Sample records for distribution model based

  1. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  2. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    PubMed

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.

  3. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    NASA Astrophysics Data System (ADS)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  4. Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.

    2018-04-01

    Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.

  5. ProbOnto: ontology and knowledge base of probability distributions.

    PubMed

    Swat, Maciej J; Grenon, Pierre; Wimalaratne, Sarala

    2016-09-01

    Probability distributions play a central role in mathematical and statistical modelling. The encoding, annotation and exchange of such models could be greatly simplified by a resource providing a common reference for the definition of probability distributions. Although some resources exist, no suitably detailed and complex ontology exists nor any database allowing programmatic access. ProbOnto, is an ontology-based knowledge base of probability distributions, featuring more than 80 uni- and multivariate distributions with their defining functions, characteristics, relationships and re-parameterization formulas. It can be used for model annotation and facilitates the encoding of distribution-based models, related functions and quantities. http://probonto.org mjswat@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Model-Based Diagnosis in a Power Distribution Test-Bed

    NASA Technical Reports Server (NTRS)

    Scarl, E.; McCall, K.

    1998-01-01

    The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.

  7. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    PubMed

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  8. Coupling of the simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed

    USDA-ARS?s Scientific Manuscript database

    To represent the effects of frozen soil on hydrology in cold regions, a new physically based distributed hydrological model has been developed by coupling the simultaneous heat and water model (SHAW) with the geomorphology based distributed hydrological model (GBHM), under the framework of the water...

  9. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus)

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin

    2017-01-01

    Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.

  10. Derivation of low flow frequency distributions under human activities and its implications

    NASA Astrophysics Data System (ADS)

    Gao, Shida; Liu, Pan; Pan, Zhengke; Ming, Bo; Guo, Shenglian; Xiong, Lihua

    2017-06-01

    Low flow, refers to a minimum streamflow in dry seasons, is crucial to water supply, agricultural irrigation and navigation. Human activities, such as groundwater pumping, influence low flow severely. In order to derive the low flow frequency distribution functions under human activities, this study incorporates groundwater pumping and return flow as variables in the recession process. Steps are as follows: (1) the original low flow without human activities is assumed to follow a Pearson type three distribution, (2) the probability distribution of climatic dry spell periods is derived based on a base flow recession model, (3) the base flow recession model is updated under human activities, and (4) the low flow distribution under human activities is obtained based on the derived probability distribution of dry spell periods and the updated base flow recession model. Linear and nonlinear reservoir models are used to describe the base flow recession, respectively. The Wudinghe basin is chosen for the case study, with daily streamflow observations during 1958-2000. Results show that human activities change the location parameter of the low flow frequency curve for the linear reservoir model, while alter the frequency distribution function for the nonlinear one. It is indicated that alter the parameters of the low flow frequency distribution is not always feasible to tackle the changing environment.

  11. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  12. Distributive Education Competency-Based Curriculum Models by Occupational Clusters. Final Report.

    ERIC Educational Resources Information Center

    Davis, Rodney E.; Husted, Stewart W.

    To meet the needs of distributive education teachers and students, a project was initiated to develop competency-based curriculum models for marketing and distributive education clusters. The models which were developed incorporate competencies, materials and resources, teaching methodologies/learning activities, and evaluative criteria for the…

  13. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99)

    USDA-ARS?s Scientific Manuscript database

    A distributed biosphere hydrological model, the so called water and energy budget-based distributed hydrological model (WEB-DHM), has been developed by fully coupling a biosphere scheme (SiB2) with a geomorphology-based hydrological model (GBHM). SiB2 describes the transfer of turbulent fluxes (ener...

  14. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  15. Research and Design of the Three-tier Distributed Network Management System Based on COM / COM + and DNA

    NASA Astrophysics Data System (ADS)

    Liang, Likai; Bi, Yushen

    Considered on the distributed network management system's demand of high distributives, extensibility and reusability, a framework model of Three-tier distributed network management system based on COM/COM+ and DNA is proposed, which adopts software component technology and N-tier application software framework design idea. We also give the concrete design plan of each layer of this model. Finally, we discuss the internal running process of each layer in the distributed network management system's framework model.

  16. On Nonequivalence of Several Procedures of Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2005-01-01

    The normal theory based maximum likelihood procedure is widely used in structural equation modeling. Three alternatives are: the normal theory based generalized least squares, the normal theory based iteratively reweighted least squares, and the asymptotically distribution-free procedure. When data are normally distributed and the model structure…

  17. Analytical performance specifications for changes in assay bias (Δbias) for data with logarithmic distributions as assessed by effects on reference change values.

    PubMed

    Petersen, Per H; Lund, Flemming; Fraser, Callum G; Sölétormos, György

    2016-11-01

    Background The distributions of within-subject biological variation are usually described as coefficients of variation, as are analytical performance specifications for bias, imprecision and other characteristics. Estimation of specifications required for reference change values is traditionally done using relationship between the batch-related changes during routine performance, described as Δbias, and the coefficients of variation for analytical imprecision (CV A ): the original theory is based on standard deviations or coefficients of variation calculated as if distributions were Gaussian. Methods The distribution of between-subject biological variation can generally be described as log-Gaussian. Moreover, recent analyses of within-subject biological variation suggest that many measurands have log-Gaussian distributions. In consequence, we generated a model for the estimation of analytical performance specifications for reference change value, with combination of Δbias and CV A based on log-Gaussian distributions of CV I as natural logarithms. The model was tested using plasma prolactin and glucose as examples. Results Analytical performance specifications for reference change value generated using the new model based on log-Gaussian distributions were practically identical with the traditional model based on Gaussian distributions. Conclusion The traditional and simple to apply model used to generate analytical performance specifications for reference change value, based on the use of coefficients of variation and assuming Gaussian distributions for both CV I and CV A , is generally useful.

  18. Improving Distributed Diagnosis Through Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew John; Roychoudhury, Indranil; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2011-01-01

    Complex engineering systems require efficient fault diagnosis methodologies, but centralized approaches do not scale well, and this motivates the development of distributed solutions. This work presents an event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, by using the structural model decomposition capabilities provided by Possible Conflicts. We develop a distributed diagnosis algorithm that uses residuals computed by extending Possible Conflicts to build local event-based diagnosers based on global diagnosability analysis. The proposed approach is applied to a multitank system, and results demonstrate an improvement in the design of local diagnosers. Since local diagnosers use only a subset of the residuals, and use subsystem models to compute residuals (instead of the global system model), the local diagnosers are more efficient than previously developed distributed approaches.

  19. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  20. Real-time modeling of heat distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas

    Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.

  1. Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models

    Treesearch

    Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston

    2016-01-01

    Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...

  2. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  3. Indiana Distributive Education Competency Based Model.

    ERIC Educational Resources Information Center

    Davis, Rod; And Others

    This Indiana distributive education competency-based curriculum model is designed to help teachers and local administrators plan and conduct a comprehensive marketing and distributive education program. It is divided into three levels--one level for each year of a three-year program. The competencies common to a variety of marketing and…

  4. Drug Distribution. Part 1. Models to Predict Membrane Partitioning.

    PubMed

    Nagar, Swati; Korzekwa, Ken

    2017-03-01

    Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.

  5. Distribution pattern of public transport passenger in Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Narendra, Alfa; Malkhamah, Siti; Sopha, Bertha Maya

    2018-03-01

    The arrival and departure distribution pattern of Trans Jogja bus passenger is one of the fundamental model for simulation. The purpose of this paper is to build models of passengers flows. This research used passengers data from January to May 2014. There is no policy that change the operation system affecting the nature of this pattern nowadays. The roads, buses, land uses, schedule, and people are relatively still the same. The data then categorized based on the direction, days, and location. Moreover, each category was fitted into some well-known discrete distributions. Those distributions are compared based on its AIC value and BIC. The chosen distribution model has the smallest AIC and BIC value and the negative binomial distribution found has the smallest AIC and BIC value. Probability mass function (PMF) plots of those models were compared to draw generic model from each categorical negative binomial distribution models. The value of accepted generic negative binomial distribution is 0.7064 and 1.4504 of mu. The minimum and maximum passenger vector value of distribution are is 0 and 41.

  6. Estimation of synthetic flood design hydrographs using a distributed rainfall-runoff model coupled with a copula-based single storm rainfall generator

    NASA Astrophysics Data System (ADS)

    Candela, A.; Brigandì, G.; Aronica, G. T.

    2014-07-01

    In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.

  7. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  8. Modeling and experiments of the adhesion force distribution between particles and a surface.

    PubMed

    You, Siming; Wan, Man Pun

    2014-06-17

    Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.

  9. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;

  10. A knowledge base architecture for distributed knowledge agents

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel; Walls, Bryan

    1990-01-01

    A tuple space based object oriented model for knowledge base representation and interpretation is presented. An architecture for managing distributed knowledge agents is then implemented within the model. The general model is based upon a database implementation of a tuple space. Objects are then defined as an additional layer upon the database. The tuple space may or may not be distributed depending upon the database implementation. A language for representing knowledge and inference strategy is defined whose implementation takes advantage of the tuple space. The general model may then be instantiated in many different forms, each of which may be a distinct knowledge agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA model as well as using more well known message passing mechanisms. An implementation of the model is presented describing strategies used to keep inference tractable without giving up expressivity. An example applied to a power management and distribution network for Space Station Freedom is given.

  11. ON A POSSIBLE SIZE/COLOR RELATIONSHIP IN THE KUIPER BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, R. E.; Kavelaars, J. J., E-mail: repike@uvic.ca

    2013-10-01

    Color measurements and albedo distributions introduce non-intuitive observational biases in size-color relationships among Kuiper Belt Objects (KBOs) that cannot be disentangled without a well characterized sample population with systematic photometry. Peixinho et al. report that the form of the KBO color distribution varies with absolute magnitude, H. However, Tegler et al. find that KBO color distributions are a property of object classification. We construct synthetic models of observed KBO colors based on two B-R color distribution scenarios: color distribution dependent on H magnitude (H-Model) and color distribution based on object classification (Class-Model). These synthetic B-R color distributions were modified tomore » account for observational flux biases. We compare our synthetic B-R distributions to the observed ''Hot'' and ''Cold'' detected objects from the Canada-France Ecliptic Plane Survey and the Meudon Multicolor Survey. For both surveys, the Hot population color distribution rejects the H-Model, but is well described by the Class-Model. The Cold objects reject the H-Model, but the Class-Model (while not statistically rejected) also does not provide a compelling match for data. Although we formally reject models where the structure of the color distribution is a strong function of H magnitude, we also do not find that a simple dependence of color distribution on orbit classification is sufficient to describe the color distribution of classical KBOs.« less

  12. On the development of a new methodology in sub-surface parameterisation on the calibration of groundwater models

    NASA Astrophysics Data System (ADS)

    Klaas, D. K. S. Y.; Imteaz, M. A.; Sudiayem, I.; Klaas, E. M. E.; Klaas, E. C. M.

    2017-10-01

    In groundwater modelling, robust parameterisation of sub-surface parameters is crucial towards obtaining an agreeable model performance. Pilot point is an alternative in parameterisation step to correctly configure the distribution of parameters into a model. However, the methodology given by the current studies are considered less practical to be applied on real catchment conditions. In this study, a practical approach of using geometric features of pilot point and distribution of hydraulic gradient over the catchment area is proposed to efficiently configure pilot point distribution in the calibration step of a groundwater model. A development of new pilot point distribution, Head Zonation-based (HZB) technique, which is based on the hydraulic gradient distribution of groundwater flow, is presented. Seven models of seven zone ratios (1, 5, 10, 15, 20, 25 and 30) using HZB technique were constructed on an eogenetic karst catchment in Rote Island, Indonesia and their performances were assessed. This study also concludes some insights into the trade-off between restricting and maximising the number of pilot points and offers a new methodology for selecting pilot point properties and distribution method in the development of a physically-based groundwater model.

  13. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  14. Base stock system for patient vs impatient customers with varying demand distribution

    NASA Astrophysics Data System (ADS)

    Fathima, Dowlath; Uduman, P. Sheik

    2013-09-01

    An optimal Base-Stock inventory policy for Patient and Impatient Customers using finite-horizon models is examined. The Base stock system for Patient and Impatient customers is a different type of inventory policy. In case of the model I, Base stock for Patient customer case is evaluated using the Truncated Exponential Distribution. The model II involves the study of Base-stock inventory policies for Impatient customer. A study on these systems reveals that the Customers wait until the arrival of the next order or the customers leaves the system which leads to lost sale. In both the models demand during the period [0, t] is taken to be a random variable. In this paper, Truncated Exponential Distribution satisfies the Base stock policy for the patient customer as a continuous model. So far the Base stock for Impatient Customers leaded to a discrete case but, in this paper we have modeled this condition into a continuous case. We justify this approach mathematically and also numerically.

  15. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  16. Presence-only Species Distribution Modeling for King Mackerel (Scomberomorus cavalla) and its 31 Prey Species in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cai, X.; Simons, J.; Carollo, C.; Sterba-Boatwright, B.; Sadovski, A.

    2016-02-01

    Ecosystem based fisheries management has been broadly recognized throughout the world as a way to achieve better conservation. Therefore, there is a strong need for mapping of multi-species interactions or spatial distributions. Species distribution models are widely applied since information regarding the presence of species is usually only available for limited locations due to the high cost of fisheries surveys. Instead of regular presence and absence records, a large proportion of the fisheries survey data have only presence records. This makes the modeling problem one of one-class classification (presence only), which is much more complex than the regular two-class classification (presence/absence). In this study, four different presence-only species distribution algorithms (Bioclim, Domain, Mahal and Maxent) were applied using 13 environmental parameters (e.g., depth, DO, bottom types) as predictors to model the distribution of king mackerel (Scomberomorus cavalla) and its 31 prey species in the Gulf of Mexico (a total of 13625 georeferenced presence records from OBIS and GBIF were used). Five-fold cross validations were applied for each of the 128 (4 algorithms × 32 species) models. Area under curve (AUC) and correlation coefficient (R) were used to evaluate the model performances. The AUC of the models based on these four algorithms were 0.83±0.14, 0.77±0.16, 0.94±0.06 and 0.94±0.06, respectively; while R for the models were 0.47±0.27, 0.43±0.24, 0.27±0.16 and 0.76±0.16, respectively. Post hoc with Tukey's test showed that AUC for the Maxent-based models were significantly (p<0.05) higher than those for Bioclim and Domain based models, but insignificantly different from those for Mahal-based models (p=0.955); while R for the Maxent-based models were significantly higher than those for all the other three types of models (p<0.05). Thus, we concluded that the Maxent-based models had the best performance. High AUC and R also indicated that Maxent-based models could provide robust and reliable results to model target species distributions, and they can be further used to model the king mackerel food web in the Gulf of Mexico to help managers better manage related fisheries resources.

  17. Invasive Species Distribution Modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?

    Treesearch

    Tomáš Václavík; Ross K. Meentemeyer

    2009-01-01

    Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges...

  18. Some bivariate distributions for modeling the strength properties of lumber

    Treesearch

    Richard A. Johnson; James W. Evans; David W. Green

    Accurate modeling of the joint stochastic nature of the strength properties of dimension lumber is essential to the determination of reliability-based design safety factors. This report reviews the major techniques for obtaining bivariate distributions and then discusses bivariate distributions whose marginal distributions suggest they might be useful for modeling the...

  19. Metocean design parameter estimation for fixed platform based on copula functions

    NASA Astrophysics Data System (ADS)

    Zhai, Jinjin; Yin, Qilin; Dong, Sheng

    2017-08-01

    Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.

  20. Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species

    PubMed Central

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only. PMID:23840330

  1. Updating known distribution models for forecasting climate change impact on endangered species.

    PubMed

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.

  2. Information Interaction Study for DER and DMS Interoperability

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Lu, Yiming; Lv, Guangxian; Liu, Peng; Chen, Yu; Zhang, Xinhui

    The Common Information Model (CIM) is an abstract data model that can be used to represent the major objects in Distribution Management System (DMS) applications. Because the Common Information Model (CIM) doesn't modeling the Distributed Energy Resources (DERs), it can't meet the requirements of DER operation and management for Distribution Management System (DMS) advanced applications. Modeling of DER were studied based on a system point of view, the article initially proposed a CIM extended information model. By analysis the basic structure of the message interaction between DMS and DER, a bidirectional messaging mapping method based on data exchange was proposed.

  3. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution.

    PubMed

    Zhao, Lei; Mi, Dong; Sun, Yeqing

    2017-05-07

    The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Bayesian alternative for multi-objective ecohydrological model specification

    NASA Astrophysics Data System (ADS)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.

  5. A physically based catchment partitioning method for hydrological analysis

    NASA Astrophysics Data System (ADS)

    Menduni, Giovanni; Riboni, Vittoria

    2000-07-01

    We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.

  6. Integrating distributional, spatial prioritization, and individual-based models to evaluate potential critical habitat networks: A case study using the Northern Spotted Owl

    EPA Science Inventory

    As part of the northern spotted owl recovery planning effort, we evaluated a series of alternative critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individual-based population model (HexSim). With this suite ...

  7. A component-based, integrated spatially distributed hydrologic/water quality model: AgroEcoSystem-Watershed (AgES-W) overview and application

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...

  8. Incorporating linguistic knowledge for learning distributed word representations.

    PubMed

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.

  9. Incorporating Linguistic Knowledge for Learning Distributed Word Representations

    PubMed Central

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581

  10. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.

  11. Sample sizes and model comparison metrics for species distribution models

    Treesearch

    B.B. Hanberry; H.S. He; D.C. Dey

    2012-01-01

    Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....

  12. Bringing modeling to the masses: A web based system to predict potential species distributions

    USGS Publications Warehouse

    Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul

    2010-01-01

    Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.

  13. Distributed activation energy model parameters of some Turkish coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunes, M.; Gunes, S.K.

    2008-07-01

    A multi-reaction model based on distributed activation energy has been applied to some Turkish coals. The kinetic parameters of distributed activation energy model were calculated via computer program developed for this purpose. It was observed that the values of mean of activation energy distribution vary between 218 and 248 kJ/mol, and the values of standard deviation of activation energy distribution vary between 32 and 70 kJ/mol. The correlations between kinetic parameters of the distributed activation energy model and certain properties of coal have been investigated.

  14. Microscopic understanding of heavy-tailed return distributions in an agent-based model

    NASA Astrophysics Data System (ADS)

    Schmitt, Thilo A.; Schäfer, Rudi; Münnix, Michael C.; Guhr, Thomas

    2012-11-01

    The distribution of returns in financial time series exhibits heavy tails. It has been found that gaps between the orders in the order book lead to large price shifts and thereby to these heavy tails. We set up an agent-based model to study this issue and, in particular, how the gaps in the order book emerge. The trading mechanism in our model is based on a double-auction order book. In situations where the order book is densely occupied with limit orders we do not observe fat-tailed distributions. As soon as less liquidity is available, a gap structure forms which leads to return distributions with heavy tails. We show that return distributions with heavy tails are an order-book effect if the available liquidity is constrained. This is largely independent of specific trading strategies.

  15. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E.; Talbert, Marian; Talbert, Colin

    2018-01-01

    Understanding invasive species distributions and potential invasions often requires broad‐scale information on the environmental tolerances of the species. Further, resource managers are often faced with knowing these broad‐scale relationships as well as nuanced environmental factors related to their landscape that influence where an invasive species occurs and potentially could occur. Using invasive buffelgrass (Cenchrus ciliaris), we developed global models and local models for Saguaro National Park, Arizona, USA, based on location records and literature on physiological tolerances to environmental factors to investigate whether environmental relationships of a species at a global scale are also important at local scales. In addition to correlative models with five commonly used algorithms, we also developed a model using a priori user‐defined relationships between occurrence and environmental characteristics based on a literature review. All correlative models at both scales performed well based on statistical evaluations. The user‐defined curves closely matched those produced by the correlative models, indicating that the correlative models may be capturing mechanisms driving the distribution of buffelgrass. Given climate projections for the region, both global and local models indicate that conditions at Saguaro National Park may become more suitable for buffelgrass. Combining global and local data with correlative models and physiological information provided a holistic approach to forecasting invasive species distributions.

  16. Are We Predicting the Actual or Apparent Distribution of Temperate Marine Fishes?

    PubMed Central

    Monk, Jacquomo; Ierodiaconou, Daniel; Harvey, Euan; Rattray, Alex; Versace, Vincent L.

    2012-01-01

    Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological function in the face of global environmental change – particularly changes in climate and resource exploitation. In the absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine temperate marine sedentary fishes for a 25.7 km2 study region off the coast of southeastern Australia. We use generalized linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared (relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species apparent distribution (i.e. a combination of species distribution and the probability of detecting it). Consequently, we also encourage researchers and marine managers to carefully interpret model predictions. PMID:22536325

  17. Uncertainty Evaluation and Appropriate Distribution for the RDHM in the Rockies

    NASA Astrophysics Data System (ADS)

    Kim, J.; Bastidas, L. A.; Clark, E. P.

    2010-12-01

    The problems that hydrologic models have in properly reproducing the processes involved in mountainous areas, and in particular the Rocky Mountains, are widely acknowledged. Herein, we present an application of the National Weather Service RDHM distributed model over the Durango River basin in Colorado. We focus primarily in the assessment of the model prediction uncertainty associated with the parameter estimation and the comparison of the model performance using parameters obtained with a priori estimation following the procedure of Koren et al., and those obtained via inverse modeling using a variety of Markov chain Monte Carlo based optimization algorithms. The model evaluation is based on traditional procedures as well as non-traditional ones based on the use of shape matching functions, which are more appropriate for the evaluation of distributed information (e.g. Hausdorff distance, earth movers distance). The variables used for the model performance evaluation are discharge (with internal nodes), snow cover and snow water equivalent. An attempt to establish the proper degree of distribution, for the Durango basin with the RDHM model, is also presented.

  18. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula

    PubMed Central

    Schorr, G; Holstein, N; Pearman, P B; Guisan, A; Kadereit, J W

    2012-01-01

    The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data. PMID:22833799

  19. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  20. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  1. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection

    NASA Astrophysics Data System (ADS)

    Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan

    2017-03-01

    To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.

  2. Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring.

    PubMed

    Kuhlmann, Levin; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J

    2017-04-01

    Tracking brain states with electrophysiological measurements often relies on short-term averages of extracted features and this may not adequately capture the variability of brain dynamics. The objective is to assess the hypotheses that this can be overcome by tracking distributions of linear models using anesthesia data, and that anesthetic brain state tracking performance of linear models is comparable to that of a high performing depth of anesthesia monitoring feature. Individuals' brain states are classified by comparing the distribution of linear (auto-regressive moving average-ARMA) model parameters estimated from electroencephalographic (EEG) data obtained with a sliding window to distributions of linear model parameters for each brain state. The method is applied to frontal EEG data from 15 subjects undergoing propofol anesthesia and classified by the observers assessment of alertness/sedation (OAA/S) scale. Classification of the OAA/S score was performed using distributions of either ARMA parameters or the benchmark feature, Higuchi fractal dimension. The highest average testing sensitivity of 59% (chance sensitivity: 17%) was found for ARMA (2,1) models and Higuchi fractal dimension achieved 52%, however, no statistical difference was observed. For the same ARMA case, there was no statistical difference if medians are used instead of distributions (sensitivity: 56%). The model-based distribution approach is not necessarily more effective than a median/short-term average approach, however, it performs well compared with a distribution approach based on a high performing anesthesia monitoring measure. These techniques hold potential for anesthesia monitoring and may be generally applicable for tracking brain states.

  3. Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean.

    PubMed

    Pinkernell, Stefan; Beszteri, Bánk

    2014-08-01

    Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.

  4. Comparison of Multidimensional Item Response Models: Multivariate Normal Ability Distributions versus Multivariate Polytomous Ability Distributions. Research Report. ETS RR-08-45

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; von Davier, Matthias; Lee, Yi-Hsuan

    2008-01-01

    Multidimensional item response models can be based on multivariate normal ability distributions or on multivariate polytomous ability distributions. For the case of simple structure in which each item corresponds to a unique dimension of the ability vector, some applications of the two-parameter logistic model to empirical data are employed to…

  5. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  6. Process-based modeling of species' responses to climate change - a proof of concept using western North American trees

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Merow, C.; Record, S.; Menlove, J.; Gray, A.; Cundiff, J.; McMahon, S.; Enquist, B. J.

    2013-12-01

    Current attempts to forecast how species' distributions will change in response to climate change suffer under a fundamental trade-off: between modeling many species superficially vs. few species in detail (between correlative vs. mechanistic models). The goals of this talk are two-fold: first, we present a Bayesian multilevel modeling framework, dynamic range modeling (DRM), for building process-based forecasts of many species' distributions at a time, designed to address the trade-off between detail and number of distribution forecasts. In contrast to 'species distribution modeling' or 'niche modeling', which uses only species' occurrence data and environmental data, DRMs draw upon demographic data, abundance data, trait data, occurrence data, and GIS layers of climate in a single framework to account for two processes known to influence range dynamics - demography and dispersal. The vision is to use extensive databases on plant demography, distributions, and traits - in the Botanical Information and Ecology Network, the Forest Inventory and Analysis database (FIA), and the International Tree Ring Data Bank - to develop DRMs for North American trees. Second, we present preliminary results from building the core submodel of a DRM - an integral projection model (IPM) - for a sample of dominant tree species in western North America. IPMs are used to infer demographic niches - i.e., the set of environmental conditions under which population growth rate is positive - and project population dynamics through time. Based on >550,000 data points derived from FIA for nine tree species in western North America, we show IPM-based models of their current and future distributions, and discuss how IPMs can be used to forecast future forest productivity, mortality patterns, and inform efforts at assisted migration.

  7. Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2015-10-01

    Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.

  8. Shallow cumuli ensemble statistics for development of a stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs

    2014-05-01

    According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.

  9. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  10. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  11. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters.

    PubMed

    Harrison, Luke B; Larsson, Hans C E

    2015-03-01

    Likelihood-based methods are commonplace in phylogenetic systematics. Although much effort has been directed toward likelihood-based models for molecular data, comparatively less work has addressed models for discrete morphological character (DMC) data. Among-character rate variation (ACRV) may confound phylogenetic analysis, but there have been few analyses of the magnitude and distribution of rate heterogeneity among DMCs. Using 76 data sets covering a range of plants, invertebrate, and vertebrate animals, we used a modified version of MrBayes to test equal, gamma-distributed and lognormally distributed models of ACRV, integrating across phylogenetic uncertainty using Bayesian model selection. We found that in approximately 80% of data sets, unequal-rates models outperformed equal-rates models, especially among larger data sets. Moreover, although most data sets were equivocal, more data sets favored the lognormal rate distribution relative to the gamma rate distribution, lending some support for more complex character correlations than in molecular data. Parsimony estimation of the underlying rate distributions in several data sets suggests that the lognormal distribution is preferred when there are many slowly evolving characters and fewer quickly evolving characters. The commonly adopted four rate category discrete approximation used for molecular data was found to be sufficient to approximate a gamma rate distribution with discrete characters. However, among the two data sets tested that favored a lognormal rate distribution, the continuous distribution was better approximated with at least eight discrete rate categories. Although the effect of rate model on the estimation of topology was difficult to assess across all data sets, it appeared relatively minor between the unequal-rates models for the one data set examined carefully. As in molecular analyses, we argue that researchers should test and adopt the most appropriate model of rate variation for the data set in question. As discrete characters are increasingly used in more sophisticated likelihood-based phylogenetic analyses, it is important that these studies be built on the most appropriate and carefully selected underlying models of evolution. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Using Historical Atlas Data to Develop High-Resolution Distribution Models of Freshwater Fishes

    PubMed Central

    Huang, Jian; Frimpong, Emmanuel A.

    2015-01-01

    Understanding the spatial pattern of species distributions is fundamental in biogeography, and conservation and resource management applications. Most species distribution models (SDMs) require or prefer species presence and absence data for adequate estimation of model parameters. However, observations with unreliable or unreported species absences dominate and limit the implementation of SDMs. Presence-only models generally yield less accurate predictions of species distribution, and make it difficult to incorporate spatial autocorrelation. The availability of large amounts of historical presence records for freshwater fishes of the United States provides an opportunity for deriving reliable absences from data reported as presence-only, when sampling was predominantly community-based. In this study, we used boosted regression trees (BRT), logistic regression, and MaxEnt models to assess the performance of a historical metacommunity database with inferred absences, for modeling fish distributions, investigating the effect of model choice and data properties thereby. With models of the distribution of 76 native, non-game fish species of varied traits and rarity attributes in four river basins across the United States, we show that model accuracy depends on data quality (e.g., sample size, location precision), species’ rarity, statistical modeling technique, and consideration of spatial autocorrelation. The cross-validation area under the receiver-operating-characteristic curve (AUC) tended to be high in the spatial presence-absence models at the highest level of resolution for species with large geographic ranges and small local populations. Prevalence affected training but not validation AUC. The key habitat predictors identified and the fish-habitat relationships evaluated through partial dependence plots corroborated most previous studies. The community-based SDM framework broadens our capability to model species distributions by innovatively removing the constraint of lack of species absence data, thus providing a robust prediction of distribution for stream fishes in other regions where historical data exist, and for other taxa (e.g., benthic macroinvertebrates, birds) usually observed by community-based sampling designs. PMID:26075902

  13. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    PubMed

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.

  14. Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment

    NASA Astrophysics Data System (ADS)

    Zeigler, Bernard P.; Lee, J. S.

    1998-08-01

    In the context of a DARPA ASTT project, we are developing an HLA-compliant distributed simulation environment based on the DEVS formalism. This environment will provide a user- friendly, high-level tool-set for developing interoperable discrete and continuous simulation models. One application is the study of contract-based predictive filtering. This paper presents a new approach to predictive filtering based on a process called 'quantization' to reduce state update transmission. Quantization, which generates state updates only at quantum level crossings, abstracts a sender model into a DEVS representation. This affords an alternative, efficient approach to embedding continuous models within distributed discrete event simulations. Applications of quantization to message traffic reduction are discussed. The theory has been validated by DEVSJAVA simulations of test cases. It will be subject to further test in actual distributed simulations using the DEVS/HLA modeling and simulation environment.

  15. High Resolution Electro-Optical Aerosol Phase Function Database PFNDAT2006

    DTIC Science & Technology

    2006-08-01

    snow models use the gamma distribution (equation 12) with m = 0. 3.4.1 Rain Model The most widely used analytical parameterization for raindrop size ...Uijlenhoet and Stricker (22), as the result of an analytical derivation based on a theoretical parameterization for the raindrop size distribution ...6 2.2 Particle Size Distribution Models

  16. Comparing species distribution models constructed with different subsets of environmental predictors

    USGS Publications Warehouse

    Bucklin, David N.; Basille, Mathieu; Benscoter, Allison M.; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.; Speroterra, Carolina; Watling, James I.

    2014-01-01

    Our results indicate that additional predictors have relatively minor effects on the accuracy of climate-based species distribution models and minor to moderate effects on spatial predictions. We suggest that implementing species distribution models with only climate predictors may provide an effective and efficient approach for initial assessments of environmental suitability.

  17. Incorporating uncertainty in predictive species distribution modelling.

    PubMed

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  18. A randomised approach for NARX model identification based on a multivariate Bernoulli distribution

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Falsone, A.; Prandini, M.; Piroddi, L.

    2017-04-01

    The identification of polynomial NARX models is typically performed by incremental model building techniques. These methods assess the importance of each regressor based on the evaluation of partial individual models, which may ultimately lead to erroneous model selections. A more robust assessment of the significance of a specific model term can be obtained by considering ensembles of models, as done by the RaMSS algorithm. In that context, the identification task is formulated in a probabilistic fashion and a Bernoulli distribution is employed to represent the probability that a regressor belongs to the target model. Then, samples of the model distribution are collected to gather reliable information to update it, until convergence to a specific model. The basic RaMSS algorithm employs multiple independent univariate Bernoulli distributions associated to the different candidate model terms, thus overlooking the correlations between different terms, which are typically important in the selection process. Here, a multivariate Bernoulli distribution is employed, in which the sampling of a given term is conditioned by the sampling of the others. The added complexity inherent in considering the regressor correlation properties is more than compensated by the achievable improvements in terms of accuracy of the model selection process.

  19. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  20. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume. Results show that, for the range of parameters investigated, the grain-size distribution at the top of the plume is remarkably similar to that at the base and that the plume height is only weakly affected by the parameters of the grain distribution.

  1. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  2. Methodology and application of combined watershed and ground-water models in Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve

  3. Species distribution modeling based on the automated identification of citizen observations.

    PubMed

    Botella, Christophe; Joly, Alexis; Bonnet, Pierre; Monestiez, Pascal; Munoz, François

    2018-02-01

    A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. The method proposed here allows for fine-grained and regular monitoring of some species of interest based on opportunistic observations. More in-depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.

  4. Climate-based species distribution models for Armillaria solidipes in Wyoming: A preliminary assessment

    Treesearch

    John W. Hanna; James T. Blodgett; Eric W. I. Pitman; Sarah M. Ashiglar; John E. Lundquist; Mee-Sook Kim; Amy L. Ross-Davis; Ned B. Klopfenstein

    2014-01-01

    As part of an ongoing project to predict Armillaria root disease in the Rocky Mountain zone, this project predicts suitable climate space (potential distribution) for A. solidipes in Wyoming and associated forest areas at risk to disease caused by this pathogen. Two bioclimatic models are being developed. One model is based solely on verified locations of A. solidipes...

  5. An automated model-based aim point distribution system for solar towers

    NASA Astrophysics Data System (ADS)

    Schwarzbözl, Peter; Rong, Amadeus; Macke, Ansgar; Säck, Jan-Peter; Ulmer, Steffen

    2016-05-01

    Distribution of heliostat aim points is a major task during central receiver operation, as the flux distribution produced by the heliostats varies continuously with time. Known methods for aim point distribution are mostly based on simple aim point patterns and focus on control strategies to meet local temperature and flux limits of the receiver. Lowering the peak flux on the receiver to avoid hot spots and maximizing thermal output are obviously competing targets that call for a comprehensive optimization process. This paper presents a model-based method for online aim point optimization that includes the current heliostat field mirror quality derived through an automated deflectometric measurement process.

  6. Research on the semi-distributed monthly rainfall runoff model at the Lancang River basin based on DEM

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhao, Rong; Liu, Jiping; Zhang, Qingpu

    2007-06-01

    The Lancang River Basin is so narrow and its hydrological and meteorological information are so flexible. The Rainfall, evaporation, glacial melt water and groundwater affect the runoff whose replenishment forms changing notable with the season in different areas at the basin. Characters of different kind of distributed model and conceptual hydrological model are analyzed. A semi-distributed hydrological model of relation between monthly runoff and rainfall, temperate and soil type has been built in Changdu County based on Visual Basic and ArcObject. The way of discretization of distributed hydrological model was used in the model, and principles of conceptual model are taken into account. The sub-catchment of Changdu is divided into regular cells, and all kinds of hydrological and meteorological information and land use classes and slope extracted from 1:250000 digital elevation models are distributed in each cell. The model does not think of the rainfall-runoff hydro-physical process but use the conceptual model to simulate the whole contributes to the runoff of the area. The affection of evapotranspiration loss and underground water is taken into account at the same time. The spatial distribute characteristics of the monthly runoff in the area are simulated and analyzed with a few parameters.

  7. Construction and identification of a D-Vine model applied to the probability distribution of modal parameters in structural dynamics

    NASA Astrophysics Data System (ADS)

    Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.

    2018-01-01

    This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.

  8. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  9. Review of Statistical Methods for Analysing Healthcare Resources and Costs

    PubMed Central

    Mihaylova, Borislava; Briggs, Andrew; O'Hagan, Anthony; Thompson, Simon G

    2011-01-01

    We review statistical methods for analysing healthcare resource use and costs, their ability to address skewness, excess zeros, multimodality and heavy right tails, and their ease for general use. We aim to provide guidance on analysing resource use and costs focusing on randomised trials, although methods often have wider applicability. Twelve broad categories of methods were identified: (I) methods based on the normal distribution, (II) methods following transformation of data, (III) single-distribution generalized linear models (GLMs), (IV) parametric models based on skewed distributions outside the GLM family, (V) models based on mixtures of parametric distributions, (VI) two (or multi)-part and Tobit models, (VII) survival methods, (VIII) non-parametric methods, (IX) methods based on truncation or trimming of data, (X) data components models, (XI) methods based on averaging across models, and (XII) Markov chain methods. Based on this review, our recommendations are that, first, simple methods are preferred in large samples where the near-normality of sample means is assured. Second, in somewhat smaller samples, relatively simple methods, able to deal with one or two of above data characteristics, may be preferable but checking sensitivity to assumptions is necessary. Finally, some more complex methods hold promise, but are relatively untried; their implementation requires substantial expertise and they are not currently recommended for wider applied work. Copyright © 2010 John Wiley & Sons, Ltd. PMID:20799344

  10. An Event-Based Approach to Distributed Diagnosis of Continuous Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhurry, Indranil; Biswas, Gautam; Koutsoukos, Xenofon

    2010-01-01

    Distributed fault diagnosis solutions are becoming necessary due to the complexity of modern engineering systems, and the advent of smart sensors and computing elements. This paper presents a novel event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, based on a qualitative abstraction of measurement deviations from the nominal behavior. We systematically derive dynamic fault signatures expressed as event-based fault models. We develop a distributed diagnoser design algorithm that uses these models for designing local event-based diagnosers based on global diagnosability analysis. The local diagnosers each generate globally correct diagnosis results locally, without a centralized coordinator, and by communicating a minimal number of measurements between themselves. The proposed approach is applied to a multi-tank system, and results demonstrate a marked improvement in scalability compared to a centralized approach.

  11. Rain-rate data base development and rain-rate climate analysis

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1993-01-01

    The single-year rain-rate distribution data available within the archives of Consultative Committee for International Radio (CCIR) Study Group 5 were compiled into a data base for use in rain-rate climate modeling and for the preparation of predictions of attenuation statistics. The four year set of tip-time sequences provided by J. Goldhirsh for locations near Wallops Island were processed to compile monthly and annual distributions of rain rate and of event durations for intervals above and below preset thresholds. A four-year data set of tropical rain-rate tip-time sequences were acquired from the NASA TRMM program for 30 gauges near Darwin, Australia. They were also processed for inclusion in the CCIR data base and the expanded data base for monthly observations at the University of Oklahoma. The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data base were used to estimate parameters for several rain-rate distribution models: the lognormal model, the Crane two-component model, and the three parameter model proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set of parameters that can be mapped globally for use in rain attenuation predictions. If the form of the distribution can be established, then perhaps available climatological data can be used to estimate the parameters rather than requiring years of rain-rate observations to set the parameters. The two-component model provided the best fit to the Wallops Island data but the Moupfuma model provided the best fit to the Darwin data.

  12. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models

    USDA-ARS?s Scientific Manuscript database

    Proper characterizations of snow melt and accumulation processes in the snow-dominated mountain environment are needed to understand and predict spatiotemporal distribution of water cycle components. Two commonly used strategies in modeling of snow accumulation and melt are the full energy based and...

  13. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    NASA Astrophysics Data System (ADS)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  14. Group-oriented coordination models for distributed client-server computing

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Hughes, Craig S.

    1994-01-01

    This paper describes group-oriented control models for distributed client-server interactions. These models transparently coordinate requests for services that involve multiple servers, such as queries across distributed databases. Specific capabilities include: decomposing and replicating client requests; dispatching request subtasks or copies to independent, networked servers; and combining server results into a single response for the client. The control models were implemented by combining request broker and process group technologies with an object-oriented communication middleware tool. The models are illustrated in the context of a distributed operations support application for space-based systems.

  15. Ship Detection in SAR Image Based on the Alpha-stable Distribution

    PubMed Central

    Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng

    2008-01-01

    This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794

  16. Relationship between the spectral line based weighted-sum-of-gray-gases model and the full spectrum k-distribution model

    NASA Astrophysics Data System (ADS)

    Chu, Huaqiang; Liu, Fengshan; Consalvi, Jean-Louis

    2014-08-01

    The relationship between the spectral line based weighted-sum-of-gray-gases (SLW) model and the full-spectrum k-distribution (FSK) model in isothermal and homogeneous media is investigated in this paper. The SLW transfer equation can be derived from the FSK transfer equation expressed in the k-distribution function without approximation. It confirms that the SLW model is equivalent to the FSK model in the k-distribution function form. The numerical implementation of the SLW relies on a somewhat arbitrary discretization of the absorption cross section whereas the FSK model finds the spectrally integrated intensity by integration over the smoothly varying cumulative-k distribution function using a Gaussian quadrature scheme. The latter is therefore in general more efficient as a fewer number of gray gases is required to achieve a prescribed accuracy. Sample numerical calculations were conducted to demonstrate the different efficiency of these two methods. The FSK model is found more accurate than the SLW model in radiation transfer in H2O; however, the SLW model is more accurate in media containing CO2 as the only radiating gas due to its explicit treatment of ‘clear gas.’

  17. Distributed software framework and continuous integration in hydroinformatics systems

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  18. Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Masoudi, A.; Newson, T. P.

    2017-04-01

    A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.

  19. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies.

    PubMed

    Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans

    2007-02-01

    Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.

  20. Optimal placement and sizing of wind / solar based DG sources in distribution system

    NASA Astrophysics Data System (ADS)

    Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng

    2017-06-01

    Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.

  1. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; McGlynn, Brian; Wagener, Thorsten

    2017-07-01

    Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.

  2. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  3. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE PAGES

    Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...

    2017-11-08

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  4. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xin; Garikapati, Venu M.; You, Daehyun

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  5. Study of indoor radon distribution using measurements and CFD modeling.

    PubMed

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  7. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    PubMed Central

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  8. [Study on the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome based on the three dimensional finite element model].

    PubMed

    Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong

    2011-02-01

    To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.

  9. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling

    NASA Astrophysics Data System (ADS)

    Lan, Hengxing; Derek Martin, C.; Lim, C. H.

    2007-02-01

    Geographic information system (GIS) modeling is used in combination with three-dimensional (3D) rockfall process modeling to assess rockfall hazards. A GIS extension, RockFall Analyst (RA), which is capable of effectively handling large amounts of geospatial information relative to rockfall behaviors, has been developed in ArcGIS using ArcObjects and C#. The 3D rockfall model considers dynamic processes on a cell plane basis. It uses inputs of distributed parameters in terms of raster and polygon features created in GIS. Two major components are included in RA: particle-based rockfall process modeling and geostatistics-based rockfall raster modeling. Rockfall process simulation results, 3D rockfall trajectories and their velocity features either for point seeders or polyline seeders are stored in 3D shape files. Distributed raster modeling, based on 3D rockfall trajectories and a spatial geostatistical technique, represents the distribution of spatial frequency, the flying and/or bouncing height, and the kinetic energy of falling rocks. A distribution of rockfall hazard can be created by taking these rockfall characteristics into account. A barrier analysis tool is also provided in RA to aid barrier design. An application of these modeling techniques to a case study is provided. The RA has been tested in ArcGIS 8.2, 8.3, 9.0 and 9.1.

  10. Hierarchical species distribution models

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  11. Formulating the shear stress distribution in circular open channels based on the Renyi entropy

    NASA Astrophysics Data System (ADS)

    Khozani, Zohreh Sheikh; Bonakdari, Hossein

    2018-01-01

    The principle of maximum entropy is employed to derive the shear stress distribution by maximizing the Renyi entropy subject to some constraints and by assuming that dimensionless shear stress is a random variable. A Renyi entropy-based equation can be used to model the shear stress distribution along the entire wetted perimeter of circular channels and circular channels with flat beds and deposited sediments. A wide range of experimental results for 12 hydraulic conditions with different Froude numbers (0.375 to 1.71) and flow depths (20.3 to 201.5 mm) were used to validate the derived shear stress distribution. For circular channels, model performance enhanced with increasing flow depth (mean relative error (RE) of 0.0414) and only deteriorated slightly at the greatest flow depth (RE of 0.0573). For circular channels with flat beds, the Renyi entropy model predicted the shear stress distribution well at lower sediment depth. The Renyi entropy model results were also compared with Shannon entropy model results. Both models performed well for circular channels, but for circular channels with flat beds the Renyi entropy model displayed superior performance in estimating the shear stress distribution. The Renyi entropy model was highly precise and predicted the shear stress distribution in a circular channel with RE of 0.0480 and in a circular channel with a flat bed with RE of 0.0488.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeure, I.M.

    The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less

  13. How can model comparison help improving species distribution models?

    PubMed

    Gritti, Emmanuel Stephan; Gaucherel, Cédric; Crespo-Perez, Maria-Veronica; Chuine, Isabelle

    2013-01-01

    Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagussylvatica L., Quercusrobur L. and Pinussylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.

  14. How Can Model Comparison Help Improving Species Distribution Models?

    PubMed Central

    Gritti, Emmanuel Stephan; Gaucherel, Cédric; Crespo-Perez, Maria-Veronica; Chuine, Isabelle

    2013-01-01

    Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagus sylvatica L., Quercus robur L. and Pinus sylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes. PMID:23874779

  15. Atmospheric Ozone 1985. Assessment of our understanding of the processes controlling its present distribution and change, volume 3

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics addressed include: assessment models; model predictions of ozone changes; ozone and temperature trends; trace gas effects on climate; kinetics and photchemical data base; spectroscopic data base (infrared to microwave); instrument intercomparisons and assessments; and monthly mean distribution of ozone and temperature.

  16. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  17. LEOPARD: A grid-based dispersion relation solver for arbitrary gyrotropic distributions

    NASA Astrophysics Data System (ADS)

    Astfalk, Patrick; Jenko, Frank

    2017-01-01

    Particle velocity distributions measured in collisionless space plasmas often show strong deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in space plasma environments such as the solar wind or Earth's magnetosphere is still mainly carried out using dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks. Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a first application of that kind.

  18. A Complex Network Approach to Distributional Semantic Models

    PubMed Central

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940

  19. WATER QUALITY MODELING AND SAMPLING STUDY IN A DISTRIBUTION SYSTEM

    EPA Science Inventory

    A variety of computer based models have been developed and used by the water industry to access the movement and fate of contaminants within the distribution system. uch models include: ynamic and steady state hydraulic models which simulate the flow quantity, flow direction, and...

  20. Delineating Hydrofacies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xuehang; Chen, Xingyuan; Ye, Ming

    2015-07-01

    This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data.more » Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.« less

  1. Distribution-Connected PV's Response to Voltage Sags at Transmission-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry; Ding, Fei

    The ever increasing amount of residential- and commercial-scale distribution-connected PV generation being installed and operated on the U.S.'s electric power system necessitates the use of increased fidelity representative distribution system models for transmission stability studies in order to ensure the continued safe and reliable operation of the grid. This paper describes a distribution model-based analysis that determines the amount of distribution-connected PV that trips off-line for a given voltage sag seen at the distribution circuit's substation. Such sags are what could potentially be experienced over a wide area of an interconnection during a transmission-level line fault. The results of thismore » analysis show that the voltage diversity of the distribution system does cause different amounts of PV generation to be lost for differing severity of voltage sags. The variation of the response is most directly a function of the loading of the distribution system. At low load levels the inversion of the circuit's voltage profile results in considerable differences in the aggregated response of distribution-connected PV Less variation is seen in the response to specific PV deployment scenarios, unless pushed to extremes, and in the total amount of PV penetration attained. A simplified version of the combined CMPLDW and PVD1 models is compared to the results from the model-based analysis. Furthermore, the parameters of the simplified model are tuned to better match the determined response. The resulting tuning parameters do not match the expected physical model of the distribution system and PV systems and thus may indicate that another modeling approach would be warranted.« less

  2. Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays.

    PubMed

    Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv

    2012-12-11

    Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement in terms of bias, but at the cost of a loss in precision. This paper addresses the lack of fit of the usual normal-exponential model by proposing a more flexible parametrisation of the signal distribution as well as the associated background correction. This new model proves to be considerably more accurate for Illumina microarrays, but the improvement in terms of modeling does not lead to a higher sensitivity in differential analysis. Nevertheless, this realistic modeling makes way for future investigations, in particular to examine the characteristics of pre-processing strategies.

  3. Functionally relevant climate variables for arid lands: Aclimatic water deficit approach for modelling desert shrub distributions

    Treesearch

    Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers

    2015-01-01

    We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...

  4. A distributed data base management facility for the CAD/CAM environment

    NASA Technical Reports Server (NTRS)

    Balza, R. M.; Beaudet, R. W.; Johnson, H. R.

    1984-01-01

    Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.

  5. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout.

    PubMed

    Hrachowitz, Markus; Maringer, Franz-Josef; Steineder, Christian; Gerzabek, Martin H

    2005-01-01

    Measurements of 137Cs fallout have been used in combination with a range of conversion models for the investigation of soil relocation mechanisms and sediment budgets in many countries for more than 20 yr. The objective of this paper is to develop a conversion model for quantifying soil redistribution, based on Chernobyl-derived 137Cs. The model is applicable on uncultivated as well as on cultivated sites, taking into account temporal changes in the 137Cs depth distribution pattern as well as tillage-induced 137Cs dilution effects. The main idea of the new model is the combination of a modified exponential model describing uncultivated soil with a Chapman distribution based model describing cultivated soil. The compound model subsequently allows a dynamic description of the Chernobyl derived 137Cs situation in the soil and its change, specifically migration and soil transport processes over the course of time. Using the suggested model at the sampling site in Pettenbach, in the Austrian province of Oberösterreich 137Cs depth distributions were simulated with a correlation coefficient of 0.97 compared with the measured 137Cs depth profile. The simulated rates of soil distribution at different positions at the sampling site were found to be between 27 and 60 Mg ha(-1) yr(-1). It was shown that the model can be used to describe the temporal changes of 137Cs depth distributions in cultivated as well as uncultivated soils. Additionally, the model allows to quantify soil redistribution in good correspondence with already existing models.

  6. Improved community model for social networks based on social mobility

    NASA Astrophysics Data System (ADS)

    Lu, Zhe-Ming; Wu, Zhen; Luo, Hao; Wang, Hao-Xian

    2015-07-01

    This paper proposes an improved community model for social networks based on social mobility. The relationship between the group distribution and the community size is investigated in terms of communication rate and turnover rate. The degree distributions, clustering coefficients, average distances and diameters of networks are analyzed. Experimental results demonstrate that the proposed model possesses the small-world property and can reproduce social networks effectively and efficiently.

  7. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  8. Skill of Ensemble Seasonal Probability Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, Leonard A.; Binter, Roman; Du, Hailiang; Niehoerster, Falk

    2010-05-01

    In operational forecasting, the computational complexity of large simulation models is, ideally, justified by enhanced performance over simpler models. We will consider probability forecasts and contrast the skill of ENSEMBLES-based seasonal probability forecasts of interest to the finance sector (specifically temperature forecasts for Nino 3.4 and the Atlantic Main Development Region (MDR)). The ENSEMBLES model simulations will be contrasted against forecasts from statistical models based on the observations (climatological distributions) and empirical dynamics based on the observations but conditioned on the current state (dynamical climatology). For some start dates, individual ENSEMBLES models yield significant skill even at a lead-time of 14 months. The nature of this skill is discussed, and chances of application are noted. Questions surrounding the interpretation of probability forecasts based on these multi-model ensemble simulations are then considered; the distributions considered are formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of "zero-skill" models in the long range can improve Root-Mean-Square-Error scores, casting some doubt on the common justification for the claim that all models should be included in forming an operational probability forecast. It is argued that the rational response varies with lead time.

  9. Modeling nurses' attitude toward using automated unit-based medication storage and distribution systems: an extension of the technology acceptance model.

    PubMed

    Escobar-Rodríguez, Tomás; Romero-Alonso, María Mercedes

    2013-05-01

    This article analyzes the attitude of nurses toward the use of automated unit-based medication storage and distribution systems and identifies influencing factors. Understanding these factors provides an opportunity to explore actions that might be taken to boost adoption by potential users. The theoretical grounding for this research is the Technology Acceptance Model. The Technology Acceptance Model specifies the causal relationships between perceived usefulness, perceived ease of use, attitude toward using, and actual usage behavior. The research model has six constructs, and nine hypotheses were generated from connections between these six constructs. These constructs include perceived risks, experience level, and training. The findings indicate that these three external variables are related to the perceived ease of use and perceived usefulness of automated unit-based medication storage and distribution systems, and therefore, they have a significant influence on attitude toward the use of these systems.

  10. Money-center structures in dynamic banking systems

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhang, Minghui

    2016-10-01

    In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.

  11. Cellular Automata Simulation for Wealth Distribution

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching

    2009-08-01

    Wealth distribution of a country is a complicate system. A model, which is based on the Epstein & Axtell's "Sugars cape" model, is presented in Netlogo. The model considers the income, age, working opportunity and salary as control variables. There are still other variables should be considered while an artificial society is established. In this study, a more complicate cellular automata model for wealth distribution model is proposed. The effects of social welfare, tax, economical investment and inheritance are considered and simulated. According to the cellular automata simulation for wealth distribution, we will have a deep insight of financial policy of the government.

  12. Gear Fatigue Crack Diagnosis by Vibration Analysis Using Embedded Modeling

    DTIC Science & Technology

    2001-04-05

    gave references on Wigner - Ville Distribution ( WVD ) and some statistical based methods including FM4, NA4 and NB4. There are limitations for vibration...Embedded Modeling DISTRIBUTION : Approved for public release, distribution unlimited This paper is part of the following report: TITLE: New Frontiers in

  13. Distributed Leadership as Work Redesign: Retrofitting the Job Characteristics Model

    ERIC Educational Resources Information Center

    Mayrowetz, David; Murphy, Joseph; Louis, Karen Seashore; Smylie, Mark A.

    2007-01-01

    In this article, we revive work redesign theory, specifically Hackman and Oldham's Job Characteristics Model (JCM), to examine distributed leadership initiatives. Based on our early observations of six schools engaged in distributed leadership reform and a broad review of literature, including empirical tests of work redesign theory, we retrofit…

  14. A New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  15. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-08-01

    In this paper a new integral mathematical model for volcanic plumes, named PLUME-MoM, is presented. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. A proper description of such a multi-particle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows for a description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of parameters of the continuous size distribution of the particles. This is achieved by formulation of fundamental transport equations for the multi-particle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows for the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables the investigation of the response of four key output variables (mean and standard deviation of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and standard deviation) characterizing the pyroclastic mixture at the base of the plume. Results show that, for the range of parameters investigated and without considering interparticle processes such as aggregation or comminution, the grain-size distribution at the top of the plume is remarkably similar to that at the base and that the plume height is only weakly affected by the parameters of the grain distribution. The adopted approach can be potentially extended to the consideration of key particle-particle effects occurring in the plume including particle aggregation and fragmentation.

  16. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  17. Valid approximation of spatially distributed grain size distributions - A priori information encoded to a feedforward network

    NASA Astrophysics Data System (ADS)

    Berthold, T.; Milbradt, P.; Berkhahn, V.

    2018-04-01

    This paper presents a model for the approximation of multiple, spatially distributed grain size distributions based on a feedforward neural network. Since a classical feedforward network does not guarantee to produce valid cumulative distribution functions, a priori information is incor porated into the model by applying weight and architecture constraints. The model is derived in two steps. First, a model is presented that is able to produce a valid distribution function for a single sediment sample. Although initially developed for sediment samples, the model is not limited in its application; it can also be used to approximate any other multimodal continuous distribution function. In the second part, the network is extended in order to capture the spatial variation of the sediment samples that have been obtained from 48 locations in the investigation area. Results show that the model provides an adequate approximation of grain size distributions, satisfying the requirements of a cumulative distribution function.

  18. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  19. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  20. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  1. Pion distribution amplitude and quasidistributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    2017-03-27

    We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x,k 2 ⊥) and the pion quasidistribution amplitude (QDA) Q π(y,p 3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p 3-evolution patterns for models producing some popular proposals: Chernyak-Zhitnitsky, flat, andmore » asymptotic distribution amplitude. Finally, our results may be used as a guide for future studies of the pion distribution amplitude on the lattice using the quasidistribution approach.« less

  2. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  3. Glyph-based analysis of multimodal directional distributions in vector field ensembles

    NASA Astrophysics Data System (ADS)

    Jarema, Mihaela; Demir, Ismail; Kehrer, Johannes; Westermann, Rüdiger

    2015-04-01

    Ensemble simulations are increasingly often performed in the geosciences in order to study the uncertainty and variability of model predictions. Describing ensemble data by mean and standard deviation can be misleading in case of multimodal distributions. We present first results of a glyph-based visualization of multimodal directional distributions in 2D and 3D vector ensemble data. Directional information on the circle/sphere is modeled using mixtures of probability density functions (pdfs), which enables us to characterize the distributions with relatively few parameters. The resulting mixture models are represented by 2D and 3D lobular glyphs showing direction, spread and strength of each principal mode of the distributions. A 3D extension of our approach is realized by means of an efficient GPU rendering technique. We demonstrate our method in the context of ensemble weather simulations.

  4. Team Modelling: Survey of Experimental Platforms (Modelisation d’equipes : Examen de plate-formes experimentales)

    DTIC Science & Technology

    2006-09-01

    Control Force Agility Shared Situational Awareness Attentional Demand Interoperability Network Based Operations Effect Based Operations Speed of...Command Self Synchronization Reach Back Reach Forward Information Superiority Increased Mission Effectiveness Humansystems® Team Modelling...communication effectiveness and Distributed Mission Training (DMT) effectiveness . The NASA Ames Centre - Distributed Research Facilities platform could

  5. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  6. A Centroid Model of Species Distribution to Analyize Multi-directional Climate Change Finger Print in Avian Distribution in North America

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Sauer, J.; Dubayah, R.

    2015-12-01

    Species distribution shift (or referred to as "fingerprint of climate change") as a primary mechanism to adapt climate change has been of great interest to ecologists and conservation practitioners. Recent meta-analyses have concluded that a wide range of animal and plant species are already shifting their distribution. However majority of the literature has focused on analyzing recent poleward and elevationally upward shift of species distribution. However if measured only in poleward shifts, the fingerprint of climate change will be underestimated significantly. In this study, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. We used the centroid approach to examine large number of species permanent resident species in North America and evaluated the dreiction and magnitude of their shifting distribution. To examine the inferential ability of mean temperature and precipitation, we test a hypothesis based on climate velocity theory that species would be more likely to shift their distribution or would shift with greater magnitude in in regions with high climate change velocity. For species with significant shifts of distribution, we establish a precipitation model and a temperature model to explain their change of abundance at the strata level. Two models which are composed of mean and extreme climate indices respectively are also established to test the influences of changes in gradual and extreme climate trends.

  7. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    USGS Publications Warehouse

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  8. Effects of naloxone distribution to likely bystanders: Results of an agent-based model.

    PubMed

    Keane, Christopher; Egan, James E; Hawk, Mary

    2018-05-01

    Opioid overdose deaths in the US rose dramatically in the past 16 years, creating an urgent national health crisis with no signs of immediate relief. In 2017, the President of the US officially declared the opioid epidemic to be a national emergency and called for additional resources to respond to the crisis. Distributing naloxone to community laypersons and people at high risk for opioid overdose can prevent overdose death, but optimal distribution methods have not yet been pinpointed. We conducted a sequential exploratory mixed methods design using qualitative data to inform an agent-based model to improve understanding of effective community-based naloxone distribution to laypersons to reverse opioid overdose. The individuals in the model were endowed with cognitive and behavioral variables and accessed naloxone via community sites such as pharmacies, hospitals, and urgent-care centers. We compared overdose deaths over a simulated 6-month period while varying the number of distribution sites (0, 1, and 10) and number of kits given to individuals per visit (1 versus 10). Specifically, we ran thirty simulations for each of thirteen distribution models and report average overdose deaths for each. The baseline comparator was no naloxone distribution. Our simulations explored the effects of distribution through syringe exchange sites with and without secondary distribution, which refers to distribution of naloxone kits by laypersons within their social networks and enables ten additional laypersons to administer naloxone to reverse opioid overdose. Our baseline model with no naloxone distribution predicted there would be 167.9 deaths in a six month period. A single distribution site, even with 10 kits picked up per visit, decreased overdose deaths by only 8.3% relative to baseline. However, adding secondary distribution through social networks to a single site resulted in 42.5% fewer overdose deaths relative to baseline. That is slightly higher than the 39.9% decrease associated with a tenfold increase in the number of sites, all distributing ten kits but with no secondary distribution. This suggests that, as long as multiple kits are picked up per visit, adding secondary distribution is at least as effective as increasing sites from one to ten. Combining the addition of secondary distribution with an increase in sites from one to ten resulted in a 61.1% drop in deaths relative to the baseline. Adding distribution through a syringe exchange site resulted in a drop of approximately 65% of deaths relative to baseline. In fact, when enabling distribution through a clean-syringe site, the secondary distribution through networks contributed no additional drops in deaths. Community-based naloxone distribution to reverse opioid overdose may significantly reduce deaths. Optimal distribution methods may include secondary distribution so that the person who picks up naloxone kits can enable others in the community to administer naloxone, as well as targeting naloxone distribution to sites where individuals at high-risk for opioid overdose death are likely to visit, such as syringe-exchange programs. This study design, which paired exploratory qualitative data with agent-based modeling, can be used in other settings seeking to implement and improve naloxone distribution programs. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. A development framework for artificial intelligence based distributed operations support systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  10. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.

  11. How required reserve ratio affects distribution and velocity of money

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Ding, Ning; Wang, Yougui

    2005-11-01

    In this paper the dependence of wealth distribution and the velocity of money on the required reserve ratio is examined based on a random transfer model of money and computer simulations. A fractional reserve banking system is introduced to the model where money creation can be achieved by bank loans and the monetary aggregate is determined by the monetary base and the required reserve ratio. It is shown that monetary wealth follows asymmetric Laplace distribution and latency time of money follows exponential distribution. The expression of monetary wealth distribution and that of the velocity of money in terms of the required reserve ratio are presented in a good agreement with simulation results.

  12. A Distributed, Developmental Model of Word Recognition and Naming

    DTIC Science & Technology

    1989-07-14

    reading and clues to their neurophysiological bases (Patterson, M. Coltheart & Marshall, 1986). Our model provides the basis for an account of some aspects...is that distributed representations provide a basis for making lexical decisions; moreover, the model provides an enlightening account of some

  13. An inexact log-normal distribution-based stochastic chance-constrained model for agricultural water quality management

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2018-05-01

    In this study, an inexact log-normal-based stochastic chance-constrained programming model was developed for solving the non-point source pollution issues caused by agricultural activities. Compared to the general stochastic chance-constrained programming model, the main advantage of the proposed model is that it allows random variables to be expressed as a log-normal distribution, rather than a general normal distribution. Possible deviations in solutions caused by irrational parameter assumptions were avoided. The agricultural system management in the Erhai Lake watershed was used as a case study, where critical system factors, including rainfall and runoff amounts, show characteristics of a log-normal distribution. Several interval solutions were obtained under different constraint-satisfaction levels, which were useful in evaluating the trade-off between system economy and reliability. The applied results show that the proposed model could help decision makers to design optimal production patterns under complex uncertainties. The successful application of this model is expected to provide a good example for agricultural management in many other watersheds.

  14. IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.

    This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less

  15. Versatile time-dependent spatial distribution model of sun glint for satellite-based ocean imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhang, Kai; Ma, Zhongqi; Wang, Jiwen; Zhang, Yue

    2017-01-01

    We propose a versatile model to describe the time-dependent spatial distribution of sun glint areas in satellite-based wave water imaging. This model can be used to identify whether the imaging is affected by sun glint and how strong the glint is. The observing geometry is calculated using an accurate orbit prediction method. The Cox-Munk model is used to analyze the bidirectional reflectance of wave water surface under various conditions. The effects of whitecaps and the reflectance emerging from the sea water have been considered. Using the moderate resolution atmospheric transmission radiative transfer model, we are able to effectively calculate the sun glint distribution at the top of the atmosphere. By comparing the modeled data with the medium resolution imaging spectrometer image and Feng Yun 2E (FY-2E) image, we have proven that the time-dependent spatial distribution of sun glint areas can be effectively predicted. In addition, the main factors in determining sun glint distribution and the temporal variation rules of sun glint have been discussed. Our model can be used to design satellite orbits and should also be valuable in either eliminating sun glint or making use of it.

  16. Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems

    DTIC Science & Technology

    2017-05-24

    Functional Modeling Compiler (SCCT) FM Compiler and Key Performance Indicators (KPI) May 2018 Pending. Model Management Backbone (SCCT) MMB Demonstration...implement the agent- based distributed runtime. - KPIs for single/multicore controllers and temporal/spatial domains. - Integration of the model management ...Distributed Runtime (UCI) Not started. Model Management Backbone (SCCT) Not started. Siemens Corporation Corporate Technology Unrestricted

  17. Assessment of Template-Based Modeling of Protein Structure in CASP11

    PubMed Central

    Modi, Vivek; Xu, Qifang; Adhikari, Sam; Dunbrack, Roland L.

    2016-01-01

    We present the assessment of predictions submitted in the template-based modeling (TBM) category of CASP11 (Critical Assessment of Protein Structure Prediction). Model quality was judged on the basis of global and local measures of accuracy on all atoms including side chains. The top groups on 39 human-server targets based on model 1 predictions were LEER, Zhang, LEE, MULTICOM, and Zhang-Server. The top groups on 81 targets by server groups based on model 1 predictions were Zhang-Server, nns, BAKER-ROSETTASERVER, QUARK, and myprotein-me. In CASP11, the best models for most targets were equal to or better than the best template available in the Protein Data Bank, even for targets with poor templates. The overall performance in CASP11 is similar to the performance of predictors in CASP10 with slightly better performance on the hardest targets. For most targets, assessment measures exhibited bimodal probability density distributions. Multi-dimensional scaling of an RMSD matrix for each target typically revealed a single cluster with models similar to the target structure, with a mode in the GDT-TS density between 40 and 90, and a wide distribution of models highly divergent from each other and from the experimental structure, with density mode at a GDT-TS value of ~20. The models in this peak in the density were either compact models with entirely the wrong fold, or highly non-compact models. The results argue for a density-driven approach in future CASP TBM assessments that accounts for the bimodal nature of these distributions instead of Z-scores, which assume a unimodal, Gaussian distribution. PMID:27081927

  18. Culturicon model: A new model for cultural-based emoticon

    NASA Astrophysics Data System (ADS)

    Zukhi, Mohd Zhafri Bin Mohd; Hussain, Azham

    2017-10-01

    Emoticons are popular among distributed collective interaction user in expressing their emotion, gestures and actions. Emoticons have been proved to be able to avoid misunderstanding of the message, attention saving and improved the communications among different native speakers. However, beside the benefits that emoticons can provide, the study regarding emoticons in cultural perspective is still lacking. As emoticons are crucial in global communication, culture should be one of the extensively research aspect in distributed collective interaction. Therefore, this study attempt to explore and develop model for cultural-based emoticon. Three cultural models that have been used in Human-Computer Interaction were studied which are the Hall Culture Model, Trompenaars and Hampden Culture Model and Hofstede Culture Model. The dimensions from these three models will be used in developing the proposed cultural-based emoticon model.

  19. A Model-Based Expert System for Space Power Distribution Diagnostics

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Schlegelmilch, Richard F.

    1994-01-01

    When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.

  20. Model for the design of distributed data bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ram, S.

    This research focuses on developing a model to solve the File Allocation Problem (FAP). The model integrates two major design issues, namely Concurrently Control and Data Distribution. The central node locking mechanism is incorporated in developing a nonlinear integer programming model. Two solution algorithms are proposed, one of which was implemented in FORTRAN.V. The allocation of data bases and programs are examined using this heuristic. Several decision rules were also formulated based on the results of the heuristic. A second more comprehensive heuristic was proposed, based on the knapsack problem. The development and implementation of this algorithm has been leftmore » as a topic for future research.« less

  1. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China

    Treesearch

    S. Wang; Z. Zhang; G. Sun; P. Strauss; J. Guo; Y. Tang; A. Yao

    2012-01-01

    Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped...

  2. Monte Carlo calculations of positron emitter yields in proton radiotherapy.

    PubMed

    Seravalli, E; Robert, C; Bauer, J; Stichelbaut, F; Kurz, C; Smeets, J; Van Ngoc Ty, C; Schaart, D R; Buvat, I; Parodi, K; Verhaegen, F

    2012-03-21

    Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring. © 2012 Institute of Physics and Engineering in Medicine

  3. 2018 Military Retirement Options: An Expected Net Present Value Decision Analysis Model

    DTIC Science & Technology

    2017-03-23

    Decision Analysis Model Bret N. Witham Follow this and additional works at: https://scholar.afit.edu/etd Part of the Benefits and Compensation Commons...FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...Science in Operations Research Bret N. Witham, BS Captain, USAF March 2017 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

  4. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  5. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  6. Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods

    ERIC Educational Resources Information Center

    Zhong, Xiaoling; Yuan, Ke-Hai

    2011-01-01

    In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…

  7. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  8. Future of endemic flora of biodiversity hotspots in India.

    PubMed

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models.

  9. Future of Endemic Flora of Biodiversity Hotspots in India

    PubMed Central

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models. PMID:25501852

  10. Working toward integrated models of alpine plant distribution.

    PubMed

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

  11. Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data.

    PubMed

    Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; Flather, Curtis H; VanDerWal, Jeremy; Akçakaya, H Resit; Thogmartin, Wayne E; Albright, Thomas P; Vavrus, Stephen J; Heglund, Patricia J

    2016-12-01

    Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous USA and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated area-under-the-curve AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability vs. 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information, we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species' potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs. © 2016 by the Ecological Society of America.

  12. Use of Anecdotal Occurrence Data in Species Distribution Models: An Example Based on the White-Nosed Coati (Nasua narica) in the American Southwest

    PubMed Central

    Frey, Jennifer K.; Lewis, Jeremy C.; Guy, Rachel K.; Stuart, James N.

    2013-01-01

    Simple Summary We evaluated the influence of occurrence records with different reliability on predicted distribution of a unique, rare mammal in the American Southwest, the white-nosed coati (Nasua narica). We concluded that occurrence datasets that include anecdotal records can be used to infer species distributions, providing such data are used only for easily-identifiable species and based on robust modeling methods such as maximum entropy. Use of a reliability rating system is critical for using anecdotal data. Abstract Species distributions are usually inferred from occurrence records. However, these records are prone to errors in spatial precision and reliability. Although influence of spatial errors has been fairly well studied, there is little information on impacts of poor reliability. Reliability of an occurrence record can be influenced by characteristics of the species, conditions during the observation, and observer’s knowledge. Some studies have advocated use of anecdotal data, while others have advocated more stringent evidentiary standards such as only accepting records verified by physical evidence, at least for rare or elusive species. Our goal was to evaluate the influence of occurrence records with different reliability on species distribution models (SDMs) of a unique mammal, the white-nosed coati (Nasua narica) in the American Southwest. We compared SDMs developed using maximum entropy analysis of combined bioclimatic and biophysical variables and based on seven subsets of occurrence records that varied in reliability and spatial precision. We found that the predicted distribution of the coati based on datasets that included anecdotal occurrence records were similar to those based on datasets that only included physical evidence. Coati distribution in the American Southwest was predicted to occur in southwestern New Mexico and southeastern Arizona and was defined primarily by evenness of climate and Madrean woodland and chaparral land-cover types. Coati distribution patterns in this region suggest a good model for understanding the biogeographic structure of range margins. We concluded that occurrence datasets that include anecdotal records can be used to infer species distributions, providing such data are used only for easily-identifiable species and based on robust modeling methods such as maximum entropy. Use of a reliability rating system is critical for using anecdotal data. PMID:26487405

  13. Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance, porosity and lithofacies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com; Grana, Dario; Santos, Marcio

    We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well datamore » multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.« less

  14. Leads Detection Using Mixture Statistical Distribution Based CRF Algorithm from Sentinel-1 Dual Polarization SAR Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting

    2017-04-01

    Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.

  15. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?

    PubMed

    Torres, Leigh G; Read, Andrew J; Halpin, Patrick

    2008-10-01

    Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.

  16. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  17. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  18. Comparison of "E-Rater"[R] Automated Essay Scoring Model Calibration Methods Based on Distributional Targets

    ERIC Educational Resources Information Center

    Zhang, Mo; Williamson, David M.; Breyer, F. Jay; Trapani, Catherine

    2012-01-01

    This article describes two separate, related studies that provide insight into the effectiveness of "e-rater" score calibration methods based on different distributional targets. In the first study, we developed and evaluated a new type of "e-rater" scoring model that was cost-effective and applicable under conditions of absent human rating and…

  19. An approach for modelling snowcover ablation and snowmelt runoff in cold region environments

    NASA Astrophysics Data System (ADS)

    Dornes, Pablo Fernando

    Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.

  20. A model for the distribution of watermarked digital content on mobile networks

    NASA Astrophysics Data System (ADS)

    Frattolillo, Franco; D'Onofrio, Salvatore

    2006-10-01

    Although digital watermarking can be considered one of the key technologies to implement the copyright protection of digital contents distributed on the Internet, most of the content distribution models based on watermarking protocols proposed in literature have been purposely designed for fixed networks and cannot be easily adapted to mobile networks. On the contrary, the use of mobile devices currently enables new types of services and business models, and this makes the development of new content distribution models for mobile environments strategic in the current scenario of the Internet. This paper presents and discusses a distribution model of watermarked digital contents for such environments able to achieve a trade-off between the needs of efficiency and security.

  1. Modeling the incubation period of inhalational anthrax.

    PubMed

    Wilkening, Dean A

    2008-01-01

    Ever since the pioneering work of Philip Sartwell, the incubation period distribution for infectious diseases is most often modeled using a lognormal distribution. Theoretical models based on underlying disease mechanisms in the host are less well developed. This article modifies a theoretical model originally developed by Brookmeyer and others for the inhalational anthrax incubation period distribution in humans by using a more accurate distribution to represent the in vivo bacterial growth phase and by extending the model to represent the time from exposure to death, thereby allowing the model to be fit to nonhuman primate time-to-death data. The resulting incubation period distribution and the dose dependence of the median incubation period are in good agreement with human data from the 1979 accidental atmospheric anthrax release in Sverdlovsk, Russia, and limited nonhuman primate data. The median incubation period for the Sverdlovsk victims is 9.05 (95% confidence interval = 8.0-10.3) days, shorter than previous estimates, and it is predicted to drop to less than 2.5 days at doses above 10(6) spores. The incubation period distribution is important because the left tail determines the time at which clinical diagnosis or syndromic surveillance systems might first detect an anthrax outbreak based on early symptomatic cases, the entire distribution determines the efficacy of medical intervention-which is determined by the speed of the prophylaxis campaign relative to the incubation period-and the right tail of the distribution influences the recommended duration for antibiotic treatment.

  2. On joint subtree distributions under two evolutionary models.

    PubMed

    Wu, Taoyang; Choi, Kwok Pui

    2016-04-01

    In population and evolutionary biology, hypotheses about micro-evolutionary and macro-evolutionary processes are commonly tested by comparing the shape indices of empirical evolutionary trees with those predicted by neutral models. A key ingredient in this approach is the ability to compute and quantify distributions of various tree shape indices under random models of interest. As a step to meet this challenge, in this paper we investigate the joint distribution of cherries and pitchforks (that is, subtrees with two and three leaves) under two widely used null models: the Yule-Harding-Kingman (YHK) model and the proportional to distinguishable arrangements (PDA) model. Based on two novel recursive formulae, we propose a dynamic approach to numerically compute the exact joint distribution (and hence the marginal distributions) for trees of any size. We also obtained insights into the statistical properties of trees generated under these two models, including a constant correlation between the cherry and the pitchfork distributions under the YHK model, and the log-concavity and unimodality of the cherry distributions under both models. In addition, we show that there exists a unique change point for the cherry distributions between these two models. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2015-06-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  4. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2016-01-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  5. An alternative model to distribute VO software to WLCG sites based on CernVM-FS: a prototype at PIC Tier1

    NASA Astrophysics Data System (ADS)

    Lanciotti, E.; Merino, G.; Bria, A.; Blomer, J.

    2011-12-01

    In a distributed computing model as WLCG the software of experiment specific application software has to be efficiently distributed to any site of the Grid. Application software is currently installed in a shared area of the site visible for all Worker Nodes (WNs) of the site through some protocol (NFS, AFS or other). The software is installed at the site by jobs which run on a privileged node of the computing farm where the shared area is mounted in write mode. This model presents several drawbacks which cause a non-negligible rate of job failure. An alternative model for software distribution based on the CERN Virtual Machine File System (CernVM-FS) has been tried at PIC, the Spanish Tierl site of WLCG. The test bed used and the results are presented in this paper.

  6. Prediction model of dissolved oxygen in ponds based on ELM neural network

    NASA Astrophysics Data System (ADS)

    Li, Xinfei; Ai, Jiaoyan; Lin, Chunhuan; Guan, Haibin

    2018-02-01

    Dissolved oxygen in ponds is affected by many factors, and its distribution is unbalanced. In this paper, in order to improve the imbalance of dissolved oxygen distribution more effectively, the dissolved oxygen prediction model of Extreme Learning Machine (ELM) intelligent algorithm is established, based on the method of improving dissolved oxygen distribution by artificial push flow. Select the Lake Jing of Guangxi University as the experimental area. Using the model to predict the dissolved oxygen concentration of different voltage pumps, the results show that the ELM prediction accuracy is higher than the BP algorithm, and its mean square error is MSEELM=0.0394, the correlation coefficient RELM=0.9823. The prediction results of the 24V voltage pump push flow show that the discrete prediction curve can approximate the measured values well. The model can provide the basis for the artificial improvement of the dissolved oxygen distribution decision.

  7. Derivation of Hunt equation for suspension distribution using Shannon entropy theory

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2017-12-01

    In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.

  8. Estimating recharge rates with analytic element models and parameter estimation

    USGS Publications Warehouse

    Dripps, W.R.; Hunt, R.J.; Anderson, M.P.

    2006-01-01

    Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).

  9. Can the concept of fundamental and realized niches be applied to the distribution of dominant phytoplankton in the global ocean?

    NASA Astrophysics Data System (ADS)

    Dowell, M.; Moore, T.; Follows, M.; Dutkiewicz, S.

    2006-12-01

    In recent years there has been significant progress both in the use of satellite ocean colour remote sensing and coupled hydrodynamic biological models for producing maps of different dominant phytoplankton groups in the global ocean. In parallel to these initiatives, there is ongoing research largely following on from Alan Longhurst's seminal work on defining a template of distinct ecological and biogeochemical provinces for the oceans based on their physical and biochemical characteristics. For these products and models to be of maximum use in their subsequent inclusion in re-analysis and climate scale models, there is a need to understand how the "observed" distributions of dominant phytoplankton (realized niche) coincide with of the environmental constraints in which they occur (fundamental niche). In the current paper, we base our analysis on the recently published results on the distribution of dominant phytoplankton species at global scale, resulting both from satellite and model analysis. Furthermore, we will present research in defining biogeochemical provinces using satellite and model data inputs and a fuzzy logic based approach. This will be compared with ongoing modelling efforts, which include competitive exclusion and therefore compatible with the definition of the realized ecological niche, to define the emergent distribution of dominant phytoplankton species. Ultimately we investigate the coherence of these two distinct approaches in studying phytoplankton distributions and propose the significance of this in the context of modelling and analysis at various scales.

  10. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2012-01-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  11. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2011-12-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  12. KINEROS2-AGWA: Model Use, Calibration, and Validation

    NASA Technical Reports Server (NTRS)

    Goodrich, D C.; Burns, I. S.; Unkrich, C. L.; Semmens, D. J.; Guertin, D. P.; Hernandez, M.; Yatheendradas, S.; Kennedy, J. R.; Levick, L. R..

    2013-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  13. KINEROS2/AGWA: Model use, calibration and validation

    USGS Publications Warehouse

    Goodrich, D.C.; Burns, I.S.; Unkrich, C.L.; Semmens, Darius J.; Guertin, D.P.; Hernandez, M.; Yatheendradas, S.; Kennedy, Jeffrey R.; Levick, Lainie R.

    2012-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  14. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE PAGES

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching; ...

    2018-03-30

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  15. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  16. A distributed computing model for telemetry data processing

    NASA Astrophysics Data System (ADS)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-05-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  17. A distributed computing model for telemetry data processing

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-01-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  18. Mapping local and global variability in plant trait distributions

    DOE PAGES

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc; ...

    2017-12-01

    Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrencemore » ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.« less

  19. Mapping local and global variability in plant trait distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc

    Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrencemore » ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.« less

  20. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling: A Novel Approach to Solve the Inverse ECG Problem

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Yang, Hui

    2016-12-01

    This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.

  1. Connecting micro dynamics and population distributions in system dynamics models

    PubMed Central

    Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2014-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842

  2. The Distributed Lambda (?) Model (DLM): A 3-D, Finite-Element Muscle Model Based on Feldman's ? Model; Assessment of Orofacial Gestures

    ERIC Educational Resources Information Center

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-01-01

    Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…

  3. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398

  4. ESTIMATING THE DISTRIBUTION OF HARVESTED ESTUARINE BIVALVES WITH NATURAL-HISTORY-BASED HABITAT SUITABILITY MODELS.

    EPA Science Inventory

    Habitat suitability models are used to forecast how environmental change may affect the abundance or distribution of species of interest. The development of habitat suitability models may be used to estimate the vulnerability of this valued ecosystem good to natural or anthropog...

  5. Estimating the distribution of harvested estuarine bivalves with natural-history-based habitat suitability models

    EPA Science Inventory

    Habitat suitability models are useful to forecast how environmental change may affect the abundance or distribution of species of concern. In the case of harvested bivalves, those models may be used to estimate the vulnerability of this valued ecosystem good to natural or human-...

  6. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  7. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass transfer-based model is developed for predicting chlorine decay in drinking water distribution networks. he model considers first order reactions of chlorine to occur both in the bulk flow and at the pipe wall. he overall rate of the wall reaction is a function of the rate...

  8. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs).

    PubMed

    Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J

    2014-12-16

    Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.

  9. GIS Based Distributed Runoff Predictions in Variable Source Area Watersheds Employing the SCS-Curve Number

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.

    2003-04-01

    Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.

  10. Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bratton, Robert L.

    2011-01-01

    The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.

  11. TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less

  12. Inverse Gaussian gamma distribution model for turbulence-induced fading in free-space optical communication.

    PubMed

    Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin

    2018-04-20

    We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.

  13. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature

    NASA Astrophysics Data System (ADS)

    McMillan, Mitchell; Hu, Zhiyong

    2017-10-01

    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  14. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    PubMed Central

    Maadooliat, Mehdi; Huang, Jianhua Z.

    2013-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence–structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu.edu/∼madoliat/LagSVD) that can be used to produce informative animations. PMID:22926831

  15. Estimating regional centile curves from mixed data sources and countries.

    PubMed

    van Buuren, Stef; Hayes, Daniel J; Stasinopoulos, D Mikis; Rigby, Robert A; ter Kuile, Feiko O; Terlouw, Dianne J

    2009-10-15

    Regional or national growth distributions can provide vital information on the health status of populations. In most resource poor countries, however, the required anthropometric data from purpose-designed growth surveys are not readily available. We propose a practical method for estimating regional (multi-country) age-conditional weight distributions based on existing survey data from different countries. We developed a two-step method by which one is able to model data with widely different age ranges and sample sizes. The method produces references both at the country level and at the regional (multi-country) level. The first step models country-specific centile curves by Box-Cox t and Box-Cox power exponential distributions implemented in generalized additive model for location, scale and shape through a common model. Individual countries may vary in location and spread. The second step defines the regional reference from a finite mixture of the country distributions, weighted by population size. To demonstrate the method we fitted the weight-for-age distribution of 12 countries in South East Asia and the Western Pacific, based on 273 270 observations. We modeled both the raw body weight and the corresponding Z score, and obtained a good fit between the final models and the original data for both solutions. We briefly discuss an application of the generated regional references to obtain appropriate, region specific, age-based dosing regimens of drugs used in the tropics. The method is an affordable and efficient strategy to estimate regional growth distributions where the standard costly alternatives are not an option. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se; Kindblom, Jon; Bernhardt, Peter

    2014-09-15

    Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO{sub 2})]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumormore » oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO{sub 2}), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO{sub 2} were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO{sub 2} distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO{sub 2} (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO{sub 2} (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO{sub 2} (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations.« less

  17. Oxygen distribution in tumors: a qualitative analysis and modeling study providing a novel Monte Carlo approach.

    PubMed

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-09-01

    To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO2)]. A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO2), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO2 were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO2 distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO2 (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO2 (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO2 (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations.

  18. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  19. Income Distribution Over Educational Levels: A Simple Model.

    ERIC Educational Resources Information Center

    Tinbergen, Jan

    An econometric model is formulated that explains income per person in various compartments of the labor market defined by three main levels of education and by education required. The model enables an estimation of the effect of increased access to education on that distribution. The model is based on a production for the economy as a whole; a…

  20. Advances in the spatially distributed ages-w model: parallel computation, java connection framework (JCF) integration, and streamflow/nitrogen dynamics assessment

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scala...

  1. The Spatially-Distributed Agroecosystem-Watershed (Ages-W) Hydrologic/Water Quality (H/WQ) model for assessment of conservation effects

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality (H/WQ) simulation components under the Object Modeling System (OMS3) environmental modeling framework. AgES-W has recently been enhanced with the addition of nitrogen (N) a...

  2. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.

  3. Development of a distributed air pollutant dry deposition modeling framework

    Treesearch

    Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak

    2012-01-01

    A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...

  4. RF model of the distribution system as a communication channel, phase 2. Volume 2: Task reports

    NASA Technical Reports Server (NTRS)

    Rustay, R. C.; Gajjar, J. T.; Rankin, R. W.; Wentz, R. C.; Wooding, R.

    1982-01-01

    Based on the established feasibility of predicting, via a model, the propagation of Power Line Frequency on radial type distribution feeders, verification studies comparing model predictions against measurements were undertaken using more complicated feeder circuits and situations. Detailed accounts of the major tasks are presented. These include: (1) verification of model; (2) extension, implementation, and verification of perturbation theory; (3) parameter sensitivity; (4) transformer modeling; and (5) compensation of power distribution systems for enhancement of power line carrier communication reliability.

  5. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  6. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    NASA Astrophysics Data System (ADS)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  7. Parallel State Space Construction for a Model Checking Based on Maximality Semantics

    NASA Astrophysics Data System (ADS)

    El Abidine Bouneb, Zine; Saīdouni, Djamel Eddine

    2009-03-01

    The main limiting factor of the model checker integrated in the concurrency verification environment FOCOVE [1, 2], which use the maximality based labeled transition system (noted MLTS) as a true concurrency model[3, 4], is currently the amount of available physical memory. Many techniques have been developed to reduce the size of a state space. An interesting technique among them is the alpha equivalence reduction. Distributed memory execution environment offers yet another choice. The main contribution of the paper is to show that the parallel state space construction algorithm proposed in [5], which is based on interleaving semantics using LTS as semantic model, may be adapted easily to the distributed implementation of the alpha equivalence reduction for the maximality based labeled transition systems.

  8. Quantitative Agent Based Model of User Behavior in an Internet Discussion Forum

    PubMed Central

    Sobkowicz, Pawel

    2013-01-01

    The paper presents an agent based simulation of opinion evolution, based on a nonlinear emotion/information/opinion (E/I/O) individual dynamics, to an actual Internet discussion forum. The goal is to reproduce the results of two-year long observations and analyses of the user communication behavior and of the expressed opinions and emotions, via simulations using an agent based model. The model allowed to derive various characteristics of the forum, including the distribution of user activity and popularity (outdegree and indegree), the distribution of length of dialogs between the participants, their political sympathies and the emotional content and purpose of the comments. The parameters used in the model have intuitive meanings, and can be translated into psychological observables. PMID:24324606

  9. Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed (Ambrosia artemisiifolia L.) distribution in China

    USGS Publications Warehouse

    Hao, Chen; LiJun, Chen; Albright, Thomas P.

    2007-01-01

    Invasive exotic species pose a growing threat to the economy, public health, and ecological integrity of nations worldwide. Explaining and predicting the spatial distribution of invasive exotic species is of great importance to prevention and early warning efforts. We are investigating the potential distribution of invasive exotic species, the environmental factors that influence these distributions, and the ability to predict them using statistical and information-theoretic approaches. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, for most species, absence data are not available. Presented with the challenge of developing a model based on presence-only information, we developed an improved logistic regression approach using Information Theory and Frequency Statistics to produce a relative suitability map. This paper generated a variety of distributions of ragweed (Ambrosia artemisiifolia L.) from logistic regression models applied to herbarium specimen location data and a suite of GIS layers including climatic, topographic, and land cover information. Our logistic regression model was based on Akaike's Information Criterion (AIC) from a suite of ecologically reasonable predictor variables. Based on the results we provided a new Frequency Statistical method to compartmentalize habitat-suitability in the native range. Finally, we used the model and the compartmentalized criterion developed in native ranges to "project" a potential distribution onto the exotic ranges to build habitat-suitability maps. ?? Science in China Press 2007.

  10. Skin fluorescence model based on the Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.

    2003-10-01

    The novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account spatial distribution of fluorophores following the collagen fibers packing, whereas in epidermis and stratum corneum the distribution of fluorophores assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the NIR spectral region, while fluorescence of sensor layer embedded in epidermis is localized at the adjusted depth. The model is also able to simulate the skin fluorescence spectra.

  11. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  12. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  13. Implementing a novel movement-based approach to inferring parturition and neonate caribou calf survival.

    PubMed

    Bonar, Maegwin; Ellington, E Hance; Lewis, Keith P; Vander Wal, Eric

    2018-01-01

    In ungulates, parturition is correlated with a reduction in movement rate. With advances in movement-based technologies comes an opportunity to develop new techniques to assess reproduction in wild ungulates that are less invasive and reduce biases. DeMars et al. (2013, Ecology and Evolution 3:4149-4160) proposed two promising new methods (individual- and population-based; the DeMars model) that use GPS inter-fix step length of adult female caribou (Rangifer tarandus caribou) to infer parturition and neonate survival. Our objective was to apply the DeMars model to caribou populations that may violate model assumptions for retrospective analysis of parturition and calf survival. We extended the use of the DeMars model after assigning parturition and calf mortality status by examining herd-wide distributions of parturition date, calf mortality date, and survival. We used the DeMars model to estimate parturition and calf mortality events and compared them with the known parturition and calf mortality events from collared adult females (n = 19). We also used the DeMars model to estimate parturition and calf mortality events for collared female caribou with unknown parturition and calf mortality events (n = 43) and instead derived herd-wide estimates of calf survival as well as distributions of parturition and calf mortality dates and compared them to herd-wide estimates generated from calves fitted with VHF collars (n = 134). For our data, the individual-based method was effective at predicting calf mortality, but was not effective at predicting parturition. The population-based method was more effective at predicting parturition but was not effective at predicting calf mortality. At the herd-level, the predicted distributions of parturition date from both methods differed from each other and from the distribution derived from the parturition dates of VHF-collared calves (log-ranked test: χ2 = 40.5, df = 2, p < 0.01). The predicted distributions of calf mortality dates from both methods were similar to the observed distribution derived from VHF-collared calves. Both methods underestimated herd-wide calf survival based on VHF-collared calves, however, a combination of the individual- and population-based methods produced herd-wide survival estimates similar to estimates generated from collared calves. The limitations we experienced when applying the DeMars model could result from the shortcomings in our data violating model assumptions. However despite the differences in our caribou systems, with proper validation techniques the framework in the DeMars model is sufficient to make inferences on parturition and calf mortality.

  14. Implementing a novel movement-based approach to inferring parturition and neonate caribou calf survival

    PubMed Central

    Ellington, E. Hance; Lewis, Keith P.; Vander Wal, Eric

    2018-01-01

    In ungulates, parturition is correlated with a reduction in movement rate. With advances in movement-based technologies comes an opportunity to develop new techniques to assess reproduction in wild ungulates that are less invasive and reduce biases. DeMars et al. (2013, Ecology and Evolution 3:4149–4160) proposed two promising new methods (individual- and population-based; the DeMars model) that use GPS inter-fix step length of adult female caribou (Rangifer tarandus caribou) to infer parturition and neonate survival. Our objective was to apply the DeMars model to caribou populations that may violate model assumptions for retrospective analysis of parturition and calf survival. We extended the use of the DeMars model after assigning parturition and calf mortality status by examining herd-wide distributions of parturition date, calf mortality date, and survival. We used the DeMars model to estimate parturition and calf mortality events and compared them with the known parturition and calf mortality events from collared adult females (n = 19). We also used the DeMars model to estimate parturition and calf mortality events for collared female caribou with unknown parturition and calf mortality events (n = 43) and instead derived herd-wide estimates of calf survival as well as distributions of parturition and calf mortality dates and compared them to herd-wide estimates generated from calves fitted with VHF collars (n = 134). For our data, the individual-based method was effective at predicting calf mortality, but was not effective at predicting parturition. The population-based method was more effective at predicting parturition but was not effective at predicting calf mortality. At the herd-level, the predicted distributions of parturition date from both methods differed from each other and from the distribution derived from the parturition dates of VHF-collared calves (log-ranked test: χ2 = 40.5, df = 2, p < 0.01). The predicted distributions of calf mortality dates from both methods were similar to the observed distribution derived from VHF-collared calves. Both methods underestimated herd-wide calf survival based on VHF-collared calves, however, a combination of the individual- and population-based methods produced herd-wide survival estimates similar to estimates generated from collared calves. The limitations we experienced when applying the DeMars model could result from the shortcomings in our data violating model assumptions. However despite the differences in our caribou systems, with proper validation techniques the framework in the DeMars model is sufficient to make inferences on parturition and calf mortality. PMID:29466451

  15. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  16. The future distribution of the savannah biome: model-based and biogeographic contingency

    PubMed Central

    Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I.

    2016-01-01

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)—and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502376

  17. The future distribution of the savannah biome: model-based and biogeographic contingency.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I

    2016-09-19

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)-and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  18. The Nonstationary Dynamics of Fitness Distributions: Asexual Model with Epistasis and Standing Variation

    PubMed Central

    Martin, Guillaume; Roques, Lionel

    2016-01-01

    Various models describe asexual evolution by mutation, selection, and drift. Some focus directly on fitness, typically modeling drift but ignoring or simplifying both epistasis and the distribution of mutation effects (traveling wave models). Others follow the dynamics of quantitative traits determining fitness (Fisher’s geometric model), imposing a complex but fixed form of mutation effects and epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation rate limits and for long-term stationary regimes, thus losing information on transient behaviors and the effect of initial conditions. Here, we connect fitness-based and trait-based models into a single framework, and seek explicit solutions even away from stationarity. The expected fitness distribution is followed over time via its cumulant generating function, using a deterministic approximation that neglects drift. In several cases, explicit trajectories for the full fitness distribution are obtained for arbitrary mutation rates and standing variance. For nonepistatic mutations, especially with beneficial mutations, this approximation fails over the long term but captures the early dynamics, thus complementing stationary stochastic predictions. The approximation also handles several diminishing returns epistasis models (e.g., with an optimal genotype); it can be applied at and away from equilibrium. General results arise at equilibrium, where fitness distributions display a “phase transition” with mutation rate. Beyond this phase transition, in Fisher’s geometric model, the full trajectory of fitness and trait distributions takes a simple form; robust to the details of the mutant phenotype distribution. Analytical arguments are explored regarding why and when the deterministic approximation applies. PMID:27770037

  19. Parallel computing method for simulating hydrological processesof large rivers under climate change

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.

    2016-12-01

    Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.

  20. Color Reproduction System Based on Color Appearance Model and Gamut Mapping

    DTIC Science & Technology

    2000-07-01

    and Gamut Mapping DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Input/Output...report: ADP011333 thru ADP011362 UNCLASSIFIED Color reproduction system based on color appearance model and gamut mapping Fang-Hsuan Cheng, Chih-Yuan...perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human

  1. Supervised variational model with statistical inference and its application in medical image segmentation.

    PubMed

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David

    2015-01-01

    Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.

  2. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  3. Modeling stream fish distributions using interval-censored detection times.

    PubMed

    Ferreira, Mário; Filipe, Ana Filipa; Bardos, David C; Magalhães, Maria Filomena; Beja, Pedro

    2016-08-01

    Controlling for imperfect detection is important for developing species distribution models (SDMs). Occupancy-detection models based on the time needed to detect a species can be used to address this problem, but this is hindered when times to detection are not known precisely. Here, we extend the time-to-detection model to deal with detections recorded in time intervals and illustrate the method using a case study on stream fish distribution modeling. We collected electrofishing samples of six fish species across a Mediterranean watershed in Northeast Portugal. Based on a Bayesian hierarchical framework, we modeled the probability of water presence in stream channels, and the probability of species occupancy conditional on water presence, in relation to environmental and spatial variables. We also modeled time-to-first detection conditional on occupancy in relation to local factors, using modified interval-censored exponential survival models. Posterior distributions of occupancy probabilities derived from the models were used to produce species distribution maps. Simulations indicated that the modified time-to-detection model provided unbiased parameter estimates despite interval-censoring. There was a tendency for spatial variation in detection rates to be primarily influenced by depth and, to a lesser extent, stream width. Species occupancies were consistently affected by stream order, elevation, and annual precipitation. Bayesian P-values and AUCs indicated that all models had adequate fit and high discrimination ability, respectively. Mapping of predicted occupancy probabilities showed widespread distribution by most species, but uncertainty was generally higher in tributaries and upper reaches. The interval-censored time-to-detection model provides a practical solution to model occupancy-detection when detections are recorded in time intervals. This modeling framework is useful for developing SDMs while controlling for variation in detection rates, as it uses simple data that can be readily collected by field ecologists.

  4. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers.

    PubMed

    Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying

    2007-03-19

    A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.

  5. Determining the best population-level alcohol consumption model and its impact on estimates of alcohol-attributable harms

    PubMed Central

    2012-01-01

    Background The goals of our study are to determine the most appropriate model for alcohol consumption as an exposure for burden of disease, to analyze the effect of the chosen alcohol consumption distribution on the estimation of the alcohol Population- Attributable Fractions (PAFs), and to characterize the chosen alcohol consumption distribution by exploring if there is a global relationship within the distribution. Methods To identify the best model, the Log-Normal, Gamma, and Weibull prevalence distributions were examined using data from 41 surveys from Gender, Alcohol and Culture: An International Study (GENACIS) and from the European Comparative Alcohol Study. To assess the effect of these distributions on the estimated alcohol PAFs, we calculated the alcohol PAF for diabetes, breast cancer, and pancreatitis using the three above-named distributions and using the more traditional approach based on categories. The relationship between the mean and the standard deviation from the Gamma distribution was estimated using data from 851 datasets for 66 countries from GENACIS and from the STEPwise approach to Surveillance from the World Health Organization. Results The Log-Normal distribution provided a poor fit for the survey data, with Gamma and Weibull distributions providing better fits. Additionally, our analyses showed that there were no marked differences for the alcohol PAF estimates based on the Gamma or Weibull distributions compared to PAFs based on categorical alcohol consumption estimates. The standard deviation of the alcohol distribution was highly dependent on the mean, with a unit increase in alcohol consumption associated with a unit increase in the mean of 1.258 (95% CI: 1.223 to 1.293) (R2 = 0.9207) for women and 1.171 (95% CI: 1.144 to 1.197) (R2 = 0. 9474) for men. Conclusions Although the Gamma distribution and the Weibull distribution provided similar results, the Gamma distribution is recommended to model alcohol consumption from population surveys due to its fit, flexibility, and the ease with which it can be modified. The results showed that a large degree of variance of the standard deviation of the alcohol consumption Gamma distribution was explained by the mean alcohol consumption, allowing for alcohol consumption to be modeled through a Gamma distribution using only average consumption. PMID:22490226

  6. Differentially private distributed logistic regression using private and public data.

    PubMed

    Ji, Zhanglong; Jiang, Xiaoqian; Wang, Shuang; Xiong, Li; Ohno-Machado, Lucila

    2014-01-01

    Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee.

  7. A Physiologically-based Model for Methylmercury Uptake and Accumulation in Female American Kestrels

    EPA Science Inventory

    A physiologically-based model was developed to describe the uptake, distribution, and elimination of methylmercury in female American Kestrels (Falco sparverius). The model was adapted from established models for methylmercury in rodents. Features unique to the model include meth...

  8. State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy

    NASA Astrophysics Data System (ADS)

    Rakovec, O.; Weerts, A. H.; Hazenberg, P.; Torfs, P. J. J. F.; Uijlenhoet, R.

    2012-09-01

    This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model. The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty.

  9. WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warrell, G; Shvydka, D; Parsai, E I

    Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less

  10. Characterizing the spatial structure of endangered species habitat using geostatistical analysis of IKONOS imagery

    USGS Publications Warehouse

    Wallace, C.S.A.; Marsh, S.E.

    2005-01-01

    Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.

  11. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  12. A Hierarchy of Heuristic-Based Models of Crowd Dynamics

    NASA Astrophysics Data System (ADS)

    Degond, P.; Appert-Rolland, C.; Moussaïd, M.; Pettré, J.; Theraulaz, G.

    2013-09-01

    We derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Ngai et al. (Disaster Med. Public Health Prep. 3:191-195, 2009) where pedestrians are supposed to have constant speeds. This IBM supposes that pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution function is either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibria in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use.

  13. Working toward integrated models of alpine plant distribution

    PubMed Central

    Carlson, Bradley Z.; Randin, Christophe F.; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2014-01-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial–temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution. PMID:24790594

  14. Robust Bayesian clustering.

    PubMed

    Archambeau, Cédric; Verleysen, Michel

    2007-01-01

    A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.

  15. Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities

    ERIC Educational Resources Information Center

    Woods, Carol M.; Thissen, David

    2006-01-01

    The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…

  16. A methodology to design heuristics for model selection based on the characteristics of data: Application to investigate when the Negative Binomial Lindley (NB-L) is preferred over the Negative Binomial (NB).

    PubMed

    Shirazi, Mohammadali; Dhavala, Soma Sekhar; Lord, Dominique; Geedipally, Srinivas Reddy

    2017-10-01

    Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new statistical distributions, choosing the best one using such post-modeling methods is not a trivial task, in addition to all theoretical or numerical issues the analyst may face during the analysis. Furthermore, and most importantly, these measures or tests do not provide any intuitions into why a specific distribution (or model) is preferred over another (Goodness-of-Logic). This paper ponders into these issues by proposing a methodology to design heuristics for Model Selection based on the characteristics of data, in terms of descriptive summary statistics, before fitting the models. The proposed methodology employs two analytic tools: (1) Monte-Carlo Simulations and (2) Machine Learning Classifiers, to design easy heuristics to predict the label of the 'most-likely-true' distribution for analyzing data. The proposed methodology was applied to investigate when the recently introduced Negative Binomial Lindley (NB-L) distribution is preferred over the Negative Binomial (NB) distribution. Heuristics were designed to select the 'most-likely-true' distribution between these two distributions, given a set of prescribed summary statistics of data. The proposed heuristics were successfully compared against classical tests for several real or observed datasets. Not only they are easy to use and do not need any post-modeling inputs, but also, using these heuristics, the analyst can attain useful information about why the NB-L is preferred over the NB - or vice versa- when modeling data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Predicting geographically distributed adult dental decay in the greater Auckland region of New Zealand.

    PubMed

    Rocha, C M; Kruger, E; Whyman, R; Tennant, M

    2014-06-01

    To model the geographic distribution of current (and treated) dental decay on a high-resolution geographic basis for the Auckland region of New Zealand. The application of matrix-based mathematics to modelling adult dental disease-based on known population risk profiles to provide a detailed map of the dental caries distribution for the greater Auckland region. Of the 29 million teeth in adults in the region some 1.2 million (4%) are suffering decay whilst 7.2 million (25%) have previously suffered decay and are now restored. The model provides a high-resolution picture of where the disease burden lies geographically and presents to health planners a method for developing future service plans.

  18. Ontology-Based Multimedia Authoring Tool for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Deng, Lawrence Y.; Keh, Huan-Chao; Liu, Yi-Jen

    2010-01-01

    More video streaming technologies supporting distance learning systems are becoming popular among distributed network environments. In this paper, the authors develop a multimedia authoring tool for adaptive e-learning by using characterization of extended media streaming technologies. The distributed approach is based on an ontology-based model.…

  19. Integrating species distributional, conservation planning, and individual based population models: A case study in critical habitat evaluation for the Northern Spotted Owl

    EPA Science Inventory

    Background / Question / Methods As part of the ongoing northern spotted owl recovery planning effort, we evaluated a series of alternative potential critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individua...

  20. Investigation of non-Gaussian effects in the Brazilian option market

    NASA Astrophysics Data System (ADS)

    Sosa-Correa, William O.; Ramos, Antônio M. T.; Vasconcelos, Giovani L.

    2018-04-01

    An empirical study of the Brazilian option market is presented in light of three option pricing models, namely the Black-Scholes model, the exponential model, and a model based on a power law distribution, the so-called q-Gaussian distribution or Tsallis distribution. It is found that the q-Gaussian model performs better than the Black-Scholes model in about one third of the option chains analyzed. But among these cases, the exponential model performs better than the q-Gaussian model in 75% of the time. The superiority of the exponential model over the q-Gaussian model is particularly impressive for options close to the expiration date, where its success rate rises above ninety percent.

  1. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    NASA Astrophysics Data System (ADS)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  2. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    PubMed

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  3. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Aziz, H M Abdul; Young, Stan

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less

  4. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  5. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  6. Improving Transferability of Introduced Species’ Distribution Models: New Tools to Forecast the Spread of a Highly Invasive Seaweed

    PubMed Central

    Verbruggen, Heroen; Tyberghein, Lennert; Belton, Gareth S.; Mineur, Frederic; Jueterbock, Alexander; Hoarau, Galice; Gurgel, C. Frederico D.; De Clerck, Olivier

    2013-01-01

    The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpacylindracea (previously Caulerpa racemosa var. cylindracea ) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpacylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia. PMID:23950789

  7. A simplified rainfall-runoff stochastic simulation method for an application of the SCHADEX method to ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    SCHADEX is a probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design [Paquet et al., 2013]. SCHADEX is based on a semi-continuous rainfall-runoff simulation process. The method has been built around two models: a Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation [Garavaglia et al., 2010] and the MORDOR hydrological model. To use SCHADEX in ungauged context, rainfall distribution and hydrological model must be regionalized. The regionalization of the MEWP rainfall distribution can be managed with SPAZM, a daily rainfall interpolator [Gottardi et al., 2012] which provides reasonable estimates of point and areal rainfall up to hight quantiles. The main issue remains to regionalize MORDOR which is heavily parametrized. A much more simple model has been considered: the SCS model. It is a well known model for event simulation [USDA SCS, 1985; Beven, 2003] and it relies on only one parameter. Then, the idea is to use the SCS model instead of MORDOR within a simplified stochastic simulation scheme to produce a distribution of flood volume from an exhaustive crossing between rainy events and catchment saturation hazards. The presentation details this process and its capacity to generate a runoff distribution based on catchment areal rainfall distribution. The simulation method depends on a unique parameter Smax, the maximum initial loss of the catchment. Then an initial loss S (between zero and Smax) can be drawn to account for the variability of catchment state (between dry and saturated). The distribution of initial loss (or conversely, of catchment saturation, as modeled by MORDOR) seems closely linked to the catchment's regime, therefore easily to regionalize. The simulation takes into account a snow contribution for snow driven catchments, and an antecedent runoff. The presentation shows the results of this stochastic procedure applied on 80 French catchments and its capacity to represent the asymptotic behaviour of the runoff distribution. References: K. J. Beven. Rainfall-Runoff modelling The Primer, British Library, 2003. F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. Introducing a rainfall compound distribution model based on weather patterns sub-sampling. Hydrology and Earth System Sciences, 14(6):951-964, 2010. F. Gottardi, C. Obled, J. Gailhard, and E. Paquet. Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154-167, 2012. ISSN 0022-1694. E. Paquet, F. Garavaglia, R Garçon, and J. Gailhard. The schadex method : a semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 2013. USDA SCS, National Engineering Handbook, Supplement A, Section 4, Chapter 10. Whashington DC, 1985.

  8. Species distribution model transferability and model grain size - finer may not always be better.

    PubMed

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  9. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.

    PubMed

    Ohyu, Shigeharu; Okamoto, Yoshiwo; Kuriki, Shinya

    2002-06-01

    A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.

  10. A Model Based on Environmental Factors for Diameter Distribution in Black Wattle in Brazil

    PubMed Central

    Sanquetta, Carlos Roberto; Behling, Alexandre; Dalla Corte, Ana Paula; Péllico Netto, Sylvio; Rodrigues, Aurelio Lourenço; Simon, Augusto Arlindo

    2014-01-01

    This article discusses the dynamics of a diameter distribution in stands of black wattle throughout its growth cycle using the Weibull probability density function. Moreover, the parameters of this distribution were related to environmental variables from meteorological data and surface soil horizon with the aim of finding a model for diameter distribution which their coefficients were related to the environmental variables. We found that the diameter distribution of the stand changes only slightly over time and that the estimators of the Weibull function are correlated with various environmental variables, with accumulated rainfall foremost among them. Thus, a model was obtained in which the estimators of the Weibull function are dependent on rainfall. Such a function can have important applications, such as in simulating growth potential in regions where historical growth data is lacking, as well as the behavior of the stand under different environmental conditions. The model can also be used to project growth in diameter, based on the rainfall affecting the forest over a certain time period. PMID:24932909

  11. Estimation of value at risk in currency exchange rate portfolio using asymmetric GJR-GARCH Copula

    NASA Astrophysics Data System (ADS)

    Nurrahmat, Mohamad Husein; Noviyanti, Lienda; Bachrudin, Achmad

    2017-03-01

    In this study, we discuss the problem in measuring the risk in a portfolio based on value at risk (VaR) using asymmetric GJR-GARCH Copula. The approach based on the consideration that the assumption of normality over time for the return can not be fulfilled, and there is non-linear correlation for dependent model structure among the variables that lead to the estimated VaR be inaccurate. Moreover, the leverage effect also causes the asymmetric effect of dynamic variance and shows the weakness of the GARCH models due to its symmetrical effect on conditional variance. Asymmetric GJR-GARCH models are used to filter the margins while the Copulas are used to link them together into a multivariate distribution. Then, we use copulas to construct flexible multivariate distributions with different marginal and dependence structure, which is led to portfolio joint distribution does not depend on the assumptions of normality and linear correlation. VaR obtained by the analysis with confidence level 95% is 0.005586. This VaR derived from the best Copula model, t-student Copula with marginal distribution of t distribution.

  12. Evaluating Emulation-based Models of Distributed Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Stephen T.; Gabert, Kasimir G.; Tarman, Thomas D.

    Emulation-based models of distributed computing systems are collections of virtual ma- chines, virtual networks, and other emulation components configured to stand in for oper- ational systems when performing experimental science, training, analysis of design alterna- tives, test and evaluation, or idea generation. As with any tool, we should carefully evaluate whether our uses of emulation-based models are appropriate and justified. Otherwise, we run the risk of using a model incorrectly and creating meaningless results. The variety of uses of emulation-based models each have their own goals and deserve thoughtful evaluation. In this paper, we enumerate some of these uses andmore » describe approaches that one can take to build an evidence-based case that a use of an emulation-based model is credible. Predictive uses of emulation-based models, where we expect a model to tell us something true about the real world, set the bar especially high and the principal evaluation method, called validation , is comensurately rigorous. We spend the majority of our time describing and demonstrating the validation of a simple predictive model using a well-established methodology inherited from decades of development in the compuational science and engineering community.« less

  13. On the probability distribution of stock returns in the Mike-Farmer model

    NASA Astrophysics Data System (ADS)

    Gu, G.-F.; Zhou, W.-X.

    2009-02-01

    Recently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x < 0 and the right part R(x) for x > 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.

  14. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Mitchell, Travis; Leonardi, Christopher; Bolster, Diogo

    2017-11-01

    Based on phase-field theory, we introduce a robust lattice-Boltzmann equation for modeling immiscible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying the method proposed by Zu and He [Phys. Rev. E 87, 043301 (2013), 10.1103/PhysRevE.87.043301] in such a way as to improve efficiency and numerical stability. In particular, we employ a different interface-tracking equation based on the so-called conservative phase-field model, a simplified equilibrium distribution that decouples pressure and velocity calculations, and a local scheme based on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two distribution functions for interface tracking and recovery of hydrodynamic properties, the only nonlocal variable in the proposed model is the phase field. Moreover, within our framework there is no need to use biased or mixed difference stencils for numerical stability and accuracy at high density ratios. This not only simplifies the implementation and efficiency of the model, but also leads to a model that is better suited to parallel implementation on distributed-memory machines. Several benchmark cases are considered to assess the efficacy of the proposed model, including the layered Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble in a duct. The numerical results are in good agreement with available numerical and experimental data.

  15. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  16. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  17. Evaluation of the effect of postural and gravitational variations on the distribution of pulmonary blood flow via an image-based computational model.

    PubMed

    Burrowes, K S; Hunter, P J; Tawhai, M H

    2005-01-01

    We have developed an image-based computational model of blood flow within the human pulmonary circulation in order to investigate the distribution of flow under various conditions of posture and gravity. Geometric models of the lobar surfaces and largest arterial and venous vessels were derived from multi-detector row X-ray computed tomography. The remaining blood vessels were generated using a volume-filling branching algorithm. Equations representing conservation of mass and momentum are solved within the vascular geometry to calculate pressure, radius, and velocity distributions. Flow solutions are obtained within the model in the upright, inverted, prone, and supine postures and in the upright posture with and without gravity. Additional equations representing large deformation mechanics are used to calculate the change in lung geometry and pressure distributions within the lung in the various postures - creating a coupled, co-dependent model of mechanics and flow. The embedded vascular meshes deform in accordance with the lung geometry. Results illustrate a persistent flow gradient from the top to the bottom of the lung even in the absence of gravity and in all postures, indicating that vascular branching structure is largely responsible for the distribution of flow.

  18. Experimental characterization and microstructure linked modeling of mechanical behavior of ultra-thin aluminum foils used in packaging

    NASA Astrophysics Data System (ADS)

    Tabourot, Laurent; Charleux, Ludovic; Balland, Pascale; Sène, Ndèye Awa; Andreasson, Eskil

    2018-05-01

    This paper is based on the hypothesis that introducing distribution of mechanical properties is beneficial for modeling all kinds of mechanical behavior, even of ordinary metallic materials. To bring proof of its admissibility, it has to be first shown that modeling based on this assertion is able to efficiently describe standard mechanical behavior of materials. Searching for typical study case, it has been assessed that at a low scale, yield stresses could be strongly distributed in ultrathin aluminum foils used in packaging industry, offering opportunities to identifying their distribution and showing its role on the mechanical properties. Considering initially reduced modeling allow to establish a valuable connection between the hardening curve and the distribution of local yield stresses. This serves for finding initial value of distribution parameters in a more sophisticated identification procedure. With finally limited number of representative classes of local yield stresses, concretely 3 is enough, it is shown that a 3D finite element simulation involving limited numbers of elements returns realistic behavior of an ultrathin aluminum foil exerted to tensile test, in reference to experimental results. This gives way to large possibilities in modeling in order to give back complex experimental evidence.

  19. Modeling Multiple Human-Automation Distributed Systems using Network-form Games

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume

    2012-01-01

    The paper describes at a high-level the network-form game framework (based on Bayes net and game theory), which can be used to model and analyze safety issues in large, distributed, mixed human-automation systems such as NextGen.

  20. Bilateral Trade Flows and Income Distribution Similarity.

    PubMed

    Martínez-Zarzoso, Inmaculada; Vollmer, Sebastian

    2016-01-01

    Current models of bilateral trade neglect the effects of income distribution. This paper addresses the issue by accounting for non-homothetic consumer preferences and hence investigating the role of income distribution in the context of the gravity model of trade. A theoretically justified gravity model is estimated for disaggregated trade data (Dollar volume is used as dependent variable) using a sample of 104 exporters and 108 importers for 1980-2003 to achieve two main goals. We define and calculate new measures of income distribution similarity and empirically confirm that greater similarity of income distribution between countries implies more trade. Using distribution-based measures as a proxy for demand similarities in gravity models, we find consistent and robust support for the hypothesis that countries with more similar income-distributions trade more with each other. The hypothesis is also confirmed at disaggregated level for differentiated product categories.

  1. Bilateral Trade Flows and Income Distribution Similarity

    PubMed Central

    2016-01-01

    Current models of bilateral trade neglect the effects of income distribution. This paper addresses the issue by accounting for non-homothetic consumer preferences and hence investigating the role of income distribution in the context of the gravity model of trade. A theoretically justified gravity model is estimated for disaggregated trade data (Dollar volume is used as dependent variable) using a sample of 104 exporters and 108 importers for 1980–2003 to achieve two main goals. We define and calculate new measures of income distribution similarity and empirically confirm that greater similarity of income distribution between countries implies more trade. Using distribution-based measures as a proxy for demand similarities in gravity models, we find consistent and robust support for the hypothesis that countries with more similar income-distributions trade more with each other. The hypothesis is also confirmed at disaggregated level for differentiated product categories. PMID:27137462

  2. Appendix 2: Risk-based framework and risk case studies. Risk Assessment for two bird species in northern Wisconsin.

    Treesearch

    Megan M. Friggens; Stephen N. Matthews

    2012-01-01

    Species distribution models for 147 bird species have been derived using climate, elevation, and distribution of current tree species as potential predictors (Matthews et al. 2011). In this case study, a risk matrix was developed for two bird species (fig. A2-5), with projected change in bird habitat (the x axis) based on models of changing suitable habitat resulting...

  3. A review of the potential effects of climate change on quaking aspen (Populus tremuloides) in the Western United States and a new tool for surveying sudden aspen decline

    Treesearch

    Toni Lyn Morelli; Susan C. Carr

    2011-01-01

    We conducted a literature review of the effects of climate on the distribution and growth of quaking aspen (Populus tremuloides Michx.) in the Western United States. Based on our review, we summarize models of historical climate determinants of contemporary aspen distribution. Most quantitative climate-based models linked aspen presence and growth...

  4. Model for macroevolutionary dynamics.

    PubMed

    Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E

    2013-07-02

    The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.

  5. Establishment method of a mixture model and its practical application for transmission gears in an engineering vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jixin; Wang, Zhenyu; Yu, Xiangjun; Yao, Mingyao; Yao, Zongwei; Zhang, Erping

    2012-09-01

    Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probability distribution function (PDF) of transmission gears has many distributions centers; thus, its PDF cannot be well represented by just a single-peak function. For the purpose of representing the distribution characteristics of the complicated phenomenon accurately, this paper proposes a novel method to establish a mixture model. Based on linear regression models and correlation coefficients, the proposed method can be used to automatically select the best-fitting function in the mixture model. Coefficient of determination, the mean square error, and the maximum deviation are chosen and then used as judging criteria to describe the fitting precision between the theoretical distribution and the corresponding histogram of the available load data. The applicability of this modeling method is illustrated by the field testing data of a wheel loader. Meanwhile, the load spectra based on the mixture model are compiled. The comparison results show that the mixture model is more suitable for the description of the load-distribution characteristics. The proposed research improves the flexibility and intelligence of modeling, reduces the statistical error and enhances the fitting accuracy, and the load spectra complied by this method can better reflect the actual load characteristic of the gear component.

  6. A simple marriage model for the power-law behaviour in the frequency distributions of family names

    NASA Astrophysics Data System (ADS)

    Wu, Hao-Yun; Chou, Chung-I.; Tseng, Jie-Jun

    2011-01-01

    In many countries, the frequency distributions of family names are found to decay as a power law with an exponent ranging from 1.0 to 2.2. In this work, we propose a simple marriage model which can reproduce this power-law behaviour. Our model, based on the evolution of families, consists of the growth of big families and the formation of new families. Preliminary results from the model show that the name distributions are in good agreement with empirical data from Taiwan and Norway.

  7. Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods

    NASA Astrophysics Data System (ADS)

    Gong, W.; Duan, Q.; Huo, X.

    2017-12-01

    Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.

  8. Predicting species distributions from checklist data using site-occupancy models

    USGS Publications Warehouse

    Kery, M.; Gardner, B.; Monnerat, C.

    2010-01-01

    Aim: (1) To increase awareness of the challenges induced by imperfect detection, which is a fundamental issue in species distribution modelling; (2) to emphasize the value of replicate observations for species distribution modelling; and (3) to show how 'cheap' checklist data in faunal/floral databases may be used for the rigorous modelling of distributions by site-occupancy models. Location: Switzerland. Methods: We used checklist data collected by volunteers during 1999 and 2000 to analyse the distribution of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzerland. We used data from repeated visits to 1-ha pixels to derive 'detection histories' and apply site-occupancy models to estimate the 'true' species distribution, i.e. corrected for imperfect detection. We modelled blue hawker distribution as a function of elevation and year and its detection probability of elevation, year and season. Results: The best model contained cubic polynomial elevation effects for distribution and quadratic effects of elevation and season for detectability. We compared the site-occupancy model with a conventional distribution model based on a generalized linear model, which assumes perfect detectability (p = 1). The conventional distribution map looked very different from the distribution map obtained using site-occupancy models that accounted for the imperfect detection. The conventional model underestimated the species distribution by 60%, and the slope parameters of the occurrence-elevation relationship were also underestimated when assuming p = 1. Elevation was not only an important predictor of blue hawker occurrence, but also of the detection probability, with a bell-shaped relationship. Furthermore, detectability increased over the season. The average detection probability was estimated at only 0.19 per survey. Main conclusions: Conventional species distribution models do not model species distributions per se but rather the apparent distribution, i.e. an unknown proportion of species distributions. That unknown proportion is equivalent to detectability. Imperfect detection in conventional species distribution models yields underestimates of the extent of distributions and covariate effects that are biased towards zero. In addition, patterns in detectability will erroneously be ascribed to species distributions. In contrast, site-occupancy models applied to replicated detection/non-detection data offer a powerful framework for making inferences about species distributions corrected for imperfect detection. The use of 'cheap' checklist data greatly enhances the scope of applications of this useful class of models. ?? 2010 Blackwell Publishing Ltd.

  9. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    NASA Astrophysics Data System (ADS)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  10. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    PubMed

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  11. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.

  12. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  13. Development of gravity theory application in the internalregional inter-zone commodity movement distribution with the origin zone movement generation boundary

    NASA Astrophysics Data System (ADS)

    Akbardin, J.; Parikesit, D.; Riyanto, B.; TMulyono, A.

    2018-05-01

    Zones that produce land fishery commodity and its yields have characteristics that is limited in distribution capability because infrastructure conditions availability. High demand for fishery commodities caused to a growing distribution at inefficient distribution distance. The development of the gravity theory with the limitation of movement generation from the production zone can increase the interaction inter-zones by distribution distances effectively and efficiently with shorter movement distribution distances. Regression analysis method with multiple variable of transportation infrastructure condition based on service level and quantitative capacity is determined to estimate the 'mass' of movement generation that is formed. The resulting movement distribution (Tid) model has the equation Tid = 27.04 -0.49 tid. Based on barrier function of power model with calibration value β = 0.0496. In the way of development of the movement generation 'mass' boundary at production zone will shorten the distribution distance effectively with shorter distribution distances. Shorter distribution distances will increase the accessibility inter-zones to interact according to the magnitude of the movement generation 'mass'.

  14. Analysis of DNS Cache Effects on Query Distribution

    PubMed Central

    2013-01-01

    This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally. PMID:24396313

  15. Analysis of DNS cache effects on query distribution.

    PubMed

    Wang, Zheng

    2013-01-01

    This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally.

  16. Computation of marginal distributions of peak-heights in electropherograms for analysing single source and mixture STR DNA samples.

    PubMed

    Cowell, Robert G

    2018-05-04

    Current models for single source and mixture samples, and probabilistic genotyping software based on them used for analysing STR electropherogram data, assume simple probability distributions, such as the gamma distribution, to model the allelic peak height variability given the initial amount of DNA prior to PCR amplification. Here we illustrate how amplicon number distributions, for a model of the process of sample DNA collection and PCR amplification, may be efficiently computed by evaluating probability generating functions using discrete Fourier transforms. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Validation of temporal and spatial consistency of facility- and speed-specific vehicle-specific power distributions for emission estimation: A case study in Beijing, China.

    PubMed

    Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei

    2017-09-01

    Vehicle-specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emission modeling such as the MOVES (Motor Vehicle Emissions Simulator) model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city central business district (CBD) area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis of the carbon dioxide (CO 2 ) emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus, it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still develop accurate VSP distributions based on better data from other areas.

  18. Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization

    NASA Astrophysics Data System (ADS)

    Liu, Chuanming; Yao, Huajian

    2017-03-01

    Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.

  19. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2015-03-01

    We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.

  20. Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models using Scale Mixtures of Normal Distributions

    PubMed Central

    Abanto-Valle, C. A.; Bandyopadhyay, D.; Lachos, V. H.; Enriquez, I.

    2009-01-01

    A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. PMID:20730043

  1. Remote sensing-based predictors improve distribution models of rare, early successional and boradleaf tree species in Utah

    Treesearch

    N. E. Zimmermann; T. C. Edwards; G. G. Moisen; T. S. Frescino; J. A. Blackard

    2007-01-01

    Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species...

  2. Foliage Density Distribution and Prediction of Intensively Managed Loblolly Pine

    Treesearch

    Yujia Zhang; Bruce E. Borders; Rodney E. Will; Hector De Los Santos Posadas

    2004-01-01

    The pipe model theory says that foliage biomass is proportional to the sapwood area at the base of the live crown. This knowledge was incorporated in an effort to develop a foliage biomass prediction model from integrating a stipulated foliage biomass distribution function within the crown. This model was parameterized using data collected from intensively managed...

  3. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  4. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  5. A "total parameter estimation" method in the varification of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.

  6. Interseismic Coupling-Based Earthquake and Tsunami Scenarios for the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Baranes, H.; Woodruff, J. D.; Loveless, J. P.; Hyodo, M.

    2018-04-01

    Theoretical modeling and investigations of recent subduction zone earthquakes show that geodetic estimates of interseismic coupling and the spatial distribution of coseismic rupture are correlated. However, the utility of contemporary coupling in guiding construction of rupture scenarios has not been evaluated on the world's most hazardous faults. Here we demonstrate methods for scaling coupling to slip to create rupture models for southwestern Japan's Nankai Trough. Results show that coupling-based models produce distributions of ground surface deformation and tsunami inundation that are similar to historical and geologic records of the largest known Nankai earthquake in CE 1707 and to an independent, quasi-dynamic rupture model. Notably, these models and records all support focused subsidence around western Shikoku that makes the region particularly vulnerable to flooding. Results imply that contemporary coupling mirrors the slip distribution of a full-margin, 1707-type rupture, and Global Positioning System measurements of surface motion are connected with the trough's physical characteristics.

  7. Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya

    2016-11-01

    We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.

  8. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  9. A structural model for the in vivo human cornea including collagen-swelling interaction

    PubMed Central

    Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.

    2015-01-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  10. Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Barker, Erin; Cheng, Guang

    2016-01-06

    In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less

  11. Exploring the role of movement in determining the global distribution of marine biomass using a coupled hydrodynamic - Size-based ecosystem model

    NASA Astrophysics Data System (ADS)

    Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.

    2015-11-01

    Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.

  12. Optimal topology to minimizing congestion in connected communication complex network

    NASA Astrophysics Data System (ADS)

    Benyoussef, M.; Ez-Zahraouy, H.; Benyoussef, A.

    In this paper, a new model of the interdependent complex network is proposed, based on two assumptions that (i) the capacity of a node depends on its degree, and (ii) the traffic load depends on the distribution of the links in the network. Based on these assumptions, the presented model proposes a method of connection not based on the node having a higher degree but on the region containing hubs. It is found that the final network exhibits two kinds of degree distribution behavior, depending on the kind and the way of the connection. This study reveals a direct relation between network structure and traffic flow. It is found that pc the point of transition between the free flow and the congested phase depends on the network structure and the degree distribution. Moreover, this new model provides an improvement in the traffic compared to the results found in a single network. The same behavior of degree distribution found in a BA network and observed in the real world is obtained; except for this model, the transition point between the free phase and congested phase is much higher than the one observed in a network of BA, for both static and dynamic protocols.

  13. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  14. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Electrical utilities model for determining electrical distribution capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at themore » minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.« less

  16. Distributed snow modeling suitable for use with operational data for the American River watershed.

    NASA Astrophysics Data System (ADS)

    Shamir, E.; Georgakakos, K. P.

    2004-12-01

    The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the quantity compared to the snow gauges are well estimated in the high elevation.

  17. Degradation data analysis based on a generalized Wiener process subject to measurement error

    NASA Astrophysics Data System (ADS)

    Li, Junxing; Wang, Zhihua; Zhang, Yongbo; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar

    2017-09-01

    Wiener processes have received considerable attention in degradation modeling over the last two decades. In this paper, we propose a generalized Wiener process degradation model that takes unit-to-unit variation, time-correlated structure and measurement error into considerations simultaneously. The constructed methodology subsumes a series of models studied in the literature as limiting cases. A simple method is given to determine the transformed time scale forms of the Wiener process degradation model. Then model parameters can be estimated based on a maximum likelihood estimation (MLE) method. The cumulative distribution function (CDF) and the probability distribution function (PDF) of the Wiener process with measurement errors are given based on the concept of the first hitting time (FHT). The percentiles of performance degradation (PD) and failure time distribution (FTD) are also obtained. Finally, a comprehensive simulation study is accomplished to demonstrate the necessity of incorporating measurement errors in the degradation model and the efficiency of the proposed model. Two illustrative real applications involving the degradation of carbon-film resistors and the wear of sliding metal are given. The comparative results show that the constructed approach can derive a reasonable result and an enhanced inference precision.

  18. A probabilistic tornado wind hazard model for the continental United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Q; Kimball, J; Mensing, R

    A probabilistic tornado wind hazard model for the continental United States (CONUS) is described. The model incorporates both aleatory (random) and epistemic uncertainties associated with quantifying the tornado wind hazard parameters. The temporal occurrences of tornadoes within the continental United States (CONUS) is assumed to be a Poisson process. A spatial distribution of tornado touchdown locations is developed empirically based on the observed historical events within the CONUS. The hazard model is an aerial probability model that takes into consideration the size and orientation of the facility, the length and width of the tornado damage area (idealized as a rectanglemore » and dependent on the tornado intensity scale), wind speed variation within the damage area, tornado intensity classification errors (i.e.,errors in assigning a Fujita intensity scale based on surveyed damage), and the tornado path direction. Epistemic uncertainties in describing the distributions of the aleatory variables are accounted for by using more than one distribution model to describe aleatory variations. The epistemic uncertainties are based on inputs from a panel of experts. A computer program, TORNADO, has been developed incorporating this model; features of this program are also presented.« less

  19. A microwave scattering model for layered vegetation

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.

    1992-01-01

    A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.

  20. Metadata based management and sharing of distributed biomedical data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Liu, Peiya

    2014-01-01

    Biomedical research data sharing is becoming increasingly important for researchers to reuse experiments, pool expertise and validate approaches. However, there are many hurdles for data sharing, including the unwillingness to share, lack of flexible data model for providing context information, difficulty to share syntactically and semantically consistent data across distributed institutions, and high cost to provide tools to share the data. SciPort is a web-based collaborative biomedical data sharing platform to support data sharing across distributed organisations. SciPort provides a generic metadata model to flexibly customise and organise the data. To enable convenient data sharing, SciPort provides a central server based data sharing architecture with a one-click data sharing from a local server. To enable consistency, SciPort provides collaborative distributed schema management across distributed sites. To enable semantic consistency, SciPort provides semantic tagging through controlled vocabularies. SciPort is lightweight and can be easily deployed for building data sharing communities. PMID:24834105

  1. Results of the Verification of the Statistical Distribution Model of Microseismicity Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Cianciara, Aleksander

    2016-09-01

    The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.

  2. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups

    NASA Astrophysics Data System (ADS)

    Capitán, José A.; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  3. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups.

    PubMed

    Capitán, José A; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  4. Evaluation model of distribution network development based on ANP and grey correlation analysis

    NASA Astrophysics Data System (ADS)

    Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong

    2018-06-01

    The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.

  5. Statistical analysis of earthquakes after the 1999 MW 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg-Jones model

    NASA Astrophysics Data System (ADS)

    Chen, Yuh-Ing; Huang, Chi-Shen; Liu, Jann-Yenq

    2015-12-01

    We investigated the temporal-spatial hazard of the earthquakes after the 1999 September 21 MW = 7.7 Chi-Chi shock in a continental region of Taiwan. The Reasenberg-Jones (RJ) model (Reasenberg and Jones, 1989, 1994) that combines the frequency-magnitude distribution (Gutenberg and Richter, 1944) and time-decaying occurrence rate (Utsu et al., 1995) is conventionally employed for assessing the earthquake hazard after a large shock. However, it is found that the b values in the frequency-magnitude distribution of the earthquakes in the study region dramatically decreased from background values after the Chi-Chi shock, and then gradually increased up. The observation of a time-dependent frequency-magnitude distribution motivated us to propose a modified RJ model (MRJ) to assess the earthquake hazard. To see how the models perform on assessing short-term earthquake hazard, the RJ and MRJ models were separately used to sequentially forecast earthquakes in the study region. To depict the potential rupture area for future earthquakes, we further constructed relative hazard (RH) maps based on the two models. The Receiver Operating Characteristics (ROC) curves (Swets, 1988) finally demonstrated that the RH map based on the MRJ model was, in general, superior to the one based on the original RJ model for exploring the spatial hazard of earthquakes in a short time after the Chi-Chi shock.

  6. A review on the modelling of collection and distribution of blood donation based on vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Azezan, Nur Arif; Ramli, Mohammad Fadzli; Masran, Hafiz

    2017-11-01

    In this paper, we discussed a literature on blood collection-distribution that based on vehicle routing problem. This problem emergence when the process from collection to stock up must be completed in timely manner. We also modified the mathematical model so that it will suited to general collection of blood. A discussion on its algorithm and solution methods are also pointed out briefly in this paper.

  7. Data-Driven Residential Load Modeling and Validation in GridLAB-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotseff, Peter; Lundstrom, Blake

    Accurately characterizing the impacts of high penetrations of distributed energy resources (DER) on the electric distribution system has driven modeling methods from traditional static snap shots, often representing a critical point in time (e.g., summer peak load), to quasi-static time series (QSTS) simulations capturing all the effects of variable DER, associated controls and hence, impacts on the distribution system over a given time period. Unfortunately, the high time resolution DER source and load data required for model inputs is often scarce or non-existent. This paper presents work performed within the GridLAB-D model environment to synthesize, calibrate, and validate 1-second residentialmore » load models based on measured transformer loads and physics-based models suitable for QSTS electric distribution system modeling. The modeling and validation approach taken was to create a typical GridLAB-D model home that, when replicated to represent multiple diverse houses on a single transformer, creates a statistically similar load to a measured load for a given weather input. The model homes are constructed to represent the range of actual homes on an instrumented transformer: square footage, thermal integrity, heating and cooling system definition as well as realistic occupancy schedules. House model calibration and validation was performed using the distribution transformer load data and corresponding weather. The modeled loads were found to be similar to the measured loads for four evaluation metrics: 1) daily average energy, 2) daily average and standard deviation of power, 3) power spectral density, and 4) load shape.« less

  8. Smarter than others? Conjectures in lowest unique bid auctions.

    PubMed

    Zhou, Cancan; Dong, Hongguang; Hu, Rui; Chen, Qinghua

    2015-01-01

    Research concerning various types of auctions, such as English auctions, Dutch auctions, highest-price sealed-bid auctions, and second-price sealed-bid auctions, is always a topic of considerable interest in interdisciplinary fields. The type of auction, known as a lowest unique bid auction (LUBA), has also attracted significant attention. Various models have been proposed, but they often fail to explain satisfactorily the real bid-distribution characteristics. This paper discusses LUBA bid-distribution characteristics, including the inverted-J shape and the exponential decrease in the upper region. The authors note that this type of distribution, which initially increases and later decreases, cannot be derived from the symmetric Nash equilibrium framework based on perfect information that has previously been used. A novel optimization model based on non-perfect information is presented. The kernel of this model is the premise that agents make decisions to achieve maximum profit based on imaginary information or assumptions regarding the behavior of others.

  9. Large-scale modelling permafrost distribution in Ötztal, Pitztal and Kaunertal (Tyrol)

    NASA Astrophysics Data System (ADS)

    Hoinkes, S.; Sailer, R.; Lehning, M.; Steinkogler, W.

    2012-04-01

    Permafrost is an important element of the global cryosphere, which is seriously affected by climate change. Due to the fact that permafrost is a mostly invisible phenomenon, the area-wide distribution is not properly known. Point measurements are conducted to get information, whether permafrost is present at certain places or not. For an area wide distribution mapping, models have to be built and applied. Different kinds of permafrost distribution models already exist, which are based on different approaches and complexities. Differences in model approaches are mainly due to scaling issues, availability of input data and type of output parameters. In the presented work, we want to map and model the distribution of permafrost in the most elevated parts of the Ötztal, Pitztal and Kaunertal, which are situated in the Eastern European Alps and cover an area of approximately 750 km2. As air temperature is believed to be the best and simplest proxy for energy balance in mountainous regions, we took only the mean annual air temperature from the interpolated ÖKLIM dataset of the Central Institute of Meteorology and Geodynamics to calculate areas with possible presence of permafrost. In a second approach we took a high resolution digital elevation model (DEM) derived by air-borne laser scanning and calculated possible areas with permafrost based on elevation and aspect only which is an established approach among the permafrost community since years. These two simple approaches are compared with each other and in order to validate the model we will compare the outputs with point measurements such as temperature recorded at the snow-soil interface (BTS), continuous temperature data, rock glacier inventories, geophysical measurements. We show that the model based on the mean annual air temperature (≤ -2°C) only, would predict less permafrost in the northerly exposed slopes and in lower elevation than the model based on elevation and aspect. In the southern aspects, more permafrost areas are predicted, but the overall pattern of permafrost distribution is similar. Regarding the input parameters, their different spatial resolutions and the complex topography in high alpine terrain these differences in the results are evident. In a next step these two very simple approaches will be compared to a more complex hydro-meteorological three-dimensional simulation (ALPINE3D). First a one-dimensional model will be used to model permafrost presence at certain points and to calibrate the model parameters, further the model will be applied for the whole investigation area. The model output will be a map of probable permafrost distribution, where energy balance, topography, snow cover, (sub)surface material and land cover is playing a major role.

  10. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; informmore » stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.« less

  11. Distribution path robust optimization of electric vehicle with multiple distribution centers

    PubMed Central

    Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi

    2018-01-01

    To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169

  12. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  13. Distribution of guidance models for cardiac resynchronization therapy in the setting of multi-center clinical trials

    NASA Astrophysics Data System (ADS)

    Rajchl, Martin; Abhari, Kamyar; Stirrat, John; Ukwatta, Eranga; Cantor, Diego; Li, Feng P.; Peters, Terry M.; White, James A.

    2014-03-01

    Multi-center trials provide the unique ability to investigate novel techniques across a range of geographical sites with sufficient statistical power, the inclusion of multiple operators determining feasibility under a wider array of clinical environments and work-flows. For this purpose, we introduce a new means of distributing pre-procedural cardiac models for image-guided interventions across a large scale multi-center trial. In this method, a single core facility is responsible for image processing, employing a novel web-based interface for model visualization and distribution. The requirements for such an interface, being WebGL-based, are minimal and well within the realms of accessibility for participating centers. We then demonstrate the accuracy of our approach using a single-center pacemaker lead implantation trial with generic planning models.

  14. Experiences Integrating Transmission and Distribution Simulations for DERs with the Integrated Grid Modeling System (IGMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias

    2016-08-11

    This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less

  15. Temperature distribution in the human body under various conditions of induced hyperthermia

    NASA Technical Reports Server (NTRS)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  16. A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad; Khare, Mukesh

    Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two-wheelers (scooters, motorcycles, etc).

  17. Fractal Analysis of Permeability of Unsaturated Fractured Rocks

    PubMed Central

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746

  18. Fractal analysis of permeability of unsaturated fractured rocks.

    PubMed

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.

  19. An assessment of geographical distribution of different plant functional types over North America simulated using the CLASS-CTEM modelling framework

    NASA Astrophysics Data System (ADS)

    Shrestha, Rudra K.; Arora, Vivek K.; Melton, Joe R.; Sushama, Laxmi

    2017-10-01

    The performance of the competition module of the CLASS-CTEM (Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° spatial resolution over North America by comparing the simulated geographical distribution of its plant functional types (PFTs) with two observation-based estimates. The model successfully reproduces the broad geographical distribution of trees, grasses and bare ground although limitations remain. In particular, compared to the two observation-based estimates, the simulated fractional vegetation coverage is lower in the arid southwest North American region and higher in the Arctic region. The lower-than-observed simulated vegetation coverage in the southwest region is attributed to lack of representation of shrubs in the model and plausible errors in the observation-based data sets. The observation-based data indicate vegetation fractional coverage of more than 60 % in this arid region, despite only 200-300 mm of precipitation that the region receives annually, and observation-based leaf area index (LAI) values in the region are lower than one. The higher-than-observed vegetation fractional coverage in the Arctic is likely due to the lack of representation of moss and lichen PFTs and also likely because of inadequate representation of permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. The model generally reproduces the broad spatial distribution and the total area covered by the two primary tree PFTs (needleleaf evergreen trees, NDL-EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD) reasonably well. The simulated fractional coverage of tree PFTs increases after the 1960s in response to the CO2 fertilization effect and climate warming. Differences between observed and simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, and moss and lichen PFTs, and an adequate representation of permafrost will help improve model performance.

  20. Statistical characteristics of storm interevent time, depth, and duration for eastern New Mexico, Oklahoma, and Texas

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.; Cleveland, Theodore G.; Fang, Xing; Thompson, David B.

    2006-01-01

    The design of small runoff-control structures, from simple floodwater-detention basins to sophisticated best-management practices, requires the statistical characterization of rainfall as a basis for cost-effective, risk-mitigated, hydrologic engineering design. The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a framework to estimate storm statistics including storm interevent times, distributions of storm depths, and distributions of storm durations for eastern New Mexico, Oklahoma, and Texas. The analysis is based on hourly rainfall recorded by the National Weather Service. The database contains more than 155 million hourly values from 774 stations in the study area. Seven sets of maps depicting ranges of mean storm interevent time, mean storm depth, and mean storm duration, by county, as well as tables listing each of those statistics, by county, were developed. The mean storm interevent time is used in probabilistic models to assess the frequency distribution of storms. The Poisson distribution is suggested to model the distribution of storm occurrence, and the exponential distribution is suggested to model the distribution of storm interevent times. The four-parameter kappa distribution is judged as an appropriate distribution for modeling the distribution of both storm depth and storm duration. Preference for the kappa distribution is based on interpretation of L-moment diagrams. Parameter estimates for the kappa distributions are provided. Separate dimensionless frequency curves for storm depth and duration are defined for eastern New Mexico, Oklahoma, and Texas. Dimension is restored by multiplying curve ordinates by the mean storm depth or mean storm duration to produce quantile functions of storm depth and duration. Minimum interevent time and location have slight influence on the scale and shape of the dimensionless frequency curves. Ten example problems and solutions to possible applications are provided.

  1. Evaluation of transportation/air quality model improvements based on TOTEMS on-road driving style and tailpipe emissions data.

    DOT National Transportation Integrated Search

    2014-06-01

    In June 2012, the Environmental Protection Agency (EPA) released the Operating Mode : Distribution Generator (OMDG) a tool for developing an operating mode distribution as an input : to the Motor Vehicle Emissions Simulator model (MOVES). The t...

  2. Unifying distance-based goodness-of-fit indicators for hydrologic model assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Qinbo; Reinhardt-Imjela, Christian; Chen, Xi; Schulte, Achim

    2014-05-01

    The goodness-of-fit indicator, i.e. efficiency criterion, is very important for model calibration. However, recently the knowledge about the goodness-of-fit indicators is all empirical and lacks a theoretical support. Based on the likelihood theory, a unified distance-based goodness-of-fit indicator termed BC-GED model is proposed, which uses the Box-Cox (BC) transformation to remove the heteroscedasticity of model errors and the generalized error distribution (GED) with zero-mean to fit the distribution of model errors after BC. The BC-GED model can unify all recent distance-based goodness-of-fit indicators, and reveals the mean square error (MSE) and the mean absolute error (MAE) that are widely used goodness-of-fit indicators imply statistic assumptions that the model errors follow the Gaussian distribution and the Laplace distribution with zero-mean, respectively. The empirical knowledge about goodness-of-fit indicators can be also easily interpreted by BC-GED model, e.g. the sensitivity to high flow of the goodness-of-fit indicators with large power of model errors results from the low probability of large model error in the assumed distribution of these indicators. In order to assess the effect of the parameters (i.e. the BC transformation parameter λ and the GED kurtosis coefficient β also termed the power of model errors) of BC-GED model on hydrologic model calibration, six cases of BC-GED model were applied in Baocun watershed (East China) with SWAT-WB-VSA model. Comparison of the inferred model parameters and model simulation results among the six indicators demonstrates these indicators can be clearly separated two classes by the GED kurtosis β: β >1 and β ≤ 1. SWAT-WB-VSA calibrated by the class β >1 of distance-based goodness-of-fit indicators captures high flow very well and mimics the baseflow very badly, but it calibrated by the class β ≤ 1 mimics the baseflow very well, because first the larger value of β, the greater emphasis is put on high flow and second the derivative of GED probability density function at zero is zero as β >1, but discontinuous as β ≤ 1, and even infinity as β < 1 with which the maximum likelihood estimation can guarantee the model errors approach zero as well as possible. The BC-GED that estimates the parameters (i.e. λ and β) of BC-GED model as well as hydrologic model parameters is the best distance-based goodness-of-fit indicator because not only the model validation using groundwater levels is very good, but also the model errors fulfill the statistic assumption best. However, in some cases of model calibration with a few observations e.g. calibration of single-event model, for avoiding estimation of the parameters of BC-GED model the MAE i.e. the boundary indicator (β = 1) of the two classes, can replace the BC-GED, because the model validation of MAE is best.

  3. A sEMG model with experimentally based simulation parameters.

    PubMed

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  4. A Permeability-Limited Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctanoic acid (PFOA) in Male Rats.

    PubMed

    Cheng, Weixiao; Ng, Carla A

    2017-09-05

    Physiologically based pharmacokinetic (PBPK) modeling is a powerful in silico tool that can be used to simulate the toxicokinetics and tissue distribution of xenobiotic substances, such as perfluorooctanoic acid (PFOA), in organisms. However, most existing PBPK models have been based on the flow-limited assumption and largely rely on in vivo data for parametrization. In this study, we propose a permeability-limited PBPK model to estimate the toxicokinetics and tissue distribution of PFOA in male rats. Our model considers the cellular uptake and efflux of PFOA via both passive diffusion and transport facilitated by various membrane transporters, association with serum albumin in circulatory and extracellular spaces, and association with intracellular proteins in liver and kidney. Model performance is assessed using seven experimental data sets extracted from three different studies. Comparing model predictions with these experimental data, our model successfully predicts the toxicokinetics and tissue distribution of PFOA in rats following exposure via both IV and oral routes. More importantly, rather than requiring in vivo data fitting, all PFOA-related parameters were obtained from in vitro assays. Our model thus provides an effective framework to test in vitro-in vivo extrapolation and holds great promise for predicting toxicokinetics of per- and polyfluorinated alkyl substances in humans.

  5. Differentially private distributed logistic regression using private and public data

    PubMed Central

    2014-01-01

    Background Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. Methodology In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. Experiments and results We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Conclusion Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee. PMID:25079786

  6. MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor

    PubMed Central

    Magdoom, Kulam Najmudeen; Pishko, Gregory L.; Rice, Lori; Pampo, Chris; Siemann, Dietmar W.; Sarntinoranont, Malisa

    2014-01-01

    Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. PMID:24619021

  7. Production, depreciation and the size distribution of firms

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru

    2008-05-01

    Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.

  8. An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew J.; Roychoudhury, Indranil

    2012-01-01

    Diagnosis and prognosis are necessary tasks for system reconfiguration and fault-adaptive control in complex systems. Diagnosis consists of detection, isolation and identification of faults, while prognosis consists of prediction of the remaining useful life of systems. This paper presents a novel integrated framework for model-based distributed diagnosis and prognosis, where system decomposition is used to enable the diagnosis and prognosis tasks to be performed in a distributed way. We show how different submodels can be automatically constructed to solve the local diagnosis and prognosis problems. We illustrate our approach using a simulated four-wheeled rover for different fault scenarios. Our experiments show that our approach correctly performs distributed fault diagnosis and prognosis in an efficient and robust manner.

  9. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  10. Comparison of a hybrid medication distribution system to simulated decentralized distribution models.

    PubMed

    Gray, John P; Ludwig, Brad; Temple, Jack; Melby, Michael; Rough, Steve

    2013-08-01

    The results of a study to estimate the human resource and cost implications of changing the medication distribution model at a large medical center are presented. A two-part study was conducted to evaluate alternatives to the hospital's existing hybrid distribution model (64% of doses dispensed via cart fill and 36% via automated dispensing cabinets [ADCs]). An assessment of nurse, pharmacist, and pharmacy technician workloads within the hybrid system was performed through direct observation, with time standards calculated for each dispensing task; similar time studies were conducted at a comparator hospital with a decentralized medication distribution system involving greater use of ADCs. The time study data were then used in simulation modeling of alternative distribution scenarios: one involving no use of cart fill, one involving no use of ADCs, and one heavily dependent on ADC dispensing (89% via ADC and 11% via cart fill). Simulation of the base-case and alternative scenarios indicated that as the modeled percentage of doses dispensed from ADCs rose, the calculated pharmacy technician labor requirements decreased, with a proportionately greater increase in the nursing staff workload. Given that nurses are a higher-cost resource than pharmacy technicians, the projected human resource opportunity cost of transitioning from the hybrid system to a decentralized system similar to the comparator facility's was estimated at $229,691 per annum. Based on the simulation results, it was decided that a transition from the existing hybrid medication distribution system to a more ADC-dependent model would result in an unfavorable shift in staff skill mix and corresponding human resource costs at the medical center.

  11. Circular distributions based on nonnegative trigonometric sums.

    PubMed

    Fernández-Durán, J J

    2004-06-01

    A new family of distributions for circular random variables is proposed. It is based on nonnegative trigonometric sums and can be used to model data sets which present skewness and/or multimodality. In this family of distributions, the trigonometric moments are easily expressed in terms of the parameters of the distribution. The proposed family is applied to two data sets, one related with the directions taken by ants and the other with the directions taken by turtles, to compare their goodness of fit versus common distributions used in the literature.

  12. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution

    PubMed Central

    Lo, Kenneth

    2011-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375

  13. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution.

    PubMed

    Lo, Kenneth; Gottardo, Raphael

    2012-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.

  14. Thermal analysis of void cavity for heat pipe receiver under microgravity

    NASA Astrophysics Data System (ADS)

    Gui, Xiaohong; Song, Xiange; Nie, Baisheng

    2017-04-01

    Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.

  15. Comparison of individual-based model output to data using a model of walleye pollock early life history in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hinckley, Sarah; Parada, Carolina; Horne, John K.; Mazur, Michael; Woillez, Mathieu

    2016-10-01

    Biophysical individual-based models (IBMs) have been used to study aspects of early life history of marine fishes such as recruitment, connectivity of spawning and nursery areas, and marine reserve design. However, there is no consistent approach to validating the spatial outputs of these models. In this study, we hope to rectify this gap. We document additions to an existing individual-based biophysical model for Alaska walleye pollock (Gadus chalcogrammus), some simulations made with this model and methods that were used to describe and compare spatial output of the model versus field data derived from ichthyoplankton surveys in the Gulf of Alaska. We used visual methods (e.g. distributional centroids with directional ellipses), several indices (such as a Normalized Difference Index (NDI), and an Overlap Coefficient (OC), and several statistical methods: the Syrjala method, the Getis-Ord Gi* statistic, and a geostatistical method for comparing spatial indices. We assess the utility of these different methods in analyzing spatial output and comparing model output to data, and give recommendations for their appropriate use. Visual methods are useful for initial comparisons of model and data distributions. Metrics such as the NDI and OC give useful measures of co-location and overlap, but care must be taken in discretizing the fields into bins. The Getis-Ord Gi* statistic is useful to determine the patchiness of the fields. The Syrjala method is an easily implemented statistical measure of the difference between the fields, but does not give information on the details of the distributions. Finally, the geostatistical comparison of spatial indices gives good information of details of the distributions and whether they differ significantly between the model and the data. We conclude that each technique gives quite different information about the model-data distribution comparison, and that some are easy to apply and some more complex. We also give recommendations for a multistep process to validate spatial output from IBMs.

  16. Spatially distributed modal signals of free shallow membrane shell structronic system

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    2008-11-01

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  17. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    NASA Astrophysics Data System (ADS)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  18. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  19. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    PubMed

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  20. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  1. A new probability distribution model of turbulent irradiance based on Born perturbation theory

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Liu, Min; Hu, Hao; Wang, Qian; Liu, Xiguo

    2010-10-01

    The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled. Theory reliably describes the behavior in the weak turbulence regime, but theoretical description in the strong and whole turbulence regimes are still controversial. Based on Born perturbation theory, the physical manifestations and correlations of three typical PDF models (Rice-Nakagami, exponential-Bessel and negative-exponential distribution) were theoretically analyzed. It is shown that these models can be derived by separately making circular-Gaussian, strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory, which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications. In addition, a common shortcoming of the three models is that they are all approximations. A new model, called the Maclaurin-spread distribution, is proposed without any approximation except for assuming the correlation coefficient to be zero. So, it is considered that the new model can exactly reflect the Born perturbation theory. Simulated results prove the accuracy of this new model.

  2. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  3. A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng

    2018-05-01

    A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.

  4. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    NASA Astrophysics Data System (ADS)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  5. Toward Building a New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  6. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  7. Modelling the distribution of domestic ducks in Monsoon Asia

    USGS Publications Warehouse

    Van Bockel, Thomas P.; Prosser, Diann; Franceschini, Gianluca; Biradar, Chandra; Wint, William; Robinson, Tim; Gilbert, Marius

    2011-01-01

    Domestic ducks are considered to be an important reservoir of highly pathogenic avian influenza (HPAI), as shown by a number of geospatial studies in which they have been identified as a significant risk factor associated with disease presence. Despite their importance in HPAI epidemiology, their large-scale distribution in Monsoon Asia is poorly understood. In this study, we created a spatial database of domestic duck census data in Asia and used it to train statistical distribution models for domestic duck distributions at a spatial resolution of 1km. The method was based on a modelling framework used by the Food and Agriculture Organisation to produce the Gridded Livestock of the World (GLW) database, and relies on stratified regression models between domestic duck densities and a set of agro-ecological explanatory variables. We evaluated different ways of stratifying the analysis and of combining the prediction to optimize the goodness of fit of the predictions. We found that domestic duck density could be predicted with reasonable accuracy (mean RMSE and correlation coefficient between log-transformed observed and predicted densities being 0.58 and 0.80, respectively), using a stratification based on livestock production systems. We tested the use of artificially degraded data on duck distributions in Thailand and Vietnam as training data, and compared the modelled outputs with the original high-resolution data. This showed, for these two countries at least, that these approaches could be used to accurately disaggregate provincial level (administrative level 1) statistical data to provide high resolution model distributions.

  8. Sample distribution in peak mode isotachophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less

  9. A Physiologically Based Model for Methylmercury in Female American Kestrels

    EPA Science Inventory

    A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cel...

  10. Transmural variation in elastin fiber orientation distribution in the arterial wall.

    PubMed

    Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang

    2018-01-01

    The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and should be considered in constitutive modeling of an artery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Learning to read aloud: A neural network approach using sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Joglekar, Umesh Dwarkanath

    1989-01-01

    An attempt to solve a problem of text-to-phoneme mapping is described which does not appear amenable to solution by use of standard algorithmic procedures. Experiments based on a model of distributed processing are also described. This model (sparse distributed memory (SDM)) can be used in an iterative supervised learning mode to solve the problem. Additional improvements aimed at obtaining better performance are suggested.

  12. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  13. Cluster-based control of a separating flow over a smoothly contoured ramp

    NASA Astrophysics Data System (ADS)

    Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek

    2017-12-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.

  14. Copula based prediction models: an application to an aortic regurgitation study

    PubMed Central

    Kumar, Pranesh; Shoukri, Mohamed M

    2007-01-01

    Background: An important issue in prediction modeling of multivariate data is the measure of dependence structure. The use of Pearson's correlation as a dependence measure has several pitfalls and hence application of regression prediction models based on this correlation may not be an appropriate methodology. As an alternative, a copula based methodology for prediction modeling and an algorithm to simulate data are proposed. Methods: The method consists of introducing copulas as an alternative to the correlation coefficient commonly used as a measure of dependence. An algorithm based on the marginal distributions of random variables is applied to construct the Archimedean copulas. Monte Carlo simulations are carried out to replicate datasets, estimate prediction model parameters and validate them using Lin's concordance measure. Results: We have carried out a correlation-based regression analysis on data from 20 patients aged 17–82 years on pre-operative and post-operative ejection fractions after surgery and estimated the prediction model: Post-operative ejection fraction = - 0.0658 + 0.8403 (Pre-operative ejection fraction); p = 0.0008; 95% confidence interval of the slope coefficient (0.3998, 1.2808). From the exploratory data analysis, it is noted that both the pre-operative and post-operative ejection fractions measurements have slight departures from symmetry and are skewed to the left. It is also noted that the measurements tend to be widely spread and have shorter tails compared to normal distribution. Therefore predictions made from the correlation-based model corresponding to the pre-operative ejection fraction measurements in the lower range may not be accurate. Further it is found that the best approximated marginal distributions of pre-operative and post-operative ejection fractions (using q-q plots) are gamma distributions. The copula based prediction model is estimated as: Post -operative ejection fraction = - 0.0933 + 0.8907 × (Pre-operative ejection fraction); p = 0.00008 ; 95% confidence interval for slope coefficient (0.4810, 1.3003). For both models differences in the predicted post-operative ejection fractions in the lower range of pre-operative ejection measurements are considerably different and prediction errors due to copula model are smaller. To validate the copula methodology we have re-sampled with replacement fifty independent bootstrap samples and have estimated concordance statistics 0.7722 (p = 0.0224) for the copula model and 0.7237 (p = 0.0604) for the correlation model. The predicted and observed measurements are concordant for both models. The estimates of accuracy components are 0.9233 and 0.8654 for copula and correlation models respectively. Conclusion: Copula-based prediction modeling is demonstrated to be an appropriate alternative to the conventional correlation-based prediction modeling since the correlation-based prediction models are not appropriate to model the dependence in populations with asymmetrical tails. Proposed copula-based prediction model has been validated using the independent bootstrap samples. PMID:17573974

  15. A Micro-Level Data-Calibrated Agent-Based Model: The Synergy between Microsimulation and Agent-Based Modeling.

    PubMed

    Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee

    2018-01-01

    Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.

  16. Extreme Rock Distributions on Mars and Implications for Landing Safety

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.

    2001-01-01

    Prior to the landing of Mars Pathfinder, the size-frequency distribution of rocks from the two Viking landing sites and Earth analog surfaces was used to derive a size-frequency model, for nomimal rock distributions on Mars. This work, coupled with extensive testing of the Pathfinder airbag landing system, allowed an estimate of what total rock abundances derived from thermal differencing techniques could be considered safe for landing. Predictions based on this model proved largely correct at predicting the size-frequency distribution of rocks at the Mars Pathfinder site and the fraction of potentially hazardous rocks. In this abstract, extreme rock distributions observed in Mars Orbiter Camera (MOC) images are compared with those observed at the three landing sites and model distributions as an additional constraint on potentially hazardous surfaces on Mars.

  17. ASSESSMENT OF ETA-CMAQ FORECASTS OF PARTICULATE MATTER DISTRIBUTIONS THROUGH COMPARISONS WITH SURFACE NETWORK AND SPECIALIZED MEASUREMENTS

    EPA Science Inventory

    An air-quality forecasting (AQF) system based on the National Weather Service (NWS) National Centers for Environmental Prediction's (NCEP's) Eta model and the U.S. EPA's Community Multiscale Air Quality (CMAQ) Modeling System is used to simulate the distributions of tropospheric ...

  18. Distributed parameter modeling to prevent charge cancellation for discrete thickness piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Krishnasamy, M.; Qian, Feng; Zuo, Lei; Lenka, T. R.

    2018-03-01

    The charge cancellation due to the change of strain along single continuous piezoelectric layer can remarkably affect the performance of a cantilever based harvester. In this paper, analytical models using distributed parameters are developed with some extent of averting the charge cancellation in cantilever piezoelectric transducer where the piezoelectric layers are segmented at strain nodes of concerned vibration mode. The electrode of piezoelectric segments are parallelly connected with a single external resistive load in the 1st model (Model 1). While each bimorph piezoelectric layers are connected in parallel to a resistor to form an independent circuit in the 2nd model (Model 2). The analytical expressions of the closed-form electromechanical coupling responses in frequency domain under harmonic base excitation are derived based on the Euler-Bernoulli beam assumption for both models. The developed analytical models are validated by COMSOL and experimental results. The results demonstrate that the energy harvesting performance of the developed segmented piezoelectric layer models is better than the traditional model of continuous piezoelectric layer.

  19. Modelling road accident blackspots data with the discrete generalized Pareto distribution.

    PubMed

    Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María

    2014-10-01

    This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of introduction of new resources and fragmentation of existing resources on limiting wealth distribution in asset exchange models

    NASA Astrophysics Data System (ADS)

    Ali Saif, M.; Gade, Prashant M.

    2009-03-01

    Pareto law, which states that wealth distribution in societies has a power-law tail, has been the subject of intensive investigations in the statistical physics community. Several models have been employed to explain this behavior. However, most of the agent based models assume the conservation of number of agents and wealth. Both these assumptions are unrealistic. In this paper, we study the limiting wealth distribution when one or both of these assumptions are not valid. Given the universality of the law, we have tried to study the wealth distribution from the asset exchange models point of view. We consider models in which (a) new agents enter the market at a constant rate (b) richer agents fragment with higher probability introducing newer agents in the system (c) both fragmentation and entry of new agents is taking place. While models (a) and (c) do not conserve total wealth or number of agents, model (b) conserves total wealth. All these models lead to a power-law tail in the wealth distribution pointing to the possibility that more generalized asset exchange models could help us to explain the emergence of a power-law tail in wealth distribution.

  1. Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.

    ERIC Educational Resources Information Center

    Solomos, Konstantinos; Avouris, Nikolaos

    1999-01-01

    Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)

  2. RF model of the distribution system as a communication channel, phase 2. Volume 1: Summary Report

    NASA Technical Reports Server (NTRS)

    Rustay, R. C.; Gajjar, J. T.; Rankin, R. W.; Wentz, R. C.; Wooding, R.

    1982-01-01

    The design, implementation, and verification of a computerized model for predicting the steady-state sinusoidal response of radial (tree) configured distribution feeders was undertaken. That work demonstrated the feasibility and validity based on verification measurements made on a limited size portion of an actual live feeder. On that basis a follow-on effort concerned with (1) extending the verification based on a greater variety of situations and network size, (2) extending the model capabilities for reverse direction propagation, (3) investigating parameter sensitivities, (4) improving transformer models, and (5) investigating procedures/fixes for ameliorating propagation trouble spots was conducted. Results are summarized.

  3. Interest-Driven Model for Human Dynamics

    NASA Astrophysics Data System (ADS)

    Shang, Ming-Sheng; Chen, Guan-Xiong; Dai, Shuang-Xing; Wang, Bing-Hong; Zhou, Tao

    2010-04-01

    Empirical observations indicate that the interevent time distribution of human actions exhibits heavy-tailed features. The queuing model based on task priorities is to some extent successful in explaining the origin of such heavy tails, however, it cannot explain all the temporal statistics of human behavior especially for the daily entertainments. We propose an interest-driven model, which can reproduce the power-law distribution of interevent time. The exponent can be analytically obtained and is in good accordance with the simulations. This model well explains the observed relationship between activities and power-law exponents, as reported recently for web-based behavior and the instant message communications.

  4. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    NASA Astrophysics Data System (ADS)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  5. A Process-Based Transport-Distance Model of Aeolian Transport

    NASA Astrophysics Data System (ADS)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  6. Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy." Geophysical Research Letters 38.24 (2011). C. A. Charalambous and W. T. Pike (2013). 'Evolution of Particle Size Distributions in Fragmentation Over Time' Abstract Submitted to the AGU 46th Fall Meeting. Charalambous, C., Pike, W. T., Goetz, W., Hecht, M. H., & Staufer, U. (2011, December). 'A Digital Martian Soil based on In-Situ Data.' In AGU Fall Meeting Abstracts (Vol. 1, p. 1669). Golombek, M., & Rapp, D. (1997). 'Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions.' Journal of Geophysical Research, 102(E2), 4117-4129. Golombek, M., Huertas, A., Kipp, D., & Calef, F. (2012). 'Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites.' Mars, 7, 1-22.

  7. A stochastic Markov chain model to describe lung cancer growth and metastasis.

    PubMed

    Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter

    2012-01-01

    A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.

  8. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  9. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    USGS Publications Warehouse

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle tracking is anticipated to evaluate if these model design considerations are similarly important for understanding the primary modeling objective - to simulate reasonable groundwater age distributions.

  10. FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2014-01-01

    Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080

  11. A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints

    DOE PAGES

    Wu, Fei; Sioshansi, Ramteen

    2017-05-25

    Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less

  12. A descriptive model of resting-state networks using Markov chains.

    PubMed

    Xie, H; Pal, R; Mitra, S

    2016-08-01

    Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.

  13. Modelling the Surface Distribution of Magnetic Activity on Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Isik, Emre

    2018-04-01

    With the advent of high-precision space-borne stellar photometry and prospects for direct imaging, it is timely and essential to improve our understanding of stellar magnetic activity in rotational time scales. We present models for 'younger suns' with rotation and flux emergence rates between 1 and 16 times the solar rate. The models provide latitudinal distributions and tilt angles of bipolar magnetic regions, using flux tube rise simulations. Using these emergence patterns, we model the subsequent surface flux transport, to predict surface distributions of star-spots. Based on these models, we present preliminary results from our further modelling of the observed azimuthal magnetic fields, which strengthen for more rapidly rotating Sun-like stars.

  14. Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale

    PubMed Central

    Vierling, Lee A.; Vierling, Kerri T.; Adam, Patrick; Hudak, Andrew T.

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR data from the Geoscience Laser Altimeter System (GLAS) relative to airborne-based LiDAR to model the north Idaho breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis). GLAS data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past and future satellite platforms (e.g. GLAS, and the planned IceSAT2 mission) with the goal of improving wildlife modeling for more locations across the globe. PMID:24324655

  15. A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.

    PubMed

    Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao

    2017-06-16

    This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

  16. Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale

    NASA Astrophysics Data System (ADS)

    Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-08-01

    This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.

  17. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  19. Development of a coupled model of a distributed hydrological model and a rice growth model for optimizing irrigation schedule

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Kumiko; Homma, Koki; Koike, Toshio; Ohta, Tetsu

    2013-04-01

    A coupled model of a distributed hydrological model and a rice growth model was developed in this study. The distributed hydrological model used in this study is the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) developed by Wang et al. (2009). This model includes a modified SiB2 (Simple Biosphere Model, Sellers et al., 1996) and the Geomorphology-Based Hydrological Model (GBHM) and thus it can physically calculate both water and energy fluxes. The rice growth model used in this study is the Simulation Model for Rice-Weather relations (SIMRIW) - rainfed developed by Homma et al. (2009). This is an updated version of the original SIMRIW (Horie et al., 1987) and can calculate rice growth by considering the yield reduction due to water stress. The purpose of the coupling is the integration of hydrology and crop science to develop a tool to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. The efficient water use and optimal water allocation in the agricultural sector are necessary to balance supply and demand of limited water resources. In addition, variations in available soil moisture are the main reasons of variations in rice yield. In our model, soil moisture and the Leaf Area Index (LAI) are calculated inside SIMRIW-rainfed so that these variables can be simulated dynamically and more precisely based on the rice than the more general calculations is the original WEB-DHM. At the same time by coupling SIMRIW-rainfed with WEB-DHM, lateral flow of soil water, increases in soil moisture and reduction of river discharge due to the irrigation, and its effects on the rice growth can be calculated. Agricultural information such as planting date, rice cultivar, fertilization amount are given in a fully distributed manner. The coupled model was validated using LAI and soil moisture in a small basin in western Cambodia (Sangker River Basin). This basin is mostly rainfed paddy so that irrigation scheme was firstly switched off. Several simulations with varying irrigation scheme were performed to determine the optimal irrigation schedule in this basin.

  20. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    NASA Astrophysics Data System (ADS)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  1. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  2. Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries.

    PubMed

    Jochems, Arthur; Deist, Timo M; El Naqa, Issam; Kessler, Marc; Mayo, Chuck; Reeves, Jackson; Jolly, Shruti; Matuszak, Martha; Ten Haken, Randall; van Soest, Johan; Oberije, Cary; Faivre-Finn, Corinne; Price, Gareth; de Ruysscher, Dirk; Lambin, Philippe; Dekker, Andre

    2017-10-01

    Tools for survival prediction for non-small cell lung cancer (NSCLC) patients treated with chemoradiation or radiation therapy are of limited quality. In this work, we developed a predictive model of survival at 2 years. The model is based on a large volume of historical patient data and serves as a proof of concept to demonstrate the distributed learning approach. Clinical data from 698 lung cancer patients, treated with curative intent with chemoradiation or radiation therapy alone, were collected and stored at 2 different cancer institutes (559 patients at Maastro clinic (Netherlands) and 139 at Michigan university [United States]). The model was further validated on 196 patients originating from The Christie (United Kingdon). A Bayesian network model was adapted for distributed learning (the animation can be viewed at https://www.youtube.com/watch?v=ZDJFOxpwqEA). Two-year posttreatment survival was chosen as the endpoint. The Maastro clinic cohort data are publicly available at https://www.cancerdata.org/publication/developing-and-validating-survival-prediction-model-nsclc-patients-through-distributed, and the developed models can be found at www.predictcancer.org. Variables included in the final model were T and N category, age, performance status, and total tumor dose. The model has an area under the curve (AUC) of 0.66 on the external validation set and an AUC of 0.62 on a 5-fold cross validation. A model based on the T and N category performed with an AUC of 0.47 on the validation set, significantly worse than our model (P<.001). Learning the model in a centralized or distributed fashion yields a minor difference on the probabilities of the conditional probability tables (0.6%); the discriminative performance of the models on the validation set is similar (P=.26). Distributed learning from federated databases allows learning of predictive models on data originating from multiple institutions while avoiding many of the data-sharing barriers. We believe that distributed learning is the future of sharing data in health care. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Rough surface scattering based on facet model

    NASA Technical Reports Server (NTRS)

    Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.

    1974-01-01

    A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.

  4. A three-dimensional conceptual model of the water quality distribution in the Albuquerque Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, D.

    1995-12-31

    It is possible to construct a conceptual model of the Albuquerque Basin`s geochemical characteristics and water quality distribution based on (1) the Hawley and Haase hydrogeological model, (2) water analyses from City of Albuquerque water wells, and (3) sound geological and chemical principles. Previous studies have characterized the water quality and geochemistry of the Albuquerque Basin from a two-dimensional perspective; however, to date, there has been no examination of the variation of water quality with depth within the Albuquerque Basin. The primary focus of this paper is to describe a first attempt at developing a conceptual understanding of the three-dimensionalmore » water quality distribution of the Albuquerque Basin based on the above three building blocks.« less

  5. Emerald: an object-based language for distributed programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, N.C.

    1987-01-01

    Distributed systems have become more common, however constructing distributed applications remains a very difficult task. Numerous operating systems and programming languages have been proposed that attempt to simplify the programming of distributed applications. Here a programing language called Emerald is presented that simplifies distributed programming by extending the concepts of object-based languages to the distributed environment. Emerald supports a single model of computation: the object. Emerald objects include private entities such as integers and Booleans, as well as shared, distributed entities such as compilers, directories, and entire file systems. Emerald objects may move between machines in the system, but objectmore » invocation is location independent. The uniform semantic model used for describing all Emerald objects makes the construction of distributed applications in Emerald much simpler than in systems where the differences in implementation between local and remote entities are visible in the language semantics. Emerald incorporates a type system that deals only with the specification of objects - ignoring differences in implementation. Thus, two different implementations of the same abstraction may be freely mixed.« less

  6. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE PAGES

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...

    2017-06-12

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  7. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  8. Expression for time travel based on diffusive wave theory: applicability and considerations

    NASA Astrophysics Data System (ADS)

    Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.

    2017-12-01

    Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the expression is no longer valid, and one must fall back to kinematic wave theory, for lack of a better option. This expression could be used for improving currently published spatially distributed time travel models, since they would become applicable in many new cases.

  9. Power-Laws and Scaling in Finance: Empirical Evidence and Simple Models

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jean-Philippe

    We discuss several models that may explain the origin of power-law distributions and power-law correlations in financial time series. From an empirical point of view, the exponents describing the tails of the price increments distribution and the decay of the volatility correlations are rather robust and suggest universality. However, many of the models that appear naturally (for example, to account for the distribution of wealth) contain some multiplicative noise, which generically leads to non universal exponents. Recent progress in the empirical study of the volatility suggests that the volatility results from some sort of multiplicative cascade. A convincing `microscopic' (i.e. trader based) model that explains this observation is however not yet available. We discuss a rather generic mechanism for long-ranged volatility correlations based on the idea that agents constantly switch between active and inactive strategies depending on their relative performance.

  10. Evaluation of bacterial run and tumble motility parameters through trajectory analysis

    NASA Astrophysics Data System (ADS)

    Liang, Xiaomeng; Lu, Nanxi; Chang, Lin-Ching; Nguyen, Thanh H.; Massoudieh, Arash

    2018-04-01

    In this paper, a method for extraction of the behavior parameters of bacterial migration based on the run and tumble conceptual model is described. The methodology is applied to the microscopic images representing the motile movement of flagellated Azotobacter vinelandii. The bacterial cells are considered to change direction during both runs and tumbles as is evident from the movement trajectories. An unsupervised cluster analysis was performed to fractionate each bacterial trajectory into run and tumble segments, and then the distribution of parameters for each mode were extracted by fitting mathematical distributions best representing the data. A Gaussian copula was used to model the autocorrelation in swimming velocity. For both run and tumble modes, Gamma distribution was found to fit the marginal velocity best, and Logistic distribution was found to represent better the deviation angle than other distributions considered. For the transition rate distribution, log-logistic distribution and log-normal distribution, respectively, was found to do a better job than the traditionally agreed exponential distribution. A model was then developed to mimic the motility behavior of bacteria at the presence of flow. The model was applied to evaluate its ability to describe observed patterns of bacterial deposition on surfaces in a micro-model experiment with an approach velocity of 200 μm/s. It was found that the model can qualitatively reproduce the attachment results of the micro-model setting.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinoza, I; Peschke, P; Karger, C

    Purpose: In radiotherapy, it is important to predict the response of tumour to irradiation prior to the treatment. Mathematical modelling of tumour control probability (TCP) based on the dose distribution, medical imaging and other biological information may help to improve this prediction and to optimize the treatment plan. The aim of this work is to develop an image based 3D multiscale radiobiological model, which describes the growth and the response to radiotherapy of hypoxic tumors. Methods: The computer model is based on voxels, containing tumour, normal (including capillary) and dead cells. Killing of tumour cells due to irradiation is calculatedmore » by the Linear Quadratic Model (extended for hypoxia), and the proliferation and resorption of cells are modelled by exponential laws. The initial shape of the tumours is taken from CT images and the initial vascular and cell density information from PET and/or MR images. Including the fractionation regime and the physical dose distribution of the radiation treatment, the model simulates the spatial-temporal evolution of the tumor. Additionally, the dose distribution may be biologically optimized. Results: The model describes the appearance of hypoxia during tumour growth and the reoxygenation processes during radiotherapy. Among other parameters, the TCP is calculated for different dose distributions. The results are in accordance with published results. Conclusion: The simulation model may contribute to the understanding of the influence of biological parameters on tumor response during treatment, and specifically on TCP. It may be used to implement dose-painting approaches. Experimental and clinical validation is needed. This study is supported by a grant from the Ministry of Education of Chile, Programa Mece Educacion Superior (2)« less

  12. A Method for Estimating Noise from Full-Scale Distributed Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Schein, David B.

    2004-01-01

    A method to estimate the full-scale noise suppression from a scale model distributed exhaust nozzle (DEN) is presented. For a conventional scale model exhaust nozzle, Strouhal number scaling using a scale factor related to the nozzle exit area is typically applied that shifts model scale frequency in proportion to the geometric scale factor. However, model scale DEN designs have two inherent length scales. One is associated with the mini-nozzles, whose size do not change in going from model scale to full scale. The other is associated with the overall nozzle exit area which is much smaller than full size. Consequently, lower frequency energy that is generated by the coalesced jet plume should scale to lower frequency, but higher frequency energy generated by individual mini-jets does not shift frequency. In addition, jet-jet acoustic shielding by the array of mini-nozzles is a significant noise reduction effect that may change with DEN model size. A technique has been developed to scale laboratory model spectral data based on the premise that high and low frequency content must be treated differently during the scaling process. The model-scale distributed exhaust spectra are divided into low and high frequency regions that are then adjusted to full scale separately based on different physics-based scaling laws. The regions are then recombined to create an estimate of the full-scale acoustic spectra. These spectra can then be converted to perceived noise levels (PNL). The paper presents the details of this methodology and provides an example of the estimated noise suppression by a distributed exhaust nozzle compared to a round conic nozzle.

  13. Distributed Seismic Moment Fault Model, Spectral Characteristics and Radiation Patterns

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Tsesarsky, Michael; Gvirtzman, Zohar

    2014-05-01

    We implement a Distributed Seismic Moment (DSM) fault model, a physics-based representation of an earthquake source based on a skewed-Gaussian slip distribution over an elliptical rupture patch, for the purpose of forward modeling of seismic-wave propagation in 3-D heterogeneous medium. The elliptical rupture patch is described by 13 parameters: location (3), dimensions of the patch (2), patch orientation (1), focal mechanism (3), nucleation point (2), peak slip (1), rupture velocity (1). A node based second order finite difference approach is used to solve the seismic-wave equations in displacement formulation (WPP, Nilsson et al., 2007). Results of our DSM fault model are compared with three commonly used fault models: Point Source Model (PSM), Haskell's fault Model (HM), and HM with Radial (HMR) rupture propagation. Spectral features of the waveforms and radiation patterns from these four models are investigated. The DSM fault model best incorporates the simplicity and symmetry of the PSM with the directivity effects of the HMR while satisfying the physical requirements, i.e., smooth transition from peak slip at the nucleation point to zero at the rupture patch border. The implementation of the DSM in seismic-wave propagation forward models comes at negligible computational cost. Reference: Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H.-O. (2007). Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45(5), 1902-1936.

  14. Framework for event-based semidistributed modeling that unifies the SCS-CN method, VIC, PDM, and TOPMODEL

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-09-01

    Hydrologists and engineers may choose from a range of semidistributed rainfall-runoff models such as VIC, PDM, and TOPMODEL, all of which predict runoff from a distribution of watershed properties. However, these models are not easily compared to event-based data and are missing ready-to-use analytical expressions that are analogous to the SCS-CN method. The SCS-CN method is an event-based model that describes the runoff response with a rainfall-runoff curve that is a function of the cumulative storm rainfall and antecedent wetness condition. Here we develop an event-based probabilistic storage framework and distill semidistributed models into analytical, event-based expressions for describing the rainfall-runoff response. The event-based versions called VICx, PDMx, and TOPMODELx also are extended with a spatial description of the runoff concept of "prethreshold" and "threshold-excess" runoff, which occur, respectively, before and after infiltration exceeds a storage capacity threshold. For total storm rainfall and antecedent wetness conditions, the resulting ready-to-use analytical expressions define the source areas (fraction of the watershed) that produce runoff by each mechanism. They also define the probability density function (PDF) representing the spatial variability of runoff depths that are cumulative values for the storm duration, and the average unit area runoff, which describes the so-called runoff curve. These new event-based semidistributed models and the traditional SCS-CN method are unified by the same general expression for the runoff curve. Since the general runoff curve may incorporate different model distributions, it may ease the way for relating such distributions to land use, climate, topography, ecology, geology, and other characteristics.

  15. The evaluation of distributed damage in concrete based on sinusoidal modeling of the ultrasonic response.

    PubMed

    Sepehrinezhad, Alireza; Toufigh, Vahab

    2018-05-25

    Ultrasonic wave attenuation is an effective descriptor of distributed damage in inhomogeneous materials. Methods developed to measure wave attenuation have the potential to provide an in-site evaluation of existing concrete structures insofar as they are accurate and time-efficient. In this study, material classification and distributed damage evaluation were investigated based on the sinusoidal modeling of the response from the through-transmission ultrasonic tests on polymer concrete specimens. The response signal was modeled as single or the sum of damping sinusoids. Due to the inhomogeneous nature of concrete materials, model parameters may vary from one specimen to another. Therefore, these parameters are not known in advance and should be estimated while the response signal is being received. The modeling procedure used in this study involves a data-adaptive algorithm to estimate the parameters online. Data-adaptive algorithms are used due to a lack of knowledge of the model parameters. The damping factor was estimated as a descriptor of the distributed damage. The results were compared in two different cases as follows: (1) constant excitation frequency with varying concrete mixtures and (2) constant mixture with varying excitation frequencies. The specimens were also loaded up to their ultimate compressive strength to investigate the effect of distributed damage in the response signal. The results of the estimation indicated that the damping was highly sensitive to the change in material inhomogeneity, even in comparable mixtures. In addition to the proposed method, three methods were employed to compare the results based on their accuracy in the classification of materials and the evaluation of the distributed damage. It is shown that the estimated damping factor is not only sensitive to damage in the final stages of loading, but it is also applicable in evaluating micro damages in the earlier stages providing a reliable descriptor of damage. In addition, the modified amplitude ratio method is introduced as an improvement of the classical method. The proposed methods were validated to be effective descriptors of distributed damage. The presented models were also in good agreement with the experimental data. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation

    DTIC Science & Technology

    2015-03-21

    the interface that ensures the consistency and validity of the solution given by the two methods. Transfer functions are used to model two-way...release; distribution is unlimited. Adaptive modeling of details for physically-based sound synthesis and propagation The views, opinions and/or...Research Triangle Park, NC 27709-2211 Applied sciences, Adaptive modeling , Physcially-based, Sound synthesis, Propagation, Virtual world REPORT

  17. A Comparison of Filter-based Approaches for Model-based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Saha, Bhaskar; Goebel, Kai

    2012-01-01

    Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is generally divided into two sequential problems: a joint state-parameter estimation problem, in which, using the model, the health of a system or component is determined based on the observations; and a prediction problem, in which, using the model, the stateparameter distribution is simulated forward in time to compute end of life and remaining useful life. The first problem is typically solved through the use of a state observer, or filter. The choice of filter depends on the assumptions that may be made about the system, and on the desired algorithm performance. In this paper, we review three separate filters for the solution to the first problem: the Daum filter, an exact nonlinear filter; the unscented Kalman filter, which approximates nonlinearities through the use of a deterministic sampling method known as the unscented transform; and the particle filter, which approximates the state distribution using a finite set of discrete, weighted samples, called particles. Using a centrifugal pump as a case study, we conduct a number of simulation-based experiments investigating the performance of the different algorithms as applied to prognostics.

  18. Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone.

    PubMed

    Bennema, S C; Ducheyne, E; Vercruysse, J; Claerebout, E; Hendrickx, G; Charlier, J

    2011-02-01

    Fasciola hepatica, a trematode parasite with a worldwide distribution, is the cause of important production losses in the dairy industry. Diagnosis is hampered by the fact that the infection is mostly subclinical. To increase awareness and develop regionally adapted control methods, knowledge on the spatial distribution of economically important infection levels is needed. Previous studies modelling the spatial distribution of F. hepatica are mostly based on single cross-sectional samplings and have focussed on climatic and environmental factors, often ignoring management factors. This study investigated the associations between management, climatic and environmental factors affecting the spatial distribution of infection with F. hepatica in dairy herds in a temperate climate zone (Flanders, Belgium) over three consecutive years. A bulk-tank milk antibody ELISA was used to measure F. hepatica infection levels in a random sample of 1762 dairy herds in the autumns of 2006, 2007 and 2008. The infection levels were included in a Geographic Information System together with meteorological, environmental and management parameters. Logistic regression models were used to determine associations between possible risk factors and infection levels. The prevalence and spatial distribution of F. hepatica was relatively stable, with small interannual differences in prevalence and location of clusters. The logistic regression model based on both management and climatic/environmental factors included the factors: annual rainfall, mowing of pastures, proportion of grazed grass in the diet and length of grazing season as significant predictors and described the spatial distribution of F. hepatica better than the model based on climatic/environmental factors only (annual rainfall, elevation and slope, soil type), with an Area Under the Curve of the Receiver Operating Characteristic of 0.68 compared with 0.62. The results indicate that in temperate climate zones without large climatic and environmental variation, management factors affect the spatial distribution of F. hepatica, and should be included in future spatial distribution models. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  19. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast.

    PubMed

    Shao, J Y; Shu, C; Huang, H B; Chew, Y T

    2014-03-01

    A free-energy-based phase-field lattice Boltzmann method is proposed in this work to simulate multiphase flows with density contrast. The present method is to improve the Zheng-Shu-Chew (ZSC) model [Zheng, Shu, and Chew, J. Comput. Phys. 218, 353 (2006)] for correct consideration of density contrast in the momentum equation. The original ZSC model uses the particle distribution function in the lattice Boltzmann equation (LBE) for the mean density and momentum, which cannot properly consider the effect of local density variation in the momentum equation. To correctly consider it, the particle distribution function in the LBE must be for the local density and momentum. However, when the LBE of such distribution function is solved, it will encounter a severe numerical instability. To overcome this difficulty, a transformation, which is similar to the one used in the Lee-Lin (LL) model [Lee and Lin, J. Comput. Phys. 206, 16 (2005)] is introduced in this work to change the particle distribution function for the local density and momentum into that for the mean density and momentum. As a result, the present model still uses the particle distribution function for the mean density and momentum, and in the meantime, considers the effect of local density variation in the LBE as a forcing term. Numerical examples demonstrate that both the present model and the LL model can correctly simulate multiphase flows with density contrast, and the present model has an obvious improvement over the ZSC model in terms of solution accuracy. In terms of computational time, the present model is less efficient than the ZSC model, but is much more efficient than the LL model.

  20. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  1. Backward deletion to minimize prediction errors in models from factorial experiments with zero to six center points

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1980-01-01

    Population model coefficients were chosen to simulate a saturated 2 to the fourth power fixed effects experiment having an unfavorable distribution of relative values. Using random number studies, deletion strategies were compared that were based on the F distribution, on an order statistics distribution of Cochran's, and on a combination of the two. Results of the comparisons and a recommended strategy are given.

  2. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.

  3. Evaluation of Low-Voltage Distribution Network Index Based on Improved Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Fan, Hanlu; Gao, Suzhou; Fan, Wenjie; Zhong, Yinfeng; Zhu, Lei

    2018-01-01

    In order to evaluate the development level of the low-voltage distribution network objectively and scientifically, chromatography analysis method is utilized to construct evaluation index model of low-voltage distribution network. Based on the analysis of principal component and the characteristic of logarithmic distribution of the index data, a logarithmic centralization method is adopted to improve the principal component analysis algorithm. The algorithm can decorrelate and reduce the dimensions of the evaluation model and the comprehensive score has a better dispersion degree. The clustering method is adopted to analyse the comprehensive score because the comprehensive score of the courts is concentrated. Then the stratification evaluation of the courts is realized. An example is given to verify the objectivity and scientificity of the evaluation method.

  4. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  5. The role of the antecedent soil moisture condition on the distributed hydrologic modelling of the Toce alpine basin floods.

    NASA Astrophysics Data System (ADS)

    Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.

    2003-04-01

    Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and observed hydrographs at Candoglia. Sensitivity analysis of the models to significant LSM parameters were also performed. The performances of the three models in the simulation of the two major floods are compared. Interestingly, the results indicate that the SDLSM model is able to sufficiently well predict the major floods of this Alpine basin; indeed, this model is a good compromise between the over-parameterized and too complex TDLSM model and the over-simplified FEST02 model.

  6. Modelling the permafrost extent on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zou, D.; Sheng, Y.; Chen, J.; Wu, T.; Wu, J.; Pang, Q.; Wang, W.

    2016-12-01

    The Tibetan Plateau (TP) possesses the largest areas of permafrost terrain in mid- and low-latitude regions of the world. Permafrost plays significant role in climatic, hydrological, and ecological systems, and has great influences on landforms formation, slope and engineering construction. Detailed database of distribution and characteristics of permafrost is crucial for engineering planning, water resource management, ecosystem protection, climate modeling, and carbon cycle research. Although some permafrost distribution maps were compiled in previous studies and proved very useful, due to the limited data source, ambiguous criteria, little validation, and the deficiency of high-quality spatial datasets, there are a large uncertainty in the mapping permafrost distribution. In this paper, a new permafrost map was generated mostly based on freezing and thawing indices from modified MODIS land surface temperatures (LSTs), and validated by various ground-based dataset. Soil thermal properties of five soil types across the TP estimated according to the empirical equation and in situ observed soil properties (water content and bulk density) which were obtained during the field survey. Based on these data sets, the model of Temperature at the Top Of Permafrost (TTOP) was applied to simulate permafrost distribution over the TP. The results show that permafrost, seasonally frozen ground, and unfrozen ground covered areas of 106.4´104 km2, 145.6´104 km2, and 2.9´104 km2. The ground based observations of permafrost distribution across the five investigated regions (IRs) and three highway transects (across the entire permafrost regions from north to south) have been using to validate the model. Result of validation shows that the kappa coefficient vary from 0.38 to 0.78 in average 0.57 at the five IRs and from 0.62 to 0.74 in average 0.68 within three transects. The result of TTOP modeling shows more accuracy to identify thawing regions in comparison with two maps, compiled in 1996 and 2006 and could be better represent the detailed permafrost distribution than other methods. Overall, the results are providing much more detailed maps of permafrost distribution, which could be a promising basic data set for further research on permafrost on the Tibetan Plateau.

  7. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  8. Anomalous Diffusion in a Trading Model

    NASA Astrophysics Data System (ADS)

    Khidzir, Sidiq Mohamad; Wan Abdullah, Wan Ahmad Tajuddin

    2009-07-01

    The result of the trading model by Chakrabarti et al. [1] is the wealth distribution with a mixed exponential and power law distribution. Based on the motivation of studying the dynamics behind the flow of money similar to work done by Brockmann [2, 3] we track the flow of money in this trading model to observe anomalous diffusion in the form of long waiting times and Levy Flights.

  9. Flare parameters inferred from a 3D loop model data base

    NASA Astrophysics Data System (ADS)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-06-01

    We developed a data base of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used, we built a large data base of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The data base was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter spectra and Nobeyama radioheliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the data base, indicating a possible range of solutions. The parameter search efficiency in this finite data base is discussed. 8 out of 10 parameters analysed for 1000 simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics, the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆ 2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare is presented as well.

  10. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    USGS Publications Warehouse

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  11. Random-growth urban model with geographical fitness

    NASA Astrophysics Data System (ADS)

    Kii, Masanobu; Akimoto, Keigo; Doi, Kenji

    2012-12-01

    This paper formulates a random-growth urban model with a notion of geographical fitness. Using techniques of complex-network theory, we study our system as a type of preferential-attachment model with fitness, and we analyze its macro behavior to clarify the properties of the city-size distributions it predicts. First, restricting the geographical fitness to take positive values and using a continuum approach, we show that the city-size distributions predicted by our model asymptotically approach Pareto distributions with coefficients greater than unity. Then, allowing the geographical fitness to take negative values, we perform local coefficient analysis to show that the predicted city-size distributions can deviate from Pareto distributions, as is often observed in actual city-size distributions. As a result, the model we propose can generate a generic class of city-size distributions, including but not limited to Pareto distributions. For applications to city-population projections, our simple model requires randomness only when new cities are created, not during their subsequent growth. This property leads to smooth trajectories of city population growth, in contrast to other models using Gibrat’s law. In addition, a discrete form of our dynamical equations can be used to estimate past city populations based on present-day data; this fact allows quantitative assessment of the performance of our model. Further study is needed to determine appropriate formulas for the geographical fitness.

  12. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network

    PubMed Central

    You, Hongjian

    2018-01-01

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach. PMID:29364194

  13. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.

    PubMed

    An, Quanzhi; Pan, Zongxu; You, Hongjian

    2018-01-24

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach.

  14. An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.

    2009-07-01

    A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.

  15. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  16. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; ...

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  17. Distributed Trust Management for Validating SLA Choreographies

    NASA Astrophysics Data System (ADS)

    Haq, Irfan Ul; Alnemr, Rehab; Paschke, Adrian; Schikuta, Erich; Boley, Harold; Meinel, Christoph

    For business workflow automation in a service-enriched environment such as a grid or a cloud, services scattered across heterogeneous Virtual Organizations (VOs) can be aggregated in a producer-consumer manner, building hierarchical structures of added value. In order to preserve the supply chain, the Service Level Agreements (SLAs) corresponding to the underlying choreography of services should also be incrementally aggregated. This cross-VO hierarchical SLA aggregation requires validation, for which a distributed trust system becomes a prerequisite. Elaborating our previous work on rule-based SLA validation, we propose a hybrid distributed trust model. This new model is based on Public Key Infrastructure (PKI) and reputation-based trust systems. It helps preventing SLA violations by identifying violation-prone services at service selection stage and actively contributes in breach management at the time of penalty enforcement.

  18. Quantitative description of realistic wealth distributions by kinetic trading models

    NASA Astrophysics Data System (ADS)

    Lammoglia, Nelson; Muñoz, Víctor; Rogan, José; Toledo, Benjamín; Zarama, Roberto; Valdivia, Juan Alejandro

    2008-10-01

    Data on wealth distributions in trading markets show a power law behavior x-(1+α) at the high end, where, in general, α is greater than 1 (Pareto’s law). Models based on kinetic theory, where a set of interacting agents trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets.

  19. Real-time ichthyoplankton drift in Northeast Arctic cod and Norwegian spring-spawning herring.

    PubMed

    Vikebø, Frode B; Ådlandsvik, Bjørn; Albretsen, Jon; Sundby, Svein; Stenevik, Erling Kåre; Huse, Geir; Svendsen, Einar; Kristiansen, Trond; Eriksen, Elena

    2011-01-01

    Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve field coverage of ichthyoplankton. A system has been developed for operational simulation of ichthyoplankton distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during early fall. Area-overlap between modeled and observed juveniles September 1(st) range from 61 to 73%, and 61 to 71% when weighted by concentrations. The model system may be used to evaluate the design of ongoing surveys, to quantify the overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of sampled biota and immediately after spills from ships at sea.

  20. Real-Time Ichthyoplankton Drift in Northeast Arctic Cod and Norwegian Spring-Spawning Herring

    PubMed Central

    Vikebø, Frode B.; Ådlandsvik, Bjørn; Albretsen, Jon; Sundby, Svein; Stenevik, Erling Kåre; Huse, Geir; Svendsen, Einar; Kristiansen, Trond; Eriksen, Elena

    2011-01-01

    Background Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve field coverage of ichthyoplankton. Methodology/Principal Findings A system has been developed for operational simulation of ichthyoplankton distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during early fall. Area-overlap between modeled and observed juveniles September 1st range from 61 to 73%, and 61 to 71% when weighted by concentrations. Conclusions/Significance The model system may be used to evaluate the design of ongoing surveys, to quantify the overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of sampled biota and immediately after spills from ships at sea. PMID:22110633

  1. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    NASA Technical Reports Server (NTRS)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The sensitivity analysis also indicated that the incorporation of basin and rainfall storm scale also greatly influences the distributional shape of the flood frequency curve.

  2. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    PubMed

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  3. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  4. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  5. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  6. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds.

    PubMed

    Buchin, Kevin; Sijben, Stef; van Loon, E Emiel; Sapir, Nir; Mercier, Stéphanie; Marie Arseneau, T Jean; Willems, Erik P

    2015-01-01

    The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis. We develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a "contextually naïve" model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM. Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed, while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for movement ecology research.

  7. OHD/HL - Distributed Model

    Science.gov Websites

    Sacramento Soil Moisture Accounting Model (SAC-SMA) in a lumped and semi-distributed manner. Before any were derived using a procedure developed by VictorKoren ( Useof Soil Property Data in the Derivation of focused on developing a procedure to derive the SAC-SMAmodel parameters based on soil texture data. It is

  8. A new theoretical framework for modeling respiratory protection based on the beta distribution.

    PubMed

    Klausner, Ziv; Fattal, Eyal

    2014-08-01

    The problem of modeling respiratory protection is well known and has been dealt with extensively in the literature. Often the efficiency of respiratory protection is quantified in terms of penetration, defined as the proportion of an ambient contaminant concentration that penetrates the respiratory protection equipment. Typically, the penetration modeling framework in the literature is based on the assumption that penetration measurements follow the lognormal distribution. However, the analysis in this study leads to the conclusion that the lognormal assumption is not always valid, making it less adequate for analyzing respiratory protection measurements. This work presents a formulation of the problem from first principles, leading to a stochastic differential equation whose solution is the probability density function of the beta distribution. The data of respiratory protection experiments were reexamined, and indeed the beta distribution was found to provide the data a better fit than the lognormal. We conclude with a suggestion for a new theoretical framework for modeling respiratory protection. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng

    2018-01-01

    We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.

  10. The Effect of Velocity Correlation on the Spatial Evolution of Breakthrough Curves in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Massoudieh, A.; Dentz, M.; Le Borgne, T.

    2017-12-01

    In heterogeneous media, the velocity distribution and the spatial correlation structure of velocity for solute particles determine the breakthrough curves and how they evolve as one moves away from the solute source. The ability to predict such evolution can help relating the spatio-statistical hydraulic properties of the media to the transport behavior and travel time distributions. While commonly used non-local transport models such as anomalous dispersion and classical continuous time random walk (CTRW) can reproduce breakthrough curve successfully by adjusting the model parameter values, they lack the ability to relate model parameters to the spatio-statistical properties of the media. This in turns limits the transferability of these models. In the research to be presented, we express concentration or flux of solutes as a distribution over their velocity. We then derive an integrodifferential equation that governs the evolution of the particle distribution over velocity at given times and locations for a particle ensemble, based on a presumed velocity correlation structure and an ergodic cross-sectional velocity distribution. This way, the spatial evolution of breakthrough curves away from the source is predicted based on cross-sectional velocity distribution and the connectivity, which is expressed by the velocity transition probability density. The transition probability is specified via a copula function that can help construct a joint distribution with a given correlation and given marginal velocities. Using this approach, we analyze the breakthrough curves depending on the velocity distribution and correlation properties. The model shows how the solute transport behavior evolves from ballistic transport at small spatial scales to Fickian dispersion at large length scales relative to the velocity correlation length.

  11. A relational data-knowledge base system and its potential in developing a distributed data-knowledge system

    NASA Technical Reports Server (NTRS)

    Rahimian, Eric N.; Graves, Sara J.

    1988-01-01

    A new approach used in constructing a rational data knowledge base system is described. The relational database is well suited for distribution due to its property of allowing data fragmentation and fragmentation transparency. An example is formulated of a simple relational data knowledge base which may be generalized for use in developing a relational distributed data knowledge base system. The efficiency and ease of application of such a data knowledge base management system is briefly discussed. Also discussed are the potentials of the developed model for sharing the data knowledge base as well as the possible areas of difficulty in implementing the relational data knowledge base management system.

  12. A logical model of cooperating rule-based systems

    NASA Technical Reports Server (NTRS)

    Bailin, Sidney C.; Moore, John M.; Hilberg, Robert H.; Murphy, Elizabeth D.; Bahder, Shari A.

    1989-01-01

    A model is developed to assist in the planning, specification, development, and verification of space information systems involving distributed rule-based systems. The model is based on an analysis of possible uses of rule-based systems in control centers. This analysis is summarized as a data-flow model for a hypothetical intelligent control center. From this data-flow model, the logical model of cooperating rule-based systems is extracted. This model consists of four layers of increasing capability: (1) communicating agents, (2) belief-sharing knowledge sources, (3) goal-sharing interest areas, and (4) task-sharing job roles.

  13. Development of Load Duration Curve System in Data Scarce Watersheds Based on a Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    WANG, J.

    2017-12-01

    In stream water quality control, the total maximum daily load (TMDL) program is very effective. However, the load duration curves (LDC) of TMDL are difficult to be established because no sufficient observed flow and pollutant data can be provided in data-scarce watersheds in which no hydrological stations or consecutively long-term hydrological data are available. Although the point sources or a non-point sources of pollutants can be clarified easily with the aid of LDC, where does the pollutant come from and to where it will be transported in the watershed cannot be traced by LDC. To seek out the best management practices (BMPs) of pollutants in a watershed, and to overcome the limitation of LDC, we proposed to develop LDC based on a distributed hydrological model of SWAT for the water quality management in data scarce river basins. In this study, firstly, the distributed hydrological model of SWAT was established with the scarce-hydrological data. Then, the long-term daily flows were generated with the established SWAT model and rainfall data from the adjacent weather station. Flow duration curves (FDC) was then developed with the aid of generated daily flows by SWAT model. Considering the goal of water quality management, LDC curves of different pollutants can be obtained based on the FDC. With the monitored water quality data and the LDC curves, the water quality problems caused by the point or non-point source pollutants in different seasons can be ascertained. Finally, the distributed hydrological model of SWAT was employed again to tracing the spatial distribution and the origination of the pollutants of coming from what kind of agricultural practices and/or other human activities. A case study was conducted in the Jian-jiang river, a tributary of Yangtze river, of Duyun city, Guizhou province. Results indicate that this kind of method can realize the water quality management based on TMDL and find out the suitable BMPs for reducing pollutant in a watershed.

  14. Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  15. General models for the distributions of electric field gradients in disordered solids

    NASA Astrophysics Data System (ADS)

    LeCaër, G.; Brand, R. A.

    1998-11-01

    Hyperfine studies of disordered materials often yield the distribution of the electric field gradient (EFG) or related quadrupole splitting (QS). The question of the structural information that may be extracted from such distributions has been considered for more than fifteen years. Experimentally most studies have been performed using Mössbauer spectroscopy, especially on 0953-8984/10/47/020/img5. However, NMR, NQR, EPR and PAC methods have also received some attention. The EFG distribution for a random distribution of electric charges was for instance first investigated by Czjzek et al [1] and a general functional form was derived for the joint (bivariate) distribution of the principal EFG tensor component 0953-8984/10/47/020/img6 and the asymmetry parameter 0953-8984/10/47/020/img7. The importance of the Gauss distribution for such rotationally invariant structural models was thus evidenced. Extensions of that model which are based on degenerate multivariate Gauss distributions for the elements of the EFG tensor were proposed by Czjzek. The latter extensions have been used since that time, more particularly in Mössbauer spectroscopy, under the name `shell models'. The mathematical foundations of all the previous models are presented and critically discussed as they are evidenced by simple calculations in the case of the EFG tensor. The present article only focuses on those aspects of the EFG distribution in disordered solids which can be discussed without explicitly looking at particular physical mechanisms. We present studies of three different model systems. A reference model directly related to the first model of Czjzek, called the Gaussian isotropic model (GIM), is shown to be the limiting case for many different models with a large number of independent contributions to the EFG tensor and not restricted to a point-charge model. The extended validity of the marginal distribution of 0953-8984/10/47/020/img7 in the GIM model is discussed. It is also shown that the second model based on degenerate multivariate normal distributions for the EFG components yields questionable results and has been exaggeratedly used in experimental studies. The latter models are further discussed in the light of new results. The problems raised by these extensions are due to the fact that the consequences of the statistical invariance by rotation of the EFG tensor have not been sufficiently taken into account. Further difficulties arise because the structural degrees of freedom of the disordered solid under consideration have been confused with the degrees of freedom of QS distributions. The relations which are derived and discussed are further illustrated by the case of the EFG tensor distribution created at the centre of a sphere by m charges randomly distributed on its surface. The third model, a simple extension of the GIM, considers the case of an EFG tensor which is the sum of a fixed part and of a random part with variable weights. The bivariate distribution 0953-8984/10/47/020/img9 is calculated exactly in the most symmetric case and the effect of the random part is investigated as a function of its weight. The various models are more particularly discussed in connection with short-range order in disordered solids. An ambiguity problem which arises in the evaluation of bivariate distributions of centre lineshift (isomer shift) and quadrupole splitting from 0953-8984/10/47/020/img10 Mössbauer spectra is finally quantitatively considered.

  16. Thermal-depth matching in dynamic scene based on affine projection and feature registration

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang

    2018-03-01

    This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.

  17. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

  18. Spatial modeling of the geographic distribution of wildlife populations: A case study in the lower Mississippi River region

    USGS Publications Warehouse

    Ji, W.; Jeske, C.

    2000-01-01

    A geographic information system (GIS)-based spatial modeling approach was developed to study environmental and land use impacts on the geographic distribution of wintering northern pintails (Arias acuta) in the Lower Mississippi River region. Pintails were fitted with backpack radio transmitter packages at Catahoula Lake, LA, in October 1992-1994 and located weekly through the following March. Pintail survey data were converted into a digital database in ARC/INFO GIS format and integrated with environmental GIS data through a customized modeling interface. The study verified the relationship between pintail distributions and major environmental factors and developed a conceptual relation model. Visualization-based spatial simulations were used to display the movement patterns of specific population groups under spatial and temporal constraints. The spatial modeling helped understand the seasonal movement patterns of pintails in relation to their habitat usage in Arkansas and southwestern Louisiana for wintering and interchange situations among population groups wintering in Texas and southeastern Louisiana. (C) 2000 Elsevier Science B.V.

  19. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  20. Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method

    PubMed Central

    Zhang, Jianguo

    2013-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198

  1. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.

    PubMed

    Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo

    2013-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.

  2. Distributed intrusion detection system based on grid security model

    NASA Astrophysics Data System (ADS)

    Su, Jie; Liu, Yahui

    2008-03-01

    Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.

  3. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  4. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    NASA Astrophysics Data System (ADS)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  5. Combining point and distributed snowpack data with landscape-based discretization for hydrologic modeling of the snow-dominated Maipo River basin, in the semi-arid Andes of Central Chile.

    NASA Astrophysics Data System (ADS)

    McPhee, James; Videla, Yohann

    2014-05-01

    The 5000-km2 upper Maipo River Basin, in central Chile's Andes, has an adequate streamgage network but almost no meteorological or snow accumulation data. Therefore, hydrologic model parameterization is strongly subject to model errors stemming from input and model-state uncertainty. In this research, we apply the Cold Regions Hydrologic Model (CRHM) to the basin, force it with reanalysis data downscaled to an appropriate resolution, and inform a parsimonious basin discretization, based on the hydrologic response unit concept, with distributed data on snowpack properties obtained through snow surveys for two seasons. With minimal calibration the model is able to reproduce the seasonal accumulation and melt cycle as recorded in the one snow pillow available for the basin, and although a bias in maximum accumulation persists, snowpack persistence in time is appropriately simulated based on snow water equivalent and snow covered area observations. Blowing snow events were simulated by the model whenever daily wind speed surpassed 8 m/s, although the use of daily instead of hourly data to force the model suggests that this phenomenon could be underestimated. We investigate the representation of snow redistribution by the model, and compare it with small-scale observations of wintertime snow accumulation on glaciers, in a first step towards characterizing ice distribution within a HRU spatial discretization. Although built at a different spatial scale, we present a comparison of simulated results with distributed snow depth data obtained within a 40 km2 sub-basin of the main Maipo watershed in two snow surveys carried out at the end of winter seasons 2011 and 2012, and compare basin-wide SWE estimates with a regression tree extrapolation of the observed data.

  6. Inverse approaches with lithologic information for a regional groundwater system in southwest Kansas

    USGS Publications Warehouse

    Tsou, Ming‐shu; Perkins, S.P.; Zhan, X.; Whittemore, Donald O.; Zheng, Lingyun

    2006-01-01

    Two practical approaches incorporating lithologic information for groundwater modeling calibration are presented to estimate distributed, cell-based hydraulic conductivity. The first approach is to estimate optimal hydraulic conductivities for geological materials by incorporating thickness distribution of materials into inverse modeling. In the second approach, residuals for the groundwater model solution are minimized according to a globalized Newton method with the aid of a Geographic Information System (GIS) to calculate a cell-wise distribution of hydraulic conductivity. Both approaches honor geologic data and were effective in characterizing the heterogeneity of a regional groundwater modeling system in southwest Kansas. ?? 2005 Elsevier Ltd All rights reserved.

  7. CHARACTERIZING SPATIAL AND TEMPORAL DYNAMICS: DEVELOPMENT OF A GRID-BASED WATERSHED MERCURY LOADING MODEL

    EPA Science Inventory

    A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...

  8. Electrical conductivity modeling and experimental study of densely packed SWCNT networks.

    PubMed

    Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C

    2010-05-14

    Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.

  9. Remote sensing of PM2.5 from ground-based optical measurements

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.

    2014-12-01

    Remote sensing of particulate matter concentration with aerodynamic diameter smaller than 2.5 um(PM2.5) by using ground-based optical measurements of aerosols is investigated based on 6 years of hourly average measurements of aerosol optical properties, PM2.5, ceilometer backscatter coefficients and meteorological factors from Howard University Beltsville Campus facility (HUBC). The accuracy of quantitative retrieval of PM2.5 using aerosol optical depth (AOD) is limited due to changes in aerosol size distribution and vertical distribution. In this study, ceilometer backscatter coefficients are used to provide vertical information of aerosol. It is found that the PM2.5-AOD ratio can vary largely for different aerosol vertical distributions. The ratio is also sensitive to mode parameters of bimodal lognormal aerosol size distribution when the geometric mean radius for the fine mode is small. Using two Angstrom exponents calculated at three wavelengths of 415, 500, 860nm are found better representing aerosol size distributions than only using one Angstrom exponent. A regression model is proposed to assess the impacts of different factors on the retrieval of PM2.5. Compared to a simple linear regression model, the new model combining AOD and ceilometer backscatter can prominently improve the fitting of PM2.5. The contribution of further introducing Angstrom coefficients is apparent. Using combined measurements of AOD, ceilometer backscatter, Angstrom coefficients and meteorological parameters in the regression model can get a correlation coefficient of 0.79 between fitted and expected PM2.5.

  10. An Inverse Modeling Plugin for HydroDesktop using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio, C.; Over, M. W.; Rubin, Y.

    2011-12-01

    The CUAHSI Hydrologic Information System (HIS) software stack is based on an open and extensible architecture that facilitates the addition of new functions and capabilities at both the server side (using HydroServer) and the client side (using HydroDesktop). The HydroDesktop client plugin architecture is used here to expose a new scripting based plugin that makes use of the R statistics software as a means for conducting inverse modeling using the Method of Anchored Distributions (MAD). MAD is a Bayesian inversion technique for conditioning computational model parameters on relevant field observations yielding probabilistic distributions of the model parameters, related to the spatial random variable of interest, by assimilating multi-type and multi-scale data. The implementation of a desktop software tool for using the MAD technique is expected to significantly lower the barrier to use of inverse modeling in education, research, and resource management. The HydroDesktop MAD plugin is being developed following a community-based, open-source approach that will help both its adoption and long term sustainability as a user tool. This presentation will briefly introduce MAD, HydroDesktop, and the MAD plugin and software development effort.

  11. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    PubMed

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-09

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  12. From microscopic taxation and redistribution models to macroscopic income distributions

    NASA Astrophysics Data System (ADS)

    Bertotti, Maria Letizia; Modanese, Giovanni

    2011-10-01

    We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modeling of taxation and redistribution in a closed society. This framework allows one to describe the evolution of income distribution over the population and to explain the emergence of collective features based on knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.

  13. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2018-01-01

    Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.

  14. Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600-present

    NASA Astrophysics Data System (ADS)

    Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.

    2014-02-01

    As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry-climate model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600-present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

  15. Volcanic forcing for climate modeling: a new microphysics-based dataset covering years 1600-present

    NASA Astrophysics Data System (ADS)

    Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.

    2013-02-01

    As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now not only linked to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for General-Circulation-Model (GCM) and Chemistry-Climate-Model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions are in good agreement with observations. By providing accurate amplitude and spatial distributions of shortwave and longwave radiative perturbations by volcanic sulfate aerosols, we argue that this volcanic forcing may help refine the climate model responses to the large volcanic eruptions since 1600. The final dataset consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

  16. The critical role of uncertainty in projections of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Meresa, Hadush K.; Romanowicz, Renata J.

    2017-08-01

    This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.

  17. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    NASA Astrophysics Data System (ADS)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  18. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.

    PubMed

    Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C

    2017-06-01

    The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.

  19. Taxi trips distribution modeling based on Entropy-Maximizing theory: A case study in Harbin city-China

    NASA Astrophysics Data System (ADS)

    Tang, Jinjun; Zhang, Shen; Chen, Xinqiang; Liu, Fang; Zou, Yajie

    2018-03-01

    Understanding Origin-Destination distribution of taxi trips is very important for improving effects of transportation planning and enhancing quality of taxi services. This study proposes a new method based on Entropy-Maximizing theory to model OD distribution in Harbin city using large-scale taxi GPS trajectories. Firstly, a K-means clustering method is utilized to partition raw pick-up and drop-off location into different zones, and trips are assumed to start from and end at zone centers. A generalized cost function is further defined by considering travel distance, time and fee between each OD pair. GPS data collected from more than 1000 taxis at an interval of 30 s during one month are divided into two parts: data from first twenty days is treated as training dataset and last ten days is taken as testing dataset. The training dataset is used to calibrate model while testing dataset is used to validate model. Furthermore, three indicators, mean absolute error (MAE), root mean square error (RMSE) and mean percentage absolute error (MPAE), are applied to evaluate training and testing performance of Entropy-Maximizing model versus Gravity model. The results demonstrate Entropy-Maximizing model is superior to Gravity model. Findings of the study are used to validate the feasibility of OD distribution from taxi GPS data in urban system.

  20. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model.

    PubMed

    Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim

    2017-06-15

    Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.

  1. Species distributions models in wildlife planning: agricultural policy and wildlife management in the great plains

    USGS Publications Warehouse

    Fontaine, Joseph J.; Jorgensen, Christopher; Stuber, Erica F.; Gruber, Lutz F.; Bishop, Andrew A.; Lusk, Jeffrey J.; Zach, Eric S.; Decker, Karie L.

    2017-01-01

    We know economic and social policy has implications for ecosystems at large, but the consequences for a given geographic area or specific wildlife population are more difficult to conceptualize and communicate. Species distribution models, which extrapolate species-habitat relationships across ecological scales, are capable of predicting population changes in distribution and abundance in response to management and policy, and thus, are an ideal means for facilitating proactive management within a larger policy framework. To illustrate the capabilities of species distribution modeling in scenario planning for wildlife populations, we projected an existing distribution model for ring-necked pheasants (Phasianus colchicus) onto a series of alternative future landscape scenarios for Nebraska, USA. Based on our scenarios, we qualitatively and quantitatively estimated the effects of agricultural policy decisions on pheasant populations across Nebraska, in specific management regions, and at wildlife management areas. 

  2. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    NASA Astrophysics Data System (ADS)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  3. Using fuzzy rule-based knowledge model for optimum plating conditions search

    NASA Astrophysics Data System (ADS)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.

    2018-03-01

    The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.

  4. Scale effect challenges in urban hydrology highlighted with a Fully Distributed Model and High-resolution rainfall data

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2017-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.

  5. A Distributed Simulation Software System for Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Burns, Richard; Davis, George; Cary, Everett

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  6. An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows

    NASA Astrophysics Data System (ADS)

    Garicano-Mena, Jesús; Lani, Andrea; Degrez, Gérard

    2018-06-01

    In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum-energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions.

  7. Chance-Constrained System of Systems Based Operation of Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargarian, Amin; Fu, Yong; Wu, Hongyu

    In this paper, a chance-constrained system of systems (SoS) based decision-making approach is presented for stochastic scheduling of power systems encompassing active distribution grids. Based on the concept of SoS, the independent system operator (ISO) and distribution companies (DISCOs) are modeled as self-governing systems. These systems collaborate with each other to run the entire power system in a secure and economic manner. Each self-governing system accounts for its local reserve requirements and line flow constraints with respect to the uncertainties of load and renewable energy resources. A set of chance constraints are formulated to model the interactions between the ISOmore » and DISCOs. The proposed model is solved by using analytical target cascading (ATC) method, a distributed optimization algorithm in which only a limited amount of information is exchanged between collaborative ISO and DISCOs. In this paper, a 6-bus and a modified IEEE 118-bus power systems are studied to show the effectiveness of the proposed algorithm.« less

  8. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  9. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  10. An observer-based compensator for distributed delays

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.

  11. A continuous analog of run length distributions reflecting accumulated fractionation events.

    PubMed

    Yu, Zhe; Sankoff, David

    2016-11-11

    We propose a new, continuous model of the fractionation process (duplicate gene deletion after polyploidization) on the real line. The aim is to infer how much DNA is deleted at a time, based on segment lengths for alternating deleted (invisible) and undeleted (visible) regions. After deriving a number of analytical results for "one-sided" fractionation, we undertake a series of simulations that help us identify the distribution of segment lengths as a gamma with shape and rate parameters evolving over time. This leads to an inference procedure based on observed length distributions for visible and invisible segments. We suggest extensions of this mathematical and simulation work to biologically realistic discrete models, including two-sided fractionation.

  12. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    PubMed

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  13. Propagation Effects in Space-Based Surveillance Systems

    DTIC Science & Technology

    1982-02-01

    This report describes the first year’s effort to investigate propagation effects in space - based radars. A model was developed for analyzing the...deleterious systems effects by first developing a generalized aperture distribution that ultimately can be applied to any space - based radar configuration...The propagation effects are characterized in terms of the SATCOM model striation parameters. The form of a generalized channel model for space - based radars

  14. Applying Multivariate Discrete Distributions to Genetically Informative Count Data.

    PubMed

    Kirkpatrick, Robert M; Neale, Michael C

    2016-03-01

    We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.

  15. On the use of satellite-based estimates of rainfall temporal distribution to simulate the potential for malaria transmission in rural Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Eltahir, Elfatih A. B.

    2011-02-01

    This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.

  16. Influence of grain boundaries on the distribution of components in binary alloys

    NASA Astrophysics Data System (ADS)

    L'vov, P. E.; Svetukhin, V. V.

    2017-12-01

    Based on the free-energy density functional method (the Cahn-Hilliard equation), a phenomenological model that describes the influence of grain boundaries on the distribution of components in binary alloys has been developed. The model is built on the assumption of the difference between the interaction parameters of solid solution components in the bulk and at the grain boundary. The difference scheme based on the spectral method is proposed to solve the Cahn-Hilliard equation with interaction parameters depending on coordinates. Depending on the ratio between the interaction parameters in the bulk and at the grain boundary, temperature, and alloy composition, the model can give rise to different types of distribution of a dissolved component, namely, either depletion or enrichment of the grain-boundary area, preferential grainboundary precipitation, competitive precipitation in the bulk and at the grain boundary, etc.

  17. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  18. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  19. [Production regionalization study of Chinese angelica based on MaxEnt model].

    PubMed

    Yan, Hui; Zhang, Xiao-Bo; Zhu, Shou-Dong; Qian, Da-Wei; Guo, Lan-Ping; Huang, Lu-Qi; Duan, Jin-Ao

    2016-09-01

    The distribution information of Chinese angelica was collected by interview investigation and field survey, and 43 related environmental factors were collected, some kinds of functional chemical constituents of Angelica sinensis were analyzed. Integrated climate, topography and other related ecological factors, the habitat suitability study was conducted based on Arc geographic information system(ArcGIS),and maximum entropy model. Application of R language to establish the relationship between the effective component of Chinese angelica and enviromental factors model, using ArcGIS software space to carry out space calculation method for the quality regionalization of Chinese angelica. The results showed that 4 major ecological factors had obvious influence on ecology suitability distributions of Chinese angelica, including altitude, soil sub category, May precipitation and the warmest month of the highest temperature, et al. It is suitable for the living habits of the Chinese angelica, cold and humid climate, which is suitable for the deep area of the soil. In addition, the ecological suitability regionalization based on the effect of Chinese angelica also provides a new suitable distribution area other than the traditional distribution area, which provides a scientific basis for the reasonable introduction of Chinese angelica. Copyright© by the Chinese Pharmaceutical Association.

  20. Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs.

    PubMed

    Munir, Anum; Azam, Shumaila; Fazal, Sahar; Bhatti, A I

    2018-08-14

    The Physiologically based pharmacokinetic (PBPK) modeling is a supporting tool in drug discovery and improvement. Simulations produced by these models help to save time and aids in examining the effects of different variables on the pharmacokinetics of drugs. For this purpose, Sheila and Peters suggested a PBPK model capable of performing simulations to study a given drug absorption. There is a need to extend this model to the whole body entailing all another process like distribution, metabolism, and elimination, besides absorption. The aim of this scientific study is to hypothesize a WB-PBPK model through integrating absorption, distribution, metabolism, and elimination processes with the existing PBPK model.Absorption, distribution, metabolism, and elimination models are designed, integrated with PBPK model and validated. For validation purposes, clinical records of few drugs are collected from the literature. The developed WB-PBPK model is affirmed by comparing the simulations produced by the model against the searched clinical data. . It is proposed that the WB-PBPK model may be used in pharmaceutical industries to create of the pharmacokinetic profiles of drug candidates for better outcomes, as it is advance PBPK model and creates comprehensive PK profiles for drug ADME in concentration-time plots. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top