glabripennis. Overall, results from this study confirm that host species affects both beetle colonization and breeding performance. The study shows ALB host preference and host suitability varying between tree species, suggesting an ALB acceptance even of sub-optimal hosts.
Daniel, M; Stekol'nikov, A A
2009-07-01
Three new species of chigger mites, Neotrombicula kounickyi sp. n., Leptotrombidium angkamii sp. n., and Doloisia vlastae sp. n., are described from two species of small mammals collected in the Barun Glacier Valley, Makalu region, Nepal Himalaya. Two species, Trombiculindus mehtai Fernandes et Kulkarni, 2003 and Cheladonta ikaoensis (Sasa et al., 1951) are recorded for the first time in Nepal. Data on altitude distribution of chiggers and their host preferences are given.
Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odours.
Baldauf, Sebastian A; Thünken, Timo; Frommen, Joachim G; Bakker, Theo C M; Heupel, Oliver; Kullmann, Harald
2007-01-01
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.
Derepression of the Plant Chromovirus LORE1 Induces Germline Transposition in Regenerated Plants
Fukai, Eigo; Umehara, Yosuke; Sato, Shusei; Endo, Makoto; Kouchi, Hiroshi; Hayashi, Makoto; Stougaard, Jens; Hirochika, Hirohiko
2010-01-01
Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool. PMID:20221264
NASA Astrophysics Data System (ADS)
Fogelman, R. M.; Grutter, A. S.
2008-09-01
Juvenile parasitic cymothoid isopods (mancae) can injure or kill fishes, yet few studies have investigated their biology. While the definitive host of the adult cymothoids is usually a single host from a particular fish species, mancae may use so-called optional intermediate hosts before settling on the definitive host. Little, however, is known about these early interactions. The cymothoid isopod, Anilocra apogonae, infests the definitive host, Cheilodipterus quinquelineatus. This study examined their host preference among potential optional intermediate hosts. Their effect on the growth and mortality of the young of three apogonid fishes, including the definitive host, was investigated. The number of mancae produced per brood was positively correlated with female length. When given a choice of intermediate hosts, significantly more mancae attached to Apogon trimaculatus (Apogonidae) than to Apogon nigrofasciatus. When presented with Ap. trimaculatus and Pomacentrus amboinensis (Pomacentridae), mancae only attached to Ap. trimaculatus suggesting that mancae may show a taxonomic affiliation with preferred hosts. Mancae fed on all three apogonid species, with C. quinquelineatus being fed on earlier than Ap. trimaculatus and Ap. nigrofasciatus. Mancae feeding frequency, adjusted for fish survival, was lowest on C. quinquelineatus and highest on Ap. trimaculatus. Infested apogonids had reduced growth and increased mortality compared with uninfested fish. A. apogonae mancae can use several species of young apogonid fishes as optional intermediate hosts. Via reduced growth and increased mortality, mancae have the potential to negatively influence definitive host populations and also other young species of apogonid fishes.
Deepa S. Pureswaran; Therese M. Poland
2009-01-01
We studied the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A. planipennis is an exotic forest insect pest native to Asia that was discovered in North America in 2002 and is causing widespread mortality of ash trees (Fraxinus spp...
Ramasindrazana, Beza; Goodman, Steven M; Gomard, Yann; Dick, Carl W; Tortosa, Pablo
2017-12-29
We present information on Nycteribiidae flies parasitizing the bat families Pteropodidae, Miniopteridae and Vespertilionidae from the Malagasy Region, contributing insight into their diversity and host preference. Our phylogenetic analysis identified nine clusters of nycteribiid bat flies on Madagascar and the neighbouring Comoros Archipelago. Bat flies sampled from frugivorous bats of the family Pteropodidae are monoxenous: Eucampsipoda madagascariensis, E. theodori and Cyclopodia dubia appear wholly restricted to Rousettus madagascariensis, R. obliviosus and Eidolon dupreanum, respectively. Two different host preference patterns occurred in nycteribiids infecting insectivorous bats. Flies parasitizing bats of the genera Miniopterus (Miniopteridae) and Myotis (Vespertilionidae), namely Penicillidia leptothrinax, Penicillidia sp. and Nycteribia stylidiopsis, are polyxenous and showed little host preference, while those parasitizing the genera Pipistrellus and Scotophilus (both Vespertilionidae) and referable to Basilia spp., are monoxenous. Lastly, the inferred Bayesian phylogeny revealed that the genus Basilia, as currently configured, is paraphyletic. This study provides new information on the differentiation of nycteribiid taxa, including undescribed species. Host preference is either strict as exemplified by flies parasitizing fruit bats, or more relaxed as found on some insectivorous bat species, possibly because of roost site sharing. Detailed taxonomic work is needed to address three undescribed nycteribiid taxa found on Pipistrellus and Scotophilus, tentatively allocated to the genus Basilia, but possibly warranting different generic allocation.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David
2014-12-09
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David
2014-01-01
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416
Do the Most Massive Black Holes at z = 2 Grow via Major Mergers?
NASA Astrophysics Data System (ADS)
Mechtley, M.; Jahnke, K.; Windhorst, R. A.; Andrae, R.; Cisternas, M.; Cohen, S. H.; Hewlett, T.; Koekemoer, A. M.; Schramm, M.; Schulze, A.; Silverman, J. D.; Villforth, C.; van der Wel, A.; Wisotzki, L.
2016-10-01
The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei (AGN) are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here, we report on a Hubble Space Telescope study to test this hypothesis for z = 2 quasars with high supermassive black hole masses ({M}{BH}={10}9{--}{10}10 {M}⊙ ), which dominate cosmic black hole growth at this redshift. We compare Wide Field Camera 3 F160W (rest-frame V-band) imaging of 19 point source-subtracted quasar hosts to a matched sample of 84 inactive galaxies, testing whether the quasar hosts have greater evidence for strong gravitational interactions. Using an expert ranking procedure, we find that the quasar hosts are uniformly distributed within the merger sequence of inactive galaxies, with no preference for quasars in high-distortion hosts. Using a merger/non-merger cutoff approach, we recover distortion fractions of {f}{{m},{qso}}=0.39+/- 0.11 for quasar hosts and {f}{{m},{gal}}=0.30+/- 0.05 for inactive galaxies (distribution modes, 68% confidence intervals), with both measurements subjected to the same observational conditions and limitations. The slight enhancement in distorted fraction for quasar hosts over inactive galaxies is not significant, with a probability that the quasar fraction is higher P({f}{{m},{qso}}\\gt {f}{{m},{gal}})=0.78 (0.78σ ), in line with results for lower mass and lower z AGN. We find no evidence that major mergers are the primary triggering mechanism for the massive quasars that dominate accretion at the peak of cosmic quasar activity.
Organic photovoltaic cells utilizing ultrathin sensitizing layer
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY
2011-09-06
A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-05-02
Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting.
Factors Influencing Host Plant Choice and Larval Performance in Bactericera cockerelli
Prager, Sean M.; Esquivel, Isaac; Trumble, John T.
2014-01-01
Among the many topics of interest to ecologists studying associations between phytophagous insects and their host plants are the influence of natal host plant on future oviposition decisions and the mechanisms of generalist versus specialist host selection behavior. In this study, we examined the oviposition preferences, behavior and larval development of the tomato/potato psyllid, Bactericera cockerelli. By rearing psyllids with two distinct geographically-linked haplotypes on different host plants, we were able to examine the role of natal host plant and potential local adaptation on host plant usage. Choice bioassays among three host species demonstrated that psyllids from California had clear preferences that were influenced by natal plant. We further found that patterns in choice bioassays corresponded to observed feeding and movement responses. No-choice bioassays demonstrated that there is little to no association between development and host-plant choice for oviposition, while also indicating that host choice varies between haplotypes. These findings support the concept that mothers do not always choose oviposition sites optimally and also add support for the controversial Hopkins' host selection principle. PMID:24710468
Boykin, L M; Shatters, R G; Hall, D G; Burns, R E; Franqui, R A
2006-10-01
Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.
Born-Torrijos, Ana; Poulin, Robert; Pérez-Del-Olmo, Ana; Culurgioni, Jacopo; Raga, Juan Antonio; Holzer, Astrid Sibylle
2016-10-01
Overlapping distributions of hosts and parasites are critical for successful completion of multi-host parasite life cycles and even small environmental changes can impact on the parasite's presence in a host or habitat. The generalist Cardiocephaloides longicollis was used as a model for multi-host trematode life cycles in marine habitats. This parasite was studied to quantify parasite dispersion and transmission dynamics, effects of biological changes and anthropogenic impacts on life cycle completion. We compiled the largest host dataset to date, by analysing 3351 molluscs (24 species), 2108 fish (25 species) and 154 birds (17 species) and analysed the resultant data based on a number of statistical models. We uncovered extremely low host specificity at the second intermediate host level and a preference of the free-swimming larvae for predominantly demersal but also benthic fish. The accumulation of encysted larvae in the brain with increasing fish size demonstrates that parasite numbers level off in fish larger than 140mm, consistent with parasite-induced mortality at these levels. The highest infection rates were detected in host species and sizes representing the largest fraction of Mediterranean fishery discards (up to 67% of the total catch), which are frequently consumed by seabirds. Significantly higher parasite densities were found in areas with extensive fishing activity than in those with medium and low activity, and in fish from shallow lagoons than in fish from other coastal areas. For the first time, C. longicollis was also detected in farmed fish in netpens. Fishing generally drives declines in parasite abundance, however, our study suggests an enhanced transmission of generalist parasites such as C. longicollis, an effect that is further amplified by the parasite's efficient host-finding mechanisms and its alteration of fish host behaviour by larvae encysted in the brain. The anthropogenic impact on the distribution of trophically-transmitted, highly prevalent parasites likely results in a strong effect on food web structure, thus making C. longicollis an ideal bioindicator to compare food webs in natural communities versus those impacted by fisheries and aquaculture. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jing, Jun; Xia, Lingdan; Li, Kai
2017-06-01
The aim of this work was to understand the development of defoliating insects and their preferences for host plants under varying temperatures in a subtropical evergreen broad-leaved forest in China. We measured the main developmental parameters of three typical defoliating insects (i.e., Ourapteryx ebuleata szechuana, Biston marginata, and Euproctis angulata) and their preferences for five host plants at temperatures from 16°C to 31°C at 3°C intervals in the Tiantong National Forest Research station in eastern China. The results showed the following. 1) An appropriate rise in temperature increases the survival rate with an increase in the number of offspring. The developmental durations for these three insects were shortened, and pupal weight increased with an increase in temperature. 2) A shift in the preference for host plants for these three insects was observedat elevated temperatures. They all preferred to feed on Schima superba and Castanopsis sclerophylla at elevated temperatures, showing an opposite response to the other three plants. The daily leaf consumption of the three insects was positively correlated with their feeding preference, with more leaves being consumed from the plants they preferred. 3) For O. ebuleata szechuana larvae, daily leaf consumption initially increased and then decreased with increasing temperatures. In contrast, Biston marginata and Euproctis angulata larvae consumed more leaves at elevated temperatures. The feeding preferences of O. ebuleata szechuana and Biston marginata were more sensitive to changing temperatures than that of Euproctis angulata laevae. We concluded that increased numbers of offspring and generations, pupal weights, and a shift in preference to two plants for these three defoliating insects might lead to severe damage to these two plants which would enhance the fragmentation and decrease the stability of the forest communities under changing temperatures. Meanwhile, the variations in the responses of defoliating insects to the changing temperatures should be taken into consideration for the pest management of forests to adapt to the changing climate.
Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L
2016-05-01
Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Qiushi; Peng, Eric W.; Blakeslee, John P.
We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation ({epsilon} > 0.2) and intermediate to high luminosities (M{sub z} < -19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of beingmore » more strongly associated with disks rather than bulges. Surprisingly, we also find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and that the present-day major axis is an indicator of the preferred merging axis.« less
Davis, T S; Wu, Y; Eigenbrode, S D
2017-02-01
Intraspecific specialization by insect herbivores on different host plant species contributes to the formation of genetically distinct "host races," but the effects of plant virus infection on interactions between specialized herbivores and their host plants have barely been investigated. Using three genetically and phenotypically divergent pea aphid clones (Acyrthosiphon pisum L.) adapted to either pea (Pisum sativum L.) or alfalfa (Medicago sativa L.), we tested how infection of these hosts by an insect-borne phytovirus (Bean leafroll virus; BLRV) affects aphid performance and preference. Four important findings emerged: 1) mean aphid survival rate and intrinsic rate of population growth (Rm) were increased by 15% and 14%, respectively, for aphids feeding on plants infected with BLRV; 2) 34% of variance in survival rate was attributable to clone × host plant interactions; 3) a three-way aphid clone × host plant species × virus treatment significantly affected intrinsic rates of population growth; and 4) each clone exhibited a preference for either pea or alfalfa when choosing between noninfected host plants, but for two of the three clones tested these preferences were modestly reduced when selecting among virus-infected host plants. Our studies show that colonizing BLRV-infected hosts increased A. pisum survival and rates of population growth, confirming that the virus benefits A. pisum. BLRV transmission affected aphid discrimination of host plant species in a genotype-specific fashion, and we detected three unique "virus-association phenotypes," with potential consequences for patterns of host plant use by aphid populations and crop virus epidemiology. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully...
Klemme, I; Hanski, I
2009-09-01
We estimated broad-sense heritabilities (H(2)) of 13 female and seven male life-history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi-natural conditions in a large outdoor population cage. The analysis was based on full-sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host-plant preference as well as in male body mass and mobility. Apart from host-plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H(2). LRS itself exhibited significant heritability. Host-plant preference had very high H(2), consistent with a previously reported genetically determined geographical cline in host-plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness-related life-history traits. In contrast, we found no strong evidence for life-history trade-offs.
Jandricic, S E; Mattson, N S; Wraight, S P; Sanderson, J P
2014-04-01
Foxglove aphid, Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae), has recently undergone a status change from an occasional pest to a serious pest in greenhouses of North America and the United Kingdom. Little nonanecdotal information exists on the ecology of this insect in greenhouse crops. To help improve integrated pest management decisions for A. solani, the within-plant distribution of this pest was explored on a variety of common greenhouse plants in both the vegetative and flowering stage. This aphid generally was found on lower leaves of vegetative plants, but was found higher in the canopy on reproductive plants (on flowers, flower buds, or upper leaves). Aphid numbers were not consistently positively correlated with total leaf surface areas within plant strata across plant species. Thus, the observed differences in preferred feeding sites on vegetative versus flowering plants are possibly a response to differences in nutritional quality of the various host-plant tissues. Despite being anecdotally described as a "stem-feeding aphid," A. solani was rarely found feeding on stems at the population densities established in our tests, with the exception of racemes of scarlet sage (Salvia splendans). Although some previous reports suggested that A. solani prefers to feed on new growth of plants, our results indicate that mature leaves are preferred over growing tips and young leaves. The implications of the within-plant feeding preferences of A. solani populations with respect to both biological and chemical control are discussed.
NASA Astrophysics Data System (ADS)
Ros, Macarena; Tierno de Figueroa, José Manuel; Guerra-García, José Manuel; Navarro-Barranco, Carlos; Lacerda, Mariana Baptista; Vázquez-Luis, Maite; Masunari, Setuko
2014-02-01
The trophic ecology of non-native species is a key aspect to understand their invasion success and the community effects. Despite the important role of caprellid amphipods as trophic intermediates between primary producers and higher levels of marine food webs, there is very little information on their feeding habits. This is the first comprehensive study on the trophic strategies of two co-occurring introduced caprellids in the Spanish coasts: Caprella scaura and Paracaprella pusilla. The diet of 446 specimens of C. scaura and 230 of P. pusilla was analyzed to investigate whether there were differences in the feeding habits in relation to habitat characteristics (natural vs artificial hard substrata), type of host substrata (bryozoans and hydroids) and native vs introduced distribution ranges (Brazil vs Spain). Results revealed differences in diet preferences of the two species that have important implications for their trophic behaviour and showed a limited food overlap, which may favour their coexistence in introduced areas. In general terms, P. pusilla is a predator species, showing preference by crustacean prey in all of its life stages, while C. scaura feeds mainly on detritus. Although no sex-related diet shifts were observed in either of the species, evidence of ontogenetic variation in diet of C. scaura was found, with juveniles feeding on more amount of prey than adults. No diet differences were found between native and introduced populations within the same habitat type. However, P. pusilla exhibited a shift in its diet when different habitats were compared in the same distribution area, and C. scaura showed a flexible feeding behaviour between different host substrata in the same habitat type. This study shows that habitat characteristics at different scales can have greater influence on the feeding ecology of exotic species than different distribution ranges, and support the hypothesis that a switch between feeding strategies depending on habitat characteristics could favour invasion success.
Mendesil, Esayas; Rämert, Birgitta; Marttila, Salla; Hillbur, Ylva; Anderson, Peter
2016-01-01
The pea weevil, Bruchus pisorum L. is a major insect pest of field pea, Pisum sativum L. worldwide and current control practices mainly depend on the use of chemical insecticides that can cause adverse effects on environment and human health. Insecticides are also unaffordable by many small-scale farmers in developing countries, which highlights the need for investigating plant resistance traits and to develop alternative pest management strategies. The aim of this study was to determine oviposition preference of pea weevil among P. sativum genotypes with different level of resistance (Adet, 32410-1 and 235899-1) and the non-host leguminous plants wild pea (Pisum fulvum Sibth. et Sm.) and grass pea (Lathyrus sativus L.), in no-choice and dual-choice tests. Pod thickness and micromorphological traits of the pods were also examined. In the no-choice tests significantly more eggs were laid on the susceptible genotype Adet than on the other genotypes. Very few eggs were laid on P. fulvum and L. sativus. In the dual-choice experiments Adet was preferred by the females for oviposition. Furthermore, combinations of Adet with either 235899-1 or non-host plants significantly reduced the total number of eggs laid by the weevil in the dual-choice tests. Female pea weevils were also found to discriminate between host and non-host plants during oviposition. The neoplasm (Np) formation on 235899-1 pods was negatively correlated with oviposition by pea weevil. Pod wall thickness and trichomes might have influenced oviposition preference of the weevils. These results on oviposition behavior of the weevils can be used in developing alternative pest management strategies such as trap cropping using highly attractive genotype and intercropping with the non-host plants. PMID:26779220
which influence the extent to which certain species are found biting various host species are discussed in relation to the tabanid population of the...serious pest problems. The analysis of collections of tabanids from carbon dioxide-baited traps placed in different habitat types revealed several patterns... tabanids attracted to or biting man, moose, and white-tailed deer are presented. These lists constitute the first extensive records of the Tabanidae attracted to the Cervidae in the boreal forest region of Canada. (Author)
Early-Season Host Switching in Adelphocoris spp. (Hemiptera: Miridae) of Differing Host Breadth
Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A. G.
2013-01-01
The mirid bugs Adelphocoris suturalis (Jakovlev), Adelphocoris lineolatus (Goeze) and Adelphocoris fasciaticollis (Reuter) (Hemiptera: Miridae) are common pests of several agricultural crops. These three species have vastly different geographical distributions, phenologies and abundances, all of which are linked to their reliance on local plants. Previous work has shown notable differences in Adelphocoris spp. host use for overwintering. In this study, we assessed the extent to which each of the Adelphocoris spp. relies on some of its major overwinter hosts for spring development. Over the course of four consecutive years (2009–2012), we conducted population surveys on 77 different plant species from 39 families. During the spring, A. fasciaticollis used the broadest range of hosts, as it was found on 35 plant species, followed by A. suturalis (15 species) and A. lineolatus (7 species). Abundances of the species greatly differed between host plants, with A. fasciaticollis reaching the highest abundance on Chinese date (Ziziphus jujuba Mill.), whereas both A. suturalis and A. lineolatus preferred alfalfa (Medicago sativa L.). The host breadths of the three Adelphocoris spp. differed greatly between subsequent spring and winter seasons. The generalist species exhibited the least host fidelity, with A. suturalis and A. lineolatus using 8 of 22 and 4 of 12 overwinter host species for spring development, respectively. By contrast, the comparative specialist A. fasciaticollis relied on 9 of its 11 overwinter plants as early-season hosts. We highlight important seasonal changes in host breadth and interspecific differences in the extent of host switching behavior between the winter and spring seasons. These findings benefit our understanding of the evolutionary interactions between mirid bugs and their host plants and can be used to guide early-season population management. PMID:23527069
Wynde, Fiona J H; Port, Gordon R
2012-01-01
Lygus rugulipennis Poppius and Liocoris tripustulatus Fabricius (Heteroptera: Miridae) are pests of glasshouse cucumber and sweet pepper crops respectively. L. rugulipennis has a wide range of foodplants, but L. tripustulatus is specialised with very few food plants. We report behavioural assessments to investigate whether either species exhibits a preference for salad over wild hosts, and whether the role of olfaction and vision in response to cues from host plants can be distinguished. Olfactory responses to leaves were tested in choice chambers. L. rugulipennis was presented nettle (wild host) and a salad leaf of cucumber or sweet pepper, where the salad leaves had higher nitrogen content. L. tripustulatus was tested with nettle and sweet pepper of two different nitrogen contents. Female L. rugulipennis spent more time on the cucumber salad host, and chose it first most often, but males showed no preference. Neither sex discriminated between sweet pepper or nettle leaves, but males made more first contacts with sweet pepper. Neither sex of L. tripustulatus discriminated between sweet pepper and nettle leaves when the sweet pepper had higher nitrogen. When the plant species contained equivalent nitrogen both sexes spent more time on nettle. There was no difference in first choice made by either sex. When visual stimuli were available, and leaves had equivalent nitrogen, L. rugulipennis showed no preference and L. tripustulatus preferred nettle leaves. We conclude that the generalist L. rugulipennis has the ability to use remote olfactory cues for host choice whereas the specialist L. tripustulatus relies mainly on contact chemosensory and gustatory cues.
Wynde, Fiona J. H.; Port, Gordon R.
2012-01-01
Lygus rugulipennis Poppius and Liocoris tripustulatus Fabricius (Heteroptera: Miridae) are pests of glasshouse cucumber and sweet pepper crops respectively. L. rugulipennis has a wide range of foodplants, but L. tripustulatus is specialised with very few food plants. We report behavioural assessments to investigate whether either species exhibits a preference for salad over wild hosts, and whether the role of olfaction and vision in response to cues from host plants can be distinguished. Olfactory responses to leaves were tested in choice chambers. L. rugulipennis was presented nettle (wild host) and a salad leaf of cucumber or sweet pepper, where the salad leaves had higher nitrogen content. L. tripustulatus was tested with nettle and sweet pepper of two different nitrogen contents. Female L. rugulipennis spent more time on the cucumber salad host, and chose it first most often, but males showed no preference. Neither sex discriminated between sweet pepper or nettle leaves, but males made more first contacts with sweet pepper. Neither sex of L. tripustulatus discriminated between sweet pepper and nettle leaves when the sweet pepper had higher nitrogen. When the plant species contained equivalent nitrogen both sexes spent more time on nettle. There was no difference in first choice made by either sex. When visual stimuli were available, and leaves had equivalent nitrogen, L. rugulipennis showed no preference and L. tripustulatus preferred nettle leaves. We conclude that the generalist L. rugulipennis has the ability to use remote olfactory cues for host choice whereas the specialist L. tripustulatus relies mainly on contact chemosensory and gustatory cues. PMID:23226493
Host preferences of tabanid flies based on identification of blood meals by ELISA.
Muzari, M O; Burgess, G W; Skerratt, L F; Jones, R E; Duran, T L
2010-12-15
Tabanid flies in Australia are potential vectors of the parasite Trypanosoma evansi which causes the animal disease surra. It is endemic to most of south-east Asia and could enter Australia, but evaluation of the potential impact of a surra incursion requires identification of the major hosts of Australian tabanids. This study investigated the natural pattern of feeding and host preference by tabanid flies of Townsville, north Queensland by identification of ingested blood in trap-caught tabanids using ELISA. The assays were developed for identification of horse, cow, macropod and pig blood meals. Macropods were the most frequent food source for each of six major tabanid species in the area. This did not vary with location for one species, Tabanus pallipennis, despite macropod densities being lower than other hosts such as cattle and horses in some locations. Feeding patterns on other hosts generally depended on availability and density of animals. All tabanid species fed on at least three of the host species tested and mixed meals were also commonly encountered, suggesting a level of opportunistic feeding in addition to a preference for macropods. Some of the blood meals detected were possibly from previous gonotrophic cycles. The results indicate that all tabanid species examined could potentially transmit surra and all the host types investigated could be affected, but macropods face the highest transmission risk. Copyright © 2010 Elsevier B.V. All rights reserved.
Lidia Sukovata; Andrzej Kolk; Jadwiga Jaroszynska; Urszula Krajewska; Agnieszka Purzynska; Valerii Isidorov
2003-01-01
The larvae of Dendrolimus pini L. and Panolis flammea (Den. et Schiff.) usually occur in high numbers on different trees within a stand. Studies that focused on the host tree-preference of these two species were conducted in the Wymiarki Forest District (Poland) in 2001. Sixteen Scots pine trees were selected to estimate the...
Distribution pattern and number of ticks on lizards.
Dudek, Krzysztof; Skórka, Piotr; Sajkowska, Zofia Anna; Ekner-Grzyb, Anna; Dudek, Monika; Tryjanowski, Piotr
2016-02-01
The success of ectoparasites depends primarily on the site of attachment and body condition of their hosts. Ticks usually tend to aggregate on vertebrate hosts in specific areas, but the distribution pattern may depend on host body size and condition, sex, life stage or skin morphology. Here, we studied the distribution of ticks on lizards and tested the following hypothesis: occurrence or high abundance of ticks is confined with body parts with smaller scales and larger interscalar length because such sites should provide ticks with superior attachment conditions. This study was performed in field conditions in central Poland in 2008-2011. In total, 500 lizards (Lacerta agilis) were caught and 839 ticks (Ixodes ricinus, larvae and nymphs) were collected from them. Using generalised linear mixed models, we found that the ticks were most abundant on forelimbs and their axillae, with 90% of ticks attached there. This part of the lizard body and the region behind the hindlimb were covered by the smallest scales with relatively wide gaps between them. This does not fully support our hypothesis that ticks prefer locations with easy access to skin between scales, because it does not explain why so few ticks were in the hindlimb area. We found that the abundance of ticks was positively correlated with lizard body size index (snout-vent length). Tick abundance was also higher in male and mature lizards than in female and young individuals. Autotomy had no effect on tick abundance. We found no correlation between tick size and lizard morphology, sex, autotomy and body size index. The probability of occurrence of dead ticks was positively linked with the total number of ticks on the lizard but there was no relationship between dead tick presence and lizard size, sex or age. Thus lizard body size and sex are the major factors affecting the abundance of ticks, and these parasites are distributed nearly exclusively on the host's forelimbs and their axillae. Copyright © 2015 Elsevier GmbH. All rights reserved.
Odour maps in the brain of butterflies with divergent host-plant preferences.
Carlsson, Mikael A; Bisch-Knaden, Sonja; Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S; Janz, Niklas
2011-01-01
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+) activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.
Odour Maps in the Brain of Butterflies with Divergent Host-Plant Preferences
Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S.; Janz, Niklas
2011-01-01
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants. PMID:21901154
Membrane perturbing properties of toxin mycolactone from Mycobacterium ulcerans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Cesar A.; Unkefer, Clifford J.; Swanson, Basil I.
Mycolactone is the exotoxin produced by Mycobacterium ulcerans and is the virulence factor behind the neglected tropical disease Buruli ulcer. The toxin has a broad spectrum of biological effects within the host organism, stemming from its interaction with at least two molecular targets and the inhibition of protein uptake into the endoplasmic reticulum. Although it has been shown that the toxin can passively permeate into host cells, it is clearly lipophilic. Association with lipid carriers would have substantial implications for the toxin’s distribution within a host organism, delivery to cellular targets, diagnostic susceptibility, and mechanisms of pathogenicity. Yet the toxin’smore » interactions with, and distribution in, lipids are unknown. Herein we have used coarse-grained molecular dynamics simulations, guided by all-atom simulations, to study the interaction of mycolactone with pure and mixed lipid membranes. Using established techniques, we calculated the toxin’s preferential localization, membrane translocation, and impact on membrane physical and dynamical properties. The computed water-octanol partition coefficient indicates that mycolactone prefers to be in an organic phase rather than in an aqueous environment. Our results show that in a solvated membrane environment the exotoxin mainly localizes in the water-membrane interface, with a preference for the glycerol moiety of lipids, consistent with the reported studies that found it in lipid extracts of the cell. The calculated association constant to the model membrane is similar to the reported association constant for Wiskott-Aldrich syndrome protein. Mycolactone is shown to modify the physical properties of membranes, lowering the transition temperature, compressibility modulus, and critical line tension at which pores can be stabilized. It also shows a tendency to behave as a linactant, a molecule that localizes at the boundary between different fluid lipid domains in membranes and promotes inter-mixing of domains. This property has implications for the toxin’s cellular access, T-cell immunosuppression, and therapeutic potential.« less
Membrane perturbing properties of toxin mycolactone from Mycobacterium ulcerans
Lopez, Cesar A.; Unkefer, Clifford J.; Swanson, Basil I.; ...
2018-02-05
Mycolactone is the exotoxin produced by Mycobacterium ulcerans and is the virulence factor behind the neglected tropical disease Buruli ulcer. The toxin has a broad spectrum of biological effects within the host organism, stemming from its interaction with at least two molecular targets and the inhibition of protein uptake into the endoplasmic reticulum. Although it has been shown that the toxin can passively permeate into host cells, it is clearly lipophilic. Association with lipid carriers would have substantial implications for the toxin’s distribution within a host organism, delivery to cellular targets, diagnostic susceptibility, and mechanisms of pathogenicity. Yet the toxin’smore » interactions with, and distribution in, lipids are unknown. Herein we have used coarse-grained molecular dynamics simulations, guided by all-atom simulations, to study the interaction of mycolactone with pure and mixed lipid membranes. Using established techniques, we calculated the toxin’s preferential localization, membrane translocation, and impact on membrane physical and dynamical properties. The computed water-octanol partition coefficient indicates that mycolactone prefers to be in an organic phase rather than in an aqueous environment. Our results show that in a solvated membrane environment the exotoxin mainly localizes in the water-membrane interface, with a preference for the glycerol moiety of lipids, consistent with the reported studies that found it in lipid extracts of the cell. The calculated association constant to the model membrane is similar to the reported association constant for Wiskott-Aldrich syndrome protein. Mycolactone is shown to modify the physical properties of membranes, lowering the transition temperature, compressibility modulus, and critical line tension at which pores can be stabilized. It also shows a tendency to behave as a linactant, a molecule that localizes at the boundary between different fluid lipid domains in membranes and promotes inter-mixing of domains. This property has implications for the toxin’s cellular access, T-cell immunosuppression, and therapeutic potential.« less
Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen.
David, Shoba; Abraham, Asha Mary
2016-08-01
Since the isolation of West Nile virus (WNV) in 1937, in Uganda, it has spread globally, causing significant morbidity and mortality. While birds serve as amplifier hosts, mosquitoes of the Culex genus function as vectors. Humans and horses are dead end hosts. The clinical manifestations of West Nile infection in humans range from asymptomatic illness to West Nile encephalitis. The laboratory offers an array of tests, the preferred method being detection of RNA and serum IgM for WNV, which, if detected, confirms the clinical diagnosis. Although no definitive antiviral therapy and vaccine are available for humans, many approaches are being studied. This article will review the current literature of the natural cycle, geographical distribution, virology, replication cycle, molecular epidemiology, pathogenesis, laboratory diagnosis, clinical manifestations, blood donor screening for WNV, treatment, prevention and vaccines.
NASA Astrophysics Data System (ADS)
Macias Sevde, A. S.
2012-12-01
By Alejandro Macias, Erik Hobbie, Ruth Varner, Kaitlyn Steele Hemiparasites are known to suck nutrients from nearby plants but their host specificity is not well understood. Hemiparasites are ecosystem engineers, limiting surrounding plant's growth, and decreasing local biodiversity. To better understand this phenomenon, the host specificities of two hemiparasitic angiosperms, Bartsia alpina , and Pedicularis lapponica were studied above the tree line along an elevational gradient in Sweden. B. alpina specialized in wetter environments, as indicated by their higher δ13C signature, and their growth among Salixsp.Betula nana, Bistorta vivipara, Viola biflora, Geranium sp., and Trollious europaeus. P. lapponica was common in drier, less species rich environments, known as heaths, where B. nana, Empetrum negrum, Phyllodoce coeruela, Vaccinium myrtillus and Vaccinium vitis-idaea are the most common species. P. lapponica had higher foliage δ13C due to its better water-use efficiency in a dry environment. Field survey data and δN15 values of both the foliage of the parasitic plants and their potential hosts were used to determine host specificity. Since the δN15 value of the hemiparasitic plant and its host are similar due to parasitism, it was determined that P. lapponica had a preference for plants with an ericoid mycorrhizal association, such as Vaccinium sp, and E. negrum, but not for the common P. coeruela. This does not support the idea found in the literature that P. lapponica has a preference for grasses. B. alpina was less host specific, associating with non-mycorrhizal, ericoid, and ectomycorhizal plants, such as Carex sp, Vaccinium sp., and S. lapponum. The ectomycorrhizal species, Salix sp., and B. nana, were both potential hosts for B. alpina and P. lapponica due to their presence among them. However, the isotopic data revealed that B. alpina had a preference for Salix sp., and P. lapponica had a preference for B. nana.
Doyle, Vinson P.; Oudemans, Peter V.; Rehner, Stephen A.; Litt, Amy
2013-01-01
Understanding the factors that drive the evolution of pathogenic fungi is central to revealing the mechanisms of virulence and host preference, as well as developing effective disease control measures. Prerequisite to these pursuits is the accurate delimitation of species boundaries. Colletotrichum gloeosporioides s.l. is a species complex of plant pathogens and endophytic fungi for which reliable species recognition has only recently become possible through a multi-locus phylogenetic approach. By adopting an intensive regional sampling strategy encompassing multiple hosts within and beyond agricultural zones associated with cranberry (Vaccinium macrocarpon Aiton), we have integrated North America strains of Colletotrichum gloeosporioides s.l. from these habitats into a broader phylogenetic framework. We delimit species on the basis of genealogical concordance phylogenetic species recognition (GCPSR) and quantitatively assess the monophyly of delimited species at each of four nuclear loci and in the combined data set with the genealogical sorting index (gsi). Our analysis resolved two principal lineages within the species complex. Strains isolated from cranberry and sympatric host plants are distributed across both of these lineages and belong to seven distinct species or terminal clades. Strains isolated from V. macrocarpon in commercial cranberry beds belong to four species, three of which are described here as new. Another species, C. rhexiae Ellis & Everh., is epitypified. Intensive regional sampling has revealed a combination of factors, including the host species from which a strain has been isolated, the host organ of origin, and the habitat of the host species, as useful indicators of species identity in the sampled regions. We have identified three broadly distributed temperate species, C. fructivorum, C. rhexiae, and C. nupharicola, that could be useful for understanding the microevolutionary forces that may lead to species divergence in this important complex of endophytes and plant pathogens. PMID:23671594
Choice Defines Value: A Predictive Modeling Competition in Health Preference Research.
Jakubczyk, Michał; Craig, Benjamin M; Barra, Mathias; Groothuis-Oudshoorn, Catharina G M; Hartman, John D; Huynh, Elisabeth; Ramos-Goñi, Juan M; Stolk, Elly A; Rand, Kim
2018-02-01
To identify which specifications and approaches to model selection better predict health preferences, the International Academy of Health Preference Research (IAHPR) hosted a predictive modeling competition including 18 teams from around the world. In April 2016, an exploratory survey was fielded: 4074 US respondents completed 20 out of 1560 paired comparisons by choosing between two health descriptions (e.g., longer life span vs. better health). The exploratory data were distributed to all teams. By July, eight teams had submitted their predictions for 1600 additional pairs and described their analytical approach. After these predictions had been posted online, a confirmatory survey was fielded (4148 additional respondents). The victorious team, "Discreetly Charming Econometricians," led by Michał Jakubczyk, achieved the smallest χ 2 , 4391.54 (a predefined criterion). Its primary scientific findings were that different models performed better with different pairs, that the value of life span is not constant proportional, and that logit models have poor predictive validity in health valuation. The results demonstrated the diversity and potential of new analytical approaches in health preference research and highlighted the importance of predictive validity in health valuation. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Batra, Srishti; Ramaswamy, Sree Subha; Feder, Jeffrey L.
2016-01-01
Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts. Within the past 180 years, Rhagoletis flies infesting hawthorn (Crataegus spp.) shifted to attack domesticated apple (Malus pumila). The two populations differ in their olfactory preferences for apple versus hawthorn fruit. Here, we looked for patterns of sensory organization that may have contributed to this shift by characterizing the morphology, specificity and distribution of olfactory sensory neurons (OSNs) on the antennae of Rhagoletis responding to host fruit and non-host volatiles. Of 28 OSN classes identified, two colocalized OSN pairs were found that specifically responded to the major behavioural attractant and antagonist volatiles for each fly population. A reversal in the response of these OSNs to fruit volatiles, either through a switch in receptor expression between these paired neurons or changes in neuronal projections in the brain, could therefore account for the behavioural difference between apple and hawthorn flies. The finding supports the hypothesis that relatively minor changes in olfactory sensory pathways may contribute to rapid host shifting and divergence in Rhagoletis. PMID:28003447
Molaei, Goudarz; Thomas, Michael C.; Muller, Tim; Medlock, Jan; Shepard, John J.; Armstrong, Philip M.; Andreadis, Theodore G.
2016-01-01
Background Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Methodology and principle findings Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens. Conclusion and significance Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci. PMID:26751704
Molaei, Goudarz; Thomas, Michael C; Muller, Tim; Medlock, Jan; Shepard, John J; Armstrong, Philip M; Andreadis, Theodore G
2016-01-01
Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens. Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-01-01
Background Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Results Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. Conclusion A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting. PMID:17474974
C. Wayne Berisford; Todd J. Lanigan; Michael E. Montgomery
1991-01-01
Survival, development time and pupal weights of gypsy moth, Lymantria dispar L., which had fed on southern tree hosts were determined. Five species of oaks, Quercus spp.; sweetgum, Liquidambar styracflua L.; and river birch, Betula nigra L., were found to be acceptable hosts. Survival and...
Diverse Host-Seeking Behaviors of Skin-Penetrating Nematodes
Castelletto, Michelle L.; Gang, Spencer S.; Okubo, Ryo P.; Tselikova, Anastassia A.; Nolan, Thomas J.; Platzer, Edward G.; Lok, James B.; Hallem, Elissa A.
2014-01-01
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host seeking in the skin-penetrating human parasite Strongyloides stercoralis, and compared its behavior to that of other parasitic nematodes. We found that Str. stercoralis is highly mobile relative to other parasitic nematodes and uses a cruising strategy for finding hosts. Str. stercoralis shows robust attraction to a diverse array of human skin and sweat odorants, most of which are known mosquito attractants. Olfactory preferences of Str. stercoralis vary across life stages, suggesting a mechanism by which host seeking is limited to infective larvae. A comparison of odor-driven behavior in Str. stercoralis and six other nematode species revealed that parasite olfactory preferences reflect host specificity rather than phylogeny, suggesting an important role for olfaction in host selection. Our results may enable the development of new strategies for combating harmful nematode infections. PMID:25121736
Fedorka, Kenneth M; Kutch, Ian C; Collins, Louisa; Musto, Edward
Altering one's temperature preference (e.g. behavioral fever or behavioral chill) is a common immune defense among ectotherms that is likely to be evolutionarily conserved. However, the temperature chosen by an infected host may not be optimal for pathogen defense, causing preference to be inefficient. Here we examined the efficiency of temperature preference in Drosophila melanogaster infected with an LD 50 of the gram negative bacteria Pseudomonas aeruginosa. To this end, we estimated the host's uninfected and infected temperature preferences as well as their optimal survival temperature. We found that flies decreased their preference from 26.3°C to 25.2°C when infected, and this preference was stable over 48h. Furthermore, the decrease in temperature preference was associated with an increased chance of surviving the infection. Nevertheless, the infected temperature preference did not coincide with the optimum temperature for infection survival, which lies at or below 21.4°C. These data suggest that the behavioral response to P. aeruginosa infection is considerably inefficient, and the mechanisms that may account for this pattern are discussed. Future studies of infected temperature preferences should document its efficiency, as this understudied aspect of behavioral immunity can provide important insight into preference evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D
2010-01-01
*Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.
Giovanelli, Alexandre; da Silva, Cesar Luiz Pinto Ayres Coelho; Leal, Geórgia Borges Eccard; Baptista, Darcílio Fernandes
2005-04-01
Our objective is to evaluate the habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus. In the first phase, snails was collected at 12 sites. This sampling sites presented a degree of organic input. In the second phase 33 sampling sites were chosen, covering a variety of lotic and lentic environments. The snail species found at Guapimirim, state of Rio de Janeiro, displayed a marked habitat preference, specially in relation to the physical characteristics of each environment. Other limiting factors for snail distribution at the studied lotic environments were the water current velocity and the amount of organic matter, mainly to Physa marmorata, M. tuberculatus, and Biomphalaria tenagophila. The absence of interactions between M. tuberculatus and another snails could be associated to the distinct spatial distribution of those species and the instability of habitats. This later factor may favor the coexistence of M. tuberculatus with B. glabrata by reduction of population density. In areas of schistosomiasis transmission some habitat modification may add to the instability of the environment, which would make room for the coexistence of M. tuberculatus and Biomphalaria spp. In this way, some of the usual measures for the control of snail hosts would prevent the extinction of populations of Biomphalaria spp. by M. tuberculatus in particular habitats.
Advancement of knowledge of Brucella over the past 50 years.
Olsen, S C; Palmer, M V
2014-11-01
Fifty years ago, bacteria in the genus Brucella were known to cause infertility and reproductive losses. At that time, the genus was considered to contain only 3 species: Brucella abortus, Brucella melitensis, and Brucella suis. Since the early 1960s, at least 7 new species have been identified as belonging to the Brucella genus (Brucella canis, Brucella ceti, Brucella inopinata, Brucella microti, Brucella neotomae, Brucella ovis, and Brucella pinnipedialis) with several additional new species under consideration for inclusion. Although molecular studies have found such high homology that some authors have proposed that all Brucella are actually 1 species, the epidemiologic and diagnostic benefits for separating the genus based on phenotypic characteristics are more compelling. Although pathogenic Brucella spp have preferred reservoir hosts, their ability to infect numerous mammalian hosts has been increasingly documented. The maintenance of infection in new reservoir hosts, such as wildlife, has become an issue for both public health and animal health regulatory personnel. Since the 1960s, new information on how Brucella enters host cells and modifies their intracellular environment has been gained. Although the pathogenesis and histologic lesions of B. abortus, B. melitensis, and B. suis in their preferred hosts have not changed, additional knowledge on the pathology of these brucellae in new hosts, or of new species of Brucella in their preferred hosts, has been obtained. To this day, brucellosis remains a significant human zoonosis that is emerging or reemerging in many parts of the world. © The Author(s) 2014.
Intra- and Interspecific Competition Between Western Flower Thrips and Sweetpotato Whitefly
Wu, Qing-Jun; Hou, Wen-Jie; Li, Fei; Xu, Bao-Yun; Xie, Wen; Wang, Shao-Li; Zhang, You-Jun
2014-01-01
Abstract The western flower thrips, Frankliniella occidentalis (Pergande), and the sweetpotato whitefly, Bemisia tabaci (Gennadius), are both invasive insect pests and are present in most of the same agricultural crops without a clear dominance of either species. Here, intra- and interspecific competition in B. tabaci and F. occidentalis was determined under controlled experiments. The results showed that intraspecific competition was distinct in F. occidentalis and that the co-occurrence of B. tabaci had a strong effect on F. occidentalis , resulting in a decrease in oviposition. Significant intraspecific competition was found in B. tabaci , and the coexistence of F. occidentalis had limited effect on the oviposition of B. tabaci . In a selective host plant preference experiment, both F. occidentalis and B. tabaci preferred eggplants most, followed by cucumbers and tomatoes. On cucumber plants, B. tabaci was predominant, whereas on eggplant and tomato plants, F. occidentalis and B. tabaci exhibited comparative competitive abilities during the initial stage. However, over time, higher numbers of B. tabaci than that of F. occidentalis were found on the two host plants. Our in vitro and potted plant experiments indicate that B. tabaci is competitively superior to F. occidentalis , which might help to explain their differential distribution patterns in China. PMID:25480973
Intra- and interspecific competition between western flower thrips and sweetpotato whitefly.
Wu, Qing-Jun; Hou, Wen-Jie; Li, Fei; Xu, Bao-Yun; Xie, Wen; Wang, Shao-Li; Zhang, You-Jun
2014-01-01
The western flower thrips, Frankliniella occidentalis (Pergande), and the sweetpotato whitefly, Bemisia tabaci (Gennadius), are both invasive insect pests and are present in most of the same agricultural crops without a clear dominance of either species. Here, intra- and interspecific competition in B. tabaci and F. occidentalis was determined under controlled experiments. The results showed that intraspecific competition was distinct in F. occidentalis and that the co-occurrence of B. tabaci had a strong effect on F. occidentalis, resulting in a decrease in oviposition. Significant intraspecific competition was found in B. tabaci, and the coexistence of F. occidentalis had limited effect on the oviposition of B. tabaci. In a selective host plant preference experiment, both F. occidentalis and B. tabaci preferred eggplants most, followed by cucumbers and tomatoes. On cucumber plants, B. tabaci was predominant, whereas on eggplant and tomato plants, F. occidentalis and B. tabaci exhibited comparative competitive abilities during the initial stage. However, over time, higher numbers of B. tabaci than that of F. occidentalis were found on the two host plants. Our in vitro and potted plant experiments indicate that B. tabaci is competitively superior to F. occidentalis, which might help to explain their differential distribution patterns in China. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Understanding the Host Galaxies of Tidal Disruption Flares
NASA Astrophysics Data System (ADS)
Stone, Nicholas; Generozov, Aleksey; Vasiliev, Eugene; Metzger, Brian
2018-01-01
Recent observations suggest that stellar tidal disruption events (TDE) are strongly overrepresented in rare, post-starburst galaxies. Several dynamical mechanisms have been proposed to elevate their TDE rates, ranging from central stellar overdensities to the presence of supermassive black hole (SMBH) binaries. These, and other, dynamical hypotheses can be disentangled by comparing observations to theoretical predictions for the TDE delay time distribution (DTD). We show that SMBH binaries are a less plausible solution for the post-starburst preference, as they can only reproduce the observed DTD with extensive fine-tuning. The overdensity hypothesis produces a reasonable match to the observed DTD (based on the limited data currently available), provided that the initial stellar density profile created during the starburst, ρ(r), is exceptional in both steepness and normalization. In particular, explaining the post-starburst preference requires ρ∝r‑γ with γ>2.5, i.e. much steeper than the classic Bahcall-Wolf equilibrium profile of γ=7/4. Radial velocity anisotropies also represent a promising explanation, provided that initial anisotropy parameters of β0≈0.5 are sustainable against the radial orbit instability. As the sample of TDEs with well-studied host galaxies grows, the DTD will become a powerful tool for constraining the exceptional dynamical properties of post-starburst galactic nuclei.
Chaverri, Priscila; Samuels, Gary J
2013-10-01
Host jumps by microbial symbionts are often associated with bursts of species diversification driven by the exploitation of new adaptive zones. The objective of this study was to infer the evolution of habitat preference (decaying plants, soil, living fungi, and living plants), and nutrition mode (saprotrophy and mycoparasitism) in the fungal genus Trichoderma to elucidate possible interkingdom host jumps and shifts in ecology. Host and ecological role shifts were inferred by phylogenetic analyses and ancestral character reconstructions. The results support several interkingdom host jumps and also show that the preference for a particular habitat was gained or lost multiple times. Diversification analysis revealed that mycoparasitism is associated with accelerated speciation rates, which then suggests that this trait may be linked to the high number of species in Trichoderma. In this study it was also possible to infer the cryptic roles that endophytes or soil inhabitants play in their hosts by evaluating their closest relatives and determining their most recent ancestors. Findings from this study may have implications for understanding certain evolutionary processes such as species radiations in some hyperdiverse groups of fungi, and for more applied fields such as the discovery and development of novel biological control strategies. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Estep, Laura K.; McClure, Christopher J. W.; Burkett-Cadena, Nathan D.; Hassan, Hassan K.; Hicks, Tyler L.; Unnasch, Thomas R.; Hill, Geoffrey E.
2011-01-01
Eastern equine encephalitis virus (EEEV) is a mosquito-borne pathogen that cycles in birds but also causes severe disease in humans and horses. We examined patterns of avian host use by vectors of EEEV in Alabama from 2001 to 2009 using blood-meal analysis of field-collected mosquitoes and avian abundance surveys. The northern cardinal (Cardinalis cardinalis) was the only preferred host (fed on significantly more than expected based on abundance) of Culiseta melanura, the enzootic vector of EEEV. Preferred hosts of Culex erraticus, a putative bridge vector of EEEV, were American robin (Turdus migratorius), Carolina chickadee (Poecile carolinensis), barred owl (Strix varia), and northern mockingbird (Mimus polyglottis). Our results provide insight into the relationships between vectors of EEEV and their avian hosts in the Southeast and suggest that the northern cardinal may be important in the ecology of EEEV in this region. PMID:21540380
The Evolving Medical and Veterinary Importance of the Gulf Coast tick (Acari: Ixodidae).
Paddock, Christopher D; Goddard, Jerome
2015-03-01
Amblyomma maculatum Koch (the Gulf Coast tick) is a three-host, ixodid tick that is distributed throughout much of the southeastern and south-central United States, as well as several countries throughout Central and South America. A considerable amount of scientific literature followed the original description of A. maculatum in 1844; nonetheless, the Gulf Coast tick was not recognized as a vector of any known pathogen of animals or humans for >150 years. It is now identified as the principal vector of Hepatozoon americanum, the agent responsible for American canine hepatozoonosis, and Rickettsia parkeri, the cause of an emerging, eschar-associated spotted fever group rickettsiosis identified throughout much of the Western Hemisphere. Coincident with these discoveries has been recognition that the geographical distribution of A. maculatum in the United States is far more extensive than described 70 yr ago, supporting the idea that range and abundance of certain tick species, particularly those with diverse host preferences, are not fixed in time or space, and may change over relatively short intervals. Renewed interest in the Gulf Coast tick reinforces the notion that the perceived importance of a particular tick species to human or animal health can be relatively fluid, and may shift dramatically with changes in the distribution and abundance of the arthropod, its vertebrate hosts, or the microbial agents that transit among these organisms. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Yamagishi, Ayaka; Yao, Izumi; Johnson, Kevin P; Yoshizawa, Kazunori
2014-06-01
Data from gene sequences and morphological structures were collected for the gull feather lice, Saemundssonia lari, Quadraceps punctatus, and Q. ornatus, parasitizing Larus crassirostris and L. schistisagus. Saemundssonia lari was collected from both gull species, and no detectable morphological and genetic differences were found between lice collected from the two different hosts. In contrast, Q. punctatus was only collected from L. crassirostris, whereas Q. ornatus was only collected from L. schistisagus. The two Quadraceps species were genetically highly divergent, and body-size differences corresponding to the gull's body size (Harrison's rule) were also detected between them. Both Quadraceps species were collected from the interbarb of the remex or rectrix, and a match in body size between the louse and the interbarb space may be important in escape from host preening defenses. In contrast, Saemundssonia is a head louse, inhabiting the finer feathers of the head and neck, which the bird cannot preen. A close match to host body size may be less important for lice in the head microhabitat. The differences in the pattern of host-specificity between Saemundssonia and Quadraceps on the two focal host species of this study were probably due to their different microhabitat preferences. More broadly, comparisons of the gene sequences of S. lari and Q. punctatus to those from other gull hosts showed that genetically almost undifferentiated populations of both species were distributed on wide range of gull species. Frequent interspecific hybridization of gulls is one possible factor that may allow these lice to maintain gene flow across multiple host species.
Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis.
Roach, Dwayne R; Sjaarda, David R; Castle, Alan J; Svircev, Antonet M
2013-05-01
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.
Host Exopolysaccharide Quantity and Composition Impact Erwinia amylovora Bacteriophage Pathogenesis
Roach, Dwayne R.; Sjaarda, David R.; Svircev, Antonet M.
2013-01-01
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan. PMID:23503310
Oppenheim, Sara J; Gould, Fred; Hopper, Keith R
2018-03-01
Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.
Rachalewski, Michał; Kobak, Jarosław; Szczerkowska-Majchrzak, Eliza; Bącela-Spychalska, Karolina
2018-01-01
Temperature is a crucial factor determining biology and ecology of poikilothermic animals. It often constitutes an important barrier for invasive species originating from different climate zones but, on the other hand, may facilitate the invasion process of animals with wide thermal preferences and high resistance to extreme temperatures. In our experimental study, we investigated the thermal behaviour of two Ponto-Caspian amphipod crustaceans- Dikerogammarus villosus and Dikerogammarus haemobaphes . Both species are known to live under a wide range of thermal conditions which may promote their invasion. Moreover, both these amphipods are hosts for microsporidian parasites which co-evolved with them within the Ponto-Caspian region and spread in European waters. As the presence of a parasite may influence the thermal preferences of its host, we expected to observe behavioural changes in infected individuals of the studied amphipods leading to (1) behavioural fever (selecting a warmer habitat) or (2) anapyrexia (selecting a colder habitat). The experiment ( N = 20) was carried out for 30 min in a 100 cm. 20 cm from boths sides were not avaliable for amphipods long thermal gradient (0-40 °C), using 30 randomly selected adult amphipod individuals of one species. At the end of each trial, we checked the position of amphipods along the gradient and determined their sex and infection status (uninfected or infected by one of microsporidium species). D. villosus was infected with Cucumispora dikerogammari whereas D. haemobaphes was a host for C. dikerogammari , Dictyocoela muelleri or D. berillonum . Thermal preferences of amphipods depended on their species and sex. Females of D. villosus preferred warmer microhabitats (often much above 30 °C) than conspecific males and females of D. haemobaphes , whereas no significant differences were found among males of both species and both sexes of D. haemobaphes . Moreover, infected males of D. villosus stayed in warmer water more often than uninfected males of this species, selecting temperatures higher than 30 °C, which may be explained either as a behavioural fever constituting a defence mechanism of a host against the infection, or as a parasite manipulation of the host behaviour increasing the parasite fitness. On the other hand, none of the parasite species affected the thermal preferences of D. haemobaphes , including also C. dikerogammari , changing the behaviour of D. villosus . Our research presents the complexity of the thermal behaviour of studied amphipods and the evidence that microsporidia may trigger a change in temperature preferendum of their host species and those observations may be the result of different host-parasite coevolution time which may vary for the two host species (Poulin, 2010).
Vaudo, Anthony D.; Patch, Harland M.; Mortensen, David A.; Tooker, John F.; Grozinger, Christina M.
2016-01-01
To fuel their activities and rear their offspring, foraging bees must obtain a sufficient quality and quantity of nutritional resources from a diverse plant community. Pollen is the primary source of proteins and lipids for bees, and the concentrations of these nutrients in pollen can vary widely among host-plant species. Therefore we hypothesized that foraging decisions of bumble bees are driven by both the protein and lipid content of pollen. By successively reducing environmental and floral cues, we analyzed pollen-foraging preferences of Bombus impatiens in (i) host-plant species, (ii) pollen isolated from these host-plant species, and (iii) nutritionally modified single-source pollen diets encompassing a range of protein and lipid concentrations. In our semifield experiments, B. impatiens foragers exponentially increased their foraging rates of pollen from plant species with high protein:lipid (P:L) ratios; the most preferred plant species had the highest ratio (∼4.6:1). These preferences were confirmed in cage studies where, in pairwise comparisons in the absence of other floral cues, B. impatiens workers still preferred pollen with higher P:L ratios. Finally, when presented with nutritionally modified pollen, workers were most attracted to pollen with P:L ratios of 5:1 and 10:1, but increasing the protein or lipid concentration (while leaving ratios intact) reduced attraction. Thus, macronutritional ratios appear to be a primary factor driving bee pollen-foraging behavior and may explain observed patterns of host-plant visitation across the landscape. The nutritional quality of pollen resources should be taken into consideration when designing conservation habitats supporting bee populations. PMID:27357683
Rosas, E
1987-01-01
The different climatic regions determine the zoogeographic distribution of various animal species depending on their particular conditions and ecological preferences. The host schistosomiasis planorbid is one of these species. This paper deals with the distribution of Biomphalaria straminea in northeast Brazil. It starts from the analysis of different climatic peculiarities in this region, associated to limnological observation done by the author in three different hydric collections in the state of Sergipe. It has been concluded that this is an "eurióioca" species. Its broad ecological valence permits this species to survive in regions where climate asperties are evident, requiring behavior and physiological adaptations. The species survives in all northeast region, from "zona da mata", in the coast, to the semi-arid "sertão".
Host Plant Adaptation in Drosophila mettleri Populations
Castrezana, Sergio; Bono, Jeremy M.
2012-01-01
The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678
Host plant adaptation in Drosophila mettleri populations.
Castrezana, Sergio; Bono, Jeremy M
2012-01-01
The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.
Gypsy Moth Host Interactions: A Concept of Room and Board
William E. Wallner
1983-01-01
The influence of host type and condition on the bioecology of gypsy moth are discussed from the viewpoint of room and board. Larval establishment was higher on preferred hosts; less than 5% migrated off them. Nonpreferred hosts lost 10-25% of larvae. Susceptibility of gypsy moth larvae to nucleopolyhedrosis virus increased following 1 or 2 years of defoliation....
Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E
2015-09-08
The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.
Singer, Michael C; McBride, Carolyn S
2012-12-01
Spatial mosaics occur in both evolutionary and ecological properties of species' interactions. Studies of these patterns have facilitated description and prediction of evolutionary responses of interacting species to each other and to changing environments. We propose seeking complementary understanding of community assembly and dynamics by studying ecological and mechanistic properties of mosaics. We define "species' association mosaics" as deviations from a null model in which spatial variation in the extent to which particular species interact ecologically is explained solely by variation in their densities. In extreme deviations from the null, a focal species interacts exclusively with different partners at different sites despite similar abundances of potential partners. We investigate this type of mosaic involving the butterfly Euphydryas editha and its hosts, the perennial Pedicularis semibarbata (Psem) and the ephemeral annual Collinsia torreyi (Ctor). A reciprocal transplant experiment showed that the proximate, mechanistic driver of the mosaic was variation in butterfly oviposition preference: the identity of the preferred host species depended on the site of origin of the insects, not that of the plants. In contrast, the evolutionary driver was phenological asynchrony between the insects and Ctor. Censuses showed that larvae hatching from eggs laid on Ctor would have suffered significantly greater mortality from host senescence at five sites where Ctor was avoided than at two sites where it was used. These differences among sites in phenological synchrony were caused by variation in life span of Ctor. At sites where Ctor was avoided, natural selection on host preference was stabilizing because Ctor life span was too short to accommodate the development time of most larvae. At sites where Ctor was used, selection on preference was also stabilizing because larvae lacked physiological adaptation to feed on Psem. These reciprocal forces of stabilizing selection formed a mosaic maintaining spatial variation in insect host preference that was the proximate cause of the species-association mosaic. In the Discussion, we examine the extent to which our findings hindcast an observed anthropogenic host shift by E. editha from Psem to Ctor. This example shows that elucidation of species-association mosaics can facilitate understanding of community evolution and dynamics.
Tee, Hui-Siang; Lee, Chow-Yang
2017-12-05
Many female parasitoid wasps optimize host selection to balance the benefits of high-quality hosts and the costs of predator- or hyperparasitoid-induced mortality risks to maximize their fitness. Cannibalism exists in many insect species and affects survival of parasitoid larvae developing in or on parasitized hosts. However, little is known about how parasitoid wasps resolve the fitness consequence of host cannibalism-induced mortality risk during host selection. We examined the effect of oothecal age on cannibalism in the American cockroach Periplaneta americana (L.) (Dictyoptera: Blattidae) and its effect on host age selection and fitness of its oothecal parasitoid Evania appendigaster (L.) (Hymenoptera: Evaniidae). P. americana differentially cannibalized 1-d-old (30‒60%) versus 10- to 40-d-old oothecae (<9%). However, parasitoid females did not avoid but still preferred to parasitize 1-d-old (45%) over 10- to 40-d-old oothecae (1.6‒20%). The parasitism rate was greater and the handling time was shorter on 1-d-old compared to older oothecae. For parasitoid progeny emerging from different-aged oothecae, regression analysis showed that development time increased and body size (measured as hind tibia length) and longevity decreased with oothecal age. These results demonstrate that reduced parasitoid progeny survival due to host cannibalism did not change the parasitoid's oviposition preference for newly laid oothecae, and that E. appendigaster females traded progeny survival for fitness gains for themselves and their progeny. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)
USDA-ARS?s Scientific Manuscript database
Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...
Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário
2016-02-01
Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.
Valles, Steven M; Oi, David H; Plowes, Robert M; Sanchez-Arroyo, Hussein; Varone, Laura; Conant, Pat; Webb, Garry
2013-07-01
Solenopsis invicta virus 1 (SINV-1) was found regularly and prevalently in S. invicta. In sampled locations where S. invicta and S. geminata are sympatric (specifically, Gainesville, FL and Travis, TX), SINV-1 was detected in S. geminata. Conversely, in areas in which S. geminata and S. invicta are allopatric, SINV-1 was not detected in S. geminata; these locations included north Australia (n=12), southern Mexico (n=107), Hawaii (n=48), Taiwan (n=12), and the Johnston Atoll (n=6). A similar relationship was observed for S. richteri. In areas in which S. invicta and S. richteri were sympatric, SINV-1 was detected in the S. richteri population, but in areas in which S. invicta and S. richteri were allopatric, SINV-1 was not detected. These occurrences suggest that S. invicta is the host of predilection, or preferred host for SINV-1, and that the congenerics, S. geminata and S. richteri serve as either accidental, reservoir, or transfer hosts. The minus genome strand of SINV-1 was detected in S. geminata and S. richteri indicating that these species may serve as functional hosts capable of supporting SINV-1 replication. SINV-1 was not detected in S. xyloni regardless of its proximity to S. invicta. These results suggest that SINV-1 may be an example of pathogen spillover or pollution. Published by Elsevier Inc.
Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P. C.; Ovaa, Huib; Drag, Marcin; Lima, Christopher D.; Huang, Tony T.
2015-01-01
Ubiquitin (Ub) and the ubiquitin-like modifier interferon stimulated gene 15 (ISG15) participate in the host defense of viral infections. Viruses, including the Severe Acute Respiratory Syndrome human coronavirus (SARS hCoV), have co-opted Ub/ISG15-conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub/ISG15-conjugated host proteins. Here, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle Eastern Respiratory Syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that similar to SARS PLpro, MERS PLpro is both a deubiquitinating and a deISGylating enzyme. Further analysis of the intrinsic deubiquitinating enzyme (DUB) activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, while SARS PLpro prefers to cleave Lys48-linked polyUb chains. Second, MERS PLpro cleaves polyUb chains in a “mono-distributive” manner (one Ub at a time), and SARS PLpro prefers to cleave K48-linked poly-Ub chains by sensing a di-Ub moiety as a minimal recognition element using a “di-distributive” cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses. PMID:25764917
Pérez-Hernández, Cisteil X
2018-06-06
Until today, most information about the natural history and ecology of soldier beetles came from temperate zones, mainly from Holarctic areas, while tropical regions have been poorly studied. The aim of this contribution is to compile and synthesize information concerning the natural history and ecology of Cantharidae (Coleoptera) from the Mexican tropical dry forest (TDF), to serve as a starting point for more in-depth study of the group in one of the Mexico's most endangered ecosystems. All compiled data on the family have been organized into the following topics: distributional patterns and habitat preferences, feeding behavior and host plants, and daily and seasonal activity cycles. For the first time, it was provided a list of host plants for TDF Cantharidae genera and species, and it was also observed a high ecological diversity in the phenology and behavior of TDF Cantharidae assemblages. Further research concerning cantharids and other TDF insects needs to have a more comprehensive and integrated approach toward understanding the patterns of distribution and diversity, and elucidating the role that cantharids play in ecosystems, especially in TDF, which is one of the most endangered ecosystem in the world.
Hiller, Thomas; Honner, Benjamin; Page, Rachel A; Tschapka, Marco
2018-03-22
Bat flies (Streblidae) are diverse, obligate blood-feeding insects and probably the most conspicuous ectoparasites of bats. They show preferences for specific body regions on their host bat, which are reflected in behavioural characteristics. In this study, we corroborate the categorization of bat flies into three ecomorphological groups, focusing only on differences in hind leg morphology. As no detailed phylogeny of bat flies is available, it remains uncertain whether these morphological differences reflect the evolutionary history of bat flies or show convergent adaptations for the host habitat type. We show that the division of the host bat into three distinct habitats contributes to the avoidance of interspecific competition of bat fly species. Finally, we found evidence for density-dependent competition between species belonging to the same ecomorphological group.
McQuate, Grant T.; Vargas, Roger I.
2007-01-01
The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae), Brazilian pepper tree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), ti plant, Cordyline terminate (L.) Chev.(Liliales: Liliaceae), guava and several Citrus spp. were identified as preferred roosting hosts for oriental fruit fly. Guava had not previously been identified as a preferred roosting host for melon fly. Other than for the use of panax as a roosting host, there has previously been little attention to roosting hosts for oriental fruit fly. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. Further research is needed to assess the use of vegetation bordering other host crops as roosting hosts, especially for oriental fruit fly. PMID:20334596
Cahenzli, Fabian; Wenk, Barbara A; Erhardt, Andreas
2015-07-01
Recent studies with diverse taxa have shown that parents can utilize their experience of the environment to adapt their offspring's phenotype to the same environmental conditions. Thus, offspring would then perform best under environmental conditions experienced by their parents due to transgenerational phenotypic plasticity. Such an effect has been dubbed transgenerational acclimatization. However, evidence that parents can subsequently ensure the appropriate environmental conditions in order that offspring benefit from transgenerational acclimatization has never been demonstrated. We reared Pieris rapae larvae in the parental generation on high-nitrogen and low-nitrogen host plants, and reared the offspring (F1) of both treatments again on high- and low-nitrogen plants. Furthermore, we tested if females prefer to oviposit on high- or low-nitrogen host plants in two-way choice tests. We here show not only that females adapt their offspring's phenotype to the host-plant quality that they themselves experienced, but that females also mainly oviposit on the host quality to which they adapt their offspring. Moreover, effects of larval host plant on oviposition preference of females increased across two generations in F1-females acclimatized to low-nitrogen host plants, showing an adaptive host shift from one generation to the next. These findings may have profound implications for host-race formation and sympatric speciation.
García Gonzalez, Javier; Giraldo Jaramillo, Marisol; Roberto Spotti Lopes, João
2018-04-05
Vector-borne plant pathogenic bacteria can induce changes in infected plants favoring the insect vector behavior and biology. The study aimed to determine the effect of maize bushy stunt phytoplasma (MBSP) postinoculation period on the host plant preference and transmission efficiency by the corn leafhopper, Dalbulus maidis DeLong & Wolcott, 1923 (Hemiptera: Cicadellidae). In a series of choice tests, D. maidis preference was measured as settling and oviposition on healthy maize plants versus infected maize plants showing early disease symptoms, advanced symptoms, or no symptoms. Finally, transmission efficiency of D. maidis was measured when the vector previously acquired the phytoplasma from asymptomatic source plants at different postinoculation periods. D. maidis adults preferred to settle and to oviposit on healthy than on symptomatic infected plants with advanced disease symptoms, and preferred asymptomatic plants over symptomatic ones. MBSP transmission by D. maidis was positively correlated with the postinoculation period of the source plant. Results suggest an MBSP modulation for D. maidis preference on asymptomatic infected maize plants in the early stages of the crop, allowing the pathogen an undetected transmission.
Soares, Ana Paula; Fraga, Isabel; Comesaña, Montserrat; Piñeiro, Ana
2010-11-01
This work presents an analysis of the role of animacy in attachment preferences of relative clauses to complex noun phrases in European Portuguese (EP). The study of how the human parser solves this kind of syntactic ambiguities has been focus of extensive research. However, what is known about EP is both limited and puzzling. Additionally, as recent studies have stressed the importance of extra-syntactic variables in this process, two experiments were carried out to assess EP attachment preferences considering four animacy conditions: Study 1 used a sentence-completion-task, and Study 2 a self-paced reading task. Both studies indicate a significant preference for high attachment in EP. Furthermore, they showed that this preference was modulated by the animacy of the host NP: if the first host was inanimate and the second one was animate, the parser's preference changed to low attachment preference. These findings shed light on previous results regarding EP and strengthen the idea that, even in early stages of processing, the parser seems to be sensitive to extra-syntactic information.
Host-Feeding Preference of the Mosquito, Culex quinquefasciatus, in Yucatan State, Mexico
Garcia-Rejon, Julian E.; Blitvich, Bradley J.; Farfan-Ale, Jose A.; Loroño-Pino, Maria A.; Chi Chim, Wilberth A.; Flores-Flores, Luis F.; Rosado-Paredes, Elsy; Baak-Baak, Carlos; Perez-Mutul, Jose; Suarez-Solis, Victor; Fernandez-Salas, Ildefonso; Beaty, Barry J.
2010-01-01
Studies were conducted to determine the host-feeding preference of Culex quinquefasciatus Say (Diptera: Culicidae) in relation to the availability of human and domestic animals in the city of Merida, Yucatan State, Mexico. Mosquitoes were collected in the backyards of houses using resting wooden boxes. Collections were made five times per week from January to December 2005. DNA was extracted from engorged females and tested by PCR using universal avian- and mammalian-specific primers. DNA extracted from avian-derived blood was further analyzed by PCR using primers that differentiate among the birds of three avian orders: Passeriformes, Columbiformes and Galliformes. PCR products obtained from mammalian-derived blood were subjected to restriction enzyme digestion to differentiate between human-, dog-, cat-, pig-, and horse-derived blood meals. Overall, 82% of engorged mosquitoes had fed on birds, and 18% had fed on mammals. The most frequent vertebrate hosts were Galliformes (47.1%), Passeriformes (23.8%), Columbiformes (11.2%) birds, and dogs (8.8%). The overall human blood index was 6.7%. The overall forage ratio for humans was 0.1, indicating that humans were not a preferred host for Cx. quinquefasciatus in Merida. PMID:20578953
Host-feeding preference of the mosquito, Culex quinquefasciatus, in Yucatan State, Mexico.
Garcia-Rejon, Julian E; Blitvich, Bradley J; Farfan-Ale, Jose A; Loroño-Pino, Maria A; Chi Chim, Wilberth A; Flores-Flores, Luis F; Rosado-Paredes, Elsy; Baak-Baak, Carlos; Perez-Mutul, Jose; Suarez-Solis, Victor; Fernandez-Salas, Ildefonso; Beaty, Barry J
2010-01-01
Studies were conducted to determine the host-feeding preference of Culex quinquefasciatus Say (Diptera: Culicidae) in relation to the availability of human and domestic animals in the city of Merida, Yucatan State, Mexico. Mosquitoes were collected in the backyards of houses using resting wooden boxes. Collections were made five times per week from January to December 2005. DNA was extracted from engorged females and tested by PCR using universal avian- and mammalian-specific primers. DNA extracted from avian-derived blood was further analyzed by PCR using primers that differentiate among the birds of three avian orders: Passeriformes, Columbiformes and Galliformes. PCR products obtained from mammalian-derived blood were subjected to restriction enzyme digestion to differentiate between human-, dog-, cat-, pig-, and horse-derived blood meals. Overall, 82% of engorged mosquitoes had fed on birds, and 18% had fed on mammals. The most frequent vertebrate hosts were Galliformes (47.1%), Passeriformes (23.8%), Columbiformes (11.2%) birds, and dogs (8.8%). The overall human blood index was 6.7%. The overall forage ratio for humans was 0.1, indicating that humans were not a preferred host for Cx. quinquefasciatus in Merida.
Eidson, Erika L; Mock, Karen E; Bentz, Barbara J
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.
Mock, Karen E.; Bentz, Barbara J.
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks. PMID:29715269
Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W
2016-06-01
Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.
2011-01-01
Background Culex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV) detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to be introduced into Mexico City by various means including infected mosquitoes on airplanes, migrating birds, ground transportation and infected humans. Little is known of the geographic distribution of Culex pipiens complex mosquitoes and hybrids in Mexico City. Culex pipiens pipiens preferentially feed on avian hosts; Culex pipiens quinquefasciatus have historically been considered to prefer mammalian hosts; and hybrids of these two species could theoretically serve as bridge vectors to transmit WNV from avian hosts to humans and other mammalian hosts. In order to address the potential of WNV being introduced into Mexico City, we have determined the identity and spatial distribution of Culex pipiens complex mosquitoes and their hybrids. Results Mosquito larvae collected from 103 sites throughout Mexico City during 2004-2005 were identified as Culex, Culiseta or Ochlerotatus by morphological analysis. Within the genus Culex, specimens were further identified as Culex tarsalis or as belonging to the Culex pipiens complex. Members of the Culex pipiens complex were separated by measuring the ratio of the dorsal and ventral arms (DV/D ratio) of the male genitalia and also by using diagnostic primers designed for the Ace.2 gene. Culex pipiens quinquefasciatus was the most abundant form collected. Conclusions Important WNV vectors species, Cx. p. pipiens, Cx. p. quinquefasciatus and Cx. tarsalis, are all present in Mexico City. Hybrids of Cx. p. pipiens and Cx. p. quinquefasciatus were also collected and identified. The presence and abundance of these WNV competent vectors is a cause for concern. Understanding the distribution of these vectors can help improve viral surveillance activities and mosquito control efforts in Mexico City. PMID:21554725
Diaz-Badillo, Alvaro; Bolling, Bethany G; Perez-Ramirez, Gerardo; Moore, Chester G; Martinez-Munoz, Jorge P; Padilla-Viveros, America A; Camacho-Nuez, Minerva; Diaz-Perez, Alfonso; Beaty, Barry J; Munoz, Maria de Lourdes
2011-05-09
Culex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV) detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to be introduced into Mexico City by various means including infected mosquitoes on airplanes, migrating birds, ground transportation and infected humans. Little is known of the geographic distribution of Culex pipiens complex mosquitoes and hybrids in Mexico City. Culex pipiens pipiens preferentially feed on avian hosts; Culex pipiens quinquefasciatus have historically been considered to prefer mammalian hosts; and hybrids of these two species could theoretically serve as bridge vectors to transmit WNV from avian hosts to humans and other mammalian hosts. In order to address the potential of WNV being introduced into Mexico City, we have determined the identity and spatial distribution of Culex pipiens complex mosquitoes and their hybrids. Mosquito larvae collected from 103 sites throughout Mexico City during 2004-2005 were identified as Culex, Culiseta or Ochlerotatus by morphological analysis. Within the genus Culex, specimens were further identified as Culex tarsalis or as belonging to the Culex pipiens complex. Members of the Culex pipiens complex were separated by measuring the ratio of the dorsal and ventral arms (DV/D ratio) of the male genitalia and also by using diagnostic primers designed for the Ace.2 gene. Culex pipiens quinquefasciatus was the most abundant form collected. Important WNV vectors species, Cx. p. pipiens, Cx. p. quinquefasciatus and Cx. tarsalis, are all present in Mexico City. Hybrids of Cx. p. pipiens and Cx. p. quinquefasciatus were also collected and identified. The presence and abundance of these WNV competent vectors is a cause for concern. Understanding the distribution of these vectors can help improve viral surveillance activities and mosquito control efforts in Mexico City.
Geiselhardt, Sven; Otte, Tobias; Hilker, Monika
2012-09-01
The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation. © 2012 Blackwell Publishing Ltd/CNRS.
Doorenweerd, Camiel; van Nieukerken, Erik J.; Menken, Steph B. J.
2015-01-01
Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different clades. PMID:25785630
Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Cvrković, Tatjana; Toševski, Ivo
2018-01-01
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno’s ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1–1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1–3.3%). PMID:29738577
Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Mitrović, Milana; Cvrković, Tatjana; Toševski, Ivo; Jović, Jelena
2018-01-01
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno's ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1-1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1-3.3%).
NASA Astrophysics Data System (ADS)
Stelinski, L. L.; Liburd, O. E.
2005-02-01
The concept of “host fidelity,” where host-specific mating occurs in close proximity to the oviposition site and location of larval development, is thought to impart a pre-mating isolation mechanism for sympatric speciation (sensu members of the genus Rhagoletis). The apple maggot fly, Rhagoletis pomonella, and the blueberry maggot fly, R. mendax, are morphologically similar sibling species thought to have speciated in sympatry by divergence of host plant association. Both of these fly species are attacked by the specialist braconid parasitoid, Diachasma alloeum. The current study demonstrates that both male and female D. alloeum exhibit a behavioral preference for the odor of the fruit of their larval Rhagoletis host species. Specifically, those D. alloeum emerging from puparia of R. pomonella are preferentially attracted to hawthorn fruit and those emerging from puparia of R. mendax are preferentially attracted to blueberry fruit. However, male D. alloeum reared from either R. pomonella or R. mendax were equally attracted to females originating from both Rhagoletis species. We suggest that the data herein present evidence for “host fidelity,” where populations of D. alloeum exhibit a greater tendency to mate and reproduce among the host plants of their preferred Rhagoletis hosts. Furthermore, host fidelity may have resulted in the evolution of distinct host races of D. alloeum tracking the speciation of their larval Rhagoletis prey.
Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András
2017-01-01
Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection–polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny–shady–patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies. PMID:29291065
Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne
2017-11-01
Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.
Metal-atom Interactions and Clustering in Organic Semiconductor Systems
NASA Astrophysics Data System (ADS)
Tomita, Yoko; Park, Tea-uk; Nakayama, Takashi
2017-07-01
The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.
Are adaptation costs necessary to build up a local adaptation pattern?
Magalhães, Sara; Blanchet, Elodie; Egas, Martijn; Olivieri, Isabelle
2009-08-03
Ecological specialization is pervasive in phytophagous arthropods. In such specialization mode, limits to host range are imposed by trade-offs preventing adaptation to several hosts. The occurrence of such trade-offs is inferred by a pattern of local adaptation, i.e., a negative correlation between relative performance on different hosts. To establish a causal link between local adaptation and trade-offs, we performed experimental evolution of spider mites on cucumber, tomato and pepper, starting from a population adapted to cucumber. Spider mites adapted to each novel host within 15 generations and no further evolution was observed at generation 25. A pattern of local adaptation was found, as lines evolving on a novel host performed better on that host than lines evolving on other hosts. However, costs of adaptation were absent. Indeed, lines adapted to tomato had similar or higher performance on pepper than lines evolving on the ancestral host (which represent the initial performance of all lines) and the converse was also true, e.g. negatively correlated responses were not observed on the alternative novel host. Moreover, adapting to novel hosts did not result in decreased performance on the ancestral host. Adaptation did not modify host ranking, as all lines performed best on the ancestral host. Furthermore, mites from all lines preferred the ancestral to novel hosts. Mate choice experiments indicated that crosses between individuals from the same or from a different selection regime were equally likely, hence development of reproductive isolation among lines adapted to different hosts is unlikely. Therefore, performance and preference are not expected to impose limits to host range in our study species. Our results show that the evolution of a local adaptation pattern is not necessarily associated with the evolution of an adaptation cost.
Evaluation method for the potential functionome harbored in the genome and metagenome.
Takami, Hideto; Taniguchi, Takeaki; Moriya, Yuki; Kuwahara, Tomomi; Kanehisa, Minoru; Goto, Susumu
2012-12-12
One of the main goals of genomic analysis is to elucidate the comprehensive functions (functionome) in individual organisms or a whole community in various environments. However, a standard evaluation method for discerning the functional potentials harbored within the genome or metagenome has not yet been established. We have developed a new evaluation method for the potential functionome, based on the completion ratio of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules. Distribution of the completion ratio of the KEGG functional modules in 768 prokaryotic species varied greatly with the kind of module, and all modules primarily fell into 4 patterns (universal, restricted, diversified and non-prokaryotic modules), indicating the universal and unique nature of each module, and also the versatility of the KEGG Orthology (KO) identifiers mapped to each one. The module completion ratio in 8 phenotypically different bacilli revealed that some modules were shared only in phenotypically similar species. Metagenomes of human gut microbiomes from 13 healthy individuals previously determined by the Sanger method were analyzed based on the module completion ratio. Results led to new discoveries in the nutritional preferences of gut microbes, believed to be one of the mutualistic representations of gut microbiomes to avoid nutritional competition with the host. The method developed in this study could characterize the functionome harbored in genomes and metagenomes. As this method also provided taxonomical information from KEGG modules as well as the gene hosts constructing the modules, interpretation of completion profiles was simplified and we could identify the complementarity between biochemical functions in human hosts and the nutritional preferences in human gut microbiomes. Thus, our method has the potential to be a powerful tool for comparative functional analysis in genomics and metagenomics, able to target unknown environments containing various uncultivable microbes within unidentified phyla.
Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes
Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.
2003-01-01
Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.
Bian, Lei; Cai, Xiao-Ming; Luo, Zong-Xiu; Zhang, Yong-Jun; Chen, Zong-Mao
2016-01-01
Host selection by female moths is fundamental to the survival of their larvae. Detecting and perceiving the non-volatile chemicals of the plant surface involved in gustatory detection determine the host preference. In many lepidopteran species, tarsal chemosensilla are sensitive to non-volatile chemicals and responsible for taste detection. The tea geometrid Ectropis obliqua is one devastating chewing pest selectively feeding on limited plants, requiring the specialized sensors to forage certain host for oviposition. In present study, we revealed the distribution of chemosensilla in the ventral side of female fifth tarsomere in E. obliqua. To investigate its molecular mechanism of gustatory perception, we performed HiSeq 2500 sequencing of the male- and female- legs transcriptome and identified 24 candidate odorant binding proteins (OBPs), 21 chemosensory proteins (CSPs), 2 sensory neuron membrane proteins (SNMPs), 3 gustatory receptors (GRs) and 4 odorant receptors (ORs). Several leg-specific or enriched chemosensory genes were screened by tissue expression analysis, and clustered with functionally validated genes from other moths, suggesting the potential involvement in taste sensation or other physiological processes. The RPKM value analysis revealed that 9 EoblOBPs showed sex discrepancy in the leg expression, 8 being up-regulated in female and only 1 being over expressed in male. These female-biased EoblOBPs indicated an ecological adaption related with host-seeking and oviposition behaviors. Our work will provide basic knowledge for further studies on the molecular mechanism of gustatory perception, and enlighten a host-selection-based control strategy of insect pests. PMID:26930056
Tidal Disruption Events Prefer Unusual Host Galaxies
NASA Astrophysics Data System (ADS)
Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.
2016-06-01
A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.
Camara, Mark D
1997-06-01
This paper reports on an investigation of two populations of Junonia coenia, the buckeye butterfly, one that feeds on the species' typical host plant (Plantago lanceolata) and one that utilizes a novel host plant (Kickxia elatine). I examined these populations for local adaptive responses in terms of oviposition behavior, growth, and chemical defense, on both P. lanceolata and K. elatine. In addition, I examined the genetic architecture underlying these traits using a full-sib quantitative genetic analysis. I found that a significant majority of females prefer the host plant species found at their collection sites in oviposition tests, but that there is no evidence that they are locally adapted in growth performance, as measured by fifth-instar and pupal weights and development times. Neither are there correlations between oviposition preferences of females and the growth performance or levels of chemical defense of their offspring. The two populations studied do, however, show specialization in terms of the levels of chemical defense they sequester from their host plants. I argue that these results indicate that natural enemies are the normal barriers to host range expansion in this oligophagous herbivore because a breakdown in those barriers results in genetic changes that enhance resistance to predation. This is despite the fact that adaptive responses in physiology are unlikely to be limited by a lack of genetic variability; the genetic architecture among traits would be conducive to specialization in growth performance; and there are costs to chemical defense in this species. All these conditions would tend to argue that J. coenia harbors considerable potential for coevolutionary interactions with its chemically defended hosts, but this potential is not realized, probably because natural selection on diet breadth by natural enemies is much stronger than selection from host plants in this system. © 1997 The Society for the Study of Evolution.
McClure, Melanie; Elias, Marianne
2016-06-16
Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.
Lyndon, A R; Kennedy, C R
2001-01-01
This paper challenges two paradigms long held in relation to the ecology of parasites in freshwater systems: (1) autogenic species are poorer colonisers than allogenic ones; and (2) parasites with direct life cycles are more successful colonisers than those with complex life cycles. Using new and existing data for Acanthocephala in freshwater fish from the British Isles, it is suggested that all six species present have been able to colonise and persist successfully, in spite of the supposed limitations of their autogenic life-style. It is proposed that these parasites have overcome these limitations by a variety of means, which apply equally to all species considered. Foremost among these is the utilisation of a migratory fish host as either a preferred or a suitable host in their life cycle, allowing colonisation of new areas and rescue effects in established areas, whilst equally important is the use of a common and widespread crustacean as the intermediate host. In addition, all six species appear to exhibit resource partitioning by host at either or both the larval and adult stages, thus reducing the potential for competition and further facilitating colonisation and survival. This hypothesis is supported by data from previous studies both on acanthocephalans from Europe and North America and on other autogenic parasites. It also provides an explanation for the apparently atypical host utilisation patterns of some acanthocephalan species in areas on the edge of their distributions, notably in Ireland.
Chaisuekul, C; Riley, D G
2005-12-01
Host plant effects of tomato, Lycopersicon esculentum Mill., and chickweed, Stellaria media (L.) Vill., foliage infected and uninfected with Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV) on the ovipositional preferences of western flower thrips, Frankliniella occidentalis (Pergande), and tobacco thrips, Frankliniella fusca (Hinds), were investigated for whole plants in the greenhouse. In addition, the preference for leaf disks from the same host plants was investigated under a range of temperatures, 15-30 degrees C at a photoperiod of 12:12 (L:D) h, and at three photoperiods, 6:18, 12:12, and 18:6, at 20 degrees C in no-choice and choice studies conducted in growth chambers. In a choice test, F. fusca oviposited significantly more eggs per whole plant foliage over a 7-d period than F. occidentalis by an average ratio of 3:1 over both tomato and chickweed. The optimum temperature for oviposition of F. occidentalis and F. fusca was 24.5 and 24.9 degrees C, respectively. Both species laid significantly more eggs under the longest daylight hours tested, 18:6, in the choice study. Temperature and photoperiod did not significantly interact in terms of thrips ovipositional preference. Ovipositional preference for chickweed or tomato foliage was different for each thrips species in the choice and no-choice tests. However, both thrips species laid significantly more eggs per square centimeter of leaf area in chickweed than in tomato in the whole plant choice test.
USDA-ARS?s Scientific Manuscript database
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host preference and specificity. The goal of this study was to test the extent to which host-plant sp...
Does thermal ecology influence dynamics of side-blotched lizards and their micro-parasites?
Paranjpe, Dhanashree A; Medina, Dianna; Nielsen, Erica; Cooper, Robert D; Paranjpe, Sharayu A; Sinervo, Barry
2014-07-01
Hosts and parasites form interacting populations that influence each other in multiple ways. Their dynamics can also be influenced by environmental and ecological factors. We studied host-parasite dynamics in a previously unexplored study system: side-blotched lizards and their micro-parasites. Compared with uninfected lizards, the infected lizards elected to bask at lower temperatures that were outside their range of preferred temperatures. Infected lizards also were not as precise as uninfected lizards in maintaining their body temperatures within a narrow range. At the ecological scale, areas with higher infection rates coincided with more thermally heterogeneous microhabitats as well as with the areas where lizards tended to live longer. Thermal heterogeneity of lizards' microhabitats may provide important clues to the spatial and temporal distribution of infections. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Bernal, Julio S; Medina, Raul F
2018-04-01
We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.
Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.
2013-01-01
Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266
Recombinant hosts suitable for simultaneous saccharification and fermentation
Ingram, Lonnie O'Neal; Zhou, Shengde
2007-06-05
The invention provides recombinant host cells containing at least one heterologous polynucleotide encoding a polysaccharase under the transcriptional control of a surrogate promoter capable of increasing the expression of the polysaccharase. In addition, the invention further provides such hosts with genes encoding secretory protein/s to facilitate the secretion of the expressed polysaccharase. Preferred hosts of the invention are ethanologenic and capable of carrying out simultaneous saccharification fermentation resulting in the production of ethanol from complex cellulose substrates.
Fritz, M L; Walker, E D; Miller, J R; Severson, D W; Dworkin, I
2015-06-01
Culex pipiens form pipiens and Cx. pipiens form molestus (Diptera: Culicidae) belong to a cosmopolitan taxonomic group known as the Pipiens Assemblage. Hybridization between these forms is thought to contribute to human transmission of West Nile virus (WNV) in North America. Complementary choice and no-choice landing assays were developed to examine host acceptance by North American Cx. pipiens in the laboratory. Populations collected from above- and below-ground sites in suburban Chicago were identified as forms pipiens and molestus using a polymerase chain reaction-based assay. Avian and human host acceptance was then quantified for the two populations, as well as for their hybrid and backcross offspring. No-choice tests were used to demonstrate that both the pipiens and molestus forms were capable of feeding on human and avian hosts. Choice tests were used to demonstrate that form pipiens females were strongly avian-seeking; an individual's probability of accepting the chick host was 85%. Form molestus females were more likely to accept the human host (87%). Rates of host acceptance by F1 and backcross progeny were intermediate to those of their parents. The results suggest that host preferences in Cx. pipiens are genetically determined, and that ongoing hybridization between above- and below-ground populations is an important contributor to epizootic transmission of WNV in North America. © 2015 The Royal Entomological Society.
Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato
Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.
2016-01-01
Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694
Therese M. Poland; Deepa S. Pureswaran; Yigen Chen
2009-01-01
We investigated the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) on six different species of ash including Manchurian ash (F...
Vujanovic, Vladimir; Kim, Seon Hwa
2017-01-01
Sphaerodes mycoparasitica Vuj. is a Fusarium-specific mycoparasite. Some recent discoveries recognize its biotrophic polyphagous lifestyle as an interesting biocontrol property against a broad spectrum of mycotoxigenic Fusarium hosts. Secondary metabolites such as mycotoxins produced by Fusarium spp. may play an important role in the signaling process, allowing an early mycoparasite-host recognition. A multiple-paper-disc assay has been conducted to test S. mycoparasitica hyphal adaptability to filtrates of 12 Fusarium spp. This study shows that shifts of adapted and nonadapted hyphal migration towards different Fusarium-host filtrates may partly explain S. mycoparasitica polyphagous lifestyle, and its adaptability depending on host preference or compatibility. In terms of host compatibility, the current findings suggest that S. mycoparasitica tends to prefer native Fusarium hosts more related to its origin and propose that the mycoparasite could possess diphasic interactions such as biotrophic-attraction and antagonistic-inhibition relationships based on relative radial growth. This implies that the mycoparasite may use a group of mycotoxins produced by specific Fusarium spp. as an adaptive selective mechanism that facilitates a parasite-host recognition and further successful mycoparasitism. In particular, relative polarity or hydrophilicity/hydrophobicity of mycotoxins may be related to solubility and absorption properties in hyphae of the mycoparasite. Taken together, the studies of host compatibility and adaptability depending on host filtrates will aid in understanding complex mechanisms of S. mycoparasitica, as a promising model organism for a specific biotrophic mycoparasite to enhance and improve biocontrol efficacy against Fusaria.
Lagrue, C; Güvenatam, A; Bollache, L
2013-02-01
Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.
Learning and memory in disease vector insects
Vinauger, Clément; Lahondère, Chloé; Cohuet, Anna; Lazzari, Claudio R.; Riffell, Jeffrey A.
2016-01-01
Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies. PMID:27450224
Attraction of some scolytids and associated beetles to the host volatiles α-pinene and ethanol
Leif Martin Schroeder
1991-01-01
Several scolytid species are known to use host volatiles such as monoterpenes and the degradation product, ethanol, when searching for suitable host material. The release rates of terpenes and ethanol and the proportions in which they are released can be expected to differ depending on the breeding substrate preferences of the various scolytid species. The aim of this...
Evaluation of grapevine as a host for the glassy-winged sharpshooter
USDA-ARS?s Scientific Manuscript database
Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...
Code of Federal Regulations, 2010 CFR
2010-07-01
... workable program. The right of orderly campus dissent is recognized. However, anti-ROTC activities which... accomplish program objectives of the host institution. Activities which are part of the host school's... that each cadet realizes the importance of choice of branch preferences and what is involved in making...
Nonvolatile chemical cues affect host-plant ranking by gravid Polygonia c-album females.
Mozūraitis, Raimondas; Murtazina, Rushana; Nylin, Sören; Borg-Karlson, Anna-Karin
2012-01-01
In a multiple-choice test, the preference of egg-laying Polygonia c-album (comma butterfly) females was studied for oviposition on plants bearing surrogate leaves treated with crude methanol extracts obtained from leaves of seven host-plant species: Humulus lupulus, Urtica dioica, Ulmus glabra, Salix caprea, Ribes nigrum, Corylus avellana, and Betula pubescens. The ranking order of surrogate leaves treated with host-plant extracts corresponded well to that reported on natural foliage, except R. nigrum. Thus, host-plant choice in P. c-album seems to be highly dependent on chemical cues. Moreover, after two subsequent fractionations using reversed-phase chromatography the nonvolatile chemical cues residing in the most polar water-soluble fractions evidently provided sufficient information for egg-laying females to discriminate and rank between the samples of more and less preferred plants, since the ranking in these assays was similar to that for natural foliage or whole methanol extracts, while the physical traits of the surrogate leaves remained uniform.
Local and electronic structure around manganese in Cd0.98Mn0.02Te0.97Se0.03 studied by XAFS
NASA Astrophysics Data System (ADS)
Radisavljević, I.; Novaković, N.; Romčević, N.; Ivanović, N.
2013-04-01
X-ray Absorption Fine Structure (XAFS) technique was employed to study local electronic and structural features of Mn ions incorporated in Cd0.98Mn0.02Te0.97Se0.03. XAFS measurements performed at Mn K edge revealed that manganese Mn(II) ions are well incorporated into the host CdTe lattice (cubic zinc-blende structure type) and their immediate surrounding is found to be composed exclusively of Te atoms. The observed preference of Mn ions distribution around Te opposes earlier observations on the similar systems, where preferential Mn-Se over Mn-Te paring was found.
Kuris, Armand M
1978-02-01
1. The geographic range of Carcinonemertes epialti has been greatly extended. The worms are found from Bahia San Quintin, Baja California, Mexico, to Page's Lagoon, Vancouver Island, British Columbia, Canada. 2. New host records for C. epialti include H. oregonensis, and H. nudus. It is rare on its type host Pugettia producta. Specimens of Carcinonemertes of uncertain affinities are also found on Cancer antennarius, C. anthonyi and C. productus. 3. Carcinonemertes epialti adults are egg predators on ovigerous hosts. Growth, demography and abundance are described in relation to the embryogenic stage of the host brood at Bodega Harbor, California. 4. Nonfeeding juveniles are ensheathed on individuals of both host sexes over 8.0 mm carapace width. 5. Transmission experiments show that contact transfer of juvenile nemerteans from males to other hosts may occur. 6. The percentage of infestation and mean density peak in autumn on H. oregonensis at Bodega Harbor. 7. Ovigerous female hosts are more frequently infested with C. epialti, particularly at small host sizes, than are male or nonovigerous female hosts at Bodega Harbor. However, average worm density on ovigerous females is low. 8. Mean density of C. epialti rises through late postmolt, declines during intermolt and rebuilds to a high level in late premolt H. oregonensisfrom Bodega Harbor. 9. Large crabs have a higher percentage of infestations and mean densities per infection than do small crabs. Nemerteans are more frequently found in the sternal-abdominal furrow and less frequently in the limb axillae on large crabs. 10. A model of C. epialti transmission and site occupancy is proposed, incorporating the influence of host size, sex, reproductive state, embryogenesis, molt cycle stage and molt cycle duration of H. oregonensis at Bodega Harbor. Site availability increases with host size. At higher densities the juvenile nemerteans increasingly occupy less preferred sites. Transferral of juvenile nemerteans occurs and is considered responsible for the high frequency of low infestation levels. Ovigerous females are more likely to be infested but with low density infestations.
Sites of Retroviral DNA Integration: From Basic Research to Clinical Applications
Serrao, Erik; Engelman, Alan N.
2016-01-01
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of the viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with HIV-1 can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or AIDS patients on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency. PMID:26508664
Global Diversity and Distribution of Hantaviruses and Their Hosts.
Milholland, Matthew T; Castro-Arellano, Iván; Suzán, Gerardo; Garcia-Peña, Gabriel E; Lee, Thomas E; Rohde, Rodney E; Alonso Aguirre, A; Mills, James N
2018-04-30
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Alnazawi, Mohamed; Altaher, Abdallah; Kandeel, Mahmoud
2017-01-01
Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.
The VLab repository of thermodynamics and thermoelastic properties of minerals
NASA Astrophysics Data System (ADS)
Da Silveira, P. R.; Sarkar, K.; Wentzcovitch, R. M.; Shukla, G.; Lindemann, W.; Wu, Z.
2015-12-01
Thermodynamics and thermoelastic properties of minerals at planetary interior conditions are essential as input for geodynamics simulations and for interpretation of seismic tomography models. Precise experimental determination of these properties at such extreme conditions is very challenging. Therefore, ab initio calculations play an essential role in this context, but at the cost of great computational effort and memory use. Setting up a widely accessible and versatile mineral physics database can relax unnecessary repetition of such computationally intensive calculations. Access to such data facilitates transactional interaction across fields and can advance more quickly insights about deep Earth processes. Hosted by the Minnesota Supercomputing Institute, the Virtual Laboratory for Earth and Planetary Materials (VLab) was designed to develop and promote the theory of planetary materials using distributed, high-throughput quantum calculations. VLab hosts an interactive database of thermodynamics and thermoelastic properties or minerals computed by ab initio. Such properties can be obtained according to user's preference. The database is accompanied by interactive visualization tools, allowing users to repeat and build upon previously published results. Using VLab2015, we have evaluated thermoelastic properties, such as elastic coefficients (Cij), Voigt, Reuss, and Voigt-Reuss-Hill aggregate averages for bulk (K) and shear modulus (G), shear wave velocity (VS), longitudinal wave velocity (Vp), and bulk sound velocity (V0) for several important minerals. Developed web services are general and can be used for crystals of any symmetry. Results can be tabulated, plotted, or downloaded from the VLab website according to user's preference.
Page, Paul; Favre, Adrien; Schiestl, Florian P; Karrenberg, Sophie
2014-01-01
Specialization in plant-insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.
Page, Paul; Favre, Adrien; Schiestl, Florian P.; Karrenberg, Sophie
2014-01-01
Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization. PMID:24905986
Zhang, Qian; Yang, Ruyi; Tang, Jianjun; Yang, Haishui; Hu, Shuijin; Chen, Xin
2010-08-24
Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.
Huang, Bin; Shi, Zhanghong; Hou, Youming
2014-01-01
Abstract Insect herbivores often have higher densities on host plants grown in monocultures than those in diverse environments. The underlying mechanisms are thought to be that polyphagous insects have difficulty in selecting food or oviposition sites when multiple host plants exist. However, this hypothesis needs to be extensively investigated. Our field experiments revealed that the population of the diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), significantly decreased in a mixed cropping field compared with a monoculture. To determine the reasons for the reduction in population in the mixed cropping field, the takeoff behavior and fecundity of females in no-choice and free-choice laboratory environments were compared by video recordings of host selection by P. xylostella . Adults displayed a significantly higher takeoff frequency in free-choice environments than those in no-choice treatments and preferred landing on Brassica campestris (L.) or Brassica juncea (Coss) plants in contrast with Brassica oleracea (L.). Female adults in the free-choice environment also laid fewer eggs compared with the monoculture. Olfaction experiments demonstrated orientation by P. xylostella to host volatiles when presented with a choice between plant odors and clean air, but females showed no preference when odors from three Brassicaceae species were presented simultaneously. We conclude that mixed cropping alters the host-finding behavior of P. xylostella resulting in reduced oviposition. PMID:25527573
Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Sun, Hang
2017-01-01
Studying the drivers of host specificity can contribute to our understanding of the origin and evolution of obligate pollination mutualisms. The preference-performance hypothesis predicts that host plant choice of female insects is related mainly to the performance of their offspring. Soil moisture is thought to be particularly important for the survival of larvae and pupae that inhabit soil. In the high Himalayas, Rheum nobile and R. alexandrae differ in their distribution in terms of soil moisture; that is, R. nobile typically occurs in scree with well-drained soils, R. alexandrae in wetlands. The two plant species are pollinated by their respective mutualistic seed-consuming flies, Bradysia sp1. and Bradysia sp2. We investigated whether soil moisture is important for regulating host specificity by comparing pupation and adult emergence of the two fly species using field and laboratory experiments. Laboratory experiments revealed soil moisture did have significant effects on larval and pupal performances in both fly species, but the two fly species had similar optimal soil moisture requirements for pupation and adult emergence. Moreover, a field reciprocal transfer experiment showed that there was no significant difference in adult emergence for both fly species between their native and non-native habitats. Nevertheless, Bradysia sp1., associated with R. nobile , was more tolerant to drought stress, while Bradysia sp2., associated with R. alexandrae , was more tolerant to flooding stress. These results indicate that soil moisture is unlikely to play a determining role in regulating host specificity of the two fly species. However, their pupation and adult emergence in response to extremely wet or dry soils are habitat-specific.
Dida, Gabriel O.; Gelder, Frank B.; Anyona, Douglas N.; Matano, Ally-Said; Abuom, Paul O.; Adoka, Samson O.; Ouma, Collins; Kanangire, Canisius K.; Owuor, Phillip O.; Ofulla, Ayub V. O.
2014-01-01
We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss – the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus – the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss – the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008
Host attraction and biting behaviour of Anopheles mosquitoes in South Halmahera, Indonesia.
St Laurent, Brandyce; Burton, Timothy A; Zubaidah, Siti; Miller, Helen C; Asih, Puji B; Baharuddin, Amirullah; Kosasih, Sully; Shinta; Firman, Saya; Hawley, William A; Burkot, Thomas R; Syafruddin, Din; Sukowati, Supratman; Collins, Frank H; Lobo, Neil F
2017-08-02
Indonesia is home to a variety of malaria vectors whose specific bionomic traits remain largely uncharacterized. Species-specific behaviours, such as host feeding preferences, impact the dynamics of malaria transmission and the effectiveness of vector control interventions. To examine species-specific host attraction and feeding behaviours, a Latin square design was used to compare Anopheles mosquitoes attracted to human, cow, and goat-baited tents. Anopheles mosquitoes were collected hourly from the inside walls of each baited tent. Species were morphologically and then molecularly identified using rDNA ITS2 sequences. The head and thorax of individual specimens were analysed for Plasmodium DNA using PCR. Bloodmeals were identified using a multiplex PCR. A total of 1024, 137, and 74 Anopheles were collected over 12 nights in cow, goat, and human-baited tents, respectively. The species were identified as Anopheles kochi, Anopheles farauti s.s., Anopheles hackeri, Anopheles hinesorum, Anopheles indefinitus, Anopheles punctulatus, Anopheles tessellatus, Anopheles vagus, and Anopheles vanus, many of which are known to transmit human malaria. Molecular analysis of blood meals revealed a high level of feeding on multiple host species in a single night. Anopheles kochi, An. indefinitus, and An. vanus were infected with Plasmodium vivax at rates comparable to primary malaria vectors. The species distributions of Anopheles mosquitoes attracted to human, goat, and cow hosts were similar. Eight of nine sporozoite positive samples were captured with animal-baited traps, indicating that even predominantly zoophilic mosquitoes may be contributing to malaria transmission. Multiple host feeding and flexibility in blood feeding behaviour have important implications for malaria transmission, malaria control, and the effectiveness of intervention and monitoring methods, particularly those that target human-feeding vectors.
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that...
Ylioja, T.; Slone, D.H.; Ayres, M.P.
2005-01-01
The impacts on forests of tree-killing bark beetles can depend on the species composition of potential host trees. Host susceptibility might be an intrinsic property of tree species, or it might depend on spatial patterning of alternative host species. We compared the susceptibility of loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) to southern pine beetle (Dendroctonus frontalis) at two hierarchical levels of geographic scale: within beetle infestations in heterospecific stands (extent ranging from 0.28 to 0.65 ha), and across a forest landscape (extent 72,500 ha) that was dominated by monospecific stands. In the former, beetles preferentially attacked Virginia pine (tree mortality = 65-100% in Virginia pine versus 0-66% in loblolly pine), but in the latter, loblolly stands were more susceptible than Virginia stands. This hierarchical transition in host susceptibility was predicted from knowledge of (1) a behavioral preference of beetles for attacking loblolly versus Virginia pine, (2) a negative correlation between preference and performance, and (3) a mismatch in the domain of scale between demographics and host selection by individuals. There is value for forest management in understanding the processes that can produce hierarchical transitions in ecological patterns. Copyright ?? 2005 by the Society of American Foresters.
Blaul, Birgit; Ruther, Joachim
2011-01-01
Sexual selection theory predicts that phenotypic traits used to choose a mate should reflect honestly the quality of the sender and thus, are often costly. Physiological costs arise if a signal depends on limited nutritional resources. Hence, the nutritional condition of an organism should determine both its quality as a potential mate and its ability to advertise this quality to the choosing sex. In insects, the quality of the offspring's nutrition is often determined by the ovipositing female. A causal connection, however, between the oviposition decisions of the mother and the mating chances of her offspring has never been shown. Here, we demonstrate that females of the parasitic wasp Nasonia vitripennis prefer those hosts for oviposition that have been experimentally enriched in linoleic acid (LA). We show by 13C-labelling that LA from the host diet is a precursor of the male sex pheromone. Consequently, males from LA-rich hosts produce and release higher amounts of the pheromone and attract more virgin females than males from LA-poor hosts. Finally, males from LA-rich hosts possess three times as many spermatozoa as those from LA-poor hosts. Hence, females making the right oviposition decisions may increase both the fertility and the sexual attractiveness of their sons. PMID:21429922
Blaul, Birgit; Ruther, Joachim
2011-11-07
Sexual selection theory predicts that phenotypic traits used to choose a mate should reflect honestly the quality of the sender and thus, are often costly. Physiological costs arise if a signal depends on limited nutritional resources. Hence, the nutritional condition of an organism should determine both its quality as a potential mate and its ability to advertise this quality to the choosing sex. In insects, the quality of the offspring's nutrition is often determined by the ovipositing female. A causal connection, however, between the oviposition decisions of the mother and the mating chances of her offspring has never been shown. Here, we demonstrate that females of the parasitic wasp Nasonia vitripennis prefer those hosts for oviposition that have been experimentally enriched in linoleic acid (LA). We show by (13)C-labelling that LA from the host diet is a precursor of the male sex pheromone. Consequently, males from LA-rich hosts produce and release higher amounts of the pheromone and attract more virgin females than males from LA-poor hosts. Finally, males from LA-rich hosts possess three times as many spermatozoa as those from LA-poor hosts. Hence, females making the right oviposition decisions may increase both the fertility and the sexual attractiveness of their sons.
Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.
Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A
2016-07-01
Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.
Poulin, Robert; Lagrue, Clément
2017-01-01
The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance–mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance–mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites. PMID:27994156
Development of molecular methods to detect Macrophomina phaseolina from strawberry plants and soil
USDA-ARS?s Scientific Manuscript database
Macrophomina phaseolina is a broad-host range fungus that shows some degree of host preference on strawberry, and causes symptoms including charcoal rot and root rot. Recently, this pathogen has impacted strawberry production as fumigation practices have changed, leaving many growers in California a...
USDA-ARS?s Scientific Manuscript database
The efficiency of host-seeking behavior is a crucial determinant of the reproductive performance of female parasitoids. Initially, parasitoids may use chemical information generated from the microhabitat in which they emerge to locate hosts. Spalangia cameroni and Muscidifurax raptor are commerciall...
USDA-ARS?s Scientific Manuscript database
The non-native shot-hole borer, Euwallacea nr. fornicatus Eichhoff (Coleoptera: Curculionidae: Scolytinae), was discovered in Florida’s avocado production area in Homestead in 2010. It is a highly polyphagous ambrosia beetle that carries Fusarium fungal symbionts. In susceptible host trees, the fung...
USDA-ARS?s Scientific Manuscript database
The annual bluegrass weevil (ABW), Listronotus maculicollis Kirby, is an economically important pest of short cut turfgrass. ABW females prefer annual bluegrass, Poa annua L., for oviposition, and this grass species is a more suitable host for larvae compared to bentgrasses (Agrostis spp.). We inves...
Burger, N F V; Venter, E; Botha, A-M
2017-04-01
The intimate relationship between an aphid and its host is mediated by the composition of the secreted saliva. In the present study, aphid heads were sampled and transcript profiling conducted after aphids were fed on their preference host and transferred to a variety of preference and nonpreference hosts. It was found that the virulent Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) biotype SAM was able to selectively up-regulate more transcripts when confronted with feeding on a variety of hosts, than was the case with the less virulent D. noxia biotype SA1, suggesting increased genomic regulation when coping with a stressful environment. Collectively, the observed transcriptomic changes are supported by previous findings that host changes induce significant changes in the proteome of phytophagous hemipterans, unlike in many other entomophagous generalist species. The current data suggest that highly specialized hemipterans may be able to counter plant defenses with inducible salivary transcripts with resulting protein biosynthesis, as demonstrated here. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor).
Shea, John F
2007-09-01
The beetle-tapeworm life cycle provides a convenient system to study how host behaviour influences the probability of re-infection because initial and secondary infections can be tracked. The beetle, Tenebrio molitor, is infected with the tapeworm Hymenolepis diminuta when it ingests rat faeces containing tapeworm eggs, which upon hatching undergo five morphologically distinct stages while developing inside the beetle. In a series of preference trials, both individual and groups of previously infected beetles were exposed to baits of infective (faeces with eggs) and uninfective faeces. Beetles did not differ in the amount of time spent or in the number of occurrences at each bait type, suggesting that infected beetles show no preference for infective faeces. This may be a host adaptation to avoid further infection, parasite manipulation to avoid competition for host resources, or both. Further, once infected, beetles are no more or no less likely to become re-infected than uninfected beetles. An analysis of the mean and variance of infection suggests that some individuals are highly susceptible to and some are highly resistant to infection, with males being more variable than females. This could explain the higher load of cysticercoids observed in males.
Li, Ling-Fei; Li, Tao; Zhang, Yan; Zhao, Zhi-Wei
2010-03-01
The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of Bothriochloa pertusa, Cajanus cajan and Heteropogon contortus in a fallow land (FL) and an undisturbed land (UL) were characterized. The large subunit rDNA genes of AMF from roots were amplified and cloned. A total of 2353 clones were screened by restriction fragment length polymorphism, and 428 clones were subsequently sequenced. A total of 393 AMF sequences, which were grouped into 100 operational taxonomic units, were obtained. Phylogenetic analysis revealed that the AMF sequences belonged to Glomus, Acaulospora and Scutellospora, and that Glomus was the dominant genus. Of the 393 AMF sequences, 81% were novel. The diversity of AMF colonizing the same plant species was higher in the UL than in the FL, which confirmed strongly from the molecular evidence that soil disturbance reduced AMF population and species richness. The results revealed that AMF communities were significantly different among host-plant species and between the two habitats. The similarity of AMF communities colonizing different plant species within a habitat was higher than that of the same plant species from different habitats. The molecular evidence supported our previous hypothesis based on morphological analyses that AMF communities were more influenced by habitats compared with host preference.
Gao, Qian; Yang, Zhu L
2016-01-01
The diversity of root-associated fungi associated with four ectomycorrhizal herbaceous species, Kobresia capillifolia, Carex parva, Polygonum macrophyllum and Potentilla fallens, collected in three sites of alpine meadows in southwestern China, was estimated based on internal transcribed spacer (ITS) rDNA sequence analysis of root tips. Three hundred seventy-seven fungal sequences sorted to 154 operational taxonomical units (sequence similarity of ≥ 97% across the ITS) were obtained from the four plant species across all three sites. Similar taxa (in GenBank with ≥ 97% similarity) were not found in GenBank and/or UNITE for most of the OTUs. Ectomycorrhiz a made up 64% of the fungi operational taxonomic units (OTUs), endophytes constituted 4% and the other 33% were unidentified root-associated fungi. Fungal OTUs were represented by 57% basidiomycetes and 43% ascomycetes. Inocybe, Tomentella/Thelophora, Sebacina, Hebeloma, Pezizomycotina, Cenococcum geophilum complex, Cortinarius, Lactarius and Helotiales were OTU-rich fungal lineages. Across the sites and host species the root-associated fungal communities generally exhibited low host and site specificity but high host and sampling site preference. Collectively our study revealed noteworthy diversity and endemism of root-associated fungi of alpine plants in this global biodiversity hotspot. © 2016 by The Mycological Society of America.
Identification of Blood Meals from Potential Arbovirus Mosquito Vectors in the Peruvian Amazon Basin
Palermo, Pedro M.; Aguilar, Patricia V.; Sanchez, Juan F.; Zorrilla, Víctor; Flores-Mendoza, Carmen; Huayanay, Anibal; Guevara, Carolina; Lescano, Andrés G.; Halsey, Eric S.
2016-01-01
The transmission dynamics of many arboviruses in the Amazon Basin region have not been fully elucidated, including the vectors and natural reservoir hosts. Identification of blood meal sources in field-caught mosquitoes could yield information for identifying potential arbovirus vertebrate hosts. We identified blood meal sources in 131 mosquitoes collected from areas endemic for arboviruses in the Peruvian Department of Loreto by sequencing polymerase chain reaction amplicons of the cytochrome b gene. Psorophora (Janthinosoma) albigenu, Psorophora (Grabhamia) cingulata, Mansonia humeralis, Anopheles oswaldoi s.l., and Anopheles benarrochi s.l. had mainly anthropophilic feeding preferences; Aedes (Ochlerotatus) serratus, and Aedes (Ochlerotatus) fulvus had feeding preferences for peridomestic animals; and Culex (Melanoconion) spp. fed on a variety of vertebrates, mainly rodents (spiny rats), birds, and amphibians. On the basis of these feeding preferences, many mosquitoes could be considered as potential enzootic and bridge arbovirus vectors in the Amazon Basin of Peru. PMID:27621304
2018-04-01
Creation, curation and hosting of datasets for cybersecurity researchers; • Serving as a “host of convenience” for datasets from PREDICT and IMPACT non...assumptions and preferences, as cybersecurity investigators and proxies for the broader current and potential user communities. No attempt was made to...understand what would have been of use, i.e., cybersecurity researcher needs were known more anecdotally than systematically.[1] We believe that
Genomic patterns associated with paternal/maternal distribution of transposable elements
NASA Astrophysics Data System (ADS)
Jurka, Jerzy
2003-03-01
Transposable elements (TEs) are specialized DNA or RNA fragments capable of surviving in intragenomic niches. They are commonly, perhaps unjustifiably referred to as "selfish" or "parasitic" elements. TEs can be divided in two major classes: retroelements and DNA transposons. The former include non-LTR retrotransposons and retrovirus-like elements, using reverse transriptase for their reproduction prior to integration into host DNA. The latter depend mostly on host DNA replication, with possible exception of rolling-circle transposons recently discovered by our team. I will review basic information on TEs, with emphasis on human Alu and L1 retroelements discussed in the context of genomic organization. TEs are non-randomly distributed in chromosomal DNA. In particular, human Alu elements tend to prefer GC-rich regions, whereas L1 accumulate in AT-rich regions. Current explanations of this phenomenon focus on the so called "target effects" and post-insertional selection. However, the proposed models appear to be unsatisfactory and alternative explanations invoking "channeling" to different chromosomal regions will be a major focus of my presentation. Transposable elements (TEs) can be expressed and integrated into host DNA in the male or female germlines, or both. Different models of expression and integration imply different proportions of TEs on sex chromosomes and autosomes. The density of recently retroposed human Alu elements is around three times higher on chromosome Y than on chromosome X, and over two times higher than the average density for all human autosomes. This implies Alu activity in paternal germlines. Analogous inter-chromosomal proportions for other repeat families should determine their compatibility with one of the three basic models describing the inheritance of TEs. Published evidence indicates that maternally and paternally imprinted genes roughly correspond to GC-rich and AT-rich DNA. This may explain the observed chromosomal distribution of Alu and L1 elements. Finally, paternal models of inheritance predict rapid accumulation of active TEs on chromosome Y. I will discuss potential implications of this phenomenon for evolution of chromosome Y and transposable elements.
Yigen Chen; Therese M. Poland
2010-01-01
Black ash (Fraxinus nigra), green ash (F. pennsylvanica), and white ash (F. americana) are the three most abundant ash species in the northeastern USA. We compared emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adult performance and preference among seedlings...
ERIC Educational Resources Information Center
Dabach, Dafney Blanca
2011-01-01
Scholarship on immigrant integration often examines immigrant characteristics and the host society's contexts of reception. This article explores how teachers fit within this framework by presenting findings on teachers' preferences to teach immigrant-origin youth who are classified as "English learners" (ELs) within separate content courses known…
Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior
Fischer, Caleb N; Trautman, Eric P; Crawford, Jason M; Stabb, Eric V; Handelsman, Jo; Broderick, Nichole A
2017-01-01
Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome. DOI: http://dx.doi.org/10.7554/eLife.18855.001 PMID:28068220
Breda, M O; de Oliveira, J V; Esteves Filho, A B; Barbosa, D R S; de Santana, M F
2016-10-01
Despite the continued efforts on the search for different genotypes, Capsicum annuum (L.) is quite susceptible to attack by pest arthropods, especially the broad mite Polyphagotarsonemus latus Banks. Thus, the host preference, population growth and the injuries assessment of P. latus was studied on six C. annuum genotypes used in Brazil (Atlantis, California Wonder, Impact, Palloma, Rubia and Tendence). Host preference was accessed in choice tests, pairing the several genotypes, and the population growth was observed through non-choice tests in laboratory. The injuries assessments were evaluated in the greenhouse, comparing the injury level among the six genotypes. The results indicate that California Wonder and Palloma genotypes were more preferred by P. latus, and Impact and Tendence were less preferred. P. latus presented positive population growth rates (ri) on all the genotypes, however, Palloma and California Wonder showed the highest values of population growth rate (ri = 0.344 and ri = 0.340, respectively), while Impact had the lowest value (ri = 0.281). All the evaluated C. annuum genotypes showed low tolerance to P. latus and exhibited several injuries, but there was no statistical difference between them. California Wonder had the highest average number of mites/leaf (57.15), while Impact and Tendence obtained the lowest values (36.67 and 35.12, respectively) at the end of the evaluation period. The total average of injuries notes at the end of the bioassay did not differ between the genotypes. The number of mites/leaf was growing for the injury scale to the note 3.0, but when the injury scale approached the note 4.0, there was observed a decrease in the number of mites/leaf for all the genotypes.
Uefune, Masayoshi; Kugimiya, Soichi; Ozawa, Rika; Takabayashi, Junji
2013-01-01
Naïve Cotesia vestalis wasps, parasitoids of diamondback moth (DBM) larvae, are attracted to a synthetic blend (Blend A) of host-induced plant volatiles composed of sabinene, n-heptanal, α-pinene, and ( Z)-3-hexenyl acetate, in a ratio of 1.8:1.3:2.0:3.0. We studied whether qualitative (adding ( R)-limonene: Blend B) or quantitative changes (changing ratios: Blend C) to Blend A affected the olfactory response of C. vestalis in the background of intact komatsuna plant volatiles. Naïve wasps showed equal preference to Blends A and B and Blends A and C in two-choice tests. Wasps with oviposition experience in the presence of Blend B preferred Blend B over Blend A, while wasps that had oviposited without a volatile blend showed no preference between the two. Likewise, wasps that had starvation experience in the presence of Blend B preferred Blend A over Blend B, while wasps that had starved without a volatile blend showed no preference between the two. Wasps that had oviposition experience either with or without Blend A showed equal preferences between Blends C and A. However, wasps that had starvation experience in the presence of Blend A preferred Blend C over Blend A, while those that starved without a volatile blend showed equal preferences between the two. By manipulating quality and quantity of the synthetic attractants, we showed to what extent C. vestalis could discriminate/learn slight differences between blends that were all, in principle, attractive. PMID:24358892
Sating a Voracious Appetite: The Tidal Interaction of Close-in Planets with their Host Stars
NASA Astrophysics Data System (ADS)
Matsakos, Titos; Königl, Arieh
2015-12-01
Transit observations of the apparent angle between the stellar spin and the vector normal to the planetary orbital plane suggest that cool stars are preferably aligned systems even as hot stars exhibit a large range of obliquities. In addition, as was demonstrated recently by Mazeh et al., the distribution of planet periods as a function of mass exhibits a dearth of sub-Jupiter--mass planets at < 4 days periods, with the boundary of the sparsely populated region in phase space having a roughly conical shape. We suggest that both of these seemingly disparate features are manifestations of the tidal interaction between close-in planets and their host stars. We attribute the dichotomy in the obliquity properties to the effect of an early population of hot Jupiters that got stranded near the inner edge of a primordially misaligned protoplanetary disk and subsequently (on a timescale < 1 Gyr) ingested by the host star. The relative magnitudes of the stellar spin and planetary orbital angular momenta at the time of ingestion determined whether the hot Jupiter could realign the host; this did not happen in the case of hot stars because of inefficient magnetic braking and a comparatively high moment of inertia. We interpret the dearth of intermediate-mass planets at short periods by considering the tidal evolution of planets that arrive on highly eccentric orbits at later (> 1 Gyr) times and become circularized at radii of a few times the Roche limit.
USDA-ARS?s Scientific Manuscript database
Understanding the factors that drive the evolution of pathogenic fungi is central to revealing the mechanisms of virulence and host preference, as well as developing effective disease control measures. Prerequisite to these pursuits is the accurate delimitation of species boundaries. Colletotrichu...
Stink bug host preferences: colonization, oviposition, and feeding on cotton.
USDA-ARS?s Scientific Manuscript database
Relative colonization rates of stink bug species among host crops grown in the Southeastern US are needed to parameterize a landscape model that seeks to predict stink bug populations in Bt cotton. We sampled stink bugs in Bt cotton, non-Bt cotton, soybean and peanuts over 3 years and 3 sites in the...
Competition between feeding guilds on cotton plants is species specific and likely plant-mediated.
USDA-ARS?s Scientific Manuscript database
Interspecific competition among herbivorous insects is often mediated by a common host plant. Changes in the common host plant induced by one herbivore species may make the plant less preferred or nutritious to another herbivore. We suggest that these interactions can be quite specific. We examine...
Relative longevity of adult Nezara viridula in field cages of cotton, peanut, and soybean
USDA-ARS?s Scientific Manuscript database
Recent evidence shows that southern green stink bugs use peanut as a reproductive host and adults colonize and feed in peanut, sometimes extensively. Stink bugs prefer the seeds/fruit of host plants and the fruiting structures in peanut are underground and unavailable. Therefore, it is not clear th...
Repellent properties of the host compound 4-allylanisole to the southern pine beetle
Jane Leslie Hayes; Brian L. Strom; Larry M. Roton; Leonard L. Ingram
1994-01-01
The phenylpropanoid 4-allylanisole is a compound produced by loblolly pines (Pinus taeda L.), an abundant species in southern pine forests and a preferred host of southern pine beetle (Dendroctonus frontalis Zimmermann).Repellency of individual beetles was demonstrated in laboratory behavioral assays of D. frontalis and other scolytids.Inhibition was...
Moreno-Olivares, Surisadai I; Cervantes, Ruy; Tiburcio, Jorge
2013-11-01
A new series of linear molecules derived from 1,2-bis(imidazopyridin-2-yl)ethane can fully or partially penetrate the cavity of the dibenzo-24-crown-8 macrocycle to produce a new family of host-guest complexes. Protonation or alkylation of the nitrogen atoms on the pyridine rings led to an increase in the guest total positive charge up to 4+ and simultaneously generated two new recognition sites (pyridinium motifs) that are in competition with the 1,2-bis(benzimidazole)ethane motif for the crown ether. The relative position of the pyridine ring and the chemical nature of the N-substituent determined the preferred motif and the host-guest complex geometry: (i) for linear guests with relatively bulky groups (i.e., a benzyl substituent), the 1,2-bis(benzimidazole)ethane motif is favored, leading to a fully threaded complex with a [2]pseudorotaxane geometry; (ii) for small substituents, such as -H and -CH3 groups, regardless of the guest shape, the pyridinium motifs are preferred, leading to external partially threaded complexes in a 2:1 host to guest stoichiometry.
Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D
2014-02-07
Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.
González, M T; Oliva, M E
2009-04-01
Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.
Lin, Litian; Ning, Lixin; Zhou, Rongfu; Jiang, Chunyan; Peng, Mingying; Huang, Yucheng; Chen, Jun; Huang, Yan; Tao, Ye; Liang, Hongbin
2018-06-18
Knowledge of site occupation of activators in phosphors is of essential importance for understanding and tailoring their luminescence properties by modifying the host composition. Relative site preference of Eu 2+ for the two distinct types of alkaline earth (AE) sites in Ba 1.9995- x Sr x Eu 0.0005 SiO 4 ( x = 0-1.9) is investigated based on photoluminescence measurements at low temperature. We found that Eu 2+ prefers to be at the 9-coordinated AE2 site at x = 0, 0.5, and 1.0, while at x = 1.5 and 1.9, it also occupies the 10-coordinated AE1 site with comparable preference, which is verified by density functional theory (DFT) calculations. Moreover, by combining low-temperature measurements of the heat capacity, the host band gap, and the Eu 2+ 4f 7 ground level position, the improved thermal stability of Eu 2+ luminescence in the intermediate composition ( x = 1.0) is interpreted as due to an enlarged energy gap between the emitting 5d level and the bottom of the host conduction band (CB), which results in a decreased nonradiative probability of thermal ionization of the 5d electron into the host CB. Radioluminescence properties of the samples under X-ray excitation are finally evaluated, suggesting a great potential scintillator application of the compound in the intermediate composition.
Chávez-Moreno, C K; Tecante, A; Casas, A; Claps, L E
2011-01-01
The distribution pattern of species of the genus Dactylopius Costa in Mexico was analyzed in relation to the distribution of their host plants (subfamily Opuntioideae) to evaluate the specificity of the insect-host association. The distribution of Dactylopius currently recognized is narrower than that of its hosts and probably is not representative. Therefore, a broader distribution of the Dactylopius species in correspondence with those of their hosts was hypothesized. Insects and their hosts were collected and georeferenced in 14 states of Mexico from 2005 to 2007. The distribution areas, maps, and habitat characteristics of Dactylopius, Opuntia sensu stricto, Nopalea and Cylindropuntia were determined on the basis of field collections and examination of museum collections. This information was complemented with information from the exhaustive examination of microscope slides from a local insect collection, plants from local herbaria, and literature reviews. The current distribution of the genus Dactylopius and its hosts included 22 and 25 states of Mexico, respectively, and Dactylopius had a continuous distribution according to its hosts, broader than recognized hitherto. The new georeferenced records of the five Mexican Dactylopius species are reported. Insects with morphological characteristics of D. confusus combined with those of D. salmianus were identified, as well as insects with characteristics of D. opuntiae combined with those of D. salmianus. These records suggest that the number of local Dactylopius species could be higher than previously thought or that possible new processes of hybridization between native and introduced species may be occurring.
Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A; McSorley, Robert; Stamps, Robert H; Crow, William T
2017-09-01
Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans . For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent.
Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A.; McSorley, Robert; Stamps, Robert H.; Crow, William T.
2017-01-01
Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans. For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent. PMID:29062154
Evaluation method for the potential functionome harbored in the genome and metagenome
2012-01-01
Background One of the main goals of genomic analysis is to elucidate the comprehensive functions (functionome) in individual organisms or a whole community in various environments. However, a standard evaluation method for discerning the functional potentials harbored within the genome or metagenome has not yet been established. We have developed a new evaluation method for the potential functionome, based on the completion ratio of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules. Results Distribution of the completion ratio of the KEGG functional modules in 768 prokaryotic species varied greatly with the kind of module, and all modules primarily fell into 4 patterns (universal, restricted, diversified and non-prokaryotic modules), indicating the universal and unique nature of each module, and also the versatility of the KEGG Orthology (KO) identifiers mapped to each one. The module completion ratio in 8 phenotypically different bacilli revealed that some modules were shared only in phenotypically similar species. Metagenomes of human gut microbiomes from 13 healthy individuals previously determined by the Sanger method were analyzed based on the module completion ratio. Results led to new discoveries in the nutritional preferences of gut microbes, believed to be one of the mutualistic representations of gut microbiomes to avoid nutritional competition with the host. Conclusions The method developed in this study could characterize the functionome harbored in genomes and metagenomes. As this method also provided taxonomical information from KEGG modules as well as the gene hosts constructing the modules, interpretation of completion profiles was simplified and we could identify the complementarity between biochemical functions in human hosts and the nutritional preferences in human gut microbiomes. Thus, our method has the potential to be a powerful tool for comparative functional analysis in genomics and metagenomics, able to target unknown environments containing various uncultivable microbes within unidentified phyla. PMID:23234305
NASA Astrophysics Data System (ADS)
Sasakawa, Kôji; Uchijima, Kenta; Shibao, Harunobu; Shimada, Masakazu
2013-02-01
Many parasitoid wasps learn host-associated cues and use them in subsequent host-searching behavior. This associative learning, namely "oviposition learning," has been investigated in many studies. However, few studies have compared multiple species, and no comparative study has previously been conducted on ectoparasitoid species. We compared the effects of oviposition learning on host preference and offspring sex ratio in two closely related ectoparasitoid wasps with contrasting reproductive strategies, Anisopteromalus calandrae (r-strategist) and its sibling species (K-strategist). Using two bruchine hosts, Callosobruchus chinensis and Callosobruchus maculatus larvae infesting the cowpea Vigna unguiculata, oviposition choice experiments were performed at high and low host densities. In both species, no conspicuous effect on the offspring sex ratio was detected, but effects on host preference were found to differ between the species. In A. calandrae, the effects were detected only at high host density, suggesting that oviposition learning plays a role in host discrimination from a short distance but not from a long distance. In the sibling species, those effects were not detected in any of the cases, suggesting the absence of oviposition learning. These results are compatible with those of previous comparative studies of endoparasitoid wasps in that few lifetime oviposition experiences and/or low reward per foraging decision result in low or absent oviposition learning ability. This finding may indicate that ecological traits contributing to learning ability are similar between endoparasitoid and ectoparasitoid wasps. Thus, our species comparison of ectoparasitoids provides another model system for investigating learning and memory dynamics in parasitoid wasps.
Crafford, Dionne; Luus-Powell, Wilmien; Avenant-Oldewage, Annemariè
2014-03-01
Indigenous South African Labeo spp. show promise with regard to development of semi-intensive aquaculture, yet little research on their monogenean fauna has been conducted. Ecological aspects of monogenean fauna of the moggel Labeo umbratus (Smith 1841) and the Orange River mudfish Labeo capensis (Smith 1841), as recorded during both winter and summer sampling surveys, are reported here. Fish were collected using gill nets, euthanized and gills removed and examined to both quantify parasite numbers and distribution on the gills. Results obtained support the hypothesis that gill site preference is not due to active choice for a particular attachment site, but rather a result of water flow over gills during respiration in conjunction with fish behaviour and habitat use. Interaction between individual elements investigated (temperature effects, parasite population dynamics and host population dynamics) may be largely responsible for seasonal differences in infection statistics of monogenean parasites. Such interactions should be investigated in future large scale ecological studies, in combination with experimental studies, to further elucidate these effects.
Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers
NASA Astrophysics Data System (ADS)
Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.
2018-05-01
This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption
The food-borne trematode zoonoses of Vietnam.
De, Nguyen Van; Murrell, K Darwin; Cong, Le Dinh; Cam, Phung Dac; Chau, Le Van; Toan, Nguyen Duy; Dalsgaard, Anders
2003-01-01
During the past couple of decades, numerous surveys for the occurrence and distribution of food-borne trematodes in Vietnam have been carried out. However, the majority of the data obtained have not been published in international journals, and therefore, the seriousness of these trematode parasitic zoonoses in the country has not been fully appreciated. To correct this, over 40 Vietnamese language reports and local publications were translated and organized as a status review for an international audience. The results show that such serious trematode zoonoses as clonorchiasis, opisthorchiasis, paragonimiasis and fascioliasis are common in many regions of Vietnam, and, in the case of fascioliasis and paragonimiasis, are increasing. Data on the species of intermediate hosts involved in the transmission of these zoonoses, and the effect of host sex and age on infection frequencies are presented, along with findings on food preference/behavior investigations. Finally, the authors present recommendations for further research to provide a more comprehensive picture of the status of these zoonoses, and to obtain the risk assessment information needed to design prevention and control programs.
A distributed Petri Net controller for a dual arm testbed
NASA Technical Reports Server (NTRS)
Bjanes, Atle
1991-01-01
This thesis describes the design and functionality of a Distributed Petri Net Controller (DPNC). The controller runs under X Windows to provide a graphical interface. The DPNC allows users to distribute a Petri Net across several host computers linked together via a TCP/IP interface. A sub-net executes on each host, interacting with the other sub-nets by passing a token vector from host to host. One host has a command window which monitors and controls the distributed controller. The input to the DPNC is a net definition file generated by Great SPN. Thus, a net may be designed, analyzed and verified using this package before implementation. The net is distributed to the hosts by tagging transitions that are host-critical with the appropriate host number. The controller will then distribute the remaining places and transitions to the hosts by generating the local nets, the local marking vectors and the global marking vector. Each transition can have one or more preconditions which must be fulfilled before the transition can fire, as well as one or more post-processes to be executed after the transition fires. These implement the actual input/output to the environment (machines, signals, etc.). The DPNC may also be used to simulate a Great SPN net since stochastic and deterministic firing rates are implemented in the controller for timed transitions.
Alacid, Elisabet; Park, Myung G.; Turon, Marta; Petrou, Katherina; Garcés, Esther
2016-01-01
Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If, however, highly susceptible hosts are absent from the community, the parasitoid population could suffer a dilution effect maintaining a lower parasitoid density. Therefore, both host community structure and host susceptibility will determine infectivity in the field. PMID:27252688
VanWeelden, M T; Wilson, B E; Beuzelin, J M; Reagan, T E; Way, M O
2017-08-01
Oviposition preference and host suitability of the Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), on bioenergy and conventional cultivars of sugarcane, Saccharum spp., and sorghum, Sorghum spp., were examined in a series of greenhouse experiments. Two energycane cultivars, two sugarcane cultivars, two high-biomass sorghum cultivars, and one sweet sorghum cultivar were assessed at two phenological stages (immature and mature). Mature plants possessed greater availability of dry leaf material compared with immature plants, and all E. loftini eggs were observed exclusively on dry leaves. Oviposition did not vary among host combinations (cultivar by phenological stage); however, eggs per plant and eggs per oviposition event were numerically greater on mature plants than immature plants. In a no-choice experiment, survival from egg to adult did not vary among host combinations, with <2.0% of E. loftini larvae surviving to adulthood. Failed establishment by neonates on plants was 13.4- to 53.9-fold greater than successful establishment across all host combinations. Results from this study suggest that plant physical characteristics continue to play an important role in host selection, but further evaluations will be needed to quantify other characteristics which influence host suitability. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Benelli, Giovanni; Romano, Donato; Rocchigiani, Guido; Caselli, Alice; Mancianti, Francesca; Canale, Angelo; Stefanini, Cesare
2018-02-01
Ticks are considered among the most dangerous arthropod vectors of disease agents to both humans and animals worldwide. Lateralization contributes to biological fitness in many animals, conferring important functional advantages, therefore studying its role in tick perception would critically improve our knowledge about their host-seeking behavior. In this research, we evaluated if Ixodes ricinus (L.) (Ixodiidae) ticks have a preference in using the right or the left foreleg to climb on a host. We developed a mechatronic device moving a tuft of fox skin with fur as host-mimicking combination of cues. This engineered approach allows to display a realistic combination of both visual and olfactory host-borne stimuli, which is prolonged over the time and standardized for each replicate. In the first experiment, the mechatronic apparatus delivered host-borne cues frontally, to evaluate the leg preference during questing as response to a symmetrical stimulus. In the second experiment, host-borne cues were provided laterally, in an equal proportion to the left and to the right of the tick, to investigate if the host direction affected the questing behavior. In both experiments, the large majority of the tested ticks showed individual-level left-biased questing acts, if compared to the ticks showing right-biased ones. Furthermore, population-level left-biased questing responses were observed post-exposure to host-mimicking cues provided frontally or laterally to the tick. Overall, this is the first report on behavioral asymmetries in ticks of medical and veterinary importance. Moreover, the mechatronic apparatus developed in this research can be exploited to evaluate the impact of repellents on tick questing in highly reproducible standardized conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Zaspel, Jennifer M.; Kononenko, Vladimir S.; Ignell, Rickard; Hill, Sharon R.
2016-01-01
The host preference of the economically important fruit piercing moth, Calyptra lata (Butler 1881), was studied when exposed to different fruits and the odors of those fruits in enclosed feeding assays and in a two-choice olfactometer. The fruits consisted of three ripe and locally available types: raspberries, cherries and plums. Moths were released in cages with the ripened fruit and observed for any feeding events, which were then documented. Moths fed on both raspberries and cherries, but not on plums. To test the role of olfactory cues in fruit preference, male moths were released singly in the two choice olfactometer, with one type of fruit odor released in one arm and background control air in the other. The behavior of the moths was recorded on video. Parameters scored were 1) time to take off, 2) flight duration and 3) total time to source contact. The moths showed a significant preference for raspberry odor, exhibited a neutral response to cherry odor and significantly avoided the odor of plums. These results indicate that Calyptra lata demonstrates selective polyphagic feeding behavior and uses olfactory cues from both preferred and non-preferred fruits to detect and locate potential food sources. The possible implications for pest control are discussed. PMID:27324579
Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou
2014-01-01
The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05) was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host insects as well as O. sinensis.
The Velocity Distribution of Isolated Radio Pulsars
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)
2002-01-01
We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for spatially bounded surveys; (3) an important low-velocity population exists that increases the fraction of neutron stars retained by globular clusters and is consistent with the number of old objects that accrete from the interstellar medium; (4) under standard assumptions for supernova remnant expansion and pulsar spin-down, approx. 10% of pulsars younger than 20 kyr will appear to lie outside of their host remnants. Finally, we comment on the ramifications of our birth velocity distribution for binary survival and the population of inspiraling binary neutron stars relevant to some GRB models and potential sources for LIGO.
DISTRIBUTED AND ACCUMULATED REINFORCEMENT ARRANGEMENTS: EVALUATIONS OF EFFICACY AND PREFERENCE
DELEON, ISER G.; CHASE, JULIE A.; FRANK-CRAWFORD, MICHELLE A.; CARREAU-WEBSTER, ABBEY B.; TRIGGS, MANDY M.; BULLOCK, CHRISTOPHER E.; JENNETT, HEATHER K.
2015-01-01
We assessed the efficacy of, and preference for, accumulated access to reinforcers, which allows uninterrupted engagement with the reinforcers but imposes an inherent delay required to first complete the task. Experiment 1 compared rates of task completion in 4 individuals who had been diagnosed with intellectual disabilities when reinforcement was distributed (i.e., 30-s access to the reinforcer delivered immediately after each response) and accumulated (i.e., 5-min access to the reinforcer after completion of multiple consecutive responses). Accumulated reinforcement produced response rates that equaled or exceeded rates during distributed reinforcement for 3 participants. Experiment 2 used a concurrent-chains schedule to examine preferences for each arrangement. All participants preferred delayed, accumulated access when the reinforcer was an activity. Three participants also preferred accumulated access to edible reinforcers. The collective results suggest that, despite the inherent delay, accumulated reinforcement is just as effective and is often preferred by learners over distributed reinforcement. PMID:24782203
USDA-ARS?s Scientific Manuscript database
Because cotton, peanuts and soybean crops are often grown in close proximity and are hosts for the major pest stink bug species: -- the southern green stink bug, the brown stink bug, and the green stink bug – in the region, we determined colonization preference of these species among the crops to cl...
USDA-ARS?s Scientific Manuscript database
The response of Aedes albopictus to the BG-Sentinel™, Omni-directional-Fay-Prince and Mosquito Magnet-X traps was evaluated in four suburban and four sylvatic habitats in North-Central Florida to ascertain potential height preference of this species. These traps, which are primarily designed to att...
On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry
This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less
Saad, Khalid A; Mohamad Roff, M N; Hallett, Rebecca H; Idris, A B
2015-09-03
The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli.
Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy.
Austin, Laura S; Kaushansky, Alexis; Kappe, Stefan H I
2014-05-01
Plasmodium parasites infect hepatocytes of their mammalian hosts and undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signalling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy on liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalysed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite's preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes. © 2014 John Wiley & Sons Ltd.
Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy
Austin, Laura S.; Kaushansky, Alexis; Kappe, Stefan H.I.
2014-01-01
Summary Plasmodium parasites infect hepatocytes of their mammalian hosts and within undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signaling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy in liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalyzed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite’s preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes. PMID:24612025
R. A. Pinski; W. J. Mattson; K. F. Raffa
2005-01-01
Polydrusus sericeus (Schaller) and Phyllobius oblongus (L.) are nonindigenous root-feeding weevils in northern hardwood forests of Wisconsin and Michigan. Detailed studies of adult host range, tree species preferences, and effects of food source on fecundity and longevity have not been conducted in North America P....
Relationship between foliar chemistry and insect performance: the forest tent caterpillar
Francois Lorenzetti; Yves Mauffette; Eric Bauce
1999-01-01
Forest tent caterpillar (FTC) feeds on several species of deciduous trees (Stehr and Cook 1968), in northeastern North America, quaking aspen is the preferred host of this spring-feeding insect. FTC commonly defoliates several thousands of hectares of aspen stands each year in Quebec (Bordeleau 1990), although its secondary hosts seldom are attacked.
USDA-ARS?s Scientific Manuscript database
Oviposition decisions by herbivorous insects hinge on multiple factors; host plant quality, enemy free space, plant density, offspring performance, and competition for resources all which influence decisions by an ovipositing female. Here, we evaluate whether the presence of aphids (a competitor) or...
Jessica S. Veysey; Matthew P. Ayres; Maria J. Lombardero; Richard W. Hofstetter; Kier D. Klepzig
2003-01-01
Dendroctonus frontalis is a major disturbance agent in American pine forests, but attack preferences for various host species, and their relative suitability for reproduction, are poorly knowi). We studied patterns of beetle attack and reproduction during an infestation of stands contairiing Virginia pine and lol~lolly pine. Nearly all Virginia pine...
USDA-ARS?s Scientific Manuscript database
Plant volatile signatures are often used as cues by herbivores to locate their preferred hosts. Here, we report on the volatile organic compounds used by the subterranean root-knot nematode (RKN) Meloidogyne incognita for host location. We compared responses of infective second stage juveniles (J2s)...
Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin
2012-04-12
Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.
Local Swift-BAT active galactic nuclei prefer circumnuclear star formation
NASA Astrophysics Data System (ADS)
Lutz, D.; Shimizu, T.; Davies, R. I.; Herrera-Camus, R.; Sturm, E.; Tacconi, L. J.; Veilleux, S.
2018-01-01
We use Herschel data to analyze the size of the far-infrared 70 μm emission for z < 0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5
Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J; Pérez, Fernanda
2016-07-01
Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J.; Pérez, Fernanda
2016-01-01
Background and Aims Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. Methods For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Key Results Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata. Conclusions The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. PMID:27311572
Nakasono, Kazutoshi
2004-01-01
The geographical distribution and polymorphism in morphological and biological characters of the reniform nematode, Rotylenchulus reniformis, in Japan were studied. The northern limit of habitat of this nematode was found on the 14 °C isothermal line of annual average-air temperature. Three morphologically different groups were ascertained which corresponded to three biological types based on male frequency. Incidence of males was consistent within populations and was not affected by environmental factors. Sexual attraction of males by females indicated reproductive isolation between the male-numerous type (MNT) and male-rare type (MRT) or male-absent type (MAT). Reproduction was amphimictic in the MNT and parthenogenetic in the MRT and MAT. Larval development in both MRT and MAT, but not that of MNT popula-tions, was inhibited at 34 °C. Differences in host preference were also observed among populations. PMID:19262821
Distributional Preferences, Reciprocity-Like Behavior, and Efficiency in Bilateral Exchange
Benjamin, Daniel J.
2014-01-01
Under what conditions do distributional preferences, such as altruism or a concern for fair outcomes, generate efficient trade? I analyze theoretically a simple bilateral exchange game: each player sequentially takes an action that reduces his own material payoff but increases the other player’s. Each player’s preferences may depend on both his/her own material payoff and the other player’s. I identify two key properties of the second-mover’s preferences: indifference curves kinked around “fair” material-payoff distributions, and materials payoffs entering preferences as “normal goods.” Either property can drive reciprocity-like behavior and generate a Pareto efficient outcome. PMID:25664144
Kerschbamer, Rudolf
2015-05-01
This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure - the Equality Equivalence Test - that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.
Disentangling the visual cues used by a jumping spider to locate its microhabitat.
Tedore, Cynthia; Johnsen, Sönke
2016-08-01
Many arthropod species have evolved to thrive only on the leaves of a particular species of plant, which they must be capable of finding in order to survive accidental displacement, developmental transitions or the changing of the seasons. A number of studies have tested whether such species select leaves to land or oviposit on based on their color, shape or size. Unfortunately, many studies did not control for correlates of these characters, such as the brightness of different colors, the areas of different shapes, and the level of ambient illumination in the vicinity of different sizes of leaves. In the present study, we tested for leaf color, shape and size preferences in a leaf-dwelling jumping spider (Lyssomanes viridis) with known summer and winter host plants, while controlling for these correlates. First, color preferences were tested outdoors under the natural illumination of their forest habitat. Lyssomanes viridis did not prefer to perch on a green substrate compared with various shades of gray, but did prefer the second darkest shade of gray we presented them with. Of the green and gray substrates, this shade of gray's integrated photon flux (350-700 nm), viewed from below, i.e. the spider's perspective in the arena, was the most similar to that of real leaves. This relationship also held when we weighted the transmitted photon flux by the jumping spiders' green photopigment spectral sensitivity. Spiders did not prefer the star-like leaf shape of their summer host plant, Liquidambar styraciflua, to a green circle of the same area. When given a choice between a L. styraciflua leaf-shaped stimulus that was half the area of an otherwise identical alternative, spiders preferred the larger stimulus. However, placing a neutral density filter over the side of the experimental arena with the smaller stimulus abolished this preference, with spiders then being more likely to choose the side of the arena with the smaller stimulus. In conclusion, L. viridis appears to use ambient illumination and possibly perceived leaf brightness but not leaf shape or color to locate its microhabitat. This calls for a careful re-examination of which visual cues a variety of arthropods are actually attending to when they search for their preferred host species or microhabitat. © 2016. Published by The Company of Biologists Ltd.
Analyzing the Differences and Preferences of Pathogenic and Nonpathogenic Prokaryote Species
NASA Astrophysics Data System (ADS)
Nolen, L.; Duong, K.; Heim, N. A.; Payne, J.
2015-12-01
A limited amount of knowledge exists on the large-scale characteristics and differences of pathogenic species in comparison to all prokaryotes. Pathogenic species, like other prokaryotes, have attributes specific to their environment and lifestyles. However, because they have evolved to coexist inside their hosts, the conditions they occupy may be more limited than those of non-pathogenic species. In this study we investigate the possibility of divergent evolution between pathogenic and non-pathogenic species by examining differences that may have evolved as a result of the need to adapt to their host. For this research we analyzed data collected from over 1900 prokaryotic species and performed t-tests using R to quantify potential differences in preferences. To examine the possible divergences from nonpathogenic bacteria, we focused on three variables: cell biovolume, preferred environmental pH, and preferred environmental temperature. We also looked at differences between pathogenic and nonpathogenic species belonging to the same phylum. Our results suggest a strong divergence in abiotic preferences between the two groups, with pathogens occupying a much smaller range of temperatures and pHs than their non-pathogenic counterparts. However, while the median biovolume is different when comparing pathogens and nonpathogens, we cannot conclude that the mean values are significantly different from each other. In addition, we found evidence of convergent evolution, as the temperature and pH preferences of pathogenic bacteria species from different phlya all approach the same values. Pathogenic species do not, however, all approach the same biovolume values, suggesting that specific pH and temperature preferences are more characteristic of pathogens than certain biovolumes.
Preference for C4 shade grasses increases hatchling performance in the butterfly, Bicyclus safitza.
Nokelainen, Ossi; Ripley, Brad S; van Bergen, Erik; Osborne, Colin P; Brakefield, Paul M
2016-08-01
The Miocene radiation of C4 grasses under high-temperature and low ambient CO 2 levels occurred alongside the transformation of a largely forested landscape into savanna. This inevitably changed the host plant regime of herbivores, and the simultaneous diversification of many consumer lineages, including Bicyclus butterflies in Africa, suggests that the radiations of grasses and grazers may be evolutionary linked. We examined mechanisms for this plant-herbivore interaction with the grass-feeding Bicyclus safitza in South Africa. In a controlled environment, we tested oviposition preference and hatchling performance on local grasses with C3 or C4 photosynthetic pathways that grow either in open or shaded habitats. We predicted preference for C3 plants due to a hypothesized lower processing cost and higher palatability to herbivores. In contrast, we found that females preferred C4 shade grasses rather than either C4 grasses from open habitats or C3 grasses. The oviposition preference broadly followed hatchling performance, although hatchling survival was equally good on C4 or C3 shade grasses. This finding was explained by leaf toughness; shade grasses were softer than grasses from open habitats. Field monitoring revealed a preference of adults for shaded habitats, and stable isotope analysis of field-sampled individuals confirmed their preference for C4 grasses as host plants. Our findings suggest that plant-herbivore interactions can influence the direction of selection in a grass-feeding butterfly. Based on this work, we postulate future research to test whether these interactions more generally contribute to radiations in herbivorous insects via expansions into new, unexploited ecological niches.
Recombinant glucose uptake system
Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico
1997-01-01
Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.
Broekhuizen, Henk; IJzerman, Maarten J; Hauber, A Brett; Groothuis-Oudshoorn, Catharina G M
2017-03-01
The need for patient engagement has been recognized by regulatory agencies, but there is no consensus about how to operationalize this. One approach is the formal elicitation and use of patient preferences for weighing clinical outcomes. The aim of this study was to demonstrate how patient preferences can be used to weigh clinical outcomes when both preferences and clinical outcomes are uncertain by applying a probabilistic value-based multi-criteria decision analysis (MCDA) method. Probability distributions were used to model random variation and parameter uncertainty in preferences, and parameter uncertainty in clinical outcomes. The posterior value distributions and rank probabilities for each treatment were obtained using Monte-Carlo simulations. The probability of achieving the first rank is the probability that a treatment represents the highest value to patients. We illustrated our methodology for a simplified case on six HIV treatments. Preferences were modeled with normal distributions and clinical outcomes were modeled with beta distributions. The treatment value distributions showed the rank order of treatments according to patients and illustrate the remaining decision uncertainty. This study demonstrated how patient preference data can be used to weigh clinical evidence using MCDA. The model takes into account uncertainty in preferences and clinical outcomes. The model can support decision makers during the aggregation step of the MCDA process and provides a first step toward preference-based personalized medicine, yet requires further testing regarding its appropriate use in real-world settings.
Innate host selection in Anopheles vestitipennis from southern Mexico.
Ullo, Armando; Arredondo-Jiménez, Juan I; Rodríguez, Mario H; Fernández-Salas, Ildefonso; González-Cerón, Lilia
2004-12-01
We assessed the degree of host specificity of the purported anthropophilic and zoophilic populations of Anopheles vestitipennis. A series of experiments were conducted in an experimental hut with 3 compartments lined with nylon netting. A central release compartment and 2 side compartments were each baited with equivalent surface area of human and animal baits. Wild An. vestitipennis collected on each host, as well as corresponding F1 mosquitoes, were released in the central compartment. Overall, 22% (166/748) of all mosquitoes collected on humans were recaptured in the human compartment, whereas 23% of mosquitoes originally collected on animals were recaptured in this compartment. Experiments with F1 females resulted in 59% human selection rates, a 2.6 times increase compared with wild anthropophilic females, while a 1.2 times decrease in human selection rates (from 24% to 20%) was observed in F1 of wild zoophilic females. Host selection experiments in the Lacandón Forest revealed the same trend. These findings suggested that the complex mode of inheritance that resulted in female mosquitoes showing a stronger tendency to return to their preferred host was obscured by the nature of the method of collection, i.e., wild parental females selecting a host either innately or opportunistically, the majority of which were likely innately attracted. This was revealed by F1 females, of which, when given the choice to select a host, a higher proportion opted for the preferred one. The results presented here are in accordance with other studies that identified a subpopulation of An. vestitipennis in southern Mexico with higher anthropophily.
Short- and long-range cues used by ground-dwelling parasitoids to find their host
NASA Astrophysics Data System (ADS)
Goubert, C.; Josso, C.; Louâpre, P.; Cortesero, A. M.; Poinsot, D.
2013-02-01
Parasitoids of phytophagous insects face a detectability-reliability dilemma when foraging for hosts. Plant-related cues are easily detectable, but do not guarantee the presence of the host. Host-related cues are very reliable, but much harder to detect from a distance. Little is known in particular about the way coleopteran parasitoid females use these cues when foraging for a suitable place to lay their eggs. The question is of interest because, unlike hymenopteran larvae, coleopteran parasitoid larvae are highly mobile and able to forage for hosts on their own. We assessed whether females of the parasitoid rove beetle Aleochara bipustulata (L.) (Coleoptera: Staphylinidae) are attracted to plant (Swede roots, Brassica napus) and host-related cues [pupae of the cabbage root fly Delia radicum (L.) (Diptera: Anthomyiidae)]. In the field, A. bipustulata adult females were captured in selective pitfall traps containing pieces of roots damaged by D. radicum larvae, but not in traps containing pieces of healthy roots or D. radicum pupae. However, in the laboratory, the odour of D. radicum pupae attracted A. bipustulata females to mini-pitfalls. Video monitoring in the laboratory showed that foraging A. bipustulata females preferred a zone containing D. radicum pupae and larval tracks rather than one containing an extract of D. radicum-infested roots. Our results suggest a behavioural sequence where A. bipustulata females use plant-related cues at a distance, but then switch their preference to host-related cues at a close range. This would be the first observation of this behaviour in coleopteran parasitoids.
Retrospective and prospective perspectives on zoonotic brucellosis
Moreno, Edgardo
2014-01-01
Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential. PMID:24860561
The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae
NASA Technical Reports Server (NTRS)
Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel
2014-01-01
Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities ((is) approximately 0.1c). We study the host galaxies of a sample of 245 low-redshift (z (is) less than 0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z (is) less than 1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic- BL and z (is) is less than 1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.
Deepa S. Pureswaran; Therese M. Poland
2009-01-01
The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive species recently established in North America. In large arena bioassays, when given a choice among live green ash, Fraxinus pennsylvanica Marsh and artificial ash saplings that were hidden or exposed from view, beetles preferred live...
Palermo, Pedro M; Aguilar, Patricia V; Sanchez, Juan F; Zorrilla, Víctor; Flores-Mendoza, Carmen; Huayanay, Anibal; Guevara, Carolina; Lescano, Andrés G; Halsey, Eric S
2016-11-02
The transmission dynamics of many arboviruses in the Amazon Basin region have not been fully elucidated, including the vectors and natural reservoir hosts. Identification of blood meal sources in field-caught mosquitoes could yield information for identifying potential arbovirus vertebrate hosts. We identified blood meal sources in 131 mosquitoes collected from areas endemic for arboviruses in the Peruvian Department of Loreto by sequencing polymerase chain reaction amplicons of the cytochrome b gene. Psorophora (Janthinosoma) albigenu, Psorophora (Grabhamia) cingulata, Mansonia humeralis, Anopheles oswaldoi s.l., and Anopheles benarrochi s.l. had mainly anthropophilic feeding preferences; Aedes (Ochlerotatus) serratus, and Aedes (Ochlerotatus) fulvus had feeding preferences for peridomestic animals; and Culex (Melanoconion) spp. fed on a variety of vertebrates, mainly rodents (spiny rats), birds, and amphibians. On the basis of these feeding preferences, many mosquitoes could be considered as potential enzootic and bridge arbovirus vectors in the Amazon Basin of Peru. © The American Society of Tropical Medicine and Hygiene.
Martinů, Jana; Sychra, Oldřich; Literák, Ivan; Čapek, Miroslav; Gustafsson, Daniel L; Štefka, Jan
2015-01-01
Parasites with wide host spectra provide opportunities to study the ecological parameters of speciation, as well as the process of the evolution of host specificity. The speciose and cosmopolitan louse genus Menacanthus comprises both multi-host and specialised species, allowing exploration of the ecological and historical factors affecting the evolution of parasites using a comparative approach. We used phylogenetic analysis to reconstruct evolutionary relationships in 14 species of Menacanthus based on the sequences of one mitochondrial and one nuclear gene. The results allowed us to validate species identification based on morphology, as well as to explore host distribution by assumed generalist and specialist species. Our analyses confirmed a narrow host use for several species, however in some cases, the supposed host specialists had a wider host spectrum than anticipated. In one case a host generalist (Menacanthus eurysternus) was clustered terminally on a clade almost exclusively containing host specialists. Such a clade topology indicates that the process of host specialisation may not be irreversible in parasite evolution. Finally, we compared patterns of population genetic structure, geographic distribution and host spectra between two selected species, M. eurysternus and Menacanthus camelinus, using haplotype networks. Menacanthus camelinus showed limited geographical distribution in combination with monoxenous host use, whereas M. eurysternus showed a global distribution and lack of host specificity. It is suggested that frequent host switching maintains gene flow between M. eurysternus populations on unrelated hosts in local populations. However, gene flow between geographically distant localities was restricted, suggesting that geography rather than host-specificity is the main factor defining the global genetic diversity of M. eurysternus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Zadik, Yehuda; Elad, Sharon; Shapira, Anat; Shapira, Michael Y
2017-02-01
The oral mucosa is commonly involved in chronic graft-versus-host disease (cGVHD). Oral mucosal cGVHD markedly affect individual's daily function and wellbeing. In some cases, it might become a life threating complication. Areas covered: This article describes the rationale for treatment, method of topical application in the oral cavity, evidence supporting the topical administration of dexamethasone and budesonide for oral cGVHD, and their adverse effects. Expert opinion: Evidence supports the use of topical dexamethasone and budesonide for treatment of oral cGVHD. Topical corticosteroid choice for oral cGVHD, takes into consideration the potency, bioavailability, preferred concentration, and possible adverse effects. Budesonide's pharmacological characteristics mark it as a preferable topical agent for oral cGVHD.
Distributed and accumulated reinforcement arrangements: evaluations of efficacy and preference.
DeLeon, Iser G; Chase, Julie A; Frank-Crawford, Michelle A; Carreau-Webster, Abbey B; Triggs, Mandy M; Bullock, Christopher E; Jennett, Heather K
2014-01-01
We assessed the efficacy of, and preference for, accumulated access to reinforcers, which allows uninterrupted engagement with the reinforcers but imposes an inherent delay required to first complete the task. Experiment 1 compared rates of task completion in 4 individuals who had been diagnosed with intellectual disabilities when reinforcement was distributed (i.e., 30-s access to the reinforcer delivered immediately after each response) and accumulated (i.e., 5-min access to the reinforcer after completion of multiple consecutive responses). Accumulated reinforcement produced response rates that equaled or exceeded rates during distributed reinforcement for 3 participants. Experiment 2 used a concurrent-chains schedule to examine preferences for each arrangement. All participants preferred delayed, accumulated access when the reinforcer was an activity. Three participants also preferred accumulated access to edible reinforcers. The collective results suggest that, despite the inherent delay, accumulated reinforcement is just as effective and is often preferred by learners over distributed reinforcement. © Society for the Experimental Analysis of Behavior.
Mihalca, Andrei D; Dumitrache, Mirabela O; Sándor, Attila D; Magdaş, Cristian; Oltean, Miruna; Györke, Adriana; Matei, Ioana A; Ionică, Angela; D'Amico, Gianluca; Cozma, Vasile; Gherman, Călin M
2012-11-21
Ticks are among the most important vectors of zoonotic diseases in temperate regions of Europe, with widespread distribution and high densities, posing an important medical risk. Most ticks feed on a variety of progressively larger hosts, with a large number of small mammal species typically harbouring primarily the immature stages. However, there are certain Ixodidae that characteristically attack micromammals also during their adult stage. Rodents are widespread hosts of ticks, important vectors and competent reservoirs of tick-borne pathogens. Micromammal-tick associations have been poorly studied in Romania, and our manuscript shows the results of a large scale study on tick infestation epidemiology in rodents from Romania. Rodents were caught using snap-traps in a variety of habitats in Romania, between May 2010 and November 2011. Ticks were individually collected from these rodents and identified to species and development stage. Frequency, mean intensity, prevalence and its 95% confidence intervals were calculated using the EpiInfo 2000 software. A p value of <0.05 was considered statistically significant. We examined 423 rodents (12 species) collected from six counties in Romania for the presence of ticks. Each collected tick was identified to species level and the following epidemiological parameters were calculated: prevalence, mean intensity and mean abundance. The total number of ticks collected from rodents was 483, with eight species identified: Ixodes ricinus, I. redikorzevi, I. apronophorus, I. trianguliceps, I. laguri, Dermacentor marginatus, Rhipicephalus sanguineus and Haemaphysalis sulcata. The overall prevalence of tick infestation was 29.55%, with a mean intensity of 3.86 and a mean abundance of 1.14. Only two polyspecific infestations were found: I. ricinus + I. redikorzevi and I. ricinus + D. marginatus. Our study showed a relatively high diversity of ticks parasitizing rodents in Romania. The most common tick in rodents was I. ricinus, followed by I. redikorzevi. Certain rodents seem to host a significantly higher number of tick species than others, the most important within this view being Apodemus flavicollis and Microtus arvalis. The same applies for the overall prevalence of tick parasitism, with some species more commonly infected (M. arvalis, A. uralensis, A. flavicollis and M. glareolus) than others. Two rodent species (Mus musculus, Rattus norvegicus) did not harbour ticks at all. Based on our results we may assert that rodents generally can act as good indicators for assessing the distribution of certain tick species.
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1997-11-25
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1995-08-22
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Hosts and geographic distribution of Arceuthobium oxycedri
W. M. Ciesla; B. W. Geils; R. P. Adams
2002-01-01
Data on hosts and geographic distribution of the juniper dwarf mistletoe, Arceuthobium oxycedri, are updated in light of changes in host nomenclature, political geography, and interpretation of reports and labels. Seventeen species of Juniperus, 3 Chamaecyparis, 5 Cupressus, and 1
Comparing host and target environments for distributed Ada programs
NASA Technical Reports Server (NTRS)
Paulk, Mark C.
1986-01-01
The Ada programming language provides a means of specifying logical concurrency by using multitasking. Extending the Ada multitasking concurrency mechanism into a physically concurrent distributed environment which imposes its own requirements can lead to incompatibilities. These problems are discussed. Using distributed Ada for a target system may be appropriate, but when using the Ada language in a host environment, a multiprocessing model may be more suitable than retargeting an Ada compiler for the distributed environment. The tradeoffs between multitasking on distributed targets and multiprocessing on distributed hosts are discussed. Comparisons of the multitasking and multiprocessing models indicate different areas of application.
Therese M. Donovan; Frank r. Thompson III; John R. Faaborg
2000-01-01
The distribution of Brown-headed Cowbirds should reflect the distribution of their feeding (agricultural or grassy areas) and breeding (host) resources. Because an increase in one resource (e.g., agricultural areas) is often at the expense of the second resource (forest hosts), relationships between cowbird abundance, forest area, and number of hosts may reflect this...
Peter T. Wolter; Philip A. Townsend; Brian R. Sturtevant; Clayton C. Kingdon
2008-01-01
Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale...
Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.
2002-01-01
Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.
Ellis, Alicia M
2008-01-01
1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.
Can reduced predation offset negative effects of sea louse parasites on chum salmon?
Peacock, Stephanie J; Connors, Brendan M; Krkosek, Martin; Irvine, James R; Lewis, Mark A
2014-02-07
The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host-parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.
Dispersal in patchy environments: effect on the prevalence of small mammal ectoparasites.
Lundqvist, L; Edler, A
1987-01-01
Part-time ectoparasites on small mammals disperse via the habitat, while full-time parasites spread throughout the host population by direct contacts between host animals. It is therefore supposed that the effect of the natural environment is different for the two groups. This was studied as differences between observed and expected prevalence, the percentage of the infested host population, during different environmental conditions. Two possible mechanisms of such an effect were analysed, i.e. a) host selection and its change with host frequency and b) parasite migration and reproduction rates as reflected by the frequency distribution patterns on the hosts. As expected the prevalence of full-time ectoparasites (Anoplura and subfamily Laelapinae) could be predicted on the basis of host species frequencies during different environmental conditions, with the exception of one louse species (Hoplopleura acanthopus), because of its restricted distribution. Prediction was not possible for part-time ectoparasites (subfamily Hameogamasinae). Species of the subfamily Haemogamasinae were more catholic in host selection than species of Anoplura and subfamily Laelapinae. The haemogamasin mites changed host species to a greater extent than did Anoplura and Laelapinae. All haemogamasin mites had short-tailed frequency distribution patterns and all Anoplura and Laelapinae, except Hyperlaelaps microti, had long-tailed frequency distributions.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...
Relationship of host recurrence in fungi to rates of tropical leaf decomposition
Mirna E. Santanaa; JeanD. Lodgeb; Patricia Lebowc
2004-01-01
Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal âpreferencesâ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of girradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a microcosm...
Gabriella Zilahi-Balogh; Scott M. Salom; L. T. Kok
2000-01-01
Laricobius nigrinus (Coleoptera: Derodontidae) is being evaluated as a potential biological control agent of hemlock woolly adelgid (HWA), Adelges tsugae (Homoptera: Adelgidae) Annand in eastern North America. HWA is not considered a pest on western species of hemlock (McClure et al. 1996). A combination of natural enemies and host...
A.J. Walter; R.C. Venette; S.A. Kells
2010-01-01
To predict whether an herbivorous pest insect will establish in a new area, the potential host plants must be known. For invading bark beetles, adults must recognize and accept trees suitable for larval development. The preference-performance hypothesis predicts that adults will select host species that maximize the fitness of their offspring. We tested five species of...
Methods and compositions for simultaneous saccharification and fermentation
Ingram, Lonnie O'Neal; Zhou, Shengde
2006-04-11
The invention provides compositions and methods for the synergistic degradation of oligosaccharides by endoglucanases. The invention further provides recombinant host cells containing one or more genes encoding endoglucanses which are capable of the synergistic degradation of oligosaccharides. Preferred host cells of the invention are ethanologenic and capable of carrying out simultaneous saccharification and fermentation resulting in the production of ethanol from complex cellulose substrates.
Relationship of host recurrence in fungi to rates of tropical leaf decomposition
Mirna E. Santana; D. Jean Lodge; Patricia Lebow
2005-01-01
Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal âpreferencesâ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of [gamma]-irradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a...
W. D. Morewood; P. R. Neiner; J. R. McNeil; J. C. Sellmer; K. Hoover
2003-01-01
Anoplophora glabripennis (Motschulsky ) is an invasive wood-boring cerambycid beetle that kills hardwood trees. The host range of this species is unusually broad but is not well defined in the available literature and may include tree species that have not been reported as hosts because they have not previously been exposed to the beetle. We...
NASA Astrophysics Data System (ADS)
Hora, H.; Miley, G. H.; Li, X. Z.; Kelly, J. C.; Osman, F.
2006-02-01
Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons or deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockroft-Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the "life after death" heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of picometers with reaction probability times U of about megaseconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the picometer-megasecond reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas.
NASA Astrophysics Data System (ADS)
Kovacs, Geza
2018-04-01
The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2
COLLISIONAL EVOLUTION OF ULTRA-WIDE TRANS-NEPTUNIAN BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Alex H.; Kavelaars, J. J., E-mail: alexhp@uvic.ca
2012-01-10
The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small (R {approx}> 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small size cannot be excessively steep-likely q {approx}< 3.5. We track mutual semimajor axis, inclination, andmore » eccentricity evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population, their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing collisions in real time in the Kuiper Belt with future optical surveys is feasible.« less
Obara, Y; Furuta, Y; Takasu, T; Suzuki, S; Suzuki, H; Matsukawa, S; Fujioka, Y; Takahashi, H; Kurata, T; Nagashima, K
1997-06-01
Clinical data indicate that the recurring herpes simplex virus (HSV) from oro-labial lesions is HSV subtype 1 and that the virus from genital lesions is HSV-2. This suggests that HSV-1 and HSV-2 reside in latent forms in the trigeminal ganglia and sacral ganglia, respectively. However, the distribution of latent HSV-1 and HSV-2 infections in human spinal ganglia has not been fully examined. This report concerns the application of polymerase chain reaction (PCR) and in situ hybridization (ISH) to such a study. By using PCR and employing the respective primers, HSV-1 and HSV-2 DNAs were detected in 207 of 524 samples from 262 spinal ganglia (from the cervical to the sacral ganglia) examined on both sides. The percentages of HSV-1 and HSV-2 detected in a given set of ganglia were similar, indicating an absence of site preference. By ISH, few but positive hybridization signals were detected evenly in sacral ganglia sections. The data suggest that regional specificity of recurrent HSV infections is not due to regional distribution of latent virus, but that local host factors may be important for recurrences.
Finke, John M; Cheung, Margaret S; Onuchic, José N
2004-09-01
Modeling the structure of natively disordered peptides has proved difficult due to the lack of structural information on these peptides. In this work, we use a novel application of the host-guest method, combining folding theory with experiments, to model the structure of natively disordered polyglutamine peptides. Initially, a minimalist molecular model (C(alpha)C(beta)) of CI2 is developed with a structurally based potential and captures many of the folding properties of CI2 determined from experiments. Next, polyglutamine "guest" inserts of increasing length are introduced into the CI2 "host" model and the polyglutamine is modeled to match the resultant change in CI2 thermodynamic stability between simulations and experiments. The polyglutamine model that best mimics the experimental changes in CI2 thermodynamic stability has 1), a beta-strand dihedral preference and 2), an attractive energy between polyglutamine atoms 0.75-times the attractive energy between the CI2 host Go-contacts. When free-energy differences in the CI2 host-guest system are correctly modeled at varying lengths of polyglutamine guest inserts, the kinetic folding rates and structural perturbation of these CI2 insert mutants are also correctly captured in simulations without any additional parameter adjustment. In agreement with experiments, the residues showing structural perturbation are located in the immediate vicinity of the loop insert. The simulated polyglutamine loop insert predominantly adopts extended random coil conformations, a structural model consistent with low resolution experimental methods. The agreement between simulation and experimental CI2 folding rates, CI2 structural perturbation, and polyglutamine insert structure show that this host-guest method can select a physically realistic model for inserted polyglutamine. If other amyloid peptides can be inserted into stable protein hosts and the stabilities of these host-guest mutants determined, this novel host-guest method may prove useful to determine structural preferences of these intractable but biologically relevant protein fragments.
Technologies to Increase PV Hosting Capacity in Distribution Feeders: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry; Gotseff, Peter
This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for amore » low cost. Additionally, the tool developed for these studies is described.« less
Technologies to Increase PV Hosting Capacity in Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry; Gotseff, Peter
This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for amore » low cost. Additionally, the tool developed for these studies is described.« less
Spatial distribution of Echinococcus multilocularis, Svalbard, Norway.
Fuglei, Eva; Stien, Audun; Yoccoz, Nigel G; Ims, Rolf A; Eide, Nina E; Prestrud, Pål; Deplazes, Peter; Oksanen, Antti
2008-01-01
In Svalbard, Norway, the only intermediate host for Echinococcus multilocularis, the sibling vole, has restricted spatial distribution. A survey of feces from the main host, the arctic fox, showed that only the area occupied by the intermediate host is associated with increased risk for human infection.
Markowski, D.; Hyland, K.E.; Ginsberg, H.S.
1997-01-01
Larval blacklegged ticks, Ixodes scapularis, were collected from white-footed mice, Peromyscus leucopus, on Prudence Island (where Microtus pennsylavanicus were not captured) and from meadow voles, M. pennsylvanicus, on Patience Island (where P. leucopus was absent) in Narragansett Bay, Rhode Island from June to October 1992. Ixodes scapularis larvae were also collected by flagging in the vicinity of host captures. On both islands, the relative density of larvae changed from July to September in samples from hosts, but not in flagging samples. Consequently, different sampling techniques can give different assessments of tick populations. Larvae were highly aggregated on both of the host species throughout the sampling period. As the mean relative density of larvae increased in the environment (based on flagging samples), larvae on the hosts became more dense and more crowded. Increased densities of larvae in the environment were not correlated with increased patchiness in the distribution of larvae among host animals on either island. Changes in the spatial distribution of larval I. scapularis on each host species had similar trends as larval densities and distributions within the environment. These results suggest that M. pennsylvanicus can serve as an alternative host for immature I. scapularis in a P. leucopus-free environment and have similar distributional characteristics.
Vikan, Johan Reinert; Fossøy, Frode; Huhta, Esa; Moksnes, Arne; Røskaft, Eivin; Stokke, Bård Gunnar
2011-01-01
Background Antagonistic species often interact via matching of phenotypes, and interactions between brood parasitic common cuckoos (Cuculus canorus) and their hosts constitute classic examples. The outcome of a parasitic event is often determined by the match between host and cuckoo eggs, giving rise to potentially strong associations between fitness and egg phenotype. Yet, empirical efforts aiming to document and understand the resulting evolutionary outcomes are in short supply. Methods/Principal Findings We used avian color space models to analyze patterns of egg color variation within and between the cuckoo and two closely related hosts, the nomadic brambling (Fringilla montifringilla) and the site fidelic chaffinch (F. coelebs). We found that there is pronounced opportunity for disruptive selection on brambling egg coloration. The corresponding cuckoo host race has evolved egg colors that maximize fitness in both sympatric and allopatric brambling populations. By contrast, the chaffinch has a more bimodal egg color distribution consistent with the evolutionary direction predicted for the brambling. Whereas the brambling and its cuckoo host race show little geographical variation in their egg color distributions, the chaffinch's distribution becomes increasingly dissimilar to the brambling's distribution towards the core area of the brambling cuckoo host race. Conclusion High rates of brambling gene flow is likely to cool down coevolutionary hot spots by cancelling out the selection imposed by a patchily distributed cuckoo host race, thereby promoting a matching equilibrium. By contrast, the site fidelic chaffinch is more likely to respond to selection from adapting cuckoos, resulting in a markedly more bimodal egg color distribution. The geographic variation in the chaffinch's egg color distribution could reflect a historical gradient in parasitism pressure. Finally, marked cuckoo egg polymorphisms are unlikely to evolve in these systems unless the hosts evolve even more exquisite egg recognition capabilities than currently possessed. PMID:21559400
PsOr1, a potential target for RNA interference-based pest management.
Zhao, Y Y; Liu, F; Yang, G; You, M S
2011-02-01
Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.
Suom, Channsotha; Ginsberg, Howard S.; Bernick, Andrew; Klein, Coby; Buckley, P.A.; Salvatore, Christa; LeBrun, Roger A.
2010-01-01
Mosquito host-seeking activity was studied using a custom-designed trap to explore: (1) at which time interval of the night adult mosquito abatement would be most effective, and (2) if there exists an avian-specific host-seeking preference. Overnight trials using traps baited with dry ice showed that Aedes taeniorhynchus (Wiedemann) was most active at dusk and was then captured throughout the night. In contrast, Culex spp. (Cx. pipiens (Linnaeus) and Cx. restuans (Theobald) delayed most activity until about two h after dusk and were then captured through the night. This pattern suggests that management activities directed at adult Culex spp. would be most effective if initiated well after sunset. Mosquito capture rates in traps baited with birds in net bags were significantly greater than those with empty net bags, indicating that mosquitoes were attracted to the birds and not incidentally being sucked in by the custom trap's strong fan motor (Wilcoxon matched-pairs signed-ranks test, n = 24, t = 30, p 2 = 0.21, p = 0.02). Trials with paired traps that contained different native bird species showed that Gray Catbirds, Dumatella carolinensis, attracted more mosquitoes than the heavier Northern Cardinals, Cardinalis cardinalis (paired samples t-test, t = 2.58, df = 7, p = 0.04). However, attractiveness did not differ substantially among bird species, and Gray Catbirds did not attract more mosquitoes than all other birds combined as a group. American Robins, Turdus migratorius (n = 4) were comparable in attractiveness to other bird species, but not enough American Robins were captured for a comprehensive study of mosquito avian preference.
Guzmán-Cornejo, Carmen; Robbins, Richard G.; Guglielmone, Alberto A.; Montiel-Parra, Griselda; Rivas, Gerardo; Pérez, Tila María
2016-01-01
Abstract Distribution and host data from published literature and previously unpublished collection records are provided for all nine species of the Holarctic tick genus Dermacentor that are known to occur in Mexico, as well as two species that may occur there. Parasite-host and host-parasite lists are presented, together with a gazetteer of collection localities and their geographical coordinates. PMID:27110147
Mechanical trapping of particles in granular media
NASA Astrophysics Data System (ADS)
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Mechanical trapping of particles in granular media.
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Ectoparasitic mites and their Drosophila hosts.
Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann
2017-01-02
Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages.
Mposkos, Evripidis; Perraki, Maria; Palikari, Sarra
2009-08-01
Single and multiphase inclusions in garnet porphyroblasts from the diamond-bearing pelitic gneisses were studied by means of combined Raman Spectroscopy and Electron Scanning Microscopy (SEM/EDX). They are either randomly distributed or with preferred orientation within the garnet host and their dimensions vary from less than 5 up to 60 microm. In the single-phase inclusions quartz, rutile, kyanite and graphite dominate. Biotite, zircon, apatite, monazite and allanite are also common. Two types of multiphase inclusions were recognized, hydrous silicate (Type I) and silicate-carbonate (Type II) ones. The carbon-bearing multiphase inclusions predominantly consist of Mg-siderite+graphite+CO(2)+muscovite+quartz formed by a high density carboniferous fluid rich in Fe, Mg, Si and less Ca, Mn, Al and K trapped in the growing garnet in a prograde stage of metamorphism at high-pressure (HP) conditions. The carbon-free multiphase inclusions predominantly consist of biotite+quartz+rutile+/-kyanite+muscovite formed through decompression-dehydration/melting reactions of pre-existing phengite. Single and multiphase inclusions are characterized by polygonal to negative crystal shape formed by dissolution-reprecipitation mechanism between the garnet host and the inclusions during the long lasting cooling period (>100 Ma) of the Kimi Complex.
Ectoparasitic mites and their Drosophila hosts
Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann
2017-01-01
ABSTRACT Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages. PMID:27540774
Janecek, Elisabeth; Beineke, Andreas; Schnieder, Thomas; Strube, Christina
2014-04-22
Infective larvae of the worldwide occurring zoonotic roundworm T. canis exhibit a marked affinity to the nervous tissues of paratenic hosts. In humans, most cases of neurotoxocarosis are considered to be caused by larvae of T. canis as T. cati larvae have rarely been found in the CNS in previous studies. However, direct comparison of studies is difficult as larval migration depends on a variety of factors including mouse strains and inoculation doses. Therefore, the present study aims to provide a direct comparison of both roundworm species in mice as a model for paratenic hosts with specific focus on the CNS during the acute and chronic phase of disease to provide a basis for further studies dealing with neurotoxocarosis. C57Bl/6J mice were infected with 2000 embryonated T. canis and T. cati eggs, respectively as well as Balb/c mice infected with T. cati eggs only. On 8 time points post infection, organs were removed and microscopically examined for respective larvae. Special focus was put on the CNS, including analysis of larval distribution in the cerebrum and cerebellum, right and left hemisphere as well as eyes and spinal cord. Additionally, brains of all infection groups as well as uninfected controls were examined histopathologically to characterize neurostructural damage. Significant differences in larval distribution were observed between and within the infection groups during the course of infection. As expected, significantly higher recovery rates of T. canis than T. cati larvae were determined in the brain. Surprisingly, significantly more T. canis larvae could be found in cerebra of infected mice whereas T. cati larvae were mainly located in the cerebellum. Structural damage in brain tissue could be observed in all infection groups, being more severe in brains of T. canis infected mice. The data obtained provides an extensive characterization of migrational routes of T. canis and T. cati in the paratenic host mouse in direct comparison. Even though to a lesser extent, structural damage in the brain was also caused by T. cati larvae and therefore, the potential as pathogenic agents should not be underestimated.
2014-01-01
Background Infective larvae of the worldwide occurring zoonotic roundworm T. canis exhibit a marked affinity to the nervous tissues of paratenic hosts. In humans, most cases of neurotoxocarosis are considered to be caused by larvae of T. canis as T. cati larvae have rarely been found in the CNS in previous studies. However, direct comparison of studies is difficult as larval migration depends on a variety of factors including mouse strains and inoculation doses. Therefore, the present study aims to provide a direct comparison of both roundworm species in mice as a model for paratenic hosts with specific focus on the CNS during the acute and chronic phase of disease to provide a basis for further studies dealing with neurotoxocarosis. Methods C57Bl/6J mice were infected with 2000 embryonated T. canis and T. cati eggs, respectively as well as Balb/c mice infected with T. cati eggs only. On 8 time points post infection, organs were removed and microscopically examined for respective larvae. Special focus was put on the CNS, including analysis of larval distribution in the cerebrum and cerebellum, right and left hemisphere as well as eyes and spinal cord. Additionally, brains of all infection groups as well as uninfected controls were examined histopathologically to characterize neurostructural damage. Results Significant differences in larval distribution were observed between and within the infection groups during the course of infection. As expected, significantly higher recovery rates of T. canis than T. cati larvae were determined in the brain. Surprisingly, significantly more T. canis larvae could be found in cerebra of infected mice whereas T. cati larvae were mainly located in the cerebellum. Structural damage in brain tissue could be observed in all infection groups, being more severe in brains of T. canis infected mice. Conclusions The data obtained provides an extensive characterization of migrational routes of T. canis and T. cati in the paratenic host mouse in direct comparison. Even though to a lesser extent, structural damage in the brain was also caused by T. cati larvae and therefore, the potential as pathogenic agents should not be underestimated. PMID:24754900
Sivinski, John; Aluja, Martin
2012-07-20
Ultimately, the success of augmentative fruit fly biological control depends upon the survival, dispersal, attack rate and multi-generational persistence of mass-reared parasitoids in the field. Foraging for hosts, food and mates is fundamental to the above and, at an operational level, the choice of the parasitoid best suited to control a particular tephritid in a certain environment, release rate estimates and subsequent monitoring of effectiveness. In the following we review landscape-level and microhabitat foraging preferences, host/fruit ranges, orientation through environmental cues, host vulnerabilities/ovipositor structures, and inter and intraspecific competition. We also consider tephritid parasitoid mating systems and sexual signals, and suggest the directions of future research.
Lemoine, Nathan P
2015-01-01
Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.
Lemoine, Nathan P.
2015-01-01
Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876
Kazuyoshi Futai; Hiroaki Kiku; Hong-ye Qi; Hagus Tarn; Yuko Takeuchi; Michimasa Yamasaki
2012-01-01
Since the early 1980s, an epidemic forest disease, Japanese Oak Wilt (JOW), has been spreading from coastal areas along the Sea of Japan to the interior of Honshu island and has been devastating huge areas of forests by killing an enormous number of oak trees in urban fringe mountains, gardens, and parks. The disease is caused by a fungus, Raffaelea...
Blount, J L; Buntin, G D; Sparks, A N
2015-06-01
Megacopta cribraria (F.) (Hemiptera: Plataspidae) is an Old World pest of legumes in Asia. Since its 2009 discovery in Georgia, it has become an economic pest of soybeans in the southeastern United States. The objective of this study was to determine the host preference of M. cribraria on edible legumes that might incur economic damage from injury of this pest. From 2012 to 2013 choice, no-choice, and field trials were conducted to evaluate the host suitability of several beans of commercial interest including pinto bean, lima bean, winter pea, and black-eyed pea. Choice and no-choice studies were conducted under greenhouse conditions. Plants in greenhouse trials were infested with adults and egg masses collected from kudzu and soybean and monitored for ∼2 wk. Field trials were allowed to be infested by naturally occurring M. cribraria populations. Sweep and whole plant counts of adults, egg masses, and nymphs were used to quantify field infestations. The legume crops found to be suitable developmental hosts are soybean, edamame, and pigeon pea. Low levels of development were seen on fava bean and none on the remaining entries. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of Reinforcer Magnitude and Distribution on Preference for Work Schedules
ERIC Educational Resources Information Center
Ward-Horner, John C.; Pittenger, Alexis; Pace, Gary; Fienup, Daniel M.
2014-01-01
When the overall magnitude of reinforcement is matched between 2 alternative work schedules, some students prefer to complete all of their work for continuous access to a reinforcer (continuous work) rather than distributed access to a reinforcer while they work (discontinuous work). We evaluated a student's preference for continuous work by…
Measuring Distributive Justice Preferences of Finnish University Students via the State Budget
ERIC Educational Resources Information Center
Venetoklis, Takis
2007-01-01
We measure the distributive justice preferences of students within eight departments in the faculty of Social Sciences at the University of Turku, Finland. We use the Finnish government's annual budget and its specific appropriations as a proxy to measure the students' underlying preferences. We test whether the type of studies of the respondents…
Evolutionary responses to climate change in parasitic systems.
Chaianunporn, Thotsapol; Hovestadt, Thomas
2015-08-01
Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.
Genome-wide analysis of codon usage bias in Ebolavirus.
Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor
2015-01-22
Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.
Rahman, Touhidur; Spafford, Helen; Broughton, Sonya
2010-10-01
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major pest of strawberry, causing substantial yield loss through direct feeding on the flowers and fruit. Insecticides are the main method used for its control; however, F. occidentalis has developed resistance to insecticides from all major chemical classes. Chemical control is not a long-term strategy and integrated pest management is required. This study determined whether F. occidentalis damage could be reduced by host plant resistance or tolerance in three commercial strawberry cultivars (Fragaria X ananassa [Rosaceae]: 'Albion', 'Camarosa', and 'Camino Real'). Determination of resistance or tolerance to F. occidentalis was based on olfactory response, feeding damage, ovipositional preference, and host suitability for reproduction on leaves. F. occidentalis adults preferred to feed on Camarosa; however, if leaves had been fed on previously by conspecifics, there was no difference in feeding preference. Camarosa was the most preferred cultivar for oviposition, and more eggs were laid by F. occidentalis on Camarosa than either Albion or Camino Real. More larvae hatched and adults were reared from Camarosa than either Albion or Camino Real. The percentage of unhatched eggs, larvae, and pupae that died was highest on Camino Real. Survival rate was highest on Camarosa. Egg incubation, prepupation, pupation, and total developmental periods were shortest on Camarosa, but the larval period was longest on Camarosa. Camarosa was the most favorable cultivar for F. occidentalis population growth on leaves.
Code of Federal Regulations, 2013 CFR
2013-04-01
...; special rules applicable to guaranteed payments, preferred returns, operating cash flow distributions, and... payments, preferred returns, operating cash flow distributions, and reimbursements of preformation... distribution of partnership cash flow to a partner with respect to capital contributed to the partnership by...
Code of Federal Regulations, 2012 CFR
2012-04-01
...; special rules applicable to guaranteed payments, preferred returns, operating cash flow distributions, and... payments, preferred returns, operating cash flow distributions, and reimbursements of preformation... distribution of partnership cash flow to a partner with respect to capital contributed to the partnership by...
Code of Federal Regulations, 2011 CFR
2011-04-01
...; special rules applicable to guaranteed payments, preferred returns, operating cash flow distributions, and... payments, preferred returns, operating cash flow distributions, and reimbursements of preformation... distribution of partnership cash flow to a partner with respect to capital contributed to the partnership by...
Code of Federal Regulations, 2014 CFR
2014-04-01
...; special rules applicable to guaranteed payments, preferred returns, operating cash flow distributions, and... payments, preferred returns, operating cash flow distributions, and reimbursements of preformation... distribution of partnership cash flow to a partner with respect to capital contributed to the partnership by...
Bossart, J L; Scriber, J M
1995-12-01
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.
Correlations between adult mimicry and larval host plants in ithomiine butterflies.
Willmott, Keith R; Mallet, James
2004-08-07
The apparent paradox of multiple coexisting wing pattern mimicry 'rings' in tropical butterflies has been explained as a result of microhabitat partitioning in adults. However, very few studies have tested this hypothesis. In neotropical forests, ithomiine butterflies dominate and display the richest diversity of mimicry rings. We show that co-mimetic species occupy the same larval host-plant species significantly more often than expected in two out of five communities that we surveyed; in one of these, the effect remains significant after phylogenetic correction. This relationship is most probably a result of a third correlated variable, such as microhabitat. Host-plant microhabitat may constrain adult movement, or host-plant choice may depend on butterfly microhabitat preferences and mimicry associations. This link between mimicry and host plant could help explain some host-plant and mimicry shifts, which have been important in the radiation of this speciose tropical group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian
2011-04-26
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki=1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysicalmore » interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1:2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.« less
Yakob, Laith; Cameron, Mary; Lines, Jo
2017-03-13
Malaria is spread by mosquitoes that are increasingly recognised to have diverse biting behaviours. How a mosquito in a specific environment responds to differing availability of blood-host species is largely unknown and yet critical to vector control efficacy. A parsimonious mathematical model is proposed that accounts for a diverse range of host-biting behaviours and assesses their impact on combining long-lasting insecticidal nets (LLINs) with a novel approach to malaria control: livestock treated with insecticidal compounds ('endectocides') that kill biting mosquitoes. Simulations of a malaria control programme showed marked differences across biting ecologies in the efficacy of both LLINs as a stand-alone tool and the combination of LLINs with endectocide-treated cattle. During the intervals between LLIN mass campaigns, concordant use of endectocides is projected to reduce the bounce-back in malaria prevalence that can occur as LLIN efficacy decays over time, especially if replacement campaigns are delayed. Integrating these approaches can also dramatically improve the attainability of local elimination; endectocidal treatment schedules required to achieve this aim are provided for malaria vectors with different biting ecologies. Targeting blood-feeding mosquitoes by treating livestock with endectocides offers a potentially useful complement to existing malaria control programmes centred on LLIN distribution. This approach is likely to be effective against vectors with a wide range of host-preferences and biting behaviours, with the exception of species that are so strictly anthropophilic that most blood meals are taken on humans even when humans are much less available than non-human hosts. Identifying this functional relationship in wild mosquito populations and ascertaining the extent to which it differs, within as well as between species, is a critical next step before targets can be set for employing this novel approach and combination.
Preferred Hosts for Short-Period Exoplanets
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-12-01
In an effort to learn more about how planets form around their host stars, a team of scientists has analyzed the population of Kepler-discovered exoplanet candidates, looking for trends in where theyre found.Planetary OccurrenceSince its launch in 2009, Kepler has found thousands of candidate exoplanets around a variety of star types. Especially intriguing is the large population of super-Earths and mini-Neptunes planets with masses between that of Earth and Neptune that have short orbital periods. How did they come to exist so close to their host star? Did they form in situ, or migrate inwards, or some combination of both processes?To constrain these formation mechanisms, a team of scientists led by Gijs Mulders (University of Arizona and NASAs NExSS coalition) analyzed the population of Kepler planet candidates that have orbital periods between 2 and 50 days.Mulders and collaborators used statistical reconstructions to find the average number of planets, within this orbital range, around each star in the Kepler field. They then determined how this planet occurrence rate changed for different spectral types and therefore the masses of the host stars: do low-mass M-dwarf stars host more or fewer planets than higher-mass, main-sequence F, G, or K stars?Challenging ModelsAuthors estimates for the occurrence rate for short-period planets of different radii around M-dwarfs (purple) and around F, G, and K-type stars (blue). [Mulders et al. 2015]The team found that M dwarfs, compared to F, G, or K stars, host about half as many large planets with orbital periods of P 50 days. But, surprisingly, they host significantly more small planets, racking up an average of 3.5 times the number of planets in the size range of 12.8 Earth-radii.Could it be that M dwarfs have a lower total mass of planets, but that mass is distributed into more, smaller planets? Apparently not: the authors show that the mass of heavy elements trapped in short-orbital-period planets is higher for M dwarfs than for the larger F, G and K stars.All of this goes contrary to expectation, because we know that protostellar disks, from which planets form, are more massive around larger-mass stars. So why is there more heavy-element mass trapped in planetary systems with low stellar mass?This outcome isnt predicted by either in situ or migration planet formation theories. The authors instead propose that the distribution could be explained if the inward drift of planetary building blocks either dust grains or protoplanets turns out to be more efficient around lower-mass stars.CitationGijs D. Mulders et al 2015 ApJ 814 130. doi:10.1088/0004-637X/814/2/130
Takeshita, K.; Utsumi, H.; Hamada, A.
1987-01-01
The relation between the dynamic properties of the haptenic site of lipid haptens and the phase transition of the host lattice was investigated using head group spin-labeled phosphatidylethanolamines, that is, spin-label lipid haptens (Brûlet, P., and H. M. McConnell, 1976, Proc. Natl. Acad. Sci. USA., 73:2977-2981; Brûlet, P., and H. M. McConnell, 1977, Biochemistry, 16:1209-1217). The electron spin resonance (ESR) spectra of the lipid haptens in liposomal membranes showed three narrow resonance lines, whose widths and hyperfine splitting values suggested that the haptenic site, i.e., the spin-label moiety, should be exposed in the water phase. The line width of each peak depended on the host lipid species and on the incubation temperature. A temperature study using dipalmitoylphosphatidylcholine (DPPC) liposomes showed that the dynamic properties of the haptenic site were related to the main phase transition and the subphase transition of the host lattice but not to the prephase transition. The angular amplitudes of the tumbling motion of the haptenic site were estimated using oriented multibilayer systems. The angular amplitude of dipalmitoyl-phosphatidyl-N-[[N-(1-oxyl-2,2,6, 6-tetramethyl-4-piperidinyl)-carbamoyl]-methyl]-ethanolamine in DPPC membranes was 63 degrees at 2 degrees C, and it increased slightly with an increase in temperature regardless of the phase transition of the host lattice. The value for egg phosphatidylcholine (PC) at 25 degrees C was the same as for DPPC above its main phase transition temperature. Rotational correlation time analysis showed that the axial rotation of the haptenic site was preferable to the tumbling motion of the rotational axis, and the predominance depended on the phase transition, Lc----L beta' and P beta'----L alpha. Elongation of the spacer arm between the haptenic site and phosphate increased the angular amplitude of the tumbling motion but reduced the effect of the host lattice. Spin-label lipid haptens with unsaturated fatty acyl chains were distributed heterogeneously in DPPC membranes, whereas those with the same fatty acyl chain as the host lattice were distributed randomly. The ESR spectrum of a lipid hapten under its prephase transition temperature showed two components, broad and narrow. This suggests that at least two different domains, a hapten-rich domain and a hapten-poor one, may coexist in membranes. ESR measurements at various temperatures suggested that the haptenic site fraction in the hapten-rich domain decreased in part during the phase transition from L beta' to P beta', and disappeared completely in the La phase. The spatial mobility and lateral diffusion of lipid haptens will be discussed in greater detail. PMID:2822160
Koopmans, Jordan M; De La Giroday, Honey-Marie C; Lindgren, B Staffan; Aukema, Brian H
2009-08-01
The spatial influences of host and nonhost trees and shrubs on the colonization patterns of white pine weevil Pissodes strobi (Peck) were studied within a stand of planted interior hybrid spruce [Picea glauca (Moench) Voss x Picea engelmannii (Parry) ex Engelm.]. Planted spruce accounted for one third of all trees within the stand, whereas the remaining two thirds were comprised of early-successional nonhost vegetation, such as alder (Alnus spp.), paper birch (Betula papyrifera Marsh.), black cottonwood [Populus balsamifera ssp. trichocarpa (T. Ng.) Brayshaw], lodgepole pine [Pinus contorta (Dougl.) ex Loud.], trembling aspen (Populus tremuloides Michx), willow (Salix spp.), and Canadian buffaloberry [Shepherdia canadensis (L.) Nutt.]. Unlike the spruce trees, nonhost vegetation in the stand was not uniformly distributed. Spatial point process models showed that Canadian buffaloberry, paper birch, black cottonwoood, and trembling aspen had negative associations with damage caused by the weevil, even though the density of the insects' hosts in these areas did not change. Moreover, knowing the locations of these nonhost trees provided as much, or more, inference about the locations of weevil-attacked trees as knowing the locations of suitable or preferred host trees (i.e., those larger in size). Nonhost volatiles, the alteration of soil composition, and overstory shade are discussed as potential explanatory factors for the patterns observed. New research avenues are suggested to determine whether nonhost vegetation in early successional stands might be an additional tool in the management of these insects in commercially important forests.
Distribution and host associations of ixodid ticks collected from wildlife in Florida, USA.
Hertz, Jeffrey C; Ferree Clemons, Bambi C; Lord, Cynthia C; Allan, Sandra A; Kaufman, Phillip E
2017-10-01
A tick survey was conducted to document tick-host associations with Florida (USA) wildlife, and to determine the relative abundance and distribution of ixodid ticks throughout the state. The survey was conducted using collection kits distributed to licensed Florida hunters as well as the examination of archived specimens from ongoing state wildlife research programs. Collected tick samples were obtained from 66% of Florida counties and were collected from nine wildlife hosts, including black bear, bobcat, coyote, deer, gray fox, Florida panther, raccoon, swine, and wild turkey. In total, 4176 ticks were identified, of which 75% were Amblyomma americanum, 14% Ixodes scapularis, 8% A. maculatum, 3% Dermacentor variabilis, and < 1% were I. affinis and I. texanus. americanum, D. variabilis, and I. scapularis had the broadest host range, while A. maculatum, D. variabilis, and I. scapularis had the widest geographic distribution. While the survey data contribute to an understanding of tick-host associations in Florida, they also provide insight into the seasonal and geographic distribution of several important vector species in the southeastern USA.
Public Perceptions of Regulatory Costs, Their Uncertainty and Interindividual Distribution.
Johnson, Branden B; Finkel, Adam M
2016-06-01
Public perceptions of both risks and regulatory costs shape rational regulatory choices. Despite decades of risk perception studies, this article is the first on regulatory cost perceptions. A survey of 744 U.S. residents probed: (1) How knowledgeable are laypeople about regulatory costs incurred to reduce risks? (2) Do laypeople see official estimates of cost and benefit (lives saved) as accurate? (3) (How) do preferences for hypothetical regulations change when mean-preserving spreads of uncertainty replace certain cost or benefit? and (4) (How) do preferences change when unequal interindividual distributions of hypothetical regulatory costs replace equal distributions? Respondents overestimated costs of regulatory compliance, while assuming agencies underestimate costs. Most assumed agency estimates of benefits are accurate; a third believed both cost and benefit estimates are accurate. Cost and benefit estimates presented without uncertainty were slightly preferred to those surrounded by "narrow uncertainty" (a range of costs or lives entirely within a personally-calibrated zone without clear acceptance or rejection of tradeoffs). Certain estimates were more preferred than "wide uncertainty" (a range of agency estimates extending beyond these personal bounds, thus posing a gamble between favored and unacceptable tradeoffs), particularly for costs as opposed to benefits (but even for costs a quarter of respondents preferred wide uncertainty to certainty). Agency-acknowledged uncertainty in general elicited mixed judgments of honesty and trustworthiness. People preferred egalitarian distributions of regulatory costs, despite skewed actual cost distributions, and preferred progressive cost distributions (the rich pay a greater than proportional share) to regressive ones. Efficient and socially responsive regulations require disclosure of much more information about regulatory costs and risks. © 2016 Society for Risk Analysis.
Amino acid metabolism in tumour-bearing mice.
Rivera, S; Azcón-Bieto, J; López-Soriano, F J; Miralpeix, M; Argilés, J M
1988-01-01
Mice bearing the Lewis lung carcinoma showed a high tumour glutaminase activity and significantly higher concentrations of most amino acids than in both the liver and the skeletal muscle of the host. Tumour tissue slices showed a marked preference for glutamine, especially for oxidation of its skeleton to CO2. It is proposed that the metabolism of this particular carcinoma is focused on amino acid degradation, glutamine being its preferred substrate. PMID:3342022
Use of negative binomial distribution to describe the presence of Anisakis in Thyrsites atun.
Peña-Rehbein, Patricio; De los Ríos-Escalante, Patricio
2012-01-01
Nematodes of the genus Anisakis have marine fishes as intermediate hosts. One of these hosts is Thyrsites atun, an important fishery resource in Chile between 38 and 41° S. This paper describes the frequency and number of Anisakis nematodes in the internal organs of Thyrsites atun. An analysis based on spatial distribution models showed that the parasites tend to be clustered. The variation in the number of parasites per host could be described by the negative binomial distribution. The maximum observed number of parasites was nine parasites per host. The environmental and zoonotic aspects of the study are also discussed.
Effect of starvation on vein preference of whitefly (Bemisia tabaci) on chilli as host plant
NASA Astrophysics Data System (ADS)
Siti Sakinah, A.; Mohamad Roff M., N.; Idris, A. B.
2014-09-01
The whitefly, Bemisia tabaci (Gennadius), is a cosmopolitan pest of horticultural crops. It caused serious damaged to the plants by feeding on plant saps as direct damage and transmit virus as indirect damage. Vein preferences of both female and male whitefly (WF) on chilli plant were recorded using Dinolite, a portable microscope, under laboratory conditions. WF adults of both sexes were starved for 2 and 4 hours before used for observation while no starvation for control individual (treatment). Results showed that both female and male preferred to feed on secondary veins rather than lamina, midrib and vein. From the result of whitefly preferred target site, hopefully this information will help to improve control tactics in WF management.
Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reno, Matthew J.; Coogan, Kyle; Seuss, John
Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that canmore » be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.« less
Odor, Not Performance, Dictates Bemisia tabaci's Selection between Healthy and Virus Infected Plants
Chen, Gong; Su, Qi; Shi, Xiaobin; Liu, Xin; Peng, Zhengke; Zheng, Huixin; Xie, Wen; Xu, Baoyun; Wang, Shaoli; Wu, Qingjun; Zhou, Xuguo; Zhang, Youjun
2017-01-01
Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this “mother-knows-best” hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with “mother-knows-best” hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants. PMID:28360861
Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline
2014-02-01
The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.
Allan, Kathryn J; Biggs, Holly M; Halliday, Jo E B; Kazwala, Rudovick R; Maro, Venance P; Cleaveland, Sarah; Crump, John A
2015-01-01
Leptospirosis is an important but neglected bacterial zoonosis that has been largely overlooked in Africa. In this systematic review, we aimed to summarise and compare current knowledge of: (1) the geographic distribution, prevalence, incidence and diversity of acute human leptospirosis in Africa; and (2) the geographic distribution, host range, prevalence and diversity of Leptospira spp. infection in animal hosts in Africa. Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we searched for studies that described (1) acute human leptospirosis and (2) pathogenic Leptospira spp. infection in animals. We performed a literature search using eight international and regional databases for English and non-English articles published between January 1930 to October 2014 that met out pre-defined inclusion criteria and strict case definitions. We identified 97 studies that described acute human leptospirosis (n = 46) or animal Leptospira infection (n = 51) in 26 African countries. The prevalence of acute human leptospirosis ranged from 2 3% to 19 8% (n = 11) in hospital patients with febrile illness. Incidence estimates were largely restricted to the Indian Ocean islands (3 to 101 cases per 100,000 per year (n = 6)). Data from Tanzania indicate that human disease incidence is also high in mainland Africa (75 to 102 cases per 100,000 per year). Three major species (Leptospira borgpetersenii, L. interrogans and L. kirschneri) are predominant in reports from Africa and isolates from a diverse range of serogroups have been reported in human and animal infections. Cattle appear to be important hosts of a large number of Leptospira serogroups in Africa, but few data are available to allow comparison of Leptospira infection in linked human and animal populations. We advocate a 'One Health' approach to promote multidisciplinary research efforts to improve understanding of the animal to human transmission of leptospirosis on the African continent.
Allan, Kathryn J.; Biggs, Holly M.; Halliday, Jo E. B.; Kazwala, Rudovick R.; Maro, Venance P.; Cleaveland, Sarah; Crump, John A.
2015-01-01
Background Leptospirosis is an important but neglected bacterial zoonosis that has been largely overlooked in Africa. In this systematic review, we aimed to summarise and compare current knowledge of: (1) the geographic distribution, prevalence, incidence and diversity of acute human leptospirosis in Africa; and (2) the geographic distribution, host range, prevalence and diversity of Leptospira spp. infection in animal hosts in Africa. Methods Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we searched for studies that described (1) acute human leptospirosis and (2) pathogenic Leptospira spp. infection in animals. We performed a literature search using eight international and regional databases for English and non-English articles published between January 1930 to October 2014 that met out pre-defined inclusion criteria and strict case definitions. Results and Discussion We identified 97 studies that described acute human leptospirosis (n = 46) or animal Leptospira infection (n = 51) in 26 African countries. The prevalence of acute human leptospirosis ranged from 2 3% to 19 8% (n = 11) in hospital patients with febrile illness. Incidence estimates were largely restricted to the Indian Ocean islands (3 to 101 cases per 100,000 per year (n = 6)). Data from Tanzania indicate that human disease incidence is also high in mainland Africa (75 to 102 cases per 100,000 per year). Three major species (Leptospira borgpetersenii, L. interrogans and L. kirschneri) are predominant in reports from Africa and isolates from a diverse range of serogroups have been reported in human and animal infections. Cattle appear to be important hosts of a large number of Leptospira serogroups in Africa, but few data are available to allow comparison of Leptospira infection in linked human and animal populations. We advocate a ‘One Health’ approach to promote multidisciplinary research efforts to improve understanding of the animal to human transmission of leptospirosis on the African continent. PMID:26368568
Rigsby, Chad M; McCartney, Nathaniel B; Herms, Daniel A; Tumlinson, James H; Cipollini, Don
2017-08-01
Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.
Goldsmith, Elizabeth W.; Renshaw, Benjamin; Clement, Christopher J.; Himschoot, Elizabeth A.; Hundertmark, Kris J.; Hueffer, Karsten
2015-01-01
For pathogens that infect multiple species the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We test the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (V. vulpes) in order to possibly distinguish reservoir and spill over hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found 2 groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising 2 regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the artic fox Therefore we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. PMID:26661691
Goldsmith, Elizabeth W; Renshaw, Benjamin; Clement, Christopher J; Himschoot, Elizabeth A; Hundertmark, Kris J; Hueffer, Karsten
2016-02-01
For pathogens that infect multiple species, the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We tested the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) to possibly distinguish reservoir and spillover hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found two groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising two regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the arctic fox. Therefore, we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. © 2015 John Wiley & Sons Ltd.
Novel application of species richness estimators to predict the host range of parasites.
Watson, David M; Milner, Kirsty V; Leigh, Andrea
2017-01-01
Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinis, S.; Gezari, S.; Kumar, S.
2016-07-20
We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less
Sivinski, John; Aluja, Martin
2012-01-01
Ultimately, the success of augmentative fruit fly biological control depends upon the survival, dispersal, attack rate and multi-generational persistence of mass-reared parasitoids in the field. Foraging for hosts, food and mates is fundamental to the above and, at an operational level, the choice of the parasitoid best suited to control a particular tephritid in a certain environment, release rate estimates and subsequent monitoring of effectiveness. In the following we review landscape-level and microhabitat foraging preferences, host/fruit ranges, orientation through environmental cues, host vulnerabilities/ovipositor structures, and inter and intraspecific competition. We also consider tephritid parasitoid mating systems and sexual signals, and suggest the directions of future research. PMID:26466622
Milet-Pinheiro, Paulo; Ayasse, Manfred; Dötterl, Stefan
2015-01-01
Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed. PMID:26060994
Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis
Stefan, Laura M.; Gómez-Díaz, Elena; Elguero, Eric; Proctor, Heather C.; McCoy, Karen D.; González-Solís, Jacob
2015-01-01
According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory’s shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in structuring feather mite communities. They also illustrate that symbiotic infracommunities are excellent model systems to study trophic ecology, and can improve our understanding of mechanisms of niche differentiation and species coexistence. PMID:26650672
Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages
Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo
2016-01-01
Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. PMID:26888951
Selective predation and productivity jointly drive complex behavior in host-parasite systems.
Hall, Spencer R; Duffy, Meghan A; Cáceres, Carla E
2005-01-01
Successful invasion of a parasite into a host population and resulting host-parasite dynamics can depend crucially on other members of a host's community such as predators. We do not fully understand how predation intensity and selectivity shape host-parasite dynamics because the interplay between predator density, predator foraging behavior, and ecosystem productivity remains incompletely explored. By modifying a standard susceptible-infected model, we show how productivity can modulate complex behavior induced by saturating and selective foraging behavior of predators in an otherwise stable host-parasite system. When predators strongly prefer parasitized hosts, the host-parasite system can oscillate, but predators can also create alternative stable states, Allee effects, and catastrophic extinction of parasites. In the latter three cases, parasites have difficulty invading and/or persisting in ecosystems. When predators are intermediately selective, these more complex behaviors become less important, but the host-parasite system can switch from stable to oscillating and then back to stable states along a gradient of predator control. Surprisingly, at higher productivity, predators that neutrally select or avoid parasitized hosts can catalyze extinction of both hosts and parasites. Thus, synergy between two enemies can end disastrously for the host. Such diverse outcomes underscore the crucial importance of the community and ecosystem context in which host-parasite interactions occur.
Lu, Hong; Yang, Pengcheng; Xu, Yongyu; Luo, Lan; Zhu, Junjie; Cui, Na; Kang, Le; Cui, Feng
2016-01-01
Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids. PMID:26758247
Barbier, Eder; Bernard, Enrico
2017-11-01
Better knowledge of the geographical distribution of parasites and their hosts can contribute to clarifying aspects of host specificity, as well as on the interactions among hosts, parasites, and the environment in which both exist. Ectoparasitic flies of the Nycteribiidae and Streblidae families are highly specialized hematophagous parasites of bats, whose distributional patterns, species richness, and associations with hosts remain underexplored and poorly known in Brazil. Here, we used information available in the literature and unpublished data to verify if the occurrence of bat hosts in a given environment influences the occurrence and distribution of nycteribiid and streblid flies in different ecoregions in the northeastern Brazil. We evaluate species richness and similarity between ecoregions and tested correlations between species richness and the number of studies in each ecoregion and federative unit. We recorded 50 species and 15 genera of bat ectoparasitic flies on 36 species and 27 genera of bat hosts. The Atlantic Forest had the highest fly species richness (n = 31; 62%), followed by Caatinga (n = 27; 54%). We detected the formation of distinct groups, with low species overlap between ecoregions for both flies and bats. Fly species richness was correlated with host species richness and with the number of studies in each federative unit, but not with the number of studies by ecoregion. Due to the formation of distinct groups with low species overlap for both groups, host availability is likely to be one of the factors that most influence the occurrence of highly specific flies. We also discuss host specificity for some species, produced an updated list of species and distribution for both nycteribiid and streblid flies with information on interaction networks, and conclude by presenting recommendations for more effective inventories of bat ectoparasites in the future.
2012-01-01
Background Ticks are among the most important vectors of zoonotic diseases in temperate regions of Europe, with widespread distribution and high densities, posing an important medical risk. Most ticks feed on a variety of progressively larger hosts, with a large number of small mammal species typically harbouring primarily the immature stages. However, there are certain Ixodidae that characteristically attack micromammals also during their adult stage. Rodents are widespread hosts of ticks, important vectors and competent reservoirs of tick-borne pathogens. Micromammal-tick associations have been poorly studied in Romania, and our manuscript shows the results of a large scale study on tick infestation epidemiology in rodents from Romania. Methods Rodents were caught using snap-traps in a variety of habitats in Romania, between May 2010 and November 2011. Ticks were individually collected from these rodents and identified to species and development stage. Frequency, mean intensity, prevalence and its 95% confidence intervals were calculated using the EpiInfo 2000 software. A p value of <0.05 was considered statistically significant. Results We examined 423 rodents (12 species) collected from six counties in Romania for the presence of ticks. Each collected tick was identified to species level and the following epidemiological parameters were calculated: prevalence, mean intensity and mean abundance. The total number of ticks collected from rodents was 483, with eight species identified: Ixodes ricinus, I. redikorzevi, I. apronophorus, I. trianguliceps, I. laguri, Dermacentor marginatus, Rhipicephalus sanguineus and Haemaphysalis sulcata. The overall prevalence of tick infestation was 29.55%, with a mean intensity of 3.86 and a mean abundance of 1.14. Only two polyspecific infestations were found: I. ricinus + I. redikorzevi and I. ricinus + D. marginatus. Conclusions Our study showed a relatively high diversity of ticks parasitizing rodents in Romania. The most common tick in rodents was I. ricinus, followed by I. redikorzevi. Certain rodents seem to host a significantly higher number of tick species than others, the most important within this view being Apodemus flavicollis and Microtus arvalis. The same applies for the overall prevalence of tick parasitism, with some species more commonly infected (M. arvalis, A. uralensis, A. flavicollis and M. glareolus) than others. Two rodent species (Mus musculus, Rattus norvegicus) did not harbour ticks at all. Based on our results we may assert that rodents generally can act as good indicators for assessing the distribution of certain tick species. PMID:23171665
Koudou, Benjamin G.; Müller, Pie; Malone, David; Tano, Yao; Utzinger, Jürg
2017-01-01
Background Identifying priority areas for vector control is of considerable public health relevance. Arthropod-borne viruses (arboviruses) spread by Aedes mosquitoes are (re)emerging in many parts of the tropics, partially explained by changes in agricultural land-use. We explored the effects of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes mosquitoes along a gradient of anthropogenic disturbance in oil palm-dominated landscapes in southeastern Côte d’Ivoire. Methodology Between January and December 2014, eggs, larvae, pupae, and adults of Aedes mosquitoes were sampled in four types of macrohabitats (rainforest, polyculture, oil palm monoculture, and rural housing areas), using standard procedures (bamboo-ovitraps, metallic-ovitraps, larval surveys, and human-baited double-net traps). Immature stages were reared and adult mosquitoes identified at species level. Principal findings A total of 28,276 Aedes specimens belonging to 11 species were collected. No Aedes-positive microhabitat and only four specimens of Ae. aegypti were found in oil palm monoculture. The highest abundance of Aedes mosquitoes (60.9%) was found in polyculture, while the highest species richness (11 species) was observed in rainforest. Ae. aegypti was the predominant Aedes species, and exhibited high anthropophilic behavior inflicting 93.0% of total biting to humans. The biting rate of Aedes mosquitoes was 34.6 and 7.2-fold higher in polyculture and rural housing areas, respectively, compared to rainforest. Three species (Ae. aegypti, Ae. dendrophilus, and Ae. vittatus) bit humans in polyculture and rural housing areas, with respective biting rates of 21.48 and 4.48 females/person/day. Unexpectedly, all three species were also feeding during darkness. Aedes females showed bimodal daily feeding cycles with peaks at around 08:00 a.m. and 05:00 p.m. Host-seeking activities were interrupted between 11:00 a.m. and 02:00 p.m. in rural housing areas, while no such interruption was observed in polyculture. Some rainforest-dwelling Aedes species displayed little preference to feed on humans. Conclusions In southeastern Côte d’Ivoire, the agricultural land-use/land-cover changes due to the conversion of rainforest into oil palm monocultures influence the abundance, distribution, and host-seeking behaviors of anthropophagic and non-anthropophagic Aedes vectors. As a result, there is higher risk of humans to arbovirus transmission in polyculture and rural housing areas. There is a need for integrated vector management, including landscape epidemiology and ecotope-based vector control. PMID:29216248
Zahouli, Julien B Z; Koudou, Benjamin G; Müller, Pie; Malone, David; Tano, Yao; Utzinger, Jürg
2017-01-01
Identifying priority areas for vector control is of considerable public health relevance. Arthropod-borne viruses (arboviruses) spread by Aedes mosquitoes are (re)emerging in many parts of the tropics, partially explained by changes in agricultural land-use. We explored the effects of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes mosquitoes along a gradient of anthropogenic disturbance in oil palm-dominated landscapes in southeastern Côte d'Ivoire. Between January and December 2014, eggs, larvae, pupae, and adults of Aedes mosquitoes were sampled in four types of macrohabitats (rainforest, polyculture, oil palm monoculture, and rural housing areas), using standard procedures (bamboo-ovitraps, metallic-ovitraps, larval surveys, and human-baited double-net traps). Immature stages were reared and adult mosquitoes identified at species level. A total of 28,276 Aedes specimens belonging to 11 species were collected. No Aedes-positive microhabitat and only four specimens of Ae. aegypti were found in oil palm monoculture. The highest abundance of Aedes mosquitoes (60.9%) was found in polyculture, while the highest species richness (11 species) was observed in rainforest. Ae. aegypti was the predominant Aedes species, and exhibited high anthropophilic behavior inflicting 93.0% of total biting to humans. The biting rate of Aedes mosquitoes was 34.6 and 7.2-fold higher in polyculture and rural housing areas, respectively, compared to rainforest. Three species (Ae. aegypti, Ae. dendrophilus, and Ae. vittatus) bit humans in polyculture and rural housing areas, with respective biting rates of 21.48 and 4.48 females/person/day. Unexpectedly, all three species were also feeding during darkness. Aedes females showed bimodal daily feeding cycles with peaks at around 08:00 a.m. and 05:00 p.m. Host-seeking activities were interrupted between 11:00 a.m. and 02:00 p.m. in rural housing areas, while no such interruption was observed in polyculture. Some rainforest-dwelling Aedes species displayed little preference to feed on humans. In southeastern Côte d'Ivoire, the agricultural land-use/land-cover changes due to the conversion of rainforest into oil palm monocultures influence the abundance, distribution, and host-seeking behaviors of anthropophagic and non-anthropophagic Aedes vectors. As a result, there is higher risk of humans to arbovirus transmission in polyculture and rural housing areas. There is a need for integrated vector management, including landscape epidemiology and ecotope-based vector control.
Lu, Liang; Ren, Zhoupeng; Yue, Yujuan; Yu, Xiaotao; Lu, Shan; Li, Guichang; Li, Hailong; Wei, Jianchun; Liu, Jingli; Mu, You; Hai, Rong; Yang, Yonghai; Wei, Rongjie; Kan, Biao; Wang, Hu; Wang, Jinfeng; Wang, Zuyun; Liu, Qiyong; Xu, Jianguo
2016-02-24
After the earthquake on 14, April 2010 at Yushu in China, a plague epidemic hosted by Himalayan marmot (Marmota himalayana) became a major public health concern during the reconstruction period. A rapid assessment of the distribution of Himalayan marmot in the area was urgent. The aims of this study were to analyze the relationship between environmental factors and the distribution of burrow systems of the marmot and to predict the distribution of marmots. Two types of marmot burrows (hibernation and temporary) in Yushu County were investigated from June to September in 2011. The location of every burrow was recorded with a global positioning system receiver. An ecological niche model was used to determine the relationship between the burrow occurrence data and environmental variables, such as land surface temperature (LST) in winter and summer, normalized difference vegetation index (NDVI) in winter and summer, elevation, and soil type. The predictive accuracies of the models were assessed by the area under the curve of the receiving operator curve. The models for hibernation and temporary burrows both performed well. The contribution orders of the variables were LST in winter and soil type, NDVI in winter and elevation for the hibernation burrow model, and LST in summer, NDVI in summer, soil type and elevation in the temporary burrow model. There were non-linear relationships between the probability of burrow presence and LST, NDVI and elevation. LST of 14 and 23 °C, NDVI of 0.22 and 0.60, and 4100 m were inflection points. A substantially higher probability of burrow presence was observed in swamp soil and dark felty soil than in other soil types. The potential area for hibernation burrows was 5696 km(2) (37.7% of Yushu County), and the area for temporary burrows was 7711 km(2) (51.0% of Yushu County). The results suggested that marmots preferred warm areas with relatively low altitudes and good vegetation conditions in Yushu County. Based on these results, the present research is useful in understanding the niche selection and distribution pattern of marmots in this region.
Alba, Christina; Bowers, M. Deane; Blumenthal, Dana; Hufbauer, Ruth A.
2014-01-01
Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores. PMID:25127229
Global Distribution of Alveolar and Cystic Echinococcosis.
Deplazes, P; Rinaldi, L; Alvarez Rojas, C A; Torgerson, P R; Harandi, M F; Romig, T; Antolova, D; Schurer, J M; Lahmar, S; Cringoli, G; Magambo, J; Thompson, R C A; Jenkins, E J
2017-01-01
Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology. Copyright © 2017 Elsevier Ltd. All rights reserved.
David W. Williams; Hai-Poong Lee
2003-01-01
Following up on our discovery in 2000 that Acer mono is a native host of Anoplophora glabripennis, we spent eight weeks searching for the beetle in natural forest stands in South Korea and China. We wanted to assess the distribution and abundance of beetles in closed forest stands of native hosts.
Yong, Kamuela E; Mubayi, Anuj; Kribs, Christopher M
2015-11-01
The parasite Trypanosoma cruzi, spread by triatomine vectors, affects over 100 mammalian species throughout the Americas, including humans, in whom it causes Chagas' disease. In the U.S., only a few autochthonous cases have been documented in humans, but prevalence is high in sylvatic hosts (primarily raccoons in the southeast and woodrats in Texas). The sylvatic transmission of T. cruzi is spread by the vector species Triatoma sanguisuga and Triatoma gerstaeckeri biting their preferred hosts and thus creating multiple interacting vector-host cycles. The goal of this study is to quantify the rate of contacts between different host and vector species native to Texas using an agent-based model framework. The contact rates, which represent bites, are required to estimate transmission coefficients, which can be applied to models of infection dynamics. In addition to quantitative estimates, results confirm host irritability (in conjunction with host density) and vector starvation thresholds and dispersal as determining factors for vector density as well as host-vector contact rates. Copyright © 2015 Elsevier B.V. All rights reserved.
Constructing Cost-Effective and Targetable ICS Honeypots Suited for Production Networks
2015-03-26
introducing Honeyd+ has a marginal impact on performance. Notable findings are that the Raspberry Pi is the preferred hosting platform for the EtherNet/IP... Raspberry Pi or Gumstix, which is a low-cost approach to replicating multiple decoys. One hidden drawback to low- interaction honeypots is the extensive time...EtherNet/IP industrial protocol. Honeyd+ is hosted on a low-cost computing platform ( Raspberry Pi running Raspbian, approximately $50) and a high-cost
Can reduced predation offset negative effects of sea louse parasites on chum salmon?
Peacock, Stephanie J.; Connors, Brendan M.; Krkošek, Martin; Irvine, James R.; Lewis, Mark A.
2014-01-01
The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host–parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations. PMID:24352951
Nygren, G H; Nylin, S; Stefanescu, C
2006-11-01
Comma butterflies (Nymphalidae: Polygonia c-album L.) from one Belgian site and three Spanish sites were crossed with butterflies from a Swedish population in order to investigate inheritance of female host plant choice, egg mass and larval growth rate. We found three different modes of inheritance for the three investigated traits. In line with earlier results from crosses between Swedish and English populations, the results regarding female oviposition preference (choice between Urtica dioica and Salix caprea) showed X-linked inheritance to be of importance for the variation between Sweden and the other sites. Egg mass and growth rate did not show any sex-linked inheritance. Egg mass differences between populations seem to be controlled mainly by additive autosomal genes, as hybrids showed intermediate values. The growth rates of both hybrid types following reciprocal crossings were similar to each other but consistently higher than for the two source populations, suggesting a nonadditive mode of inheritance which is not sex-linked. The different modes of inheritance for host plant preference vs. important life history traits are likely to result in hybrids with unfit combinations of traits. This type of potential reproductive barrier based on multiple ecologically important traits deserves more attention, as it should be a common situation for instance in the early stages of population divergence in host plant usage, facilitating ecological speciation.
Research on cascading failure in multilayer network with different coupling preference
NASA Astrophysics Data System (ADS)
Zhang, Yong; Jin, Lei; Wang, Xiao Juan
This paper is aimed at constructing robust multilayer networks against cascading failure. Considering link protection strategies in reality, we design a cascading failure model based on load distribution and extend it to multilayer. We use the cascading failure model to deduce the scale of the largest connected component after cascading failure, from which we can find that the performance of four kinds of load distribution strategies associates with the load ratio of the current edge to its adjacent edge. Coupling preference is a typical characteristic in multilayer networks which corresponds to the network robustness. The coupling preference of multilayer networks is divided into two forms: the coupling preference in layers and the coupling preference between layers. To analyze the relationship between the coupling preference and the multilayer network robustness, we design a construction algorithm to generate multilayer networks with different coupling preferences. Simulation results show that the load distribution based on the node betweenness performs the best. When the coupling coefficient in layers is zero, the scale-free network is the most robust. In the random network, the assortative coupling in layers is more robust than the disassortative coupling. For the coupling preference between layers, the assortative coupling between layers is more robust than the disassortative coupling both in the scale free network and the random network.
Association and Host Selectivity in Multi-Host Pathogens
Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando
2006-01-01
The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670
Takano, Oona M; Mitchell, Preston S; Gustafsson, Daniel R; Adite, Alphonse; Voelker, Gary; Light, Jessica E
2017-04-01
Host associations of highly host-specific chewing lice (Insecta: Phthiraptera) across multiple avian species remains fairly undocumented in the West African country of Benin. Two hundred and seventeen bird specimens collected from multiple localities across Benin and housed at the Texas A&M University Biodiversity Research and Teaching Collections were examined for lice. Lice were identified and genetic data (mitochondrial COI and nuclear EF-1α genes) were obtained and phylogenetically analyzed. In total, we found 15 host associations, 7 of which were new to science. Genetically, most lice from Benin were unique and could represent new species. Based on host associations and unique genetic lineages, we estimate we discovered a minimum of 4 and possibly as many as 8 new chewing louse species. Given the lack of current data on chewing louse species distributions in Benin, this study adds to the knowledge of host associations, geographic distribution, and genetic variability of avian chewing louse species in West Africa.
Depth distribution of benthic dinoflagellates in the Caribbean Sea
NASA Astrophysics Data System (ADS)
Boisnoir, Aurélie; Pascal, Pierre-Yves; Cordonnier, Sébastien; Lemée, Rodolophe
2018-05-01
Monitoring of benthic dinoflagellates is usually conducted between sub-surface and 5 m depth, where these organisms are supposed to be in highest abundances. However, only few studies have focused on the small-scale depth distribution of benthic dinoflagellates. In the present study, abundances of dinoflagellates were evaluated on an invasive macrophyte Halophila stipulacea in two coastal sites in Guadeloupe (Caribbean Sea) along a depth gradient from sub-surface to 3 m at Gosier and until 20 m at Rivière Sens during the tropical wet and dry seasons. Species of genus Ostreopsis and Prorocentrum were the most abundant. Depth did not influence total dinoflagellate abundance but several genera showed particular depth-distribution preferences. The highest abundances of Ostreopsis and Gambierdiscus species were estimated preferentially in surface waters, whereas Coolia spp. were found in the same proportions but in deeper waters. Halophila stipulacea biomass was positively correlated with Ostreopsis spp. abundance. Our study suggests that sampling of benthic dinoflagellates should be conducted at different water depths taking into account the presence of the macroalgal substrate as well. In the Caribbean area, special attention should be addressed to the presence of H. stipulacea which tends to homogenize the marine landscape and represents a substrate for hosting dinoflagellate growth.
Functional traits help to explain half-century long shifts in pollinator distributions.
Aguirre-Gutiérrez, Jesús; Kissling, W Daniel; Carvalheiro, Luísa G; WallisDeVries, Michiel F; Franzén, Markus; Biesmeijer, Jacobus C
2016-04-15
Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits that influence their ability to move, reproduce or establish. Here, we show that functional traits related to dispersal, reproduction, habitat use and diet have influenced how three pollinator groups (bees, butterflies and hoverflies) responded to changes in climate and land-use in the Netherlands since 1950. Across the three pollinator groups, we found pronounced areal range expansions (>53%) and modelled range shifts towards the north (all taxa: 17-22 km), west (bees: 14 km) and east (butterflies: 11 km). The importance of specific functional traits for explaining distributional changes varied among pollinator groups. Larval diet preferences (i.e. carnivorous vs. herbivorous/detritivorous and nitrogen values of host plants, respectively) were important for hoverflies and butterflies, adult body size for hoverflies, and flight period length for all groups. Moreover, interactions among multiple traits were important to explain species' geographic range shifts, suggesting that taxon-specific multi-trait analyses are needed to predict how global change will affect biodiversity and ecosystem services.
Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses
Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj
2016-01-01
Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730
Green, Jonathan P; Foster, Rosie; Wilkins, Lucas; Osorio, Daniel; Hartley, Susan E
2015-01-01
Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.
Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea)
Wilkins, Lucas; Osorio, Daniel; Hartley, Susan E.
2015-01-01
Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour. PMID:26353086
Orindi, Benedict O.; Mbahin, Norber; Muasa, Peter N.; Mbuvi, David M.; Muya, Caroline M.; Pickett, John A.; Borgemeister, Christian W.
2017-01-01
Background For the first time, differential attraction of pathogen vectors to vertebrate animals is investigated for novel repellents which when applied to preferred host animals turn them into non-hosts thereby providing a new paradigm for innovative vector control. For effectively controlling tsetse flies (Glossina spp.), vectors of African trypanosomosis, causing nagana, repellents more powerful than plant derived, from a non-host animal the waterbuck, Kobus ellipsiprymnus defassa, have recently been identified. Here we investigate these repellents in the field to protect cattle from nagana by making cattle as unattractive as the buck. Methodology/Principal findings To dispense the waterbuck repellents comprising guaiacol, geranylacetone, pentanoic acid and δ-octalactone, (patent application) we developed an innovative collar-mounted release system for individual cattle. We tested protecting cattle, under natural tsetse challenge, from tsetse transmitted nagana in a large field trial comprising 1,100 cattle with repellent collars in Kenya for 24 months. The collars provided substantial protection to livestock from trypanosome infection by reducing disease levels >80%. Protected cattle were healthier, showed significantly reduced disease levels, higher packed cell volume and significantly increased weight. Collars >60% reduced trypanocide use, 72.7% increase in ownership of oxen per household and enhanced traction power (protected animals ploughed 66% more land than unprotected). Land under cultivation increased by 73.4%. Increase in traction power of protected animals reduced by 69.1% acres tilled by hand per household per ploughing season. Improved food security and household income from very high acceptance of collars (99%) motivated the farmers to form a registered community based organization promoting collars for integrated tsetse control and their commercialization. Conclusion/Significance Clear demonstration that repellents from un-preferred hosts prevent contact between host and vector, thereby preventing disease transmission: a new paradigm for vector control. Evidence that deploying water buck repellents converts cattle into non-hosts for tsetse flies—‘cows in waterbuck clothing’. PMID:29040267
48 CFR 636.104-70 - Foreign Service Buildings Act of 1926, as amended.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or limited to: (1) Host-country firms where required by international agreement; or (2) By the laws... preference. For purposes of determining competitive status, American-owned firms shall receive a ten (10...
Distributional preferences and competitive behavior☆
Balafoutas, Loukas; Kerschbamer, Rudolf; Sutter, Matthias
2012-01-01
We study experimentally the relationship between distributional preferences and competitive behavior. We find that spiteful subjects react strongest to competitive pressure and win in a tournament significantly more often than efficiency-minded and inequality averse subjects. However, when given the choice between a tournament and a piece rate scheme, efficiency-minded subjects choose the tournament most often, while spiteful and inequality averse subjects avoid it. When controlling for distributional preferences, risk attitudes and past performance, the gender gap in the willingness to compete is no longer significant, indicating that gender-related variables explain why twice as many men as women self-select into competition. PMID:23576829
Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.
Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H
2006-12-01
The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.
Mee, Jonathan A; Otto, Sarah P
2010-10-01
In several asexual taxa, reproduction requires mating with related sexual species to stimulate egg development, even though genetic material is not incorporated from the sexuals (gynogenesis). In cases in which gynogens do not invest in male function, they can potentially have a twofold competitive advantage over sexuals because the asexuals avoid the cost of producing males. If unmitigated, however, the competitive success of the asexuals would ultimately lead to their own demise, following the extinction of the sexual species that stimulate egg development. We have studied a model of mate choice among sexual individuals and asexual gynogens, where males of the sexual species preferentially mate with sexual females over gynogenetic females, to determine if such mating preferences can stably maintain both gynogenetic and sexual individuals within a community. Our model shows that stable coexistence of gynogens and their sexual hosts can occur when there is variation among males in the degree of preference for mating with sexual females and when pickier males pay a higher cost of preference. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
Tan, U
1993-06-01
The distribution of the right minus left (R - L) paw use and its relation to hemispheric weight was studied in tortoise-shell cats. Paw preference was assessed by a food reaching test. All males (N = 9) were left-preferent; females (N = 13) were predominantly right-preferent. There was an inverse relationship between the degree of left-paw preference and the right-brain weight in males (no correlation with left-brain weight). In females, the R - L paw use showed a negative linear correlation with the right- and left-brain weights: the right-pawedness decreased and the left-pawedness increased as the right- and left-brain weights increased. The distributions of the R - L paw use as well as the relationships between brain-weight and pawedness exhibited sexual dimorphism. The results suggest that mainly the genetic and hormonal factors may play an important role in emergence of motor asymmetry in cats. Annett's right shift theory of handedness was also discussed in light of these results.
Gouagna, Louis-Clément; Poueme, Rodrigue S; Dabiré, Kounbobr Roch; Ouédraogo, Jean-Bosco; Fontenille, Didier; Simard, Frédéric
2010-12-01
Sugar feeding by male mosquitoes is critical for their success in mating competition. However, the facets of sugar source finding under natural conditions remain unknown. Here, evidence obtained in Western Burkina Faso indicated that the distribution of An. gambiae s.s. (M and S molecular forms) males across different peri-domestic habitats is dependent on the availability of potential sugar sources from which they obtain more favorable sites for feeding or resting. Among field-collected anophelines, a higher proportion of specimens containing fructose were found on flowering Mangifera indica (Anacardiaceae), Dolonix regia (Fabaceae), Thevetia neriifolia (Apocynaceae), Senna siamea, and Cassia sieberiana (both Fabaceae) compared to that recorded on other nearby plants, suggesting that some plants are favored for use as a sugar source over others. Y-tube olfactometer assays with newly-emerged An. gambiae s.s. exposed to odors from individual plants and some combinations thereof showed that males use odor cues to guide their preference. The number of sugar-positive males was variable in a no-choice cage assay, consistent with the olfactory response patterns towards corresponding odor stimuli. These experiments provide the first evidence both in field and laboratory conditions for previously unstudied interactions between males of An. gambiae and natural sugar sources. © 2010 The Society for Vector Ecology.
Ocular Tropism of Respiratory Viruses
Rota, Paul A.; Tumpey, Terrence M.
2013-01-01
SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620
Field Biology of the Beetle Aegopsis bolboceridus in Brazil, with a List of Host Plants
Oliveira, Charles M.; Frizzas, Marina R.
2013-01-01
The white grub, Aegopsis bolboceridus (Thomson) (Coleoptera: Melolonthidae), is an important vegetable and corn pest in central Brazil. The objective of this study was to examine the biology of A. bolboceridus in the field and to update the list of its host plants. The study was conducted in an area with vegetable crops and corn located in the Federal District of Brazil. Samplings were taken to observe the biological stages of A. bolboceridus, preferred oviposition sites, and the adult swarming period. A. bolboceridus exhibited a univoltine cycle that lasted approximately 12 months from egg to active adults. Its eggs were found from October to November. The larval stage lasted approximately eight months, occurring between October and May. Pre-pupae were observed between April and June, and pupae were found between May and July. Inactive adults were observed in July and August, and the swarming period was between September and October. The females preferred to oviposit in sites with taller plants. Four new plant species were identified as hosts for this pest, and two new locations were recorded for its occurrence. This study is the first to describe the biology of a representative of the tribe Agaocephalini in Brazil. PMID:23909396
Beyond Hosting Capacity: Using Shortest Path Methods to Minimize Upgrade Cost Pathways: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensollen, Nicolas; Horowitz, Kelsey A; Palmintier, Bryan S
We present in this paper a graph based forwardlooking algorithm applied to distribution planning in the context of distributed PV penetration. We study the target hosting capacity (THC) problem where the objective is to find the cheapest sequence of system upgrades to reach a predefined hosting capacity target value. We show in this paper that commonly used short-term cost minimization approaches lead most of the time to suboptimal solutions. By comparing our method against such myopic techniques on real distribution systems, we show that our algorithm is able to reduce the overall integration costs by looking at future decisions. Becausemore » hosting capacity is hard to compute, this problem requires efficient methods to search the space. We demonstrate here that heuristics using domain specific knowledge can be efficiently used to improve the algorithm performance such that real distribution systems can be studied.« less
Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo
2016-01-01
Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. Published by Oxford University Press on behalf of the Annals of Botany Company.
Distributed run of a one-dimensional model in a regional application using SOAP-based web services
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard
This article describes the setup of a distributed computing system in Perl. It facilitates the parallel run of a one-dimensional environmental model on a number of simple network PC hosts. The system uses Simple Object Access Protocol (SOAP) driven web services offering the model run on remote hosts and a multi-thread environment distributing the work and accessing the web services. Its application is demonstrated in a regional run of a process-oriented biogenic emission model for the area of Germany. Within a network consisting of up to seven web services implemented on Linux and MS-Windows hosts, a performance increase of approximately 400% has been reached compared to a model run on the fastest single host.
Damle, Mrunal S; Giri, Ashok P; Sainani, Mohini N; Gupta, Vidya S
2005-11-01
Tomato (Lycopersicon esculentum, Mill; cultivar- Dhanashree) proteinase inhibitors (PIs) were tested for their trypsin inhibitory (TI) and Helicoverpa armigera gut proteinases inhibitory (HGPI) activity in different organs of the tomato plants. Analysis of TI and HGPI distribution in various parts of the plant showed that flowers accumulated about 300 and 1000 times higher levels of TI while 700 and 400 times higher levels of HGPI as compared to those in leaves and fruits, respectively. Field observation that H. armigera larvae infest leaves and fruits but not the flowers could be at least partially attributed to the protective role-played by the higher levels of PIs in the flower tissue. Tomato PIs inhibited about 50-80% HGP activity of H. armigera larvae feeding on various host plants including tomato, of larvae exposed to non-host plant PIs and of various larval instars. Tomato PIs were found to be highly stable to insect proteinases wherein incubation of inhibitor with HGP even for 3h at optimum conditions did not affect inhibitory activity. Bioassay using H. armigera larvae fed on artificial diet containing tomato PIs revealed adverse effect on larval growth, pupae development, adult formation and fecundity.
Eis, a novel family of arylalkylamine N-acetyltransferase (EC 2.3.1.87).
Pan, Qian; Zhao, Feng-Lan; Ye, Bang-Ce
2018-02-05
Enhanced intracellular survival (Eis) proteins were found to enhance the intracellular survival of mycobacteria in macrophages by acetylating aminoglycoside antibiotics to confer resistance to these antibiotics and by acetylating DUSP16/MPK-7 to suppress host innate immune defenses. Eis homologs composing of two GCN5 N-acetyltransferase regions and a sterol carrier protein fold are found widely in gram-positive bacteria. In this study, we found that Eis proteins have an unprecedented ability to acetylate many arylalkylamines, are a novel type of arylalkylamine N-acetyltransferase AANAT (EC 2.3.1.87). Sequence alignment and phyletic distribution analysis confirmed Eis belongs to a new aaNAT-like cluster. Among the cluster, we studied three typical Eis proteins: Eis_Mtb from Mycobacterium tuberculosis, Eis_Msm from Mycobacterium smegmatis, and Eis_Sen from Saccharopolyspora erythraea. Eis_Mtb prefers to acetylate histamine and octopamine, while Eis_Msm uses tyramine and octopamine as substrates. Unlike them, Eis_Sen exihibits good catalytic efficiencies for most tested arylalkylamines. Considering arylalkylamines such as histamine plays a fundamental role in immune reactions, future work linking of AANAT activity of Eis proteins to their physiological function will broaden our understanding of gram-positive pathogen-host interactions. These findings shed insights into the molecular mechanism of Eis, and reveal potential clinical implications for many gram-positive pathogens.
A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin.
Bont, Zoe; Arce, Carla; Huber, Meret; Huang, Wei; Mestrot, Adrien; Sturrock, Craig J; Erb, Matthias
2017-03-01
Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.
Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu
2013-01-01
Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.
Hoberg, Eric P; Brooks, Daniel R
2015-04-05
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernhard, E.; Mullaney, J. R.; Aird, J.; Hickox, R. C.; Jones, M. L.; Stanley, F.; Grimmett, L. P.; Daddi, E.
2018-05-01
The lack of a strong correlation between AGN X-ray luminosity (LX; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis models have incorporated this by assuming a broad, universal (i.e. does not depend on the host galaxy properties) probability distribution for AGN specific X-ray luminosities (i.e. the ratio of LX to host stellar mass; a common proxy for Eddington ratio). However, recent studies have demonstrated that this universal Eddington ratio distribution fails to reproduce the observed X-ray luminosity functions beyond z ˜ 1.2. Furthermore, empirical studies have recently shown that the Eddington ratio distribution may instead depend upon host galaxy properties, such as SFR and/or stellar mass. To investigate this further, we develop a population synthesis model in which the Eddington ratio distribution is different for star-forming and quiescent host galaxies. We show that, although this model is able to reproduce the observed X-ray luminosity functions out to z ˜ 2, it fails to simultaneously reproduce the observed flat relationship between SFR and X-ray luminosity. We can solve this, however, by incorporating a mass dependency in the AGN Eddington ratio distribution for star-forming host galaxies. Overall, our models indicate that a relative suppression of low Eddington ratios (λEdd ≲ 0.1) in lower mass galaxies (M* ≲ 1010 - 11 M⊙) is required to reproduce both the observed X-ray luminosity functions and the observed flat SFR/X-ray relationship.
NASA Astrophysics Data System (ADS)
Ceborska, Magdalena
2017-10-01
The crystal structures of the complexes of β-cyclodextrin with (+)- and (-)-camphors are presented. The comparison of the obtained crystal structures with available data for other complexes of β-cyclodextrin with chiral bicyclic monoterpenes (hydrocarbon (+)-fenchene and alcohols: (-)-isopinocampheol, and (+)-, and (-)-borneols) obtained from Cambridge Structural Database (CSD) shows the trend of alcohols to form dimeric complexes of 2:3 stoichiometry, while hydrocarbons and ketones prefer to form 2:2 host-guest inclusion complexes.
Infestivity of Demodex canis to hamster skin engrafted onto SCID mice.
Tani, Kenji; Une, Satoshi; Hasegawa, Atsuhiko; Adachi, Makoto; Kanda, Naoko; Watanabe, Shin-ichi; Nakaichi, Munekazu; Taura, Yasuho
2005-04-01
We demonstrated that Demodex canis was transferred to skin xenografts of a dog and a hamster onto severe combined immunodeficiency mice. After the transfer of mites, the number of eggs, larvae, nymphs and adult mites per gram of canine and hamster xenografts increased, whereas no live mites were detected on murine allograft. These results indicate that D. canis proliferates in hair follicles of dog and hamster skins but not in murine allograft. Therefore, D. canis may have host preference but not strict host-specificity.
The sampling characteristics of electivity indices.
Lechowicz, Martin J
1982-01-01
Electivity indices measure the utilization of food types (r) in relation to their abundance or availability in the environment (p). Foods that constitute a larger proportion of the diet than of the available foods are considered preferred; conversely those proportionately underrepresented in the diet are avoided. A food is eaten at random if its proportion in the diet equals its proportion in the environment. A family of electivity indices stemming from Ivlev's (1961) classic monograph exist and differ only in the particular algorithm used to calculate electivity from r and p.For each available index I graphed the values of electivity as contours for all combinations of r and p. These graphs are compared to illustrate the strengths and weaknesses of each index on the basis of the following criteria: 1) the value of the index when r=p for a food, 2) the symmetry of the electivity value as feeding deviates from random, 3) the possible range of index values, 4) the linearity of changes in electivity over the full range of r and p, 5) the sensitivity of the index to sampling errors, 6) the statistical testability of the electivity, and 7) the stability of the electivity value for a food type that changes relative abundance or occurs in combination with different food types. No one index ideally satisfies all the criteria.The host preferences of gypsy moth, Lymantria dispar, feeding on tree foliage in an undisturbed deciduous forest in southwestern Quebec, Canada were used to compare the available indices: Ivlev's electivity, E; Ivlev's forage ratio, E'; Jacob's modified electivity, D; Jacob's modified forage ratio, log Q; Chesson's alpha; Strauss' linear index, L; and Vanderploeg and Scavia's relativized electivity, E * . The electivity values calculated by each index differ one from another; host trees shown as preferred by one index will frequently appear avoided according to an alternative index. The rank order electivities for the 19 available host trees, however, are remarkably similar for all but Strauss' linear index, L. Populus grandidentata, Quercus rubra, Ostrya virginiana, and Amelanchier were the most preferred host trees in the sampled forest; Prunus serotina, Acer pensylvanicum, A. rubrum, Betula lutea, and Fraxinus americana were most avoided. The use of Vanderploeg and Scavia's E * index is recommended.
Petersen, Maria Faldborg; Steffensen, John Fleng
2003-01-01
Atlantic cod Gadus morhua has polymorphic haemoglobin, which can be separated into two homozygous types, HbI-1 and HbI-2, and one heterozygous type HbI-1/2. The geographical distribution of Atlantic cod with the different haemoglobin types varies, with the HbI(2) allele occurring at high frequency in northern regions, and the HbI(1) allele dominant in warmer areas. To determine if temperature is a selective parameter in the distribution of the haemoglobin types, the preferred temperature of the homozygous genotypes HbI-1 and HbI-2 was measured. We found that HbI-2 cod preferred a temperature of 8.2+/-1.5 degrees C while HbI-1 cod preferred 15.4+/-1.1 degrees C, and this preference was significant. The effect of hypoxia (35% oxygen saturation) on the preferred temperature was also measured. Previous studies showed that the preferred temperature of fish decreases during hypoxia, and this was the case for HbI-1 cod, which preferred 9.8+/-1.8 degrees C during hypoxia, whereas HbI-2 cod did not show this effect. The results indicate that environmental temperature changes will lead to a distributional change in the different haemoglobin types of Atlantic cod, global warming providing an advantage for HbI-1 cod. However, since HbI-1 cod prefer a low temperature under hypoxic conditions, a combination of increased water temperature and hypoxia could be unfavourable for Atlantic cod stocks.
USDA-ARS?s Scientific Manuscript database
Leafmining Agromyzidae (Diptera) are both common and widespread, yet little is known of the host associations and distribution of most species. Here we report on a multi-year study of agromyzid diversity on Long Island, New York. We reared 48 species and found six new host records. Of the 48 species...
Distributions of Bacterial Generalists among the Guts of Birds ...
Complex distributions of bacterial taxa within diverse animal microbiomes have inspired ecological and biogeographical approaches to revealing the functions of taxa that may be most important for host health. Of particular interest are bacteria that find many diverse habitats suitable for growth and remain competitive amongst finely-tuned host specialists. While previous work has focused on identifying these specialists, here our aims were to 1) identify generalist taxa, 2) identify taxonomic clades with enriched generalist diversity, and 3) describe the distribution of the largest generalist groups among hosts. We analyzed existing bacterial rRNA tag-sequencing data (v6) available on VAMPs (vamps.mbl.edu) from the microbiomes of 12 host species (106 samples total) spanning birds, mammals, and fish for generalist taxa using the CLAM test. OTUs with approximately equal abundance and a minimum of 10 reads in two hosts were classified as generalists. Generalist OTUs (n=2,982) were found in all hosts tested. Bacterial families Alcaligenaceae and Burkholderiaceae were significantly enriched with generalists OTUs compared to other families. Bacterial families such as Bacteroidaceae and Lachnospiraceae significantly lacked generalists OTUs compared to other families. Enterobacteriaceae, Peptostreptococcaceae, and Erysipelotrichaceae more so than other bacterial families were widely distributed and abundant in birds, mammals, and fish suggesting that these taxa mainta
Smith, Matthew E.; Henkel, Terry W.; Uehling, Jessie K.; Fremier, Alexander K.; Clarke, H. David; Vilgalys, Rytas
2013-01-01
Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. dipterocarpacea would harbor unique ECM fungi not found on the roots of D. jenmanii. Although statistical tests suggested that several ECM fungal species did exhibit host preferences for either P. dipterocarpacea or D. jenmanii, most of the ECM fungi were multi-host generalists. We also detected several ECM fungi that have never been found in long-term studies of nearby rainforests dominated by other Dicymbe species. One particular mushroom-forming fungus appears to be unique and may represent a new ECM lineage of Agaricales that is endemic to the Neotropics. PMID:23383090
Ortega-Olivares, Mirza P; García-Prieto, Luis; García-Varela, Martín
2014-05-12
As a result of this study, 8 new host (Botaurus lentiginosus for Glossocercus caribaensis and Valipora mutabilis; Egretta caerulea for Valipora minuta; Egretta thula for Glossocercus cyprinodontis; Egretta tricolor and Nycticorax nycticorax for Glossocercus caribaensis; Pelecanus occidentalis and Platalea ajaja for Paradilepis caballeroi) and 31 new locality records for gryporhynchid cestode species in Mexico are presented. With these data, the total number of species of this group of helminths in Mexico becomes 25 (19 named species and 6 unidentified taxa), which have been registered as parasites of fishes (47 host species) and (or) birds (20 host species). This information comes from 102 localities, pertaining to 20 of 32 Mexican states. Five of the 25 taxa have been exclusivelly collected in fishes, 7 in fish-eating birds, and 13 in both groups of hosts. The most frequent metacestodes found in Mexican fishes are the merocercoids of Cyclustera ralli, Valipora mutabilis, Parvitaenia cochlearii and Valipora campylancristrota; in adult stage, Glossocercus caribaensis was the species with the largest host spectrum, while Paradilepis caballeroi has the widest distribution range. The work includes parasite/host lists, as well as habitat, distribution, references and information on specimens' deposition.
Maia, João P; Harris, D James; Carranza, Salvador; Goméz-Díaz, Elena
2016-11-01
Understanding the processes that shape parasite diversification, their distribution and abundance provides valuable information on the dynamics and evolution of disease. In this study, we assessed the diversity, distribution, host-specificity and infection patterns of apicomplexan parasites in amphibians and reptiles from Oman, Arabia. Using a quantitative PCR approach we detected three apicomplexan parasites (haemogregarines, lankesterellids and sarcocystids). A total of 13 haemogregarine haplotypes were identified, which fell into four main clades in a phylogenetic framework. Phylogenetic analysis of six new lankesterellid haplotypes revealed that these parasites were distinct from, but phylogenetically related to, known Lankesterella species and might represent new taxa. The percentage of infected hosts (prevalence) and the number of haemogregarines in the blood (parasitaemia) varied significantly between gecko species. We also found significant differences in parasitaemia between haemogregarine parasite lineages (defined by phylogenetic clustering of haplotypes), suggesting differences in host-parasite compatibility between these lineages. For Pristurus rupestris, we found significant differences in haemogregarine prevalence between geographical areas. Our results suggest that host ecology and host relatedness may influence haemogregarine distributions and, more generally, highlight the importance of screening wild hosts from remote regions to provide new insights into parasite diversity.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
De Souza, Douglas G; Cezar, Henrique M; Rondina, Gustavo G; de Oliveira, Marcelo F; Da Silva, Juarez L F
2016-05-05
We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard's law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.
Open resource metagenomics: a model for sharing metagenomic libraries.
Neufeld, J D; Engel, K; Cheng, J; Moreno-Hagelsieb, G; Rose, D R; Charles, T C
2011-11-30
Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM(2)BL [1]). The CM(2)BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project.
Open resource metagenomics: a model for sharing metagenomic libraries
Neufeld, J.D.; Engel, K.; Cheng, J.; Moreno-Hagelsieb, G.; Rose, D.R.; Charles, T.C.
2011-01-01
Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project. PMID:22180823
How Do Earth-Sized, Short-Period Planets Form?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a day)23 hot Jupiters (larger than 4 times Earths radius and orbital period shorter than 10 days)243 small hot planets (smaller than 4 times Earths radius and orbital period between 1 and 10 days)They then compare the metallicity distributions of these three groups.Back to the Drawing BoardMetallicity distributions of the three statistical samples. The hot-Jupiter hosts (orange) have different distribution than the others; it is weighted more toward higher metallicities. [Winn et al. 2017]Winn and collaborators find that hosts of ultra-short-period planets do not have the same metallicity distribution as hot-Jupiter hosts; the metallicities of hot-Jupiter hosts are significantly higher. The metallicity distributions for hosts of ultra-short-period planets and hosts of small hot planets were statistically indistinguishable, however.These results strongly suggest that the majority of ultra-short-period planets are not the cores of former hot Jupiters. Alternative options include the possibility that they are the cores of smaller planets, such as sub-Neptunes, or that they are the short-period extension of the distribution of close-in, small rocky planets that formed by core accretion.This narrowing of the options for the formation of ultra-short-period planets is certainly intriguing. We can hope to further explore possibilities in the future after the Transiting Exoplanet Survey Satellites (TESS) comes online next year; TESS is expected to discover many more ultra-short-period planets that are too faint for Kepler to detect.CitationJoshua N. Winn et al 2017 AJ 154 60. doi:10.3847/1538-3881/aa7b7c
Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?
Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria
2014-01-01
The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.
Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner.
Golcu, Doruk; Gebre, Rahiwa Z; Sapolsky, Robert M
2014-08-01
The protozoan Toxoplasma gondii (T. gondii) manipulates the behavior of its rodent intermediate host to facilitate its passage to its feline definitive host. This is accomplished by a reduction of the aversive response that rodents show towards cat odors, which likely increases the predation risk. Females on average show similar changes as males. However, behaviors that relate to aversion and attraction are usually strongly influenced by the estrus cycle. In this study, we replicated behavioral effects of T. gondii in female rats, as well as expanded it to two novel behavioral paradigms. We also characterized the role of the estrus cycle in the behavioral effects of T. gondii on female rats. Uninfected females preferred to spend more time in proximity to rabbit rather than bobcat urine, and in a dark chamber rather than a lit chamber. Infected females lost both of these preferences, and also spent more time investigating social novelty (foreign bedding in their environment). Taken together, these data suggest that infection makes females less risk averse and more exploratory. Furthermore, this effect was influenced by the estrus cycle. Uninfected rats preferred rabbit urine to bobcat urine throughout the cycle except at estrus and metestrus. In contrast, infected rats lost this preference at every stage of the cycle except estrus. Commensurate with the possibility that this was a hormone-dependent effect, infected rats had elevated levels of circulating progesterone, a known anxiolytic. Copyright © 2014 Elsevier Inc. All rights reserved.
Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner
Golcu, Doruk; Gebre, Rahiwa Z.; Sapolsky, Robert M.
2016-01-01
The protozoan Toxoplasma gondii (T. gondii) manipulates the behavior of its rodent intermediate host to facilitate its passage to its feline definitive host. This is accomplished by a reduction of the aversive response that rodents show towards cat odors, which likely increases the predation risk. Females on average show similar changes as males. However, behaviors that relate to aversion and attraction are usually strongly influenced by the estrus cycle. In this study, we replicated behavioral effects of T. gondii in female rats, as well as expanded it to two novel behavioral paradigms. We also characterized the role of the estrus cycle in the behavioral effects of T. gondii on female rats. Uninfected females preferred to spend more time in proximity to rabbit rather than bobcat urine, and in a dark chamber rather than a lit chamber. Infected females lost both of these preferences, and also spent more time investigating social novelty (foreign bedding in their environment). Taken together, these data suggest that infection makes females less risk averse and more exploratory. Furthermore, this effect was influenced by the estrus cycle. Uninfected rats preferred rabbit urine to bobcat urine throughout the cycle except at estrus and metestrus. In contrast, infected rats lost this preference at every stage of the cycle except estrus. Commensurate with the possibility that this was a hormone-dependent effect, infected rats had elevated levels of circulating progesterone, a known anxiolytic. PMID:24907696
USDA-ARS?s Scientific Manuscript database
A field exploration was conducted to confirm the southernmost distribution of Cactoblastis cactorum in Argentina. The distribution of the moth was extended to the south (40° 10´S) and west (66° 56´W). The native Opuntia penicilligera was recorded as a host for the first time. These findings should ...
Host Star Dependence of Small Planet Mass–Radius Distributions
NASA Astrophysics Data System (ADS)
Neil, Andrew R.; Rogers, Leslie A.
2018-05-01
The planet formation environment around M dwarf stars is different than around G dwarf stars. The longer hot protostellar phase, activity levels and lower protoplanetary disk mass of M dwarfs all may leave imprints on the composition distribution of planets. We use hierarchical Bayesian modeling conditioned on the sample of transiting planets with radial velocity mass measurements to explore small planet mass–radius distributions that depend on host star mass. We find that the current mass–radius data set is consistent with no host star mass dependence. These models are then applied to the Kepler planet radius distribution to calculate the mass distribution of close-orbiting planets and how it varies with host star mass. We find that the average heavy element mass per star at short orbits is higher for M dwarfs compared to FGK dwarfs, in agreement with previous studies. This work will facilitate comparisons between microlensing planet surveys and Kepler, and will provide an analysis framework that can readily be updated as more M dwarf planets are discovered by ongoing and future surveys such as K2 and the Transiting Exoplanet Survey Satellite.
Host nutrition alters the variance in parasite transmission potential
Vale, Pedro F.; Choisy, Marc; Little, Tom J.
2013-01-01
The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts. PMID:23407498
Host nutrition alters the variance in parasite transmission potential.
Vale, Pedro F; Choisy, Marc; Little, Tom J
2013-04-23
The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.
13 CFR 107.1400 - Dividends or partnership distributions on 4 percent Preferred Securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Dividends or partnership distributions on 4 percent Preferred Securities. 107.1400 Section 107.1400 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees...
Distributive Equality, Relational Equality and Preferences about Higher Education
ERIC Educational Resources Information Center
Voigt, Kristin
2017-01-01
Are scenarios in which disadvantaged students prefer not to attend (certain) universities a concern from the perspective of an egalitarian theory of justice? I consider this question from the respective perspectives of two prominent approaches to equality: distributive theories, which focus on the fairness of inequalities in outcomes, and…
Havens, J A; Etges, W J
2013-03-01
Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within-population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair-mated adults from no-choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population-specific plasticity in CHCs. Different groups of CHCs mediated female choice-based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.
Hanski, Ilkka A
2011-08-30
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.
de Lange, Orlando; Schreiber, Tom; Schandry, Niklas; Radeck, Jara; Braun, Karl Heinz; Koszinowski, Julia; Heuer, Holger; Strauß, Annett; Lahaye, Thomas
2013-08-01
Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Grapefruit as a host for the West Indian fruit fly (Diptera: Tephritidae).
Mangan, Robert L; Thomas, Donald B; Moreno, Aleena Tarshis; Robacker, David
2011-02-01
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.
Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.
2013-01-01
Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities. PMID:24250752
Host choice in a bivoltine bee: how sensory constraints shape innate foraging behaviors.
Milet-Pinheiro, Paulo; Herz, Kerstin; Dötterl, Stefan; Ayasse, Manfred
2016-04-11
Many insects have multiple generations per year and cohorts emerging in different seasons may evolve their own phenotypes if they are subjected to different selection regimes. The bivoltine bee Andrena bicolor is reported to be polylectic and oligolectic (on Campanula) in the spring and summer generations, respectively. Neurological constraints are assumed to govern pollen diet in bees. However, evidence comes predominantly from studies with oligolectic bees. We have investigated how sensory constraints influence the innate foraging behavior of A. bicolor and have tested whether bees of different generations evolved behavioral and sensory polyphenism to cope better with the host flowers available in nature when they are active. Behavioral and sensory polyphenisms were tested in choice assays and electroantennographic analyses, respectively. In the bioassays, we found that females of both generations (1) displayed a similar innate relative reliance on visual and olfactory floral cues irrespective of the host plants tested; (2) did not prefer floral cues of Campanula to those of Taraxacum (or vice versa) and (3) did not display an innate preference for yellow and lilac colors. In the electroantennographic analyses, we found that bees of both generations responded to the same set of compounds. Overall, we did not detect seasonal polyphenism in any trait examined. The finding that bees of both generations are not sensory constrained to visit a specific host flower, which is in strict contrast to results from studies with oligolectic bees, suggest that also bees of the second generation have a flexibility in innate foraging behavior and that this is an adaptive trait in A. bicolor. We discuss the significance of our findings in context of the natural history of A. bicolor and in the broader context of host-range evolution in bees.
Doubleday, Laura A D; Adler, Lynn S
2017-07-01
Dioecy, a breeding system where individual plants are exclusively male or female, has evolved repeatedly. Extensive theory describes when dioecy should arise from hermaphroditism, frequently through gynodioecy, where females and hermaphrodites coexist, and when gynodioecy should be stable. Both pollinators and herbivores often prefer the pollen-bearing sex, with sex-specific fitness effects that can affect breeding system evolution. Nursery pollination, where adult insects pollinate flowers but their larvae feed on plant reproductive tissues, is a model for understanding mutualism evolution but could also yield insights into plant breeding system evolution. We studied a recently established nursery pollination interaction between native Hadena ectypa moths and introduced gynodioecious Silene vulgaris plants in North America to assess whether oviposition was biased toward females or hermaphrodites, which traits were associated with oviposition, and the effect of oviposition on host plant fitness. Oviposition was hermaphrodite-biased and associated with deeper flowers and more stems. Sexual dimorphism in flower depth, a trait also associated with oviposition on the native host plant ( Silene stellata ), explained the hermaphrodite bias. Egg-receiving plants experienced more fruit predation than plants that received no eggs, but relatively few fruits were lost, and egg receipt did not significantly alter total fruit production at the plant level. Oviposition did not enhance pollination; egg-receiving flowers usually failed to expand and produce seeds. Together, our results suggest that H. ectypa oviposition does not exert a large fitness cost on host plants, sex-biased interactions can emerge from preferences developed on a hermaphroditic host species, and new nursery pollination interactions can arise as negative or neutral rather than as mutualistic for the plant.
Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G
2016-01-01
Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Reward skewness coding in the insula independent of probability and loss
Tobler, Philippe N.
2011-01-01
Rewards in the natural environment are rarely predicted with complete certainty. Uncertainty relating to future rewards has typically been defined as the variance of the potential outcomes. However, the asymmetry of predicted reward distributions, known as skewness, constitutes a distinct but neuroscientifically underexplored risk term that may also have an impact on preference. By changing only reward magnitudes, we study skewness processing in equiprobable ternary lotteries involving only gains and constant probabilities, thus excluding probability distortion or loss aversion as mechanisms for skewness preference formation. We show that individual preferences are sensitive to not only the mean and variance but also to the skewness of predicted reward distributions. Using neuroimaging, we show that the insula, a structure previously implicated in the processing of reward-related uncertainty, responds to the skewness of predicted reward distributions. Some insula responses increased in a monotonic fashion with skewness (irrespective of individual skewness preferences), whereas others were similarly elevated to both negative and positive as opposed to no reward skew. These data support the notion that the asymmetry of reward distributions is processed in the brain and, taken together with replicated findings of mean coding in the striatum and variance coding in the cingulate, suggest that the brain codes distinct aspects of reward distributions in a distributed fashion. PMID:21849610
West, Daniel R.; Briggs, Jenny S.; Jacobi, William R.; Negron, Jose F.
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle ( Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.
Týč, Jiří; Votýpka, Jan; Klepetková, Helena; Suláková, Hana; Jirků, Milan; Lukeš, Julius
2013-10-01
Widely distributed, highly prevalent and speciose, trypanosomatid flagellates represent a convenient model to address topics such as host specificity, diversity and distribution of parasitic protists. Recent studies dealing with insect parasites of the class Kinetoplastea have been focused mainly on trypanosomatids from true bugs (Heteroptera), even though flies (Diptera, Brachycera) are also known as their frequent hosts. Phylogenetic position, host specificity and geographic distribution of trypanosomatids parasitizing dipteran hosts collected in nine countries on four continents (Bulgaria, Czech Republic, Ecuador, Ghana, Kenya, Madagascar, Mongolia, Papua New Guinea and Turkey) are presented. Spliced leader (SL) RNA gene repeats and small subunit (SSU) rRNA genes were PCR amplified from trypanosomatids infecting the gut of a total of forty fly specimens belonging to nine families. While SL RNA was mainly used for barcoding, SSU rRNA was utilized in phylogenetic analyses. Thirty-six different typing units (TUs) were revealed, of which 24 are described for the first time and represent potential new species. Multiple infections with several TUs are more common among brachyceran hosts than in true bugs, reaching one third of cases. When compared to trypanosomatids from heteropteran bugs, brachyceran flagellates are more host specific on the genus level. From seven previously recognized branches of monoxenous trypanosomatids, the Blastocrithidia and "jaculum" clades accommodate almost solely parasites of Heteroptera; two other clades (Herpetomonas and Angomonas) are formed primarily by flagellates found in dipteran hosts, with the most species-rich Leishmaniinae and the small Strigomonas and "collosoma" clades remaining promiscuous. Furthermore, two new clades of trypanosomatids from brachyceran flies emerged in this study. While flagellates from brachyceran hosts have moderate to higher host specificity, geographic distribution of at least some of them seems to be cosmopolitan. Moreover, the genus Angomonas, so far known only from South America, is present on other continents as well. Copyright © 2013 Elsevier Inc. All rights reserved.
STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2014-10-01
Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.
Bowen, Charles A.; Stedman, Ralph M.
1990-01-01
Examination of the branchial cavities of 8347 adult bloaters (Coregonus hoyi) collected from seven locations in Lake Huron for parasitic copepods yielded only the lernaeopodid Salmincola corpulentus; its distribution was limited to bloaters collected in the southern two-thirds of the lake. The infections were highest off Au Sable Point and on Six Fathom Bank, where 12 and 22%, of the bloaters examined were infected, respectively. All copepods seen were sexually mature females. The dorsal anterior portion of the branchial rim was the preferred site of attachment. The prevalence of S. corpulentus increased with length of the bloaters, reaching a maximum of 40% in fish longer than 330 mm; none were seen in bloaters shorter than 182 mm. The mean intensity of S. corpulentus was unusually low (1.0–1.9) for a lernaeopodid copepod and the maximum number of copepods found on a single bloater was five. Prevalences of copepods differed significantly (P < 0.05) between bloaters collected at different geographic locations, suggesting that S. corpulentus may be of value in bloater stock determination.
The planes of satellite galaxies problem, suggested solutions, and open questions
NASA Astrophysics Data System (ADS)
Pawlowski, Marcel S.
2018-02-01
Satellite galaxies of the Milky Way and of the Andromeda galaxy have been found to preferentially align in significantly flattened planes of satellite galaxies, and available velocity measurements are indicative of a preference of satellites in those structures to co-orbit. There is an increasing evidence that such kinematically correlated satellite planes are also present around more distant hosts. Detailed comparisons show that similarly anisotropic phase-space distributions of sub-halos are exceedingly rare in cosmological simulations based on the ΛCDM paradigm. Analogs to the observed systems have frequencies of ≤ 0.5% in such simulations. In contrast to other small-scale problems, the satellite planes issue is not strongly affected by baryonic processes because the distribution of sub-halos on scales of hundreds of kpc is dominated by gravitational effects. This makes the satellite planes one of the most serious small-scale problems for ΛCDM. This review summarizes the observational evidence for planes of satellite galaxies in the Local Group and beyond, and provides an overview of how they compare to cosmological simulations. It also discusses scenarios which aim at explaining the coherence of satellite positions and orbits, and why they all are currently unable to satisfactorily resolve the issue.
Intergenerational transfer of time and risk preferences
Brown, Heather; van der Pol, Marjon
2015-01-01
There is a growing interest in individual time and risk preferences. Little is known about how these preferences are formed. It is hypothesised that parents may transmit their preferences to their offspring. This paper examines the correlation in offspring and parental time and risk preferences using data from an annual household survey in Australia (the HILDA survey). Both time and risk preferences are examined and we explored whether the correlation in time and risk preferences varies across the distribution of preferences and across the across the four parent–child dyads (mother/daughter, mother/son, father/daughter, father/son). The results show that there is a significant relationship between parents and their young adult offspring risk and time preference measures. The correlation varies across the distribution of time preferences. The correlation was largest for longer planning horizons. Risk averse parents are more likely to have risk averse children. Except for the father/daughter dyad risk seeking parents are more likely to have risk seeking offspring. Some gender differences were found. The association in parental and offspring time preference was larger for mothers than fathers. Daughters are more likely to be influenced by their mother’s risk preferences, however, sons are equally influenced by both parents. The results of this study suggest that the transmission in preferences is more nuanced than previously thought and parental gender may be important. PMID:26412913
INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.
Bozick, Brooke A; Real, Leslie A
2015-12-01
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Vougidou, C; Sandalakis, V; Psaroulaki, A; Siarkou, V; Petridou, E; Ekateriniadou, L
2015-05-01
Pasteurella multocida is an important pathogen in food-producing animals and numerous virulence genes have been identified in an attempt to elucidate the pathogenesis of pasteurellosis. Currently, some of these genes including the capsule biosynthesis genes, the toxA and the OMPs-encoding genes have been suggested as epidemiological markers. However, the number of studies concerning ruminant isolates is limited, while, no attempt has ever been made to investigate the existence of ompA sequence diversity among P. multocida isolates. The aim of the present study was the comparative analysis of 144 P. multocida pneumonic isolates obtained from sheep, goats, cattle and pigs by determining the distribution of the ompA-types in conjunction with the cap-locus and toxA patterns. The ompA genotypes of the isolates were determined using both a PCR-RFLP method and DNA sequence analysis. The most prevalent capsule biosynthesis gene among the isolates was capA (86.1%); a noticeable, however, rate of capD-positive isolates (38.6%) was found among the ovine isolates that had been associated primarily with the capsule type A in the past. Moreover, an unexpectedly high percentage of toxA-positive pneumonic isolates was noticed among small ruminants (93.2% and 85.7% in sheep and goats, respectively), indicating an important epidemiological role of toxigenic P. multocida for these species. Despite their great heterogeneity, certain ompA-genotypes were associated with specific host species, showing evidence of a host preference. The OmpA-based PCR-RFLP method developed proved to be a valuable tool in typing P. multocida strains. Copyright © 2015 Elsevier GmbH. All rights reserved.
A missing dimension in measures of vaccination impacts
Gomes, M. Gabriela M.; Lipsitch, Marc; Wargo, Andrew R.; Kurath, Gael; Rebelo, Carlota; Medley, Graham F.; Coutinho, Antonio
2013-01-01
Immunological protection, acquired from either natural infection or vaccination, varies among hosts, reflecting underlying biological variation and affecting population-level protection. Owing to the nature of resistance mechanisms, distributions of susceptibility and protection entangle with pathogen dose in a way that can be decoupled by adequately representing the dose dimension. Any infectious processes must depend in some fashion on dose, and empirical evidence exists for an effect of exposure dose on the probability of transmission to mumps-vaccinated hosts [1], the case-fatality ratio of measles [2], and the probability of infection and, given infection, of symptoms in cholera [3]. Extreme distributions of vaccine protection have been termed leaky (partially protects all hosts) and all-or-nothing (totally protects a proportion of hosts) [4]. These distributions can be distinguished in vaccine field trials from the time dependence of infections [5]. Frailty mixing models have also been proposed to estimate the distribution of protection from time to event data [6], [7], although the results are not comparable across regions unless there is explicit control for baseline transmission [8]. Distributions of host susceptibility and acquired protection can be estimated from dose-response data generated under controlled experimental conditions [9]–[11] and natural settings [12], [13]. These distributions can guide research on mechanisms of protection, as well as enable model validity across the entire range of transmission intensities. We argue for a shift to a dose-dimension paradigm in infectious disease science and community health.
Evidence for host preference of Macrophomina phaseolina on strawberry
USDA-ARS?s Scientific Manuscript database
With the transition from broadcast preplant fumigation to individual bed treatment using alternative fumigants, M. phaseolina has become an emerging disease problem in California strawberry production, causing serious losses in all production districts. Population analysis using SSR markers of 68 i...
Single nucleotide polymorphisms in the Mycobacterium bovis genome resolve phylogenetic relationships
USDA-ARS?s Scientific Manuscript database
Mycobacterium bovis isolates carry restricted allelic variation yet exhibit a range of disease phenotypes and host preferences. Conventional genotyping methods target small hyper-variable regions of their genome and provide anonymous biallelic information insufficient to develop phylogeny. To resolv...
Plant scents modify innate colour preference in foraging swallowtail butterflies.
Yoshida, Mina; Itoh, Yuki; Ômura, Hisashi; Arikawa, Kentaro; Kinoshita, Michiyo
2015-07-01
Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females' tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The demography of words: The global decline in non-numeric fertility preferences, 1993-2011.
Frye, Margaret; Bachan, Lauren
2017-07-01
This paper examines the decline in non-numeric responses to questions about fertility preferences among women in the developing world. These types of response-such as 'don't know' or 'it's up to God'-have often been interpreted through the lens of fertility transition theory as an indication that reproduction has not yet entered women's 'calculus of conscious choice'. However, this has yet to be investigated cross-nationally and over time. Using 19 years of data from 32 countries, we find that non-numeric fertility preferences decline most substantially in the early stages of a country's fertility transition. Using country-specific and multilevel models, we explore the individual- and contextual-level characteristics associated with women's likelihood of providing a non-numeric response to questions about their fertility preferences. Non-numeric fertility preferences are influenced by a host of social factors, with educational attainment and knowledge of contraception being the most robust and consistent predictors.
Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef
2014-02-01
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Interspecific and host-related gene expression patterns in nematode-trapping fungi.
Andersson, Karl-Magnus; Kumar, Dharmendra; Bentzer, Johan; Friman, Eva; Ahrén, Dag; Tunlid, Anders
2014-11-11
Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii). The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function. This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.
Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data
Wang, Xuli; Zang, Rui; Yin, Zhiyuan; Kang, Zhensheng; Huang, Lili
2014-01-01
Fungal diseases are posing tremendous threats to global economy and food safety. Among them, Valsa canker, caused by fungi of Valsa and their Cytospora anamorphs, has been a serious threat to fruit and forest trees and is one of the most destructive diseases of apple in East Asia, particularly. Accurate and robust delimitation of pathogen species is not only essential for the development of effective disease control programs, but also will advance our understanding of the emergence of plant diseases. However, species delimitation is especially difficult in Valsa because of the high variability of morphological traits and in many cases the lack of the teleomorph. In this study, we delimitated species boundary for pathogens causing apple Valsa canker with a multifaceted approach. Based on three independent loci, the internal transcribed spacer (ITS), β-tubulin (Btu), and translation elongation factor-1 alpha (EF1α), we inferred gene trees with both maximum likelihood and Bayesian methods, estimated species tree with Bayesian multispecies coalescent approaches, and validated species tree with Bayesian species delimitation. Through divergence time estimation and ancestral host reconstruction, we tested the possible underlying mechanisms for fungal speciation and host-range change. Our results proved that two varieties of the former morphological species V. mali represented two distinct species, V. mali and V. pyri, which diverged about 5 million years ago, much later than the divergence of their preferred hosts, excluding a scenario of fungi–host co-speciation. The marked different thermal preferences and contrasting pathogenicity in cross-inoculation suggest ecological divergences between the two species. Apple was the most likely ancestral host for both V. mali and V. pyri. Host-range expansion led to the occurrence of V. pyri on both pear and apple. Our results also represent an example in which ITS data might underestimate species diversity. PMID:24834333
Wolfe, Benjamin E; Pringle, Anne
2012-04-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.
Wolfe, Benjamin E; Pringle, Anne
2012-01-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645
Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.
Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik
2018-05-01
Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Barros, Eduardo M; Torres, Jorge B; Bueno, Adeney F
2010-01-01
The host selection for oviposition by Spodoptera frugiperda (J.E. Smith) among corn, millet, cotton and soybean, and its relationship with the biological characteristics were investigated. Free and non-choice tests for oviposition using plots containing five plants each, from each host in plastic greenhouse, resulted in similar oviposition preference among the host plants. In addition, selected biological characteristics of S. frugiperda were determined in the laboratory with larvae feeding on host leaves, and the combination of leaf and cotton boll. Neonate larvae exhibited low success of colonization on cotton boll compared to the leaves of all other hosts. Spodoptera frugiperda fed only on cotton bolls exhibited longer larval and pupal development, and longer adult life span; however with similar egg production. Larvae fed cotton leaves during six days and then transferred to cotton bolls, however, exhibited development and reproduction similar to those reared on corn or only on cotton leaves. Therefore, the variations on immature stages of S. frugiperda were not related with host selection for oviposition which was similar among the studied hosts. Based on our data, the millet as a winter, rotational, and cover crop is a potential host for S. frugiperda, while leaves and cotton bolls were diets of intermediate suitability as compared to corn and soybean leaves.
Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.
Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago
2018-05-05
Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Elsheikha, Hany M
2009-08-26
The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.
Kim, Roger H; Kurtzman, Scott H; Collier, Ashley N; Shabahang, Mohsen M
Learning styles theory posits that learners have distinct preferences for how they assimilate new information. The VARK model categorizes learners based on combinations of 4 learning preferences: visual (V), aural (A), read/write (R), and kinesthetic (K). A previous single institution study demonstrated that the VARK preferences of applicants who interview for general surgery residency are different from that of the general population and that learning preferences were associated with performance on standardized tests. This multiinstitutional study was conducted to determine the distribution of VARK preferences among interviewees for general surgery residency and the effect of those preferences on United States Medical Licensing Examination (USMLE) scores. The VARK learning inventory was administered to applicants who interviewed at 3 general surgery programs during the 2014 to 2015 academic year. The distribution of VARK learning preferences among interviewees was compared with that of the general population of VARK respondents. Performance on USMLE Step 1 and Step 2 Clinical Knowledge was analyzed for associations with VARK learning preferences. Chi-square, analysis of variance, and Dunnett's test were used for statistical analysis, with p < 0.05 considered statistically significant. The VARK inventory was completed by a total of 140 residency interviewees. Sixty-four percent of participants were male, and 41% were unimodal, having a preference for a single learning modality. The distribution of VARK preferences of interviewees was different than that of the general population (p = 0.02). By analysis of variance, there were no overall differences in USMLE Step 1 and Step 2 Clinical Knowledge scores by VARK preference (p = 0.06 and 0.21, respectively). However, multiple comparison analysis using Dunnett's test revealed that interviewees with R preferences had significantly higher scores than those with multimodal preferences on USMLE Step 1 (239 vs. 222, p = 0.02). Applicants who interview for general surgery residency have a different pattern of VARK preferences than that of the general population. Interviewees with preferences for read/write learning modalities have higher scores on the USMLE Step 1 than those with multimodal preferences. Learning preferences may have impact on residency applicant selection and represents a topic that warrants further investigation. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gutiérrez-Ibáñez, Cristián; Villagra, Cristian A.; Niemeyer, Hermann M.
2007-07-01
Olfactory learning may occur at different stages of insect ontogeny. In parasitoid wasps, it has been mostly shown at adult emergence, whilst it remains controversial at pre-imaginal stages. We followed larval growth of the parasitoid wasp, Aphidius ervi Haliday, inside the host aphid, Acyrthosiphom pisum Harris, and characterised in detail the behaviour of third instar larvae. We found that just before cocoon spinning begins, the third instar larva bites a hole through the ventral side of the mummified aphid exoskeleton. We then evaluated whether this period of exposure to the external environment represented a sensitive stage for olfactory learning. In our first experiment, the third instar larvae were allowed to spin their cocoon on the host plant ( Vicia faba L.) surface or on a plastic plate covering the portion of the host plant exposed to the ventral opening. Recently emerged adults of the first group showed a preference for plant volatiles in a glass Y-olfactometer, whereas no preference was found in adults of the second group. In a second experiment, during the period in which the aphid carcass remains open or is being sealed by cocoon spinning, third instar larvae were exposed for 24 h to either vanilla odours or water vapours as control. In this experiment, half of the parasitoid larvae were later excised from the mummy to avoid further exposure to vanilla. Adult parasitoids exposed to vanilla during the larval ventral opening of the mummy showed a significant preference for vanilla odours in the olfactometer, regardless of excision from the mummy. The larval behaviour described and the results of the manipulations performed are discussed as evidences for the acquisition of olfactory memory during the larval stage and its persistence through metamorphosis.
Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.
Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R
2016-10-01
Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
Skedgel, Chris; Wailoo, Allan; Akehurst, Ron
2015-01-01
Economic theory suggests that resources should be allocated in a way that produces the greatest outputs, on the grounds that maximizing output allows for a redistribution that could benefit everyone. In health care, this is known as QALY (quality-adjusted life-year) maximization. This justification for QALY maximization may not hold, though, as it is difficult to reallocate health. Therefore, the allocation of health care should be seen as a matter of distributive justice as well as efficiency. A discrete choice experiment was undertaken to test consistency with the principles of QALY maximization and to quantify the willingness to trade life-year gains for distributive justice. An empirical ethics process was used to identify attributes that appeared relevant and ethically justified: patient age, severity (decomposed into initial quality and life expectancy), final health state, duration of benefit, and distributional concerns. Only 3% of respondents maximized QALYs with every choice, but scenarios with larger aggregate QALY gains were chosen more often and a majority of respondents maximized QALYs in a majority of their choices. However, respondents also appeared willing to prioritize smaller gains to preferred groups over larger gains to less preferred groups. Marginal analyses found a statistically significant preference for younger patients and a wider distribution of gains, as well as an aversion to patients with the shortest life expectancy or a poor final health state. These results support the existence of an equity-efficiency tradeoff and suggest that well-being could be enhanced by giving priority to programs that best satisfy societal preferences. Societal preferences could be incorporated through the use of explicit equity weights, although more research is required before such weights can be used in priority setting. © The Author(s) 2014.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
.... Each applicant also distributed preferred shares of Dutch Auction Rate Transferable Securities (``DARTS'') of the acquiring fund to holders of applicants' Auction Rate Preferred Shares, DARTS, or Auction... distributed Dutch Auction Rate Transferable Securities (``DARTS'') of the acquiring fund to the holders of...
Context Dependency of a Marine Defensive Symbiosis over a Wide Geographic Distribution
NASA Astrophysics Data System (ADS)
Lopanik, N.; Linneman, J.; Mathew, M.
2016-02-01
The invasive, temperate marine bryozoan Bugula neritina possesses an uncultured, vertically-transmitted bacterial symbiont that produces natural products known as bryostatins. These unpalatable polyketides protect the host larvae from predation. In the western Atlantic, two host genotypes were thought to be restricted to differing latitudes based on the presence of the defensive symbiont: undefended aposymbiotic Type N animals were found at high latitudes, while defended symbiotic Type S colonies were found at low latitudes, where predation pressure is higher. We found that the host genotypes are more widespread than previously thought, but that the symbiont appeared to be restricted to hosts at lower latitudes, regardless of host phylotype, leading to the question of what factors are involved in restricting the symbiont's range. We performed reciprocal transplant experiments of symbiotic and antibiotic-cured hosts, and measured host growth, a proxy for fitness. Our data indicate that possession of the symbiont appears to present a physiological cost to the host. This cost may be more pronounced at higher latitudes where the benefit of symbiosis is less apparent. In addition, preliminary evidence suggests that symbiont titer in a Type S colony from North Carolina transplanted to Virginia is reduced over a period of nearly 4 months. Taken together, these results suggest that a combination of factors may play a role in the distribution of the defensive symbiont: (i) hosts that possess the symbiont are outcompeted by aposymbiotic conspecifics at high latitude and reduced levels of predation pressure; and (ii) symbiont growth may be inhibited or sanctioned by the host at high latitudes. As defensive symbiosis is an important trait in marine habitats, understanding factors that affect the distribution of both the host and symbiont are necessary to fully appreciate the ecological impact of symbiosis.
Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T
2008-11-01
The goal of this study was to document the distribution and establishment A. fulica such as their feeding preference and behavior in situ. The study was carried out at the city of Lauro de Freitas, Bahia state, Brazil, between November 2001 and November 2002. We used catch per unit effort methods to determine abundance, distribution, habitat choice and food preferences. The abundance and distribution of A. fulica was most representative in urban area, mainly near to the coastline. Lots and house gardens were the most preferred sites during active hours. The results indicated that A. fulica started their activity at the end of the evening and stopped in mid-morning. Their preferred food were vascular plants such as Hibiscus syriacus, Ricinus communis, Carica papaya, Galinsonga coccinea, Lippia alba, Ixora coccinea, Musa parasidisiaca, Mentha spicata and Cymbopogon citrates. Our results indicate that A. fulica are well adapted and established in this city and modified environments facilitate their establishment and dispersion. However, human perturbation, such as clearance of lots could be limiting for the persistence of A. fulica populations.
Tremmel, Martin; Müller, Caroline
2013-08-01
The food quality of a given host plant tissue will influence the performance and may also affect the preference behavior of herbivorous animals. As nutrient contents and defense metabolite concentrations can vary significantly between different parts of a plant and change over time, herbivores are potentially confronted with diet differing in quality even when feeding on a single plant individual. Here we investigated to what extent feeding exclusively either on young or old, mature leaves of Brassica rapa or on a mixed diet of young and old leaves offered in alternating order affects the larval performance, food consumption, and the host preference behavior of adult mustard leaf beetles, Phaedon cochleariae. Analyzing different leaf quality traits, we found lower water contents, no changes in C:N ratio but more than threefold higher glucosinolate concentrations in young compared to old leaves. Individuals reared on mixed diet performed as well as animals reared on young leaves. Thus, compared to animals feeding exclusively on highly nutritious young leaves, diet-mixing individuals may balance the lower nutrient intake by a dilution of adverse secondary metabolites. Alternatively, they may integrate over the variation in their food, using a previously assimilated resource for growth at times of scarcity. Animals reared on old leaves grew less and had a prolonged larval developmental time, although they showed increased consumption indicating compensatory feeding. Additionally, we found that experience with a certain diet affected the preference behavior. Whereas individuals reared exclusively on young leaves preferred young over old leaves for feeding and oviposition, we did not find any preferences by animals reared exclusively on old leaves or by females reared on alternating diet. Thus, in contrast to positive feedbacks for animals reared on young leaves, an integrative growth of diet-mixing individuals potentially leads to a lack of feedback during development. Taken together, our results suggest that different diet regimes can lead to comparable performance of mustard leaf beetles but experienced feedbacks may differ and thus convey distinct diet preferences. Copyright © 2013 Elsevier Ltd. All rights reserved.
Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang
2016-01-01
A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228
Endophagy of biting midges attacking cavity-nesting birds.
Votýpka, J; Synek, P; Svobodová, M
2009-09-01
Feeding behaviour, host preferences and the spectrum of available hosts determine the role of vectors in pathogen transmission. Feeding preferences of blood-feeding Diptera depend on, among others factors, the willingness of flies to attack their hosts either in the open (exophagy) or in enclosed places (endophagy). As far as ornithophilic blood-feeding Diptera are concerned, the biting midges (Diptera: Ceratopogonidae) and blackflies (Diptera: Simuliidae) are generally considered to be strictly exophagous. We determined which blood-sucking Diptera enter nest cavities and feed on birds by placing sticky foil traps inside artificial nest boxes. A total of 667 females of eight species of biting midges of the genus Culicoides (Latreille, 1809) were captured on traps during 2006-2007, with Culicoides truncorum (Edwards, 1939) being the dominant species. DNA blood analyses of blood-engorged females proved that midges actually fed on birds nesting in the boxes. Three species were identified as endophagous: Culicoides truncorum, Culicoides pictipennis (Staeger, 1839), and Culicoides minutissimus (Zetterstedt, 1855). Our study represents the first evidence that ornithophilic biting midges are endophagous. The fact that we caught no blackflies in the bird boxes supports the exophagy of blackflies. We believe that our findings are important for surveillance programmes focusing on Diptera that transmit various bird pathogens.
Hot-Jupiter Breakfasts Realign Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
Two researchers at the University of Chicago have recently developed a new theory to explain an apparent dichotomy in the orbits of planets around cool vs. hot stars. Their model proposes that the spins of cool stars are affected when they ingest hot Jupiters (HJs) early in their stellar lifetimes. A Puzzling Dichotomy: In exoplanet studies, there is a puzzling difference observed between planet orbits around cool and hot (those with Teff ≥ 6250 K) stars: the orbital planes of planets around cool stars are primarily aligned with the host star's spin, whereas the orbital planes of planets around hot stars seem to be randomly distributed. Previous attempts to explain this dichotomy have focused on tidal interactions between the host star and the planets observed in the system. Now Titos Matsakos and Arieh Königl have taken these models a step further — by including in their calculations not only the effects of observed planets, but also those of HJs that may have been swallowed by the star long before we observed the systems. Modeling Meals: Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015]" class="size-thumbnail wp-image-223" height="386" src="http://aasnova.org/wp-content/uploads/2015/08/fig22-260x386.png" width="260" /> Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015] The authors' model assumes that as HJs are formed and migrate inward through the protoplanetary disk, they stall out near the star (where they have periods of ~2 days) and get stranded as the gas disk evaporates around them. Tidal interactions can cause these planets to become ingested by the host star within 1 Gyr. Using Monte Carlo simulations, the authors model these star-planet tidal interactions and evolve a total of 10^6 systems: half with hot (Teff = 6400 K), main-sequence hosts, and half with cool (Teff = 5500 K), solar-type hosts. The initial obliquities — the angle between the stellar spin and the planets' orbital angular momentum vectors — are randomly distributed between 0° and 180°. The authors find that early stellar ingestion of planets might be very common: to match observations, roughly half of all stellar hosts must ingest an HJ early in their lifetimes! This scenario results in a good match with observational data: about 50% of cool hosts' spins become roughly aligned with the orbital plane of their planets after they absorb the orbital angular momentum of the HJ they ingest. Hot stars, on the other hand, generally retain their random distributions of obliquity, because their angular momentum is typically higher than the orbital angular momentum of the ingested planet. Citation: Titos Matsakos and Arieh Königl 2015, ApJ, 809, L20. doi: 10.1088/2041-8205/809/2/L20
Husereau, Don
2015-01-01
Future perceptions of the value of curative therapies will likely reflect debates happening today about preferences for funding of preventive versus treatment programs, as well as funding orphan drugs. Little is known about how society will value curative therapies versus standard treatments, and the significant role of a host of psychological factors compared to overarching concerns about opportunity costs will likely lead to significant tension between payers and the public. More research to clarify societal preferences and healthcare goals in regards to curative therapies and in light of the potential for significant opportunity costs will be required. Given what we know about preferences for the funding of prevention and treatment measures, we should expect that cures will not be held to a different measure.
Egg retention and dispersal activity in the parasitoid wasp, Trichogramma principium
Reznik, S. Ya; Klyueva, N. Z.
2006-01-01
Effects of egg retention on movement and dispersal activity of Trichogramma principium (Hymenoptera, Trichogrammatidae) females were investigated under laboratory conditions. Individual females were observed during one minute in the absence of hosts. Movement activity and dispersal rate were estimated by the length of the track and by the distance from the start point, respectively. Before the test, all wasps during 2 – 4 days were presented with a possibility to parasitize a factitious laboratory host, Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae). Wasps that had parasitized before the test show significant reduction of spontaneous walking activity and dispersal rate when compared with females that refused to parasitize the non-preferred host (i.e. manifested egg retention). This effect cannot be considered as a direct arrestment reaction to the host because during the test period, no hosts were provided. Thus, egg retention results not only in temporal spread, but also in more intensive spatial dispersal of a group of simultaneously emerged females. PMID:19537969
Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.
2016-01-01
Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876
Hudson, Patrick L.; Bowen, Charles A.; Stedman, Ralph M.
1994-01-01
Ergasilus nerkae was found infecting ninespine stickleback (Pungitius pungitius) in lakes Huron, Michigan, and Superior and threespine stickleback (Gasterosteus aculeatus) and round whitefish (Prosopium cylindraceum) in Lake Huron. Based upon the literature and study of archived material, we propose that E. nerkae is enzootic to the Great Lakes and that ninespine stickleback are a preferred host in Lake Huron. Prevalence of E. nerkae on ninespine stickleback increased from 17% in June to 68% in September, but mean intensity remained light. Prevalence and mean intensity increased with host length. Ergasilus luciopercarum is also reported on lake trout (Salvelinus namaycush) and largemouth bass (Micropterus salmoides) for the first time. Host-parasite records of Ergasilus spp. in North America are reviewed, biology and taxonomy are summarized, and a checklist of Great Lakes host-parasite-locality records is provided. At present, eight species of Ergasilus are known to infect 42 Great Lakes fish species.
Abdullah, Zayed S; Butt, Tariq M
Stereochemistry plays a significant role in structure-activity relationships of messenger chemicals. The ability to distinguish between enantiomers and geometric isomers, however, may be limited to certain stereoisomeric substances, depending on the receiver. In this study, we assessed the preference of the peripheral olfactometry system of Western Flower Thrips, F. occidentalis towards ubiquitously expressed host compounds, with a goal of establishing whether particular stereoisomers enhance host odour recognition. We demonstrate that the peripheral olfactory system of a highly polyphagous thysanopteran insect has evolved to become highly sensitive to a type of green leaf volatile, which is highly ubiquitous in the plant kingdom. We show that there is a significantly greater antennal response to the cis isomer, more so than the isomerisation by-product trans -3-hexen-1-ol. We demonstrate that the antennae of a highly polyphagous insect are capable of detecting common plant secondary metabolites in both enantiomeric forms.
Baumgartner, Finn A.; Toth, Gunilla B.
2014-01-01
Sacoglossans are specialized marine herbivores that tend to have a close evolutionary relationship with their macroalgal hosts, but the widely distributed species Elysia viridis can associate with several algal species. However, most previous investigations on the field abundance and size distribution of E. viridis have focussed on Codium spp. in the British Isles, and algae from this genus are considered superior hosts for E. viridis. In the present study, we investigated the abundance and size distribution of E. viridis on 6 potential host algae with differing morphologies (the septate species Cladophora sericea, Cladophora rupestris, Chaetomorpha melagonium, and Ceramium virgatum, as well as the siphonaceous species Codium fragile and Bryopsis sp.) at 2 sites on the Swedish west coast over the course of a year. In spring, slugs were almost absent from all algal hosts. In summer and autumn, E. viridis consistently occurred on several of the algal species at both sites. The highest number of small E. viridis were found on C. sericea, intermediate numbers of significantly larger E. viridis were found on C. rupestris, while fewer, intermediate sized animals were found on C. fragile. Throughout the study period, only a few E. viridis individuals were found on C. melagonium, Bryopsis sp., and C. virgatum. Our results indicate that E. viridis is an annual species in Sweden, capable of exploiting co-occurring congeneric and intergeneric algal hosts with differing morphologies. These results corroborate previous findings that E. viridis can exploit several different algal species, but does not indicate that C. fragile is a superior host. PMID:24647524
USDA-ARS?s Scientific Manuscript database
Molecular and biometric assessment and subsequent redescription of Myzodium mimulicola (Drew & Sampson) is provided. New host and distributional data for North America are presented, including the first record from Alaska. The current study determined that Myzodium knowltoni (Smith & Robinson) is a ...
Kaeding, Allison J.; Ast, Jennifer C.; Pearce, Meghan M.; Urbanczyk, Henryk; Kimura, Seishi; Endo, Hiromitsu; Nakamura, Masaru; Dunlap, Paul V.
2007-01-01
“Photobacterium mandapamensis” (proposed name) and Photobacterium leiognathi are closely related, phenotypically similar marine bacteria that form bioluminescent symbioses with marine animals. Despite their similarity, however, these bacteria can be distinguished phylogenetically by sequence divergence of their luminescence genes, luxCDAB(F)E, by the presence (P. mandapamensis) or the absence (P. leiognathi) of luxF and, as shown here, by the sequence divergence of genes involved in the synthesis of riboflavin, ribBHA. To gain insight into the possibility that P. mandapamensis and P. leiognathi are ecologically distinct, we used these phylogenetic criteria to determine the incidence of P. mandapamensis as a bioluminescent symbiont of marine animals. Five fish species, Acropoma japonicum (Perciformes, Acropomatidae), Photopectoralis panayensis and Photopectoralis bindus (Perciformes, Leiognathidae), Siphamia versicolor (Perciformes, Apogonidae), and Gadella jordani (Gadiformes, Moridae), were found to harbor P. mandapamensis in their light organs. Specimens of A. japonicus, P. panayensis, and P. bindus harbored P. mandapamensis and P. leiognathi together as cosymbionts of the same light organ. Regardless of cosymbiosis, P. mandapamensis was the predominant symbiont of A. japonicum, and it was the apparently exclusive symbiont of S. versicolor and G. jordani. In contrast, P. leiognathi was found to be the predominant symbiont of P. panayensis and P. bindus, and it appears to be the exclusive symbiont of other leiognathid fishes and a loliginid squid. A phylogenetic test for cospeciation revealed no evidence of codivergence between P. mandapamensis and its host fishes, indicating that coevolution apparently is not the basis for this bacterium's host preferences. These results, which are the first report of bacterial cosymbiosis in fish light organs and the first demonstration that P. leiognathi is not the exclusive light organ symbiont of leiognathid fishes, demonstrate that the host species ranges of P. mandapamensis and P. leiognathi are substantially distinct. The host range difference underscores possible differences in the environmental distributions and physiologies of these two bacterial species. PMID:17369329
Study of Fallout Shelter Ventilation Kit Placement Design
1980-05-01
all this Rop.def APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRSIGUTION STATEMENT (of the obol,atel ".r, sdg ~n Block 20, It 4lforI9...plans Kfor each shelter facility in that host area have been completed. ~In addition, alternative systems for distributing shelter supplies from the...alternative systems for distributing shelter supplies from Jthe host-area county seat to individual shelter faciiities were evaluated. Analysis of
NASA Astrophysics Data System (ADS)
Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.
2012-06-01
Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P < 0.01). However, none of the environmental variables measured (sedimentation, temperature, chlorophyll concentration, salinity) affected symbiont distribution. The discord between environmental variables and symbiont distributions suggests that the symbionts are physiologically tolerant of the variable environmental regime across this location and that the distribution of different host-symbiont combinations present is largely dependent on coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.
Zuo, Shaozhi; Huwer, Bastian; Bahlool, Qusay; Al-Jubury, Azmi; Daugbjerg Christensen, Nanna; Korbut, Rozalia; Kania, Per; Buchmann, Kurt
2016-06-15
A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6-49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6-30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31-48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007-2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1-8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod (>38 cm) compared to smaller cod (<30 cm) recently recorded in the Baltic cod population.
Perspectives of South American physicians hosting foreign rotators in emergency medicine
2014-01-01
Background Emergency Medicine (EM) is increasingly becoming an international field. The number of fellowships in International EM in the USA is growing along with opportunities to complete international health electives (IHEs) during residency training. The impact on host institutions, however, has not been adequately investigated. The objective of this study is to assess the experience of several South American hospitals hosting foreign EM residents completing IHEs. Methods Anonymous, semi-structured one-on-one interviews were conducted with physicians working in Emergency Departments in three hospitals in Lima, Peru and one hospital in Buenos Aires, Argentina. All participants reported previously working with EM foreign rotators. Interviews were analyzed qualitatively and coded for common themes. Results Three department chairs, six residents, and 15 attending physicians were interviewed (total = 24). After qualitative analysis of interviews, two broad theme categories emerged: Benefits and Challenges. Most commonly reported benefits were knowledge sharing about emergency medical systems (78%), medical knowledge transfer (58%), and long-term relationship formation (42%). Top challenges included rotator Spanish language proficiency (70%) lack of reciprocity (58%), and level of training and rotation length (25%). Spanish proficiency related directly to how involved rotators became in patient care (e.g., taking a history, participating in rounds) but was not completely prohibitive, as a majority of physicians interviewed felt comfortable speaking in English. Lack of reciprocity refers to the difficulty of sending host physicians abroad as well as failed attempts at building long-lasting relationships with foreign institutions. Lastly, 25% preferred rotators to stay for at least 1 month and rotate in the last year of EM residency. This latter preference increased knowledge transfer from rotator to host. Conclusions Our research identified benefits and challenges of IHEs in Emergency Medicine from the perspective of physician hosts in several hospitals in South America. Our results suggest that IHEs function best when EM residents rotate later in residency training and when relationships are maintained and deepened among those involved including host physicians, rotators, and institutions. This leads to future rotators, project collaboration, research, and publications which not only benefit individuals involved but also the wider field of Emergency Medicine. PMID:25635188
Perspectives of South American physicians hosting foreign rotators in emergency medicine.
O'Donnell, Steve; Adler, David H; Inboriboon, Pholaphat Charles; Alvarado, Hermenegildo; Acosta, Raul; Godoy-Monzon, Daniel
2014-01-01
Emergency Medicine (EM) is increasingly becoming an international field. The number of fellowships in International EM in the USA is growing along with opportunities to complete international health electives (IHEs) during residency training. The impact on host institutions, however, has not been adequately investigated. The objective of this study is to assess the experience of several South American hospitals hosting foreign EM residents completing IHEs. Anonymous, semi-structured one-on-one interviews were conducted with physicians working in Emergency Departments in three hospitals in Lima, Peru and one hospital in Buenos Aires, Argentina. All participants reported previously working with EM foreign rotators. Interviews were analyzed qualitatively and coded for common themes. Three department chairs, six residents, and 15 attending physicians were interviewed (total = 24). After qualitative analysis of interviews, two broad theme categories emerged: Benefits and Challenges. Most commonly reported benefits were knowledge sharing about emergency medical systems (78%), medical knowledge transfer (58%), and long-term relationship formation (42%). Top challenges included rotator Spanish language proficiency (70%) lack of reciprocity (58%), and level of training and rotation length (25%). Spanish proficiency related directly to how involved rotators became in patient care (e.g., taking a history, participating in rounds) but was not completely prohibitive, as a majority of physicians interviewed felt comfortable speaking in English. Lack of reciprocity refers to the difficulty of sending host physicians abroad as well as failed attempts at building long-lasting relationships with foreign institutions. Lastly, 25% preferred rotators to stay for at least 1 month and rotate in the last year of EM residency. This latter preference increased knowledge transfer from rotator to host. Our research identified benefits and challenges of IHEs in Emergency Medicine from the perspective of physician hosts in several hospitals in South America. Our results suggest that IHEs function best when EM residents rotate later in residency training and when relationships are maintained and deepened among those involved including host physicians, rotators, and institutions. This leads to future rotators, project collaboration, research, and publications which not only benefit individuals involved but also the wider field of Emergency Medicine.
Uranga, Santiago; Picó, Ana; Lampreave, Carlos; Cebollada, Alberto; Otal, Isabel
2018-01-01
The insertion Sequence IS6110, only present in the pathogens of the Mycobacterium tuberculosis Complex (MTBC), has been the gold-standard epidemiological marker for TB for more than 25 years, but biological implications of IS6110 transposition during MTBC adaptation to humans remain elusive. By studying 2,236 clinical isolates typed by IS6110-RFLP and covering the MTBC, we remarked a lineage-specific content of IS6110 being higher in modern globally distributed strains. Once observed the IS6110 distribution in the MTBC, we selected representative isolates and found a correlation between the normalized expression of IS6110 and its abundance in MTBC chromosomes. We also studied the molecular regulation of IS6110 transposition and we found a synergistic action of two post-transcriptional mechanisms: a -1 ribosomal frameshift and a RNA pseudoknot which interferes translation. The construction of a transcriptionally active transposase resulted in 20-fold increase of the transposition frequency. Finally, we examined transposition in M. bovis and M. tuberculosis during laboratory starvation and in a mouse infection model of TB. Our results shown a higher transposition in M. tuberculosis, that preferably happens during TB infection in mice and after one year of laboratory culture, suggesting that IS6110 transposition is dynamically adapted to the host and to adverse growth conditions. PMID:29649213