Sample records for distribution optical properties

  1. Spatial and Temporal Distribution of Tropospheric Clouds and Aerosols Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.

    2006-01-01

    Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.

  2. The statistical average of optical properties for alumina particle cluster in aircraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  3. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  4. Numerical investigation on the Ångström exponent of black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Li, Ji; Liu, Chao; Yin, Yan; Kumar, K. Raghavendra

    2016-04-01

    Black carbon (BC) plays an important role on the global and regional climate, whereas there are significant uncertainties on its optical properties. Among various optical properties, the Ångström exponent (AE) indicates the spectral variation of the particle-optic interaction and is widely used to understand the aerosol properties. We consider the influence of BC geometry on its optical properties and assess the sensitivity of the AE to particle geometry and size distribution. The fractal aggregates with different fractal dimensions are used to represent realistic BC particles, and popular equivalent volume spherical and spheroidal models are also considered for comparison. Even if the fractal aggregates become highly compact and spherical, their optical properties are still significantly different from those of equivalent volume spheres or spheroids. Meanwhile, the Rayleigh-Debye-Gans approximation can hardly provide accurate results for all optical quantities of aggregates with different dimensions. The extinction Ångström exponent (EAE) and absorption Ångström exponent (AAE) are sensitive to both particle geometry and size distribution. With BC becoming more compact (from fractal aggregate to spheroid and to sphere), the AE becomes more sensitive to particle size distribution. The EAE and AAE of aggregates with different size distributions vary between 1.10-1.63 and 0.87-1.50, respectively, whereas those of the spheres or spheroids have wider ranges. Furthermore, the AE at smaller wavelengths (between 0.35 µm and 0.55 µm) is more sensitive to geometry and size distribution than that given by optical properties at larger wavelengths (between 0.55 µm and 0.88 µm).

  5. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    NASA Astrophysics Data System (ADS)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  6. Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties

    NASA Astrophysics Data System (ADS)

    Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.

    2016-11-01

    Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located close to or below the best-fit E {}{{pi}}-E {}{{iso}} relation (Amati relation), whose redshift is easily measurable. With more than 300 GRBs with a redshift, we now have a much better view of the intrinsic properties of these remarkable events. At the same time, increasing statistics allow us to understand the biases acting on the measurements. The optical selection effects induced by the redshift measurement strategies cannot be neglected when we study the properties of GRBs in their rest frame, even for studies focused on prompt emission.

  7. Spatial and Temporal Distribution of Tropospheric Clouds and Aerosols Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.

  8. Optical Logarithmic Transformation of Speckle Images with Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The application of logarithmic transformations to speckle images is sometimes desirable in converting the speckle noise distribution into an additive, constant-variance noise distribution. The optical transmission properties of some bacteriorhodopsin films are well suited to implement such a transformation optically in a parallel fashion. I present experimental results of the optical conversion of a speckle image into a transformed image with signal-independent noise statistics, using the real-time photochromic properties of bacteriorhodopsin. The original and transformed noise statistics are confirmed by histogram analysis.

  9. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  10. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  11. Spread of the dust temperature distribution in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Heese, S.; Wolf, S.; Dutrey, A.; Guilloteau, S.

    2017-07-01

    Context. Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. Aims: We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). Methods: The temperature distribution, the relative grain surface below a certain temperature, the freeze-out radius, and the SED were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Results: Within the considered parameter range, I.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: in optically thin disk regions, the temperature spread can be as large as 63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below 20 K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius (snowline) is a function of grain radius, spanning a radial range between the coldest and warmest grain species of 30 AU.

  12. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  13. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  14. Ripple distribution for nonlinear fiber-optic channels.

    PubMed

    Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei

    2017-02-06

    We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.

  15. Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law.

    PubMed

    Tsuchiya, Y

    2001-08-01

    A concise theoretical treatment has been developed to describe the optical responses of a highly scattering inhomogeneous medium using functions of the photon path distribution (PPD). The treatment is based on the microscopic Beer-Lambert law and has been found to yield a complete set of optical responses by time- and frequency-domain measurements. The PPD is defined for possible photons having a total zigzag pathlength of l between the points of light input and detection. Such a distribution is independent of the absorption properties of the medium and can be uniquely determined for the medium under quantification. Therefore, the PPD can be calculated with an imaginary reference medium having the same optical properties as the medium under quantification except for the absence of absorption. One of the advantages of this method is that the optical responses, the total attenuation, the mean pathlength, etc are expressed by functions of the PPD and the absorption distribution.

  16. Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa

    2013-04-08

    Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties.

  17. Optical interconnect for large-scale systems

    NASA Astrophysics Data System (ADS)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  18. Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.

    PubMed

    Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu

    2017-11-15

    The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.

  19. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2002-09-30

    CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired

  20. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2003-09-30

    CoBOP: MICROBIAL BIOFILMS: A PARAMETER ALTERING THE APPARENT OPTICAL PROPERTIES OF SEDIMENTS, SEAGRASSES AND SURFACES. Alan W. Decho Department...AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering The Apparent Optical Properties Of Sediments, Seagrasses And Surfaces 5a. CONTRACT...biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired from this project will be closely paired with results of

  1. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    PubMed

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  2. Investigating the differences of cirrus cloud properties in nucleation, growth and sublimation regions based on airborne water vapor lidar measurements

    NASA Astrophysics Data System (ADS)

    Urbanek, Benedikt; Groß, Silke; Wirth, Martin

    2017-04-01

    Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.

  3. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  4. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  5. Manipulating the Interfacial Electrical and Optical Properties of Dissimilar Materials with Metallic Nanostructures

    DTIC Science & Technology

    2016-07-30

    27TH STREET STE 4308 AUSTIN , TX 78712 08/03/2016 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force Research ...4308 Austin , TX 78712-1500 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of...AFRL-AFOSR-VA-TR-2016-0281 MANIPULATING THE INTERFACIAL ELECTRIAL & OPTICAL PROPERTIES OF DISSIMILA Seth Bank UNIVERSITY OF TEXAS AT AUSTIN 101 EAST

  6. Structural and optical properties of vanadium ion-implanted GaN

    NASA Astrophysics Data System (ADS)

    Macková, A.; Malinský, P.; Jagerová, A.; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Mikulics, M.; Lorinčík, J.; Veselá, D.; Böttger, R.; Akhmadaliev, S.

    2017-09-01

    The field of advanced electronic and optical devices searches for a new generation of transistors and lasers. The practical development of these novel devices depends on the availability of materials with the appropriate magnetic and optical properties, which is strongly connected to the internal morphology and the structural properties of the prepared doped structures. In this contribution, we present the characterisation of V ion-doped GaN epitaxial layers. GaN layers, oriented along the (0 0 0 1) crystallographic direction, grown by low-pressure metal-organic vapour-phase epitaxy (MOVPE) on c-plane sapphire substrates were implanted with 400 keV V+ ions at fluences of 5 × 1015 and 5 × 1016 cm-2. Elemental depth profiling was accomplished by Rutherford Backscattering Spectrometry (RBS) and Secondary Ion Mass Spectrometry (SIMS) to obtain precise information about the dopant distribution. Structural investigations are needed to understand the influence of defect distribution on the crystal-matrix recovery and the desired structural and optical properties. The structural properties of the ion-implanted layers were characterised by RBS-channelling and Raman spectroscopy to get a comprehensive insight into the structural modification of implanted GaN and to study the influence of subsequent annealing on the crystalline matrix reconstruction. Photoluminescence measurement was carried out to check the optical properties of the prepared structures.

  7. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    PubMed

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  8. Essentials of LIDAR multiangle data processing methodology for smoke polluted atmospheres

    Treesearch

    V. A. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao

    2009-01-01

    Mobile scanning lidar is the most appropriate tool for monitoring wildfire smoke-plume dynamics and optical properties. Lidar is the only remote sensing instrument capable of obtaining detailed three-dimensional range-resolved information for smoke distributions and optical properties over ranges of 10+ km at different wavelengths simultaneously.

  9. Phantom Preparation and Optical Property Determination

    NASA Astrophysics Data System (ADS)

    He, Di; He, Jie; Mao, Heng

    2018-12-01

    Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine optical properties for homogeneous slab for our future work.

  10. Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1997-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.

  11. Spatial and Temporal Distribution of Tropospheric Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.

  12. Spatial and Temporal Distribution of Tropospheric Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven

    2005-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.

  13. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status.

    PubMed

    Lemaillet, Paul; Cooksey, Catherine C; Levine, Zachary H; Pintar, Adam L; Hwang, Jeeseong; Allen, David W

    2016-03-24

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.

  14. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    NASA Astrophysics Data System (ADS)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  15. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  16. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  17. Optical extinction dependence on wavelength and size distribution of airborne dust

    NASA Astrophysics Data System (ADS)

    Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.

    2013-05-01

    The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.

  18. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  19. Measurement of magnetic property of FePt granular media at near Curie temperature

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.

    2017-02-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (Tc) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity 25 kOe) at near Tc with a home built HAMR testing instrument. The local area of HAMR media is heated to near Tc by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (Hc) of the FePt granular media and their dependence on the optical heating power at near Tc were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the Tc distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, Hc of the HAMR media at near Tc in a static manner. The present methodology will facilitate the HAMR media testing.

  20. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  1. IRAS galaxies and the large-scale structure in the CfA slice

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Postman, Marc

    1990-01-01

    The spatial distributions of the IRAS and the optical galaxies in the first CfA slice are compared. The IRAS galaxies are generally less clustered than optical ones, but their distribution is essentially identical to that of late-type optical galaxies. The discrepancy between the clustering properties of the IRAS and optical samples in the CfA slice region is found to be entirely due to the paucity of IRAS galaxies in the core of the Coma cluster. The spatial distributions of the IRAS and the optical galaxies, both late and early types, outside the dense core of the Coma cluster are entirely consistent with each other. This conflicts with the prediction of the linear biasing scenario.

  2. Analysis of Electro-Optic Materials Properties on Guided Wave Devices

    DTIC Science & Technology

    1992-12-16

    AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials

  3. Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment.

    PubMed

    Pint, Cary L; Xu, Ya-Qiong; Moghazy, Sharief; Cherukuri, Tonya; Alvarez, Noe T; Haroz, Erik H; Mahzooni, Salma; Doorn, Stephen K; Kono, Junichiro; Pasquali, Matteo; Hauge, Robert H

    2010-02-23

    A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.

  4. On the impact of indium distribution on the electronic properties in InGaN nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benaissa, M., E-mail: benaissa.um5@gmail.com, E-mail: benaissa@fsr.ac.ma; Sigle, W.; Aken, P. A. van

    2015-03-09

    We analyze an epitaxially grown heterostructure composed of InGaN nanodisks inserted in GaN nanowires in order to relate indium concentration to the electronic properties. This study was achieved with spatially resolved low-loss electron energy-loss spectroscopy using monochromated electrons to probe optical excitations—plasmons—at nanometer scale. Our findings show that each nanowire has its own indium fluctuation and therefore its own average composition. Due to this indium distribution, a scatter is obtained in plasmon energies, and therefore in the optical dielectric function, of the nanowire ensemble. We suppose that these inhomogeneous electronic properties significantly alter band-to-band transitions and consequently induce emission broadening.more » In addition, the observation of tailing indium composition into the GaN barrier suggests a graded well-barrier interface leading to further inhomogeneous broadening of the electro-optical properties. An improvement in the indium incorporation during growth is therefore needed to narrow the emission linewidth of the presently studied heterostructures.« less

  5. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  6. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status

    PubMed Central

    Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.

    2016-01-01

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer. PMID:27453623

  7. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  8. Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R. W.; Stohl, A.

    2011-01-01

    Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 m).

  9. Optical modeling of volcanic ash particles using ellipsoids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo

    2015-05-01

    The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.

  10. Parameterizations of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia; Heymsfield, Andrew; Gerber, Hermann

    2005-01-01

    Our multi-investigator effort was targeted at the following areas of interest to CRYSTAL-FACE: (1) the water budgets of anvils, (2) parameterizations of the particle size distributions and related microphysical and optical properties (3) characterizations of the primary ice particle habits, (4) the relationship of the optical properties to the microphysics and particle habits, and (5) investigation of the ice-nuclei types and mechanisms in anvil cirrus. Dr. Twohy's effort focused on (l), (2), and (5), with the measurement and analysis of ice water content and cirrus residual nuclei using the counterflow virtual impactor (CVI).

  11. Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun

    2014-05-01

    By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.

  12. Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Duan, Xiulan; Liu, Jian; Wang, Xinqiang; Jiang, Huaidong

    2014-11-01

    The distribution of cations in the spinel-type MgCr2yGa2-2yO4 (y = 0-0.6) nanocrystals and their optical properties as a function of annealing temperature and chromium content were investigated by using X-ray photoelectron spectroscopy (XPS) in combination with absorption spectroscopy. The cations in MgCr2yGa2-2yO4 nanocrystals are disorderly distributed with mixing of divalent and trivalent cations occupying the tetrahedral and octahedral sites. With the increase of annealing temperature, the inversion parameter (the fraction of Mg2+ ions in octahedral sites) decreases, which has the same varying tendency with the proportion of tetrahedral Ga3+ or Cr3+ ions. The inversion parameter increases with increasing Cr3+ concentration. The absorption spectra indicate that Cr3+ ions are located in the octahedral sites as well as in the tetrahedral sites. The fraction of tetrahedral Cr3+ decreases with Cr-enrichment. The optical absorption properties of Cr-doped MgGa2O4 nanocrystals may be tuned by varying the preparation temperature or Cr concentration.

  13. A multicore optical fiber for distributed sensing

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Burgess, David T.; Hines, Mike; Zhu, Beyuan

    2014-06-01

    With advancements in optical fiber technology, the incorporation of multiple sensing functionalities within a single fiber structure opens the possibility to deploy dielectric, fully distributed, long-length optical sensors in an extremely small cross section. To illustrate the concept, we designed and manufactured a multicore optical fiber with three graded-index (GI) multimode (MM) cores and one single mode (SM) core. The fiber was coated with both a silicone primary layer and an ETFE buffer for high temperature applications. The fiber properties such as geometry, crosstalk and attenuation are described. A method for coupling the signal from the individual cores into separate optical fibers is also presented.

  14. Some optical properties of the spiral inflector

    NASA Astrophysics Data System (ADS)

    Toprek, Dragan; Subotic, Krunoslav

    1999-07-01

    This paper compares some optical properties of different spiral inflectors using the program CASINO. The electric field distribution in the inflectors has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is assumed to be constant. We have also made an effort to minimize the inflector fringe field using the RELAX3D program.

  15. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

    PubMed

    Lerman, Gilad M; Levy, Uriel

    2007-08-01

    We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

  16. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectralmore » Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL to characterize the planetary boundary layer height (PBL) and the transition zone thickness, for the RACORO and CARES and CalNex campaigns as we have done for previous campaigns. 4. Investigated how optical properties measured by HSRL vary near clouds. 5. Assessed model simulations of aerosol spatial distributions and optical and microphysical properties.« less

  17. Self-repeating properties of four-petal Gaussian vortex beams in quadratic index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Chai, Tong; Zheng, Hairong

    2018-05-01

    In this paper, we investigate the propagation properties of four-petal Gaussian vortex (FPGV) beams propagating through the quadratic index medium, obtaining the analytical expression of FPGV beams. The effects of beam order n, topological charge m and beam waist ω0 are investigated. Results show that quadratic index medium support periodic distributions of FPGV beams. A hollow optical wall or an optical central principal maximum surrounded by symmetrical sidelobes will occur at the center of a period. At length, they will evolve into four petals structure, exactly same as the intensity distributions at source plane.

  18. Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.

    2018-02-01

    PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.

  19. Theoretical investigation of the structural, elastic, electronic and optical properties of the ternary indium sulfide layered structures AInS2 (A = K, Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.

    2018-02-01

    Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.

  20. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    PubMed

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  1. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  2. The light transmission and distribution in an optical fiber coated with TiO2 particles.

    PubMed

    Wang, Wen; Ku, Young

    2003-03-01

    The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.

  3. Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation.

    PubMed

    Wang, Minghao; Yuan, Xiuhua; Ma, Donglin

    2017-04-01

    Nonuniformly correlated partially coherent beams (PCBs) have extraordinary propagation properties, making it possible to further improve the performance of free-space optical communications. In this paper, a series of PCBs with varying degrees of coherence in the radial direction, academically called radial partially coherent beams (RPCBs), are considered. RPCBs with arbitrary coherence distributions can be created by adjusting the amplitude profile of a spatial modulation function imposed on a uniformly correlated phase screen. Since RPCBs cannot be well characterized by the coherence length, a modulation depth factor is introduced as an indicator of the overall distribution of coherence. By wave optics simulation, free-space and atmospheric propagation properties of RPCBs with (inverse) Gaussian and super-Gaussian coherence distributions are examined in comparison with conventional Gaussian Schell-model beams. Furthermore, the impacts of varying central coherent areas are studied. Simulation results reveal that under comparable overall coherence, beams with a highly coherent core and a less coherent margin exhibit a smaller beam spread and greater on-axis intensity, which is mainly due to the self-focusing phenomenon right after the beam exits the transmitter. Particularly, those RPCBs with super-Gaussian coherence distributions will repeatedly focus during propagation, resulting in even greater intensities. Additionally, RPCBs also have a considerable ability to reduce scintillation. And it is demonstrated that those properties have made RPCBs very effective in improving the mean signal-to-noise ratio of small optical receivers, especially in relatively short, weakly fluctuating links.

  4. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    NASA Astrophysics Data System (ADS)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  5. Numerical simulation studies for optical properties of biomaterials

    NASA Astrophysics Data System (ADS)

    Krasnikov, I.; Seteikin, A.

    2016-11-01

    Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Computer-based Monte Carlo (MC) models of light transport in turbid media take a different approach. In this paper, the optical and structural properties of biomaterials discussed. We explain the numerical simulationmethod used for studying the optical properties of biomaterials. Applications of the Monte-Carlo method in photodynamic therapy, skin tissue optics, and bioimaging described.

  6. Bio-Optical Properties of the Arabian Sea as Determined by In-Situ and SeaWifs Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1998-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. Joint Global Ocean Flux Study (JGOFS) Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces", within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient [K(490)]. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable.

  7. Monte Carlo modeling of fluorescence in semi-infinite turbid media

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2018-02-01

    The incident field size and the interplay of absorption and scattering can influence the in-vivo light fluence rate distribution and complicate the absolute quantification of fluorophore concentration in-vivo. In this study, we use Monte Carlo simulations to evaluate the effect of incident beam radius and optical properties to the fluorescence signal collected by isotropic detector placed on the tissue surface. The optical properties at the excitation and emission wavelengths are assumed to be identical. We compute correction factors to correct the fluorescence intensity for variations due to incident field size and optical properties. The correction factors are fitted to a 4-parameters empirical correction function and the changes in each parameter are compared for various beam radius over a range of physiologically relevant tissue optical properties (μa = 0.1 - 1 cm-1 , μs'= 5 - 40 cm-1 ).

  8. The Case Against Charge Transfer Interactions in Dissolved Organic Matter Optical Properties

    NASA Astrophysics Data System (ADS)

    McKay, G.; Korak, J.; Erickson, P. R.; Latch, D. E.; McNeill, K.; Rosario-Ortiz, F.

    2017-12-01

    The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Organic matter optical properties have been used by scientists and engineers for decades for remote sensing, in situ monitoring, and characterizing laboratory samples to track dissolved organic carbon concentration and character. However, there is still a lack of understanding of the origin of organic matter optical properties, which could conflict with other empirical fluorescence interpretation methods (e.g. PARAFAC). Organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to perturbations in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were unaffected by these perturbations, indicating that the distribution of absorbing and emitting species was unchanged. These results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for organic matter photophysics.

  9. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  10. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  11. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  12. Anomalous Transient Amplification of Waves in Non-normal Photonic Media

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Ge, L.; Türeci, H. E.

    2014-10-01

    Dissipation is a ubiquitous phenomenon in dynamical systems encountered in nature because no finite system is fully isolated from its environment. In optical systems, a key challenge facing any technological application has traditionally been the mitigation of optical losses. Recent work has shown that a new class of optical materials that consist of a precisely balanced distribution of loss and gain can be exploited to engineer novel functionalities for propagating and filtering electromagnetic radiation. Here we show a generic property of optical systems that feature an unbalanced distribution of loss and gain, described by non-normal operators, namely, that an overall lossy optical system can transiently amplify certain input signals by several orders of magnitude. We present a mathematical framework to analyze the dynamics of wave propagation in media with an arbitrary distribution of loss and gain, and we construct the initial conditions to engineer such non-normal power amplifiers. Our results point to a new design space for engineered optical systems employed in photonics and quantum optics.

  13. Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.

    PubMed

    Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji

    2012-07-02

    Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.

  14. Temporal scaling of the growth dependent optical properties of microalgae

    NASA Astrophysics Data System (ADS)

    Zhao, J. M.; Ma, C. Y.; Liu, L. H.

    2018-07-01

    The optical properties of microalgae are basic parameters for analyzing light field distribution in photobioreactors (PBRs). With the growth of microalgae cell, their optical properties will vary with growth time due to accumulation of pigment and lipid, cell division and metabolism. In this work, we report a temporal scaling behavior of the growth dependent optical properties of microalgae cell suspensions with both experimental and theoretical evidence presented. A new concept, the temporal scaling function (TSF), defined as the ratio of absorption or scattering cross-sections at growth phase to that at stationary phase, is introduced to characterize the temporal scaling behavior. The temporal evolution and temporal scaling characteristics of the absorption and scattering cross-sections of three example microalgae species, Chlorella vulgaris, Chlorella pyrenoidosa, and Chlorella protothecoides, were experimentally studied at spectral range 380-850 nm. It is shown that the TSFs of the absorption and scattering cross-sections for different microalgae species are approximately constant at different wavelength, which confirms theoretical predictions very well. With the aid of the temporal scaling relation, the optical properties at any growth time can be calculated based on those measured at stationary phase, hence opens a new way to determine the time-dependent optical properties of microalgae. The findings of this work will help the understanding of time dependent optical properties of microalgae and facilitate their applications in light field analysis in PBRs design.

  15. Genetic Engineering of Optical Properties of Biomaterials

    NASA Astrophysics Data System (ADS)

    Gourley, Paul; Naviaux, Robert; Yaffe, Michael

    2008-03-01

    Baker's yeast cells are easily cultured and can be manipulated genetically to produce large numbers of bioparticles (cells and mitochondria) with controllable size and optical properties. We have recently employed nanolaser spectroscopy to study the refractive index of individual cells and isolated mitochondria from two mutant strains. Results show that biomolecular changes induced by mutation can produce bioparticles with radical changes in refractive index. Wild-type mitochondria exhibit a distribution with a well-defined mean and small variance. In striking contrast, mitochondria from one mutant strain produced a histogram that is highly collapsed with a ten-fold decrease in the mean and standard deviation. In a second mutant strain we observed an opposite effect with the mean nearly unchanged but the variance increased nearly a thousand-fold. Both histograms could be self-consistently modeled with a single, log-normal distribution. The strains were further examined by 2-dimensional gel electrophoresis to measure changes in protein composition. All of these data show that genetic manipulation of cells represents a new approach to engineering optical properties of bioparticles.

  16. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Zhang, Shuoshuo; Li, Jinjian; Li, Xiaoyu; Ge, Xiaolu; Zhang, Yuquan; Fu, Shenggui

    2018-06-01

    The tight focusing properties of optical fields combining a spiral phase and cylindrically symmetric state of polarization are presented. First, we theoretically analyze the mathematical characterization, Stokes parameters, and Poincaré sphere representations of arbitrary cylindrical vector (CV) vortex beams. Then, based on the vector diffraction theory, we derive and build an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input CV vortex beams. The calculations reveal that a generalized CV vortex beam can generate a sharper focal spot than that of a radially polarized (RP) plane beam in the focal plane. Besides, the focal size decrease accompanies its elongation along the optical axis. Hence, it seems that there is a trade-off between the transverse and axial resolutions. In addition, under the precondition that the absolute values between polarization order and topological charge are equal, a higher-order CV vortex can also achieve a smaller focal size than an RP plane beam. Further, the intensity for the sidelobe admits a significant suppression. To give a deep understanding of the peculiar focusing properties, the magnetic field and Poynting vector distributions are also demonstrated in detail. These properties may be helpful in applications such as optical trapping and manipulation of particles and superresolution microscopy imaging.

  17. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D; Atkinson, Dean B

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements ismore » facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?« less

  18. Role of temperature dependence of optical properties in laser irradiation of biological tissue

    NASA Astrophysics Data System (ADS)

    Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.

    1992-08-01

    Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.

  19. Role of impurities on the optical properties of rectangular graphene flakes

    NASA Astrophysics Data System (ADS)

    Sadeq, Z. S.; Muniz, Rodrigo A.; Sipe, J. E.

    2018-01-01

    We study rectangular graphene flakes using mean field states as the basis for a configuration interaction calculation, which allows us to analyze the low lying electronic excited states including electron correlations beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake, but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also investigate the impact of both short and long range impurity potentials on the optical properties of these systems. We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong impurity potentials.

  20. Impact of phytoplankton community structure and function on marine particulate optical properties

    NASA Astrophysics Data System (ADS)

    McFarland, Malcolm Neil

    Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.

  1. Optical properties study of nano-composite filled D shape photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  2. Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery

    NASA Technical Reports Server (NTRS)

    Kiefer, Dale A.; Stramski, Dariusz

    1997-01-01

    Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.

  3. Optical properties of cells with melanin

    NASA Astrophysics Data System (ADS)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  4. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    NASA Astrophysics Data System (ADS)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  5. Remote atmospheric probing by ground to ground line of sight optical methods

    NASA Technical Reports Server (NTRS)

    Lawrence, R. S.

    1969-01-01

    The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.

  6. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  7. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  8. Optical anomalies in Biological media; Using naturally occurring birefringence and radiance dependent nonlinear optics to our advantage in the laser treatment of arrhythmias.

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Svenson, Robert H.; Sosa, Eduardo; Buchele d'Avila, Andre Luiz; Scanavacca, Mauricio; Pruitt, Ernest; Kasell, Jackie H.

    2003-02-01

    When irradiating particular biological media in general there will be a range of optical properties to deal with, with respect to the irradiating wavelength, and the respective tissues that make up the organ under treatment or being imaged. In addition to this we saw changing optical properties under influence of denaturization, dehydration and carbonization. We also observed optical nonlinearities that are irradiance dependent, in addition to the birefringence which affects the light distribution throughout the tissue differently than the polarization birefringence used in optical polarization microscopy. In the treatment of ventricular tachycardia with laser photocoagulation the success of the procedure depends on whether sufficient energy has been directed to the relevant region of the myocardium to ablate the entire arrhythmogenic focus. A new high power diode laser operating in the near infrared was used in an animal infarct model and in human arrhythmia ablation. The light distribution measured for Chagasic heart tissues at the diode laser wavelength demonstrated the key potential to create controlled deep photocoagulation lesions. From our observations we may conclude that the diode laser - catheter combination offers significant potential for the elimination of arrhythmia's resulting from Chagas disease.

  9. Evaluation of scattered light distributions of cw-transillumination for functional diagnostic of rheumatic disorders in interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Prapavat, Viravuth; Schuetz, Rijk; Runge, Wolfram; Beuthan, Juergen; Mueller, Gerhard J.

    1995-12-01

    This paper presents in-vitro-studies using the scattered intensity distribution obtained by cw- transillumination to examine the condition of rheumatic disorders of interphalangeal joints. Inflammation of joints, due to rheumatic diseases, leads to changes in the synovial membrane, synovia composition and content, and anatomic geometrical variations. Measurements have shown that these rheumatic induced inflammation processes result in a variation in optical properties of joint systems. With a scanning system the interphalangeal joint is transilluminated with diode lasers (670 nm, 905 nm) perpendicular to the joint cavity. The detection of the entire distribution of the transmitted radiation intensity was performed with a CCD camera. As a function of the structure and optical properties of the transilluminated volume we achieved distributions of scattered radiation which show characteristic variations in intensity and shape. Using signal and image processing procedures we evaluated the measured scattered distributions regarding their information weight, shape and scale features. Mathematical methods were used to find classification criteria to determine variations of the joint condition.

  10. Coupling characteristics of the spun optical fiber with triple stress elements

    NASA Astrophysics Data System (ADS)

    Ji, Minning; Shang, Fengtao; Chen, Dandan

    2018-06-01

    An empirical formula related to the stress field distribution in the optical fiber with triple stress elements is proposed and proved. The possible intercoupling between the fundamental modes and the higher order modes is demonstrated. The transmission property of the spun optical fiber with triple stress elements is analyzed. The experimental data from a sample of the spun optical fiber with triple stress elements confirm the theoretical results very well.

  11. Vector optical fields with bipolar symmetry of linear polarization.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  12. Effect of Intraocular Pressure and Anisotropy on the Optical Properties of the Cornea: A Study Using Polarization Sensitive Optical Coherence Tomography.

    PubMed

    Richhariya, Ashutosh; Verma, Yogesh; Rao, Divakar K; Roberts, Cynthia J; Mahmoud, Ashraf M; Sangwan, Virender S; Punjabi, Sunil; Gupta, Pradeep K

    2014-01-01

    We hypothesize that because of the anisotropic properties of the cornea, there should be a nonuniform change in birefringence with an increase in intraocular pressure (IOP). In this in vitro study, anisotropic properties, stress distribution within the cornea, and the effect of IOP on changes in stress level were investigated. Button inflation tests for deformation with polarization sensitive optical coherence tomography were used to demonstrate optical and material anisotropy on ex vivo human corneas. Inflation tests were performed on human donor corneoscleral rims. Using a turntable and hydrostatic column, each corneoscleral rim was subjected to a hydrostatic pressure of 0, 10, 15, and 20 mm Hg. At each pressure step, 4 scans at 0, 45, 90, and 135 degrees were taken by a polarization sensitive optical coherence tomography system, and the birefringence images and normal intensity-based images were recorded; images were later compiled for analysis. The retardation changed with the axis of orientation (P [T ≤ t] 1-tailed = 0.025) and IOP (P [T ≤ t] 1-tailed = 0.019). Optical thickness of the cornea decreased with increasing IOP. The optical properties of the cornea are modified with change in IOP. This is not uniform because of distinct anisotropic properties. Anisotropic properties may unpredictably affect the optical quality of cornea during or after the surgeries. Changes in corneal birefringence can be also used as a tool for measuring the IOP of the eye.

  13. Regional and vertical distribution of semitransparent cirrus clouds over the tropical Indian region derived from CALIPSO data

    NASA Astrophysics Data System (ADS)

    Meenu, S.; Rajeev, K.; Parameswaran, K.

    2011-08-01

    Monthly mean spatial and vertical distributions of the frequency of occurrence (FSTC) of semitransparent cirrus (STC) and their physical and optical properties over the Indian region are investigated using multiyear CALIPSO data. Over the Bay of Bengal (BoB), FSTC above the lapse-rate tropopause is >30% during the summer monsoon season, most of which has optical depth <0.03. Based on spatial variations of the observed STC properties away from deep convective regions, we propose that the presence of high-altitude clouds below STCs over the BoB and Indian regions during summer monsoon reduces dissipation of STCs, resulting in their longer lifetime (˜1-2 days).

  14. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  15. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  16. Generation of a dark hollow beam by a nonlinear ZnSe crystal and its propagation properties in free space: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Du, Xiangli; Yin, Yaling; Zheng, Gongjue; Guo, Chaoxiu; Sun, Yu; Zhou, Zhongneng; Bai, Shunjie; Wang, Hailing; Xia, Yong; Yin, Jianping

    2014-07-01

    A new nonlinear optical method to generate a dark hollow beam (DHB) with a dielectric ZnSe crystal is proposed. From Huygens-Fresnel diffraction theory, we calculate the intensity distributions of the DHB and its propagating properties in free space, and study the dependences of the optimal propagation position and the dark-spot size (DSS) of the hollow beam on the waist radius of the incident Gaussian laser beam. Our study shows that the intensity distribution of the DHB presents symmetrical distribution with increasing the propagation distance, the optimal distance zopt becomes farther and the DSS becomes larger with the increase of the waist radius w of the incident Gaussian laser beam. This generated DHB will have applications in the optical guiding and trapping of macroscopic objects, atoms or molecules.

  17. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  18. Doping effect in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  19. Twist phase-induced characteristics changes of a radially polarized Gaussian Schell-Model beam in a uniaxial crystal orthogonal to the optical axis

    NASA Astrophysics Data System (ADS)

    Cao, Pengfei; Fu, Wenyu

    2017-10-01

    Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.

  20. Variations in global thunderstorm activity inferred from the OTD records

    NASA Astrophysics Data System (ADS)

    Nickolaenko, A. P.; Hayakawa, M.; Sekiguchi, M.

    2006-03-01

    We use the data on the planetary distribution of thunderstorms collected by optical transient detector (OTD) to derive the properties of global electric activity. Processing of optical data indicates that modern observations from space confirm the general concept of thunderstorm distribution and motion. Close similarity is demonstrated between the World Meteorological Organization data and modern records including Carnegie curve. Departures noted might be caused by thunderstorms redistribution owing to climate change; the issue deserves a special examination.

  1. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  2. Laser-gyro materials studies

    NASA Astrophysics Data System (ADS)

    Covino, J.; Bennett, J. M.

    1986-03-01

    Material properties of low-expansion glass and glass-ceramic materials have been measured. The materials that have been characterized are ultralow-expansion (ULE) type 7971 quartz, a new glass-ceramic material RLA 559,122 from Corning Glass Works, fused quartz from General Electric, Zerodur from Schott Glaswerke, and Cervit C-101 from Owens-Illinois. Characterization has included measurements of X-ray powder diffraction patterns, some elemental analyses, helium permeability, thermal expansion, particle-size distributions, optical properties, and optical finish studies.

  3. Spatial and Temporal Distribution of Cloud Properties Observed by MODIS: Preliminary Level-3 Results from the Collection 5 Reprocessing

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Hubanks, Paul; Pincus, Robert

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.

  4. Electronic properties and optical absorption of a phosphorene quantum dot

    NASA Astrophysics Data System (ADS)

    Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.

    2018-03-01

    Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.

  5. Observational difference between gamma and X-ray properties of optically dark and bright GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, L. G.; Horvath, I.; Bagoly, Zs.

    2008-05-22

    Using the discriminant analysis of the multivariate statistical analysis we compared the distribution of the physical quantities of the optically dark and bright GRBs, detected by the BAT and XRT on board of the Swift Satellite. We found that the GRBs having detected optical transients (OT) have systematically higher peak fluxes and lower HI column densities than those without OT.

  6. Theoretical evaluation of errors in aerosol optical depth retrievals from ground-based direct-sun measurements due to circumsolar and related effects

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Gueymard, Christian A.

    2011-02-01

    Aerosol optical depth (AOD) has a crucial importance for estimating the optical properties of the atmosphere, and is constantly present in optical models of aerosol systems. Any error in aerosol optical depth (∂AOD) has direct and indirect consequences. On the one hand, such errors affect the accuracy of radiative transfer models (thus implying, e.g., potential errors in the evaluation of radiative forcing by aerosols). Additionally, any error in determining AOD is reflected in the retrieved microphysical properties of aerosol particles, which might therefore be inaccurate. Three distinct effects (circumsolar radiation, optical mass, and solar disk's brightness distribution) affecting ∂AOD are qualified and quantified in the present study. The contribution of circumsolar (CS) radiation to the measured flux density of direct solar radiation has received more attention than the two other effects in the literature. It varies rapidly with meteorological conditions and size distribution of the aerosol particles, but also with instrument field of view. Numerical simulations of the three effects just mentioned were conducted, assuming otherwise "perfect" experimental conditions. The results show that CS is responsible for the largest error in AOD, while the effect of brightness distribution (BD) has only a negligible impact. The optical mass (OM) effect yields negligible errors in AOD generally, but noticeable errors for low sun (within 10° of the horizon). In general, the OM and BD effects result in negative errors in AOD (i.e. the true AOD is smaller than that of the experimental determination), conversely to CS. Although the rapid increase in optical mass at large zenith angles can change the sign of ∂AOD, the CS contribution frequently plays the leading role in ∂AOD. To maximize the accuracy in AOD retrievals, the CS effect should not be ignored. In practice, however, this effect can be difficult to evaluate correctly unless the instantaneous aerosols size distribution is known from, e.g., inversion techniques.

  7. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.

  8. Z-scan studies of the nonlinear optical properties of gold nanoparticles prepared by electron beam deposition.

    PubMed

    Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R

    2015-11-20

    This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48  nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.

  9. Temporal and Spatial Distribution of Liquid Water and Ice Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.

  10. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  11. Tuning nonlinear optical absorption properties of WS₂ nanosheets.

    PubMed

    Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong

    2015-11-14

    To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.

  12. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with significant dominance of fine mode particles.

  13. Manipulating the optical properties of dual implanted Au and Zn nanoparticles in sapphire

    NASA Astrophysics Data System (ADS)

    Epie, E. N.; Scott, D.; Chu, W. K.

    2017-11-01

    We have synthesized and manipulated the optical properties of metallic nanoparticles (NPs) by using a combination of low-energy high-fluence dual implantation and thermal annealing. We demonstrated that by implanting Zn before Au, the resulting absorption peak is enormously blue-shifted by 120 nm with respect to that of Au-only implanted samples. This magnitude of optical shift is not characteristic of unalloyed Au and to the best of our knowledge cannot be attributed to NP size change alone. On the other hand, the absorption peak for samples implanted with Au followed by Zn is blue-shifted about 20 nm. Additionally, by carefully annealing all implanted samples, both NP size distribution and corresponding optical properties can be further modified in a controlled manner. We attribute these behaviours to nanoalloy formation. This work provides a direct method for synthesizing and manipulating both the plasmonic and structural properties of metallic alloy NP in various transparent dielectrics for diverse applications.

  14. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  15. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  16. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda

    2017-08-01

    This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.

  17. Additive manufacturing of reflective optics: evaluating finishing methods

    NASA Astrophysics Data System (ADS)

    Leuteritz, G.; Lachmayer, R.

    2018-02-01

    Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.

  18. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thinmore » continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.« less

  19. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    PubMed

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  20. The propagation of a flattened circular Gaussian beam through an optical system in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Liu, Z. J.; Wu, Y.

    2008-07-01

    Based on the Huygens-Fresnel integral, the properties of a circular flattened Gaussian beam through a stigmatic optical system in turbulent atmosphere are investigated. Analytical formulas for the average intensity are derived. As elementary examples, the average intensity distributions of a collimated circular flattened Gaussian beam and a focused circular flattened Gaussian beam through a simple optical system are studied. To see the effects of the optical system on the propagation, the average intensity distributions of the beam for direct propagation are also studied. From the analysis, comparison and numerical calculation we can see that there are many differences between the two propagations. These differences are due to the geometrical magnification of the optical system, different diffraction and different turbulence-induced spreading. Namely, an optical system not only affects the diffraction but also affects the turbulence-induced spreading.

  1. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  2. Effect of temperature on optical properties of PMMA/SiO2 composite thin film

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-05-01

    Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.

  3. Near-Infrared Fluorescence-Enhanced Optical Tomography

    PubMed Central

    2016-01-01

    Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography. PMID:27803924

  4. Surface optical vortices

    NASA Astrophysics Data System (ADS)

    Lembessis, V. E.; Babiker, M.; Andrews, D. L.

    2009-01-01

    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.

  5. Near-Infrared Fluorescence-Enhanced Optical Tomography.

    PubMed

    Zhu, Banghe; Godavarty, Anuradha

    2016-01-01

    Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.

  6. Development of self-sensing BFRP bars with distributed optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  7. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  8. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  9. THE INTRINSIC EDDINGTON RATIO DISTRIBUTION OF ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previousmore » work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.« less

  10. Nanoparticle Distributions in Cancer and other Cells from Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the optical properties of whole cells and lysates using light transmission spectroscopy (LTS). LTS provides both the optical extinction coefficient in the wavelength range from 220 to 1100 nm and (by spectral inversion using a Mie model) the particle distribution density in the size range from 1 to 3000 nm. Our current work involves whole cells and lysates of cultured human oral cells and other plant and animal cells. We have found systematic differences in the optical extinction between cancer and normal whole cells and lysates, which translate to different particle size distributions (PSDs) for these materials. We have also found specific power-law dependences of particle density with particle diameter for cell lysates. This suggests a universality of the packing distribution in cells that can be compared to ideal Apollonian packing, with the cell modeled as a fractal body comprised of spheres on all size scales.

  11. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.

  12. Distinguishing dissolved organic matter at its origin: size and optical properties of leaf-litter leachates.

    PubMed

    Cuss, C W; Guéguen, C

    2013-09-01

    Dissolved organic matter (DOM) was leached from eight distinct samples of leaves taken from six distinct trees (red maple, bur oak at three times of the year, two sugar maple and two white spruce trees from disparate soil types). Multiple samples were taken over 72-96h of leaching. The size and optical properties of leachates were assessed using asymmetrical flow field-flow fractionation (AF4) coupled to diode-array ultraviolet/visible absorbance and excitation-emission matrix fluorescence detectors (EEM). The fluorescence of unfractionated samples was also analyzed. EEMs were analyzed using parallel factor analysis (PARAFAC) and principal component analysis (PCA) of proportional component loadings. Both the unfractionated and AF4-fractionated leachates had distinct size and optical properties. The 95% confidence ranges for molecular weight distributions were determined as: 210-440Da for spruce, 540-920Da for sugar maple, 630-800Da for spring oak leaves, 930-950Da for senescent oak, 1490-1670 for senescent red maple, and 3430-4270Da for oak leaves that were collected from the ground after spring thaw. In most cases the fluorescence properties of leachates were different for individuals from different soil types and across seasons; however, PCA of PARAFAC loadings revealed that the observed distinctiveness was chiefly species-based. Strong correlations were found between the molecular weight distribution of both unfractionated and fractionated leachates and their principal component loadings (R(2)=0.85 and 0.95, respectively). It is concluded that results support a species-based origin for differences in optical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Analyzing the Formation, Physicochemical, and Optical Properties of Aging Biomass Burning Aerosol Using an Indoor Smog Chamber

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Fiddler, M. N.; Bililign, S.; Spann, M.

    2017-12-01

    Biomass burning (BB) is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc., which alters their optical properties. To this end, an indoor smog chamber was constructed to study aging BB aerosol in a laboratory setting. Injections to the chamber, including NOx, O3, and various biogenic and anthropogenic VOCs, can simulate a variety of atmospheric conditions. These components and some of their oxidation products are monitored during the aging process. A tube furnace is used for combustion of biomass to be introduced to the chamber, while size distributions are taken as the aerosol ages. Online measurements of optical properties are determined using a Cavity Ring-down Spectrometry and Integrating Nephelometry system. Chemical properties are measured from samples captured on filters and analyzed using Ultra-Performance Liquid Chromatography coupled in-line to both a Diode Array Detector and High-Resolution Time-of-Flight Mass Spectrometer equipped with electrospray ionization. The measured changes in the optical properties as a function of particle size, aging, and chemical properties are presented for fuel sources used in Africa.

  14. Optical characterization of porcine articular cartilage using a polarimetry technique with differential Mueller matrix formulism.

    PubMed

    Chang, Ching-Min; Lo, Yu-Lung; Tran, Nghia-Khanh; Chang, Yu-Jen

    2018-03-20

    A method is proposed for characterizing the optical properties of articular cartilage sliced from a pig's thighbone using a Stokes-Mueller polarimetry technique. The principal axis angle, phase retardance, optical rotation angle, circular diattenuation, diattenuation axis angle, linear diattenuation, and depolarization index properties of the cartilage sample are all decoupled in the proposed analytical model. Consequently, the accuracy and robustness of the extracted results are improved. The glucose concentration, collagen distribution, and scattering properties of samples from various depths of the articular cartilage are systematically explored via an inspection of the related parameters. The results show that the glucose concentration and scattering effect are both enhanced in the superficial region of the cartilage. By contrast, the collagen density increases with an increasing sample depth.

  15. A theoretical study on the optical properties of black silicon

    NASA Astrophysics Data System (ADS)

    Ma, Shijun; Liu, Shuang; Xu, Qinwei; Xu, Junwen; Lu, Rongguo; Liu, Yong; Zhong, Zhiyong

    2018-03-01

    There is a wide application prospect in black silicon, especially in solar cells and photoelectric detectors. For further optimization of black silicon, it is important to study its optical properties. Especially, the influence of the surface nanostructures on these properties and the light propagation within the nanostructures are relevant. In this paper, two kinds of black silicon models are studied via the finite differences time domain method. The simulated reflectance spectra matches well with the measured curve. Also, the light intensity distribution within the nanostructures shows that near 80% of the incident light are redirected and subjected to internal reflection, which provides powerful support for the good light trapping properties of black silicon.

  16. Assessment and validation of the community radiative transfer model for ice cloud conditions

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Yang, Ping; Weng, Fuzhong; Liu, Quanhua

    2014-11-01

    The performance of the Community Radiative Transfer Model (CRTM) under ice cloud conditions is evaluated and improved with the implementation of MODIS collection 6 ice cloud optical property model based on the use of severely roughened solid column aggregates and a modified Gamma particle size distribution. New ice cloud bulk scattering properties (namely, the extinction efficiency, single-scattering albedo, asymmetry factor, and scattering phase function) suitable for application to the CRTM are calculated by using the most up-to-date ice particle optical property library. CRTM-based simulations illustrate reasonable accuracy in comparison with the counterparts derived from a combination of the Discrete Ordinate Radiative Transfer (DISORT) model and the Line-by-line Radiative Transfer Model (LBLRTM). Furthermore, simulations of the top of the atmosphere brightness temperature with CRTM for the Crosstrack Infrared Sounder (CrIS) are carried out to further evaluate the updated CRTM ice cloud optical property look-up table.

  17. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.

  18. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing

    PubMed Central

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-01-01

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083

  19. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing.

    PubMed

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-04-14

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

  20. Impact of long-range transport pollution on aerosol properties over West Africa: observations during the DACCIWA airborne campaign

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Deroubaix, Adrien; Brito, Joel; Dupuy, Régis; Colomb, Aurélie; Schwarzenboeck, Alfons; Sellegri, Karine; Chazette, Patrick; Duplissy, Jonathan; Flamant, Cyrille

    2017-04-01

    Southern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. The region is also strongly impacted by important natural pollution from distant locations. Biomass burning mainly from vegetation fires in Central Africa and mineral dust from the Saharan and Sahel-Sudan regions are advected by winds to the SWA region especially in summer. Both biomass burning and mineral dust aerosols scatter and absorb solar radiation and are able to significantly modify the regional radiative budget. Presently, the potential radiative impact of dust and biomass burning particles on SWA is unclear due to inadequate data information on the aerosols properties and vertical distribution. In the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure the aerosol optical properties (CAPS, nephelometer, PSAP), the aerosol size distribution (SMPS, GRIMM, USHAS, PCASP, FSSP) and the aerosol chemical composition (SP2, AMS). A mini backscattered lidar system provided additional measurements of the aerosol vertical structure and the aerosol optical properties such as the particulate depolarization ratio. The CHIMERE chemistry and transport model has been used to characterize the source area and the long-range transport of dust and biomass burning plumes. Here, we investigate the aerosol microphysical, chemical and optical properties of biomass burning and dust aerosols transported in SWA. In particular the following questions will be addressed: (i) what are the differences in the aerosol optical properties and vertical distribution in SWA during intense biomass burning and dust events ? (ii) what is the range of mass extinction efficiencies and single scattering albedo for these events and what explains their variability ? (iii) what is the range in aerosol size distribution in biomass burning and dust layers and how does this vary with plume age ?

  1. The bonding, charge distribution, spin ordering, optical, and elastic properties of four MAX phases Cr2AX (A = Al or Ge, X = C or N): From density functional theory study

    NASA Astrophysics Data System (ADS)

    Li, Neng; Mo, Yuxiang; Ching, Wai-Yim

    2013-11-01

    In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr2AC (A = Al, Ge) and their hypothetical nitride counterparts Cr2AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronic and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr2AX shows that the reflectivity is high in the visible-ultraviolet region up to ˜15 eV suggesting Cr2AX as a promising candidate for use as a coating material. The elastic coefficients (Cij) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr2AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.

  2. The great Indian haze revisited: aerosol distribution effects on microphysical and optical properties of warm clouds over peninsular India

    NASA Astrophysics Data System (ADS)

    Ghanti, R.; Ghosh, S.

    2010-03-01

    The Indian subcontinent is undergoing a phase of rapid urbanisation. Inevitable fallout of this process is a concomitant increase in air pollution much of which can be attributed to the infamous great Indian haze phenomena. One observes that the aerosol size distributions vary considerably along the Bay of Bengal (BOB), Arabian Sea (AS) and the Indian Ocean (IO), although, the dynamical attributes are very similar, particularly over the BOB and the AS during this season. Unlike major European studies (e.g. Aerosol Characterization Experiment-2, Ghosh et al., 2005), there are no cloud microphysical modelling studies to complement these observational results for the Indian sub-continent. Ours is the first modelling study over this important region where a time-tested model (O'Dowd et al., 1999a; Ghosh et al., 2007; Rap et al., 2009) is used to obtain cloud microphysical and optical properties from observed aerosol size distributions. Un-activated aerosol particles and very small cloud droplets have to be treated specially to account for non-ideal effects-our model does this effectively yielding realistic estimate of cloud droplet number concentrations (Nc). Empirical relationships linking aerosol concentration to (Nc) yield a disproportionately higher Nc suggesting that such empirical formulations should be used with caution. Our modelling study reveals that the cloud's microphysical and optical properties are very similar along the AS and the BOB despite them having disparate dry aerosol spectral distributions. This is non-intuitive, as one would expect changes in microphysical development with widely different aerosol distributions. There is some increase in cloud droplet numbers with increased haze concentrations but much less than a simple proportion would indicate.

  3. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; Qiao, Mei; Wang, Tie-Jun; Zhang, Jing; Liu, Yong; Liu, Peng; Zhu, Zi-Hua; Wang, Xue-Lin

    2017-09-01

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this paper, we used 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated Y2SiO5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prism coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.

  4. Analysis of Physical Properties of Dust Suspended in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Snook, Kelly; McKay, Chris; Cantwell, Brian

    1998-01-01

    Methods for iteratively determining the infrared optical constants for dust suspended in the Mars atmosphere are described. High quality spectra for wavenumbers from 200 to 2000 1/cm were obtained over a wide range of view angles by the Mariner 9 spacecraft, when it observed a global Martian dust storm in 1971-2. In this research, theoretical spectra of the emergent intensity from Martian dust clouds are generated using a 2-stream source-function radiative transfer code. The code computes the radiation field in a plane-parallel, vertically homogeneous, multiply scattering atmosphere. Calculated intensity spectra are compared with the actual spacecraft data to iteratively retrieve the optical properties and opacity of the dust, as well as the surface temperature of Mars at the time and location of each measurement. Many different particle size distributions a-re investigated to determine the best fit to the data. The particles are assumed spherical and the temperature profile was obtained from the CO2 band shape. Given a reasonable initial guess for the indices of refraction, the searches converge in a well-behaved fashion, producing a fit with error of less than 1.2 K (rms) to the observed brightness spectra. The particle size distribution corresponding to the best fit was a lognormal distribution with a mean particle radius, r(sub m) 0.66 pm, and variance, omega(sup 2) = 0.412 (r(sub eff) = 1.85 microns, v(sub eff) =.51), in close agreement with the size distribution found to be the best fit in the visible wavelengths in recent studies. The optical properties and the associated single scattering properties are shown to be a significant improvement over those used in existing models by demonstrating the effects of the new properties both on heating rates of the Mars atmosphere and in example spectral retrieval of surface characteristics from emission spectra.

  5. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  6. Use of Combined A-Train Observations to Validate GEOS Model Simulated Dust Distributions During NAMMA

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.

    2007-01-01

    During August 2006, the NASA African Multidisciplinary Analyses Mission (NAMMA) field experiment was conducted to characterize the structure of African Easterly Waves and their evolution into tropical storms. Mineral dust aerosols affect tropical storm development, although their exact role remains to be understood. To better understand the role of dust on tropical cyclogenesis, we have implemented a dust source, transport, and optical model in the NASA Goddard Earth Observing System (GEOS) atmospheric general circulation model and data assimilation system. Our dust source scheme is more physically based scheme than previous incarnations of the model, and we introduce improved dust optical and microphysical processes through inclusion of a detailed microphysical scheme. Here we use A-Train observations from MODIS, OMI, and CALIPSO with NAMMA DC-8 flight data to evaluate the simulated dust distributions and microphysical properties. Our goal is to synthesize the multi-spectral observations from the A-Train sensors to arrive at a consistent set of optical properties for the dust aerosols suitable for direct forcing calculations.

  7. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  8. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  9. Optical Characterization of Single Plasmonic Nanoparticles

    PubMed Central

    Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan

    2015-01-01

    This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351

  10. Research on target information optics communications transmission characteristic and performance in multi-screens testing system

    NASA Astrophysics Data System (ADS)

    Li, Hanshan

    2016-04-01

    To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.

  11. Optical properties of rare earth doped transparent oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Mendez-Ramos, J.; Lavin, V.; Martin, I. R.; Rodriguez-Mendoza, U. R.; Rodriguez, V. D.; Lozano-Gorrin, A. D.; Nunez, P.

    2003-01-01

    Optical properties of Eu3+ ions in oxyfluoride glasses and glass ceramics doped with low concentration (0.1 mol%) have been analysed and compared with previous results for high concentrated samples (2.5 mol%). The Eu3+ ions in the low dopant concentration glass ceramics are diluted into like crystalline environments with higher symmetry and lower coupled phonons energy than in the precursor glasses. Fluorescence line narrowing measurements indicate the presence of two main fluoride site distributions for the Eu3+ ions in these low concentrated glass ceramics.

  12. Correlating the optical properties of WS2 monolayers grown by CVD with isoelectronic Mo doping level(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cross, Nick; Boulesbaa, Abdelaziz; Pudasaini, Pushpa R.; Tian, Mengkun; Mahjouri-Samani, Masoud; Oxley, Mark P.; Rouleau, Christopher M.; Puretzky, Alexander A.; Rack, Philip D.; Xiao, Kai; Yoon, Mina; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2017-02-01

    Incorporating dopants in monolayer transition metal dichalcogenides (TMD) can enable manipulations of their electrical and optical properties. Previous attempts in amphoteric doping in monolayer TMDs have proven to be challenging. Here we report the incorporation of molybdenum (Mo) atoms in monolayer WS2 during growth by chemical vapor deposition, and correlate the distribution of Mo atoms with the optical properties including photoluminescence and ultrafast transient absorption dynamics. Dark field scanning transmission electron microscopy imaging quantified the isoelectronic doping of Mo in WS2 and revealed its gradual distribution along a triangular WS2 monolayer crystal, increasing from 0% at the edge to 2% in the center of the triangular WS2 triangular crystals. This agrees well with the Raman spectra data that showed two obvious modes between 360 cm-1 and 400 cm-1 that corresponded to MoS2 in the center. This in-plane gradual distribution of Mo in WS2 was found to account for the spatial variations in photoluminescence intensity and emission energy. Transition absorption spectroscopy further indicated that the incorporation of Mo in WS2 regulate the amplitude ratio of XA and XB of WS2. The effect of Mo incorporation on the electronic structure of WS2 was further elucidated by density functional theory. Finally, we compared the electrical properties of Mo incorporated and pristine WS2 monolayers by fabricating field-effect transistors. The isoelectronic doping of Mo in WS2 provides an alternative approach to engineer the bandgap and also enriches our understanding the influence of the doping on the excitonic dynamics.

  13. Simulating Aerosol Optical Properties With the Aerosol Simulation Program (ASP): Closure Studies Using ARCTAS Data

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Macintyre, H. L.; Bian, H.; Chin, M.; Wang, C.

    2012-12-01

    The scattering and absorption of ultraviolet and visible radiation by aerosols can significantly alter actinic fluxes and photolysis rates. Accurate modeling of aerosol optical properties is thus essential to simulating atmospheric chemistry, air quality, and climate. Here we evaluate the aerosol optical property predictions of the Aerosol Simulation Program (ASP) with in situ data on aerosol scattering and absorption gathered during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The model simulations are initialized with in situ data on the aerosol size distribution and composition. We perform a set of sensitivity studies (e.g., internal vs. external mixture, core-in-shell versus Maxwell-Garnett, fraction of the organic carbon mass that is light-absorbing "brown carbon," etc.) to determine the model framework and parameters most consistent with the observations. We compare the ASP results to the aerosol optical property lookup tables in FAST-JX and suggest improvements that will better enable FAST-JX to simulate the impact of aerosols on photolysis rates and atmospheric chemistry.

  14. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  15. Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.

    2007-01-01

    Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.

  16. Simple modification of basic dyes with bulky &symmetric WCAs for improving their solubilities in organic solvents without color change.

    PubMed

    Kim, Jeong Yun; Hwang, Tae Gyu; Woo, Sung Wun; Lee, Jae Moon; Namgoong, Jin Woong; Yuk, Sim Bum; Chung, Sei-Won; Kim, Jae Pil

    2017-04-06

    A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.

  17. The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics.

    PubMed

    McKay, Garrett; Korak, Julie A; Erickson, Paul R; Latch, Douglas E; McNeill, Kristopher; Rosario-Ortiz, Fernando L

    2018-01-16

    The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Dissolved organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to changes in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were largely unaffected by these changes, indicating that the distribution of absorbing and emitting species was unchanged. Overall, these results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for dissolved organic matter photophysics.

  18. an aerosol climatology optical properties and its associated direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2010-05-01

    Aerosol particles are quite complex in nature. Aerosol impacts on the distribution of radiative energy and on cloud microphysics have been debated climate impact issues. Here, a new aerosol-climatology is presented, combining the consistency and completeness of global modelling with quality data by ground-monitoring. It provides global monthly maps for spectral aerosol optical properties and for concentrations of CCN and IN. Based on the optical properties the aerosol direct forcing is determined. And with environmental data for clouds and estimates on the anthropogenic fraction from emission experiments with global modelling even the climate relevant aerosol direct forcing at the top of the atmosphere (ToA) is determined. This value is rather small near -0.2W/m2 with limited uncertainty estimated at (+/-0.3) due to uncertainties in aerosol absorption and underlying surface conditions or clouds.

  19. Optical and electro-optic anisotropy of epitaxial PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  20. Locating illicit connections in storm water sewers using fiber-optic distributed temperature sensing.

    PubMed

    Hoes, O A C; Schilperoort, R P S; Luxemburg, W M J; Clemens, F H L R; van de Giesen, N C

    2009-12-01

    A newly developed technique using distributed temperature sensing (DTS) has been developed to find illicit household sewage connections to storm water systems in the Netherlands. DTS allows for the accurate measurement of temperature along a fiber-optic cable, with high spatial (2m) and temporal (30s) resolution. We inserted a fiber-optic cable of 1300m in two storm water drains. At certain locations, significant temperature differences with an intermittent character were measured, indicating inflow of water that was not storm water. In all cases, we found that foul water from households or companies entered the storm water system through an illicit sewage connection. The method of using temperature differences for illicit connection detection in storm water networks is discussed. The technique of using fiber-optic cables for distributed temperature sensing is explained in detail. The DTS method is a reliable, inexpensive and practically feasible method to detect illicit connections to storm water systems, which does not require access to private property.

  1. Preform For Producing An Optical Fiber And Method Therefor

    DOEpatents

    Kliner, Dahv A. V.; Koplow, Jeffery P.

    2004-08-10

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  2. Preform For Producing An Optical Fiber And Method Therefor

    DOEpatents

    Kliner, Dahv A. V.; Koplow, Jeffery P.

    2005-04-19

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  3. The notion of snow grain shape: Ambiguous definitions, retrievalfrom tomography and implications on remote sensing

    NASA Astrophysics Data System (ADS)

    Krol, Q. E.; Loewe, H.

    2016-12-01

    Grain shape is known to influence the effective physical properties of snow and therefore included in the international classification of seasonal snow. Accordingly, snowpack models account for phenomenological shape parameters (sphericity, dendricity) to capture shape variations. These parameters are however difficult to validate due to the lack of clear-cut definitions from the 3D microstucture and insufficient links to physical properties. While the definition of traditional shape was tailored to the requirements of observers, a more objective definition should be tailored to the requirements of physical properties, by analyzing geometrical (shape) corrections in existing theoretical formulations directly. To this end we revisited the autocorrelation function (ACF) and the chord length distribution (CLD) of snow. Both functions capture size distributions of the microstructure, can be calculated from X-ray tomography and are related to various physical properties. Both functions involve the optical equivalent diameter as dominant quantity, however the respective higher-order geometrical correction differ. We have analyzed these corrections, namely interfacial curvatures for the ACF and the second moment for the CLD, using an existing data set of 165 tomography samples. To unify the notion of shape, we derived various statistical relations between the length scales. Our analysis bears three key practical implications. First, we derived a significantly improved relation between the exponential correlation length and the optical diameter by taking curvatures into account. This adds to the understanding of linking "microwave grain size" and "optical grain size" of snow for remote sensing. Second, we retrieve the optical shape parameter (commonly referred to as B) from tomography images via the moment of the CLD. Third, shape variations seen by observers do not necessarily correspond to shape variations probed by physical properties.

  4. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  5. Multicolored Emission and Lasing in DCM-Adamantane Plasma Nanocomposite Optical Films.

    PubMed

    Alcaire, María; Cerdán, Luis; Zamarro, Fernando Lahoz; Aparicio, Francisco J; González, Juan Carlos; Ferrer, Francisco J; Borras, Ana; Espinós, Juan Pedro; Barranco, Angel

    2017-03-15

    We present a low-temperature versatile protocol for the fabrication of plasma nanocomposite thin films to act as tunable emitters and optical gain media. The films are obtained by the remote plasma-assisted deposition of a 4-(dicyano-methylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) laser dye alongside adamantane. The experimental parameters that determine the concentration of the dye in the films and their optical properties, including light absorption, the refractive index, and luminescence, are evaluated. Amplified spontaneous emission experiments in the DCM/adamantane nanocomposite waveguides show the improvement of the copolymerized nanocomposites' properties compared to films that were deposited with DCM as the sole precursor. Moreover, one-dimensional distributed feed-back laser emission is demonstrated and characterized in some of the nanocomposite films that are studied. These results open new paths for the optimization of the optical and lasing properties of plasma nanocomposite polymers, which can be straightforwardly integrated as active components in optoelectronic devices.

  6. Theoretical analysis of optical properties of dielectric coatings dependence on substrate subsurface defects

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu

    2006-03-01

    A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.

  7. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  8. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent).

  9. Halo models of HI selected galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  10. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three types of cases dominantly influenced by the PRD regional emission, long-range transport and marine exhaust were compared and discussed in detail.

  11. Measurement of 3D refractive index distribution by optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan

    2018-01-01

    Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.

  12. Radiation properties of two types of luminous textile devices containing plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Selm, Bärbel; Rothmaier, Markus

    2007-05-01

    Luminous textiles have the potential to satisfy a need for thin and flexible light diffusers for treatment of intraoral cancerous tissue. Plastic optical fibers (POF) with diameters of 250 microns and smaller are used to make the textiles luminous. Usually light is supplied to the optical fiber at both ends. On the textile surface light emission occurs in a woven structure via damaged straight POFs, whereas the embroidered structure radiates the light out of macroscopically bent POFs. We compared the optical properties of these two types of textile diffusers using red light laser for the embroidery and light emitting diode (LED) for the woven structure as light sources, and found efficiencies for the luminous areas of the two samples of 19 % (woven) and 32 % (embroidery), respectively. It was shown that the efficiency can be greatly improved using an aluminium backing. Additional scattering layers lower the fluence rate by around 30 %. To analyse the homogeneity we took a photo of the illuminated surface using a 3CCD camera and found, for both textiles, a slightly skewed distribution of the dark and bright pixels. The interquartile range of brightness distribution of the embroidery is more than double as the woven structure.

  13. Aerosol optical properties over the midcontinental United States

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.

    1992-01-01

    Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.

  14. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.

  15. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121

  16. Estimation of optical properties of aerosols and bidirectional reflectance from PARASOL/POLDER data over land

    NASA Astrophysics Data System (ADS)

    Kusaka, Takashi; Miyazaki, Go

    2014-10-01

    When monitoring target areas covered with vegetation from a satellite, it is very useful to estimate the vegetation index using the surface anisotropic reflectance, which is dependent on both solar and viewing geometries, from satellite data. In this study, the algorithm for estimating optical properties of atmospheric aerosols such as the optical thickness (τ), the refractive index (Nr), the mixing ratio of small particles in the bimodal log-normal distribution function (C) and the bidirectional reflectance (R) from only the radiance and polarization at the 865nm channel received by the PARASOL/POLDER is described. Parameters of the bimodal log-normal distribution function: mean radius, r1, standard deviation, σ1, of fine aerosols, and r2, σ2 of coarse aerosols were fixed, and these values were estimated from monthly averaged size distribution at AERONET sites managed by NASA near the target area. Moreover, it is assumed that the contribution of the surface reflectance with directional anisotropy to the polarized radiance received by the satellite is small because it is shown from our ground-based polarization measurements of light ray reflected by the grassland that degrees of polarization of the reflected light by the grassland are very low values at the 865nm channel. First aerosol properties were estimated from only the polarized radiance and then the bidirectional reflectance given by the Ross-Li BRDF model was estimated from only the total radiance at target areas in PARASOL/POLDER data over the Japanese islands taken on April 28, 2012 and April 25, 2010. The estimated optical thickness of aerosols was checked with those given in AERONET sites and the estimated parameters of BRDF were compared with those of vegetation measured from the radio-controlled helicopter. Consequently, it is shown that the algorithm described in the present study provides reasonable values for aerosol properties and surface bidirectional reflectance.

  17. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a spheroidal shape distribution versus ellipsoidal or spherical shapes.

  18. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.; Gersh, M.E.; Goldstein, N.

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution. 14 figs.

  19. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz; Gersh, Michael E.; Goldstein, Neil

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.

  20. Achievement of needle-like focus by engineering radial-variant vector fields.

    PubMed

    Gu, Bing; Wu, Jia-Lu; Pan, Yang; Cui, Yiping

    2013-12-16

    We present and demonstrate a novel method for engineering the radial-variant polarization on the incident field to achieve a needle of transversally polarized field without any pupil filters. We generate a new kind of localized linearly-polarized vector fields with distributions of states of polarization (SoPs) describing by the radius to the power p and explore its tight focusing, nonparaxial focusing, and paraxial focusing properties. By tuning the power p, we obtain the needle-like focal field with hybrid SoPs and give the formula for describing the length of the needle. Experimentally, we systematically investigate both the intensity distributions and the polarization evolution of the optical needle by paraxial focusing the generated vector field. Such an optical needle, which enhances the light-matter interaction, has intriguing applications in optical microma-chining and nonlinear optics.

  1. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmanoski, Maja; Box, Michael A.; Schmid, Beat

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2000 (SAFARI 2000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3–1.5 μm wavelength range to assumptions regarding the mixing scenario. We considered two modelsmore » for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell–Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (~0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81–0.91 at λ=0.50 μm). Finally, the difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.« less

  2. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  3. Effect of nanoholes on the plasmonic properties of star nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Shaoli; Whittaker, Andrew K.; Blakey, Idriss

    2011-12-01

    The transmission and localized electric field distribution of nanostructures are the most important parameters in the plasmonic field for nano-optics and nanobiosensors. In this paper, we propose a novel nanostructure which may be used for nanobiosensor applications. The effect of nanoholes on the plasmonic properties of star nanostructure was studied via numerical simulation, using the finite-difference time-domain (FDTD) method. In the model, the material type and size of the nanostructures was fixed, but the distance between the monotor and the surface of the nanoholes was varied. For example, nanoholes were located in the center of the nanostructures. The simulation method was as follows. Initially, the wavelength of incident light was varied from 400 to 1200 nm and the transmission spectrum and the electric field distribution were simulated. Then at the resonance wavelength (wavelength where the transmission spectrum has a minimum), the localized electric field distribution was calculated at different distances from the surface of the nanostructures. This study shows that the position of nanoholes has a significant effect on the transmission and localized electric field distribution of star nanostructures. The condition for achieving the maximum localized electric field distribution can be used in nano-optics and nanobiosensors in the future.

  4. Characterizing error distributions for MISR and MODIS optical depth data

    NASA Astrophysics Data System (ADS)

    Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.

    2008-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.

  5. Assembling photoluminescent tri(8-quinolinolato)aluminum into periodic mesoporous organosilicas.

    PubMed

    Yang, Ying; Zhang, Xin; Kan, Qiubin

    2013-12-01

    Mesostructured and mesoporous materials are emerging as a new class of optical materials. However, their synthesis is nontrivial. In this work, periodic mesostructured metal complex-containing silicas of MCM- and SBA-type bearing homogeneously distributed photoluminescent tri(8-quinolinolato)aluminum inside the channel walls (denoted as Alq3@PMO-MCM and Alq3@PMO-SBA, respectively) have been achieved via one-pot co-assembling of inorganic/surfactant/optically active species. A comprehensive multianalytical characterization of the structural and optical properties demonstrates that both Alq3@PMO-MCM and Alq3@PMO-SBA series gainfully combine the photoluminescent properties of Alq3 with the porous features of PMOs. Regularly arranged pores provide high surface area to disperse optically active components well and render Alq3-containing PMOs promising materials for optoelectronic applications. Copyright © 2013. Published by Elsevier Inc.

  6. Optical properties reconstruction using the adjoint method based on the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Addoum, Ahmad; Farges, Olivier; Asllanaj, Fatmir

    2018-01-01

    An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption μa and scattering μs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of μs and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an additional contrast agent in optical tomography.

  7. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  8. Optical properties of doped sol-gel silica glasses

    NASA Astrophysics Data System (ADS)

    King, Terence A.

    1994-01-01

    Sol-gel optical composites were developed and characterized for potential applications in optics, lasers, nonlinear optics, and optoelectronics. Post-doped xerogels were index matched by in-situ polymerization of monomers to form inorganic-organic composites of low scatter and high optical quality. Characterization of the microstructure was made by visible and IR absorption and Raman Spectroscopy and optical quality by attenuation and scatter measurement. Doping techniques were optimized using hypercritical drying and vacuum impregnation and doping distribution monitored by laser-induced fluorescence. One-tenth wavelength surfaces were formed by novel optical polishing. Organic molecular dopants were tested in laser and nonlinear systems. Initial third harmonic generation and Z-scan measurements have shown the potential for saturable absorption and optical limiting.

  9. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  10. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  11. Particle sources over the Danube River delta, Black Sea based on distribution, composition and size using optics, imaging and bulk analyses

    NASA Astrophysics Data System (ADS)

    Karageorgis, A. P.; Gardner, W. D.; Mikkelsen, O. A.; Georgopoulos, D.; Ogston, A. S.; Assimakopoulou, G.; Krasakopoulou, E.; Oaie, Gh.; Secrieru, D.; Kanellopoulos, Th. D.; Pagou, K.; Anagnostou, Ch.; Papathanassiou, E.

    2014-03-01

    Optical measurements provide substantial information on the dynamics and composition of particulate matter in the open ocean and coastal waters. When calibrated with the analysis of simultaneously collected discrete bottle samples, (particulate matter concentration: PMC, particulate organic carbon concentration: POC, chlorophyll α concentration: chl α, particle volume concentration and particle size distribution measured in situ), optical proxies increase the vertical resolution of changes in particle properties in the water column. We report relationships of inherent optical properties (beam attenuation at 2 wavelengths, fluorescence) and bulk particle properties obtained in the NW Black Sea during October 2007. The Danube River delta area was heavily stratified at that time, mainly due to a sharp thermocline at 17-27 m. Beam cp and fluorescence were significantly correlated and showed highest values near the coast, with a decreasing trend offshore. In situ measured particle size distributions were characterized by modes at ~ 40 μm, 20 μm and 5 μm. PMC, POC, and chl α exhibited wide ranges of spatial variation, a common feature being the gradual decrease in concentrations from the coast to offshore. The POC:PMC and POC:chl α ratios suggested a general predominance of biogenic material over terrigenous particles throughout the study area. The commonly accepted sequence of large phytoplanktonic species transitioning to smaller ones during summer-autumn was confirmed by light microscopy and SEM observations. Detritus of Chaetoceros sp. and other diatoms was the dominant component of particulate matter. The small percentage of terrigenous particles was surprising given the high riverine sediment loads suggesting that most of the sediment load flocculated and was deposited before reaching the delta. Given the lack of previous data in this area, our study may serve as a baseline or background to look for changes in future bio-optical and/or biogeochemical measurements.

  12. Aerosol vertical distribution and optical properties over the arid and semi-arid areas of Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Tian, P.; Cao, X.; Liang, J.

    2017-12-01

    Atmospheric aerosols affect the energy budget of the Earth-atmosphere system by direct interaction with solar radiation through scattering and absorption, also indirectly affect weather and climate by altering cloud formation, albedo, and lightning activity. To better understand the information on aerosols over the arid and semi-arid areas of Northwest China, we carried out a series of observation experiments in Wuwei, Zhangye, Dunhuang, and a permanent site SACOL (the Semi-Arid Climate and Environment Observatory of Lanzhou University) (35.95°N, 104.14°E) in Lanzhou, and optical properties using satellite and ground-based remote-sensing measurements. A modified dual-wavelength Mie-scattering lidar (L2S-SM II) inversion algorithm was proposed to simulate the optical property of dust aerosol more accurately. We introduced the physical significance of intrinsic mode functions (IMFs) and the noise component removed from the empirical mode decomposition (EMD) method into the denoising process of the micro-pulse lidar (CE370-2,Cimel) backscattering signal, and developed an EMD-based automatic data-denoising algorithm, which was proven to be better than the wavelet method. Also, we improved the cloud discrimination. On the basis of these studies, aerosol vertical distribution and optical properties were investigated. The main results were as follows:(1) Dust could be lifted up to a 8 km height over Northwest China; (2) From 2005 to 2008, and aerosol existed in the layer below 4 km at SACOL, and the daily average AOD was 87.8% below 0.4; (3) The average depolarization ratio, Ångström exponent α440/870nm and effective radius of black carbon aerosols were 0.24, 0.86±0.30 and 0.54±0.17 μm, respectively, from November 2010 to February 2011; (4) Compared to other regions of China, the Taklamakan Desert and Tibetan Plateau regions exhibit higher depolarization and color ratios because of the natural dust origin. Our studies provided the key information on the long-term seasonal and spatial variations in the aerosol vertical distribution and optical properties, regional aerosol types, long-range transport and atmospheric stability, which could be utilized to more precisely assess the direct and indirect aerosol effects on weather and climate.

  13. Fabrication of three-focal diffractive lenses by two-photon polymerization technique

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Doskolovich, Leonid L.; Bezus, Evgeni A.; Cheng, Wei; Gaidukeviciute, Arune; Chichkov, Boris

    2012-06-01

    Fabrication of submicron-height relief of three-focal diffractive lenses using two-photon polymerization is studied. Optical properties of the designed lenses are investigated theoretically and experimentally. The proposed design of the combined diffractive-refractive lenses is promising for the realization of three-focal optical ophthalmological implants with predetermined light intensity distribution between the foci. The realized three-focal optical element has a diameter size of 2.7 mm with the focal distances in the range of 27-34 mm.

  14. Method of bundling rods so as to form an optical fiber preform

    DOEpatents

    Kliner, Dahv A. V. [San Ramon, CA; Koplow, Jeffery P [Washington, DC

    2004-03-30

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  15. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    PubMed

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  16. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  17. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data.

    PubMed

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

  18. The bonding, charge distribution, spin ordering, optical, and elastic properties of four MAX phases Cr{sub 2}AX (A = Al or Ge, X = C or N): From density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Neng, E-mail: lineng@umkc.edu; Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110; Mo, Yuxiang

    2013-11-14

    In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr{sub 2}AC (A = Al, Ge) and their hypothetical nitride counterparts Cr{sub 2}AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronicmore » and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr{sub 2}AX shows that the reflectivity is high in the visible-ultraviolet region up to ∼15 eV suggesting Cr{sub 2}AX as a promising candidate for use as a coating material. The elastic coefficients (C{sub ij}) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr{sub 2}AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.« less

  19. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  20. The Effects of an Absorbing Smoke Layer on MODIS Marine Boundary Layer Cloud Optical Property Retrievals and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven

    2012-01-01

    Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.

  1. Tektites and their origin. [properties and distribution

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1975-01-01

    A study was conducted of the literature pertaining to the origin and characteristics of tektites. Topics discussed include tektite distribution in geographical locations, shapes of tektites, internal structure of tektites, physical properties, mechanical properties, optical properties, chemical composition, and comparisons with compositions of impact materials. Various arguments are presented on the terrestrial origin of tektites. It was found that some lunar craters of considerable size must be the products of volcanism which occurred during the past few million years, and that the moon must have within it a reservoir of rock which is considerably more like the mantle of the earth than like the rocks from which the basalts of the lunar crust are derived.

  2. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Arora, Ekta; Ritu, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  3. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Ekta; Ritu,; Kumar, Sacheen, E-mail: sacheen3@gmail.com

    2016-05-06

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM),more » UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.« less

  4. Nonlinear optics of astaxanthin thin films

    NASA Astrophysics Data System (ADS)

    Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton

    1993-02-01

    Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.

  5. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  6. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    PubMed

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  7. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  8. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  9. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  10. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.

  11. Confusion-limited galaxy fields. I - Simulated optical and near-infrared images

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1988-01-01

    Techniques for simulating images of galaxy fields are presented that extend to high redshifts and a surface density of galaxies high enough to produce overlapping images. The observed properties of galaxies and galaxy-ensembles in the 'local' universe are extrapolated to high redshifts using reasonable scenarios for the evolution of galaxies and their spatial distribution. This theoretical framework is then employed with Monte Carlo techniques to create fairly realistic two-dimensional distributions of galaxies plus optical and near-infrared sky images in a variety of model universes, using the appropriate density, luminosity, and angular size versus redshift relations.

  12. Optical design of a solar flux homogenizer for concentrator photovoltaics.

    PubMed

    Kreske, Kathi

    2002-04-01

    An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.

  13. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The work is supported by NSF-MRSEC program.

  14. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y 2SiO 5 crystal

    DOE PAGES

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...

    2017-01-28

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated Y 2SiO 5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prismmore » coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less

  15. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. Copyright © 2015. Published by Elsevier B.V.

  16. Synthesis of visible light driven cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca; Rashid; Department of Chemistry, Quaid-i-Azam University, Islamabad

    2013-02-15

    Graphical abstract: Cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst is synthesized using reverse micelle technique and it showed extraordinary photocatalytic activity. Display Omitted Highlights: ► TiON/Ag{sub 2}O/Co nanophotocatalyst is synthesized using microemulsion technique. ► Low temperature anatase phase and outstanding photocatlytic activity is observed. ► Effect of temperature and inert atmosphere on materials phase is investigated. ► Homogeneous dopants distribution and oxygen vacancies are examined. ► Enhancement in surface area, quantum efficiency and optical properties is observed. -- Abstract: An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag{sub 2}O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition,more » phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag{sub 2}O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag{sub 2}O/TiON and Co/Ag{sub 2}O/TiON is also investigated.« less

  17. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  18. An assessment of optical properties of dissolved organic material as quantitative source indicators in the Santa Ana River basin, Southern California

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Kalve, Erica; Guenther, Larry; Mendez, Gregory O.; Belitz, Kenneth

    2005-01-01

    The ability to rapidly, reliably, and inexpensively characterize sources of dissolved organic material (DOM) in watersheds would allow water management agencies to more quickly identify problems in water sources, and to more efficiently allocate water resources by, for example, permitting real-time identification of high-quality water suitable for ground-water recharge, or poor-quality water in need of mitigation. This study examined the feasibility of using easily measurable intrinsic optical properties' absorbance and fluorescence spectra, as quantitative indicators of DOM sources and, thus, a predictor of water quality. The study focused on the Santa Ana River Basin, in southern California, USA, which comprises an area of dense urban development and an area of intense dairy production. Base flow in the Santa Ana Basin is primarily tertiary treated wastewater discharge. Available hydrologic data indicate that urban and agricultural runoff degrades water quality during storm events by introducing pathogens, nutrients, and other contaminants, including significant amounts of DOM. These conditions provide the basis for evaluating the use of DOM optical properties as a tracer of DOM from different sources. Sample spectra representing four principal DOM sources were identified among all samples collected in 1999 on the basis of basin hydrology, and the distribution of spectral variability within all the sample data. A linear mixing model provided quantitative estimates of relative endmember contribution to sample spectra for monthly, storm, and diurnal samples. The spectral properties of the four sources (endmembers), Pristine Water, Wastewater, Urban Water, and Dairy Water, accounted for 94 percent of the variability in optical properties observed in the study, suggesting that all important DOM sources were represented. The scale and distribution of the residual spectra, that not explained by the endmembers, suggested that the endmember spectra selected did not adequately represent Urban Water base flow. However, model assignments of sources generally agreed well with those expected, based on sampling location and hydrology. The results suggest that with a fuller characterization of the endmember spectra, analysis of optical properties will provide rapid quantitative estimates of the relative contribution of DOM sources in the Santa Ana Basin.

  19. Properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Triquet, Sylvain; Zapf, Pascal; Loisil, Rodrigue; Bourrianne, Thierry; Freney, Evelyn; Dupuy, Regis; Sellegri, Karine; Schwarzenbock, Alfons; Torres, Benjamin; Mallet, Marc; Cassola, Federico; Prati, Paolo; Formenti, Paola

    2015-04-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), one intensive airborne campaign (ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) has been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport from known but differing origins (source regions in Tunisia, Algeria, and Mauritania) and at different times after transport, will be presented. Results will be compared to equivalent measurements over source regions interpreted in terms of the evolution of the particle size distribution, chemical composition and optical properties.

  20. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  1. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    PubMed Central

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-01-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746

  2. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008; Vermote et al., 1997) was employed, which computes aerosol optical properties (single-scattering albedo, asymmetry parameter, extinction coefficient, scattering coefficient, phase function) by the Mie Theory, and simulates the downward flux at BOA (FdBOA) by solving the radiative transfer equation. Conditions of dryness and of spherical particle shape were applied to all parts of this work. The size distribution fitting to the log-normal function appears unimodal, both for the volcanics and travertine domains, the first showing coarser mode than the latter. Volume distributions of quartz, feldspar, kaolinite and calcite fall in the coarse fraction, showing maximum around 5µm (aerodynamic diameter); differences in the curve height suggest particle density variety among mineral species. The single-scattering albedo highlights the weak absorption of travertine, with respect to volcanics, along the visible and Near-InfraRed (NIR) spectral domain. The asymmetry parameter indicates that the volcanics dust appears composed by particles with highly forward scattering, mainly in the Near-InfraRed (NIR) spectral domain, while the travertine shows more isotropic particles. Finally, both volcanics and travertine dusts leave the direct component of FdBOA unchanged, while the diffuse component depends strongly on the mineral composition. Hansell, R.A., et al. (2011), Atmos. Chem. Phys. Cosentino, D., et al. (2009), Quaternary Research Pietrodangelo, A., et al. (2013), Atmos. Env. Kotchenova, S.Y., et al. (2008), Appl. Optics Vermote, E.F., et al. (1997), IEEE Trans. Geosci. Remote Sens.

  3. Aerosol optical properties inferred from in-situ and path-averaged measurements

    NASA Astrophysics Data System (ADS)

    van Binsbergen, Sven A.; Grossmann, Peter; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.

    2017-09-01

    This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC) and a visibility meter, the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and a scintillometer (BLS). Data was collected at a test site in Northern Germany. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over-optimistic in their estimate of the transmission.

  4. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Lu, Amy; Ong, Yi-Hong

    2016-03-01

    Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μa) between 0.01 and 1 cm-1 and reduced scattering coefficients (μs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.

  5. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    NASA Astrophysics Data System (ADS)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; Radney, James G.; Kolesar, Katheryn R.; Zhang, Qi; Setyan, Ari; O'Neill, Norman T.; Cappa, Christopher D.

    2018-04-01

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.

  6. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE PAGES

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; ...

    2018-04-23

    Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  7. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli

    Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  8. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well withmore » other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  9. Optical, physical and chemical properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola

    2014-05-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport from known but differing origins (source regions in Tunisia, Algeria, and Mauritania) and at different times after transport, will be presented. Results will be compared to equivalent measurements over source regions interpreted in terms of the evolution of the particle size distribution, chemical composition and optical properties.

  10. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J. A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲ 1 %. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument.

  11. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    PubMed

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  12. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Naz, Hina; Ali, Rai Nauman; Zhu, Xingqun; Xiang, Bin

    2018-06-01

    In this paper, we report the effect of single phase Mo and Ti doping concentration on the structural and optical properties of the ZnS nanoparticles. The structural and optical properties of the as-synthesized samples have been examined by x-ray diffraction, transmission electron microscopy (TEM), UV-visible near infrared absorption spectroscopy and x-ray photoelectron spectroscopy. TEM characterizations reveal a variation in the doped ZnS nanoparticle size distribution by utilizing different dopants of Mo and Ti. In absorption spectra, a clear red shift of 14 nm is observed with increasing Mo concentration as compared to pure ZnS nanoparticles, while by increasing Ti doping concentration, blue shift of 14 nm is obtained. Moreover, it demonstrates that the value of energy band gap decreases from 4.03 eV to 3.89 eV in case of Mo doping. However, the value of energy band gap have shown a remarkable increase from 4.11 eV to 4.27 eV with increasing Ti doping concentration. Our results provide a new pathway to understand the effect of Mo and Ti doping concentrations on the structural and optical properties of ZnS nanoparticles as it could be the key to tune the properties for future optoelectronic devices.

  13. Bio-Optical and Geochemical Properties of the South Atlantic Subtropical Gyre

    NASA Technical Reports Server (NTRS)

    Signorini, S. R.; Hooker, Stanford B.; McClain, Charles R.

    2003-01-01

    An investigation of the bio-optical properties of the South Atlantic subtropical gyre (SASG) was conducted using data primarily from the UK Atlantic Meridional Transect (AMT) program and SeaWiFS. The AMT cruises extend from the UK to the Falklands Islands (sailing on the RRS James Clark Ross) with the purpose of improving our knowledge of surface layer hydrography, biogeochemical processes, ecosystem dynamics and food webs across basin scales in the Atlantic Ocean. Two objectives of the AMT program relevant to this study are the characterization of biogeochemical provinces and the analysis of optical and pigment parameters in connection with remote sensing ocean color data. The primary focus of this NASA Technical Memorandum is on the variability of the vertical distribution of phytoplankton pigments and associated absorption properties across the SASG, and their relevance to remote sensing algorithms. Therefore, a subset of the AMT data within the SASG from all available cruises was used in the analyses. One of the challenges addressed here is the determination of the SASG geographic boundaries. One of the major problems is to reconcile the properties of biogeochemical provinces. We use water mass analysis, dynamics of ocean currents, and meridional gradients of bio-optical properties, to identify the SASG boundaries.

  14. Plasmonic and metallic optical properties of Au/SiO2 metal-insulator films

    NASA Astrophysics Data System (ADS)

    Battie, Yann; En Naciri, Aotmane; Vergnat, Michel

    2017-12-01

    In this paper, the optical properties and the growth mechanism of Au/SiO2 metal-insulator films (MIFs) are investigated by combining ellipsometry and transmission electron microscopy. The ellipsometric measurements, analyzed by using effective medium theories, show that the growth mechanism involves a Volmer-Weber growth mode while the morphology and the optical properties of Au/SiO2 MIFs are directly related to the percolation of the Au nanostructures. Indeed, below the percolation threshold of Au, the MIFs consist of ellipsoidal Au inclusions embedded in a SiO2 matrix. These insulating films present anisotropic plasmonic properties, attributed to the asymmetric interactions between nanaoparticles (NPs), which can be modeled according to the interacted shape distributed nanoparticle effective medium theory. At the percolation threshold of Au, an insulator-to-metal transition is observed. The MIFs simultaneously exhibit plasmonic and metallic optical properties, which can be described by the Bruggeman theory. The density of free electrons increases and the MIFs become more and more conductive as the Au volume fraction increases. We also demonstrate that for a high Au volume fraction, Bruggeman and Maxwell Garnett theories converge toward the same results, suggesting that the film is composed of isolated SiO2 inclusion embedded in a gold matrix.

  15. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  16. 11th International Conference "Correlation Optics": Propolis films for hybrid biomaterial-inorganic electronics and optoelectronics.

    PubMed

    Brus, Viktor V; Pidkamin, Leonid J; Ilashchuk, Maria I; Maryanchuk, Pavlo D

    2014-04-01

    We report on the analysis of optical, polarimetric, and electrical properties of propolis films and hybrid biomaterial-inorganic heterojunctions based on them. It was shown that the material of the propolis films belongs to wide-bandgap optically active substances with the light-scattering centers, which possess complex optical properties. The values of the specific resistance ρ(P)=1.9·10⁷ Ω·cm and dielectric constant ε(P)=19.5 of the propolis film were determined from the spectral distribution of the real and imaginary components of its impedance at room temperature, respectively. The dominating current transport mechanisms through the hybrid bioinorganic heterojunction propolis/p-CdTe were established to be the interface-states-assisted generation-recombination within the depletion region via deep energy levels at forward bias as well as the leakage current through the shunt resistance at reverse bias.

  17. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  18. Structural and optical properties of PbS thin films grown by chemical bath deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seghaier, S.; Kamoun, N.; Guasch, C.

    2007-09-19

    Lead sulphide thin films are grown on glass substrates at various deposition times tD, in the range of 40-60 min per step of 2 min, using the chemical bath deposition technique. X-ray diffraction and atomic force microscopy are used to characterize the film structure. The surface composition is analysed by Auger electron spectroscopy. It appears that the as-prepared thin films are polycrystalline with cubic structure. Nanometric scale crystallites are uniformly distributed on the surface. They exhibit almost a stoechiometric composition with a [Pb]/[S] ratio equal to 1.10. Optical properties are studied in the range of 300-3300 nm by spectrophotometric measurements.more » Analysis of the optical absorption data of lead sulphide thin layers reveals a narrow optical direct band gap equal to 0.46 eV for the layer corresponding to a deposition time equal to 60 min.« less

  19. Method of determining effects of heat-induced irregular refractive index on an optical system.

    PubMed

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  20. Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.

    2016-01-01

    The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.

  1. Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Douven, Lucien F. A.; Lucassen, Gerald W.

    2000-06-01

    We present results on the retrieval of skin optical properties obtained by fitting of measurements of the diffuse reflectance of human skin. Reflectance spectra are simulated using an analytical model based on the diffusion approximation. This model is implemented in a simplex fit routine. The skin optical model used consists of five layers representing epidermis, capillary blood plexus, dermis, deep blood plexus and hypodermis. The optical properties of each layer are assumed homogeneously distributed. The main optical absorbers included are melanin in epidermis and blood. The experimental setup consists of a HP photospectrometer equipped with a remote fiber head. Total reflectance spectra were measured in the 400 - 820 nm wavelength range on the volar underarm of 19 volunteers under various conditions influencing the blood content and oxygenation degree. Changes in the reflectance spectra were observed. Using the fit routine changes in blood content in the capillary blood plexus and in the deep blood plexus could be quantified. These showed different influences on the total reflectance. The method can be helpful to quantitatively assess changes in skin color appearance such as occurs in the treatment of port wine stains, blanching, skin irritation and tanning.

  2. Assessing cloud radiative effects on tropospheric photolysis rates and key oxidants during aircraft campaigns using satellite cloud observations and a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Liu, H.; Crawford, J. H.; Chen, G.; Voulgarakis, A.; Fairlie, T. D.; Duncan, B. N.; Ham, S. H.; Kato, S.; Payer Sulprizio, M.; Yantosca, R.

    2017-12-01

    Clouds affect tropospheric photochemistry through modifying solar radiation that determines photolysis rates. Observational and modeling studies have indicated that photolysis rates are enhanced above and in the upper portion of cloud layers and are reduced below optically thick clouds due to their dominant backscattering effect. However, large uncertainties exist in the representation of cloud spatiotemporal (especially vertical) distributions in global models, which makes understanding of cloud radiative effects on tropospheric chemistry challenging. Our previous study using a global 3-D chemical transport model (GEOS-Chem) driven by various meteorological data sets showed that the radiative effects of clouds on photochemistry are more sensitive to the differences in the vertical distribution of clouds than to those in the magnitude of column cloud optical depths. In this work, we evaluate monthly mean cloud optical properties and distributions in the MERRA-2 reanalysis with those in C3M, a 3-D cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We conduct tropospheric chemistry simulations for the periods of several aircraft campaigns, including ARCTAS (April, June-July, 2008), DC3 (May-June, 2012), and SEAC4RS (August-September, 2013) with GEOS-Chem driven by MERRA-2. We compare model simulations with and without constraints of cloud optical properties and distributions from C3M, and evaluate model photolysis rates (J[O1D] and J[NO2]) and key oxidants (e.g., OH and ozone) with aircraft profile measurements. We will assess whether the constraints provided by C3M improve model simulations of photolysis rates and oxidants as well as their variabilities.

  3. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  4. Graphene-based ultrasonic detector for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  5. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  6. Dust and super star clusters in NGC 5253

    NASA Astrophysics Data System (ADS)

    Vanzi, L.; Sauvage, M.

    2004-02-01

    We present new observations of the famous starburst galaxy NGC 5253 which owes its celebrity to possibly being the youngest and closest starburst galaxy known. Our observations in the infrared and millimeter contribute to shed light on the properties of this interesting object. We have used our new data along with data from the literature to study the properties of the young stellar clusters present in NGC 5253. We find that the brightest optical clusters are all characterized by a near-infrared excess that is explained by the combined effect of extinction and emission by dust. For the brightest infrared cluster we model the spectral energy distribution from the optical to the radio. We find that this cluster dominates the galaxy emission longward of 3 \\mum, that it has a bolometric luminosity of 1.2× 109 L⊙ and a mass of 1.2× 106 M⊙, giving L/M≈103. The cluster is obscured by 7 mag of optical extinction produced by about 1.5× 105 M⊙ of dust. The dust properties are peculiar with respect to the dust properties in the solar neighbourhood with a composition characterized by a lack of silicates and a flatter size distribution than the standard one, i.e. a bias toward larger grains. We find that NGC 5253 is a striking example of a galaxy where the infrared-submillimeter and ultraviolet-optical emissions originate in totally decoupled regions of vastly different physical sizes. Based on observations obtained at the ESO telescopes of La Silla and Paranal, program 69.B-0345; and on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  7. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    NASA Astrophysics Data System (ADS)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  8. Synthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties

    PubMed Central

    Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2016-01-01

    Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967

  9. Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation.

    PubMed

    Zhi, Bo; Cui, Yi; Wang, Shengyang; Frank, Benjamin P; Williams, Denise N; Brown, Richard P; Melby, Eric S; Hamers, Robert J; Rosenzweig, Zeev; Fairbrother, D Howard; Orr, Galya; Haynes, Christy L

    2018-06-15

    As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C 18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.

  10. Analysis for maladjustment properties of passive confocal unstable resonator by using Hartmann-Shack wavefront sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Xiang, Anping

    2007-12-01

    The effect of intracavity aberration perturbation on output mode structure properties of passive confocal unstable resonator is been experimentally researched by adopting Hartmann-Shack method on the basis of numerical simulation. The results show that intracavity tilt aberration affects the outcoupled intensity distribution, but only a small intracavity tilt perturbation will not obviously augment the high-order aberrations of beam phase properties. The tilt aberration, coma aberration and astigmatism will all be brought, and also tilt aberration is the main component when intracavity mirrors have a vertical movement along the direction of optic axis. When adaptive optical elements such as deformable mirrors are adopted for intracavity aberration correction, the correction for tilt aberration should be considered at first.

  11. Vertical profile of cloud optical parameters derived from airborne measurements above, inside and below clouds

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Gatebe, Charles K.

    2018-07-01

    Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.

  12. Effect of atmospheric scattering and surface reflection on upwelling solar radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Barkstrom, B. R.; Tiwari, S. N.

    1981-01-01

    A study is presented of the solar radiation transfer in the complete earth-atmosphere system, and numerical results are compared with satellite data obtained during the Earth Radiation Budget Experiment on Nimbus 6, in August, 1975. Emphasis is placed on the upwelling radiance distribution at the top of the atmosphere, assumed to be at 50 km. The numerical technique is based on the finite difference method, which includes azimuth and spectral variations for the entire solar wavelength range. Detailed solar properties, atmospheric physical properties, and optical properties are used. However, since the property descriptions are based on a trade-off between accuracy and computational realities, aerosol and cloud optical properties are treated with simple approximations. The radiative transfer model is in good agreement with the satellite radiance observations. The method provides a valuable tool in analyzing satellite- and ground-based radiation budget measurements and in designing instrumentation.

  13. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,

    2015-01-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  14. Laser inscription of pseudorandom structures for microphotonic diffuser applications.

    PubMed

    Alqurashi, Tawfiq; Alhosani, Abdulla; Dauleh, Mahmoud; Yetisen, Ali K; Butt, Haider

    2018-04-19

    Optical diffusers provide a solution for a variety of applications requiring a Gaussian intensity distribution including imaging systems, biomedical optics, and aerospace. Advances in laser ablation processes have allowed the rapid production of efficient optical diffusers. Here, we demonstrate a novel technique to fabricate high-quality glass optical diffusers with cost-efficiency using a continuous CO2 laser. Surface relief pseudorandom microstructures were patterned on both sides of the glass substrates. A numerical simulation of the temperature distribution showed that the CO2 laser drills a 137 μm hole in the glass for every 2 ms of processing time. FFT simulation was utilized to design predictable optical diffusers. The pseudorandom microstructures were characterized by optical microscopy, Raman spectroscopy, and angle-resolved spectroscopy to assess their chemical properties, optical scattering, transmittance, and polarization response. Increasing laser exposure and the number of diffusing surfaces enhanced the diffusion and homogenized the incident light. The recorded speckle pattern showed high contrast with sharp bright spot free diffusion in the far field view range (250 mm). A model of glass surface peeling was also developed to prevent its occurrence during the fabrication process. The demonstrated method provides an economical approach in fabricating optical glass diffusers in a controlled and predictable manner. The produced optical diffusers have application in fibre optics, LED systems, and spotlights.

  15. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    NASA Astrophysics Data System (ADS)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  16. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  17. Tracking Stripped Proton Particles in SNS Ring Injection Momentum Dump Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Guang

    3D computer simulations are performed to study magnetic field distributions and particle trajectories along the SNS ring injection momentum dump line. Optical properties and transfer maps along the dump line are calculated. The stripped proton particle distributions on the dump window are analyzed. The study has provided useful information for the redesign of the SNS ring injection beam dump.

  18. Investigations of Optical Properties of Active Regions in Vertical Cavity Surface Emitting Lasers Grown by MBE

    DTIC Science & Technology

    2002-06-03

    Molecular beam epitaxy ; Planar microcavities; Vertical cavity surface emitting lasers 1... Vertical Cavity Surface Emitting Lasers Grown by MBE DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...S-581 83 Linkiping, Sweden Abstract The design of the vertical cavity surface emitting lasers ( VCSELs ) needs proper tuning of many

  19. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the vertical structure of the dust aerosol extinction.

  20. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    NASA Astrophysics Data System (ADS)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  1. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit

    PubMed Central

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  2. The importance of coherence in inverse problems in optics

    NASA Astrophysics Data System (ADS)

    Ferwerda, H. A.; Baltes, H. P.; Glass, A. S.; Steinle, B.

    1981-12-01

    Current inverse problems of statistical optics are presented with a guide to relevant literature. The inverse problems are categorized into four groups, and the Van Cittert-Zernike theorem and its generalization are discussed. The retrieval of structural information from the far-zone degree of coherence and the time-averaged intensity distribution of radiation scattered by a superposition of random and periodic scatterers are also discussed. In addition, formulas for the calculation of far-zone properties are derived within the framework of scalar optics, and results are applied to two examples.

  3. Analysis of spatial-temporal heterogeneity in remotely sensed aerosol properties observed during 2005-2015 over three countries along the Gulf of Guinea Coast in Southern West Africa

    NASA Astrophysics Data System (ADS)

    Aklesso, Mangamana; Kumar, K. Raghavendra; Bu, Lingbing; Boiyo, Richard

    2018-06-01

    In the present study, the spatial-temporal distribution and estimation of trends of different aerosol optical properties, and related impact factors were investigated over three countries: Ghana, Togo, and Benin along the Gulf of Guinea Coast in Southern West Africa (SWA). For this purpose, long-term satellite derived aerosol optical properties (aerosol optical depth at 550 nm; AOD550, Ångström exponent at 470-660 nm; AE470-660, and absorption aerosol index; AAI) retrieved from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) during January 2005-December 2015 were utilized. The annual mean spatial distribution of AOD550 was found to be high (>0.55) over the southern coastal area, moderate-to-high (0.35-0.55) over the central, and low (<0.35) over northern parts of the study domain. The seasonal mean variations showed high (low) values of AOD550 and AAI during the Harmattan or dry (wet) season. Whereas, low (high) AE470-660 values were characterized during the Harmattan (wet) season. Linear trend analysis revealed a decreasing trend in AOD550 and AAI, and increasing trend in AE470-660. Further, an investigation on the potential drivers to AOD distribution over the SWA revealed that precipitation, NDVI, and terrain were negatively correlated with AOD. Finally, the HYSPLIT derived back trajectory analyses revealed diverse transport pathways originated from the North Atlantic Ocean, Sahara Desert, and Nigeria along with locally generated aerosols.

  4. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  5. Lattice-patterned LC-polymer composites containing various nanoparticles as additives

    PubMed Central

    2012-01-01

    In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011

  6. Effect of blood vessels on light distribution in optogenetic stimulation of cortex.

    PubMed

    Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin

    2015-05-15

    In this Letter, the impact of blood vessels on light distribution during photostimulation of cortical tissue in small rodents is investigated. Brain optical properties were extracted using a double-integrating sphere setup, and optical coherence tomography was used to image cortical vessels and capillaries to generate a three-dimensional angiogram of the cortex. By combining these two datasets, a complete volumetric structure of the cortical tissue was developed and linked to a Monte Carlo code which simulates light propagation in this inhomogeneous structure and illustrates the effect of blood vessels on the penetration depth and pattern preservation in optogenetic stimulation.

  7. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  8. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  9. The optical properties, physical properties and direct radiative forcing of urban columnar aerosols in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Wang, Tijian; Liu, Jane; Che, Huizheng; Han, Yong; Fu, Yu; Li, Shu; Xie, Min; Li, Mengmeng; Chen, Pulong; Chen, Huimin; Yang, Xiu-qun; Sun, Jianning

    2018-02-01

    The optical and physical properties as well as the direct radiative forcings (DRFs) of fractionated aerosols in the urban area of the western Yangtze River Delta (YRD) are investigated with measurements from a Cimel sun photometer combined with a radiation transfer model. Ground-based observations of aerosols have much higher temporal resolutions than satellite retrievals. An initial analysis reveals the characteristics of the optical properties of different types of fractionated aerosols in the western YRD. The total aerosols, mostly composed of scattering components (93.8 %), have mean optical depths of 0.65 at 550 nm and refractive index of 1.44 + 0.0084i at 440 nm. The fine aerosols are approximately four times more abundant and have very different compositions from coarse aerosols. The absorbing components account for only ˜ 4.6 % of fine aerosols and 15.5 % of coarse aerosols and have smaller sizes than the scattering aerosols within the same mode. Therefore, fine particles have stronger scattering than coarse ones, simultaneously reflecting the different size distributions between the absorbing and scattering aerosols. The relationships among the optical properties quantify the aerosol mixing and imply that approximately 15 and 27.5 % of the total occurrences result in dust- and black-carbon-dominating mixing aerosols, respectively, in the western YRD. Unlike the optical properties, the size distributions of aerosols in the western YRD are similar to those found at other sites over eastern China on a climatological scale, peaking at radii of 0.148 and 2.94 µm. However, further analysis reveals that the coarse-dominated particles can also lead to severe haze pollution over the YRD. Observation-based estimations indicate that both fine and coarse aerosols in the western YRD exert negative DRFs, and this is especially true for fine aerosols (-11.17 W m-2 at the top of atmosphere, TOA). A higher absorption fraction leads directly to the negative DRF being further offset for coarse aerosols (-0.33 W m-2) at the TOA. Similarly, the coarse-mode DRF contributes to only 13.3 % of the total scattering aerosols but > 33.7 % to the total absorbing aerosols. A sensitivity analysis states that aerosol DRFs are not highly sensitive to their profiles in clear-sky conditions. Most of the aerosol properties and DRFs have substantial seasonality in the western YRD. The results further reveal the contributions of each component of the different size particles to the total aerosol optical depths (AODs) and DRFs. Additionally, these results can be used to improve aerosol modelling performance and the modelling of aerosol effects in the eastern regions of China.

  10. Physically based reflectance model utilizing polarization measurement.

    PubMed

    Nakano, Takayuki; Tamagawa, Yasuhisa

    2005-05-20

    A surface bidirectional reflectance distribution function (BRDF) depends on both the optical properties of the material and the microstructure of the surface and appears as combination of these factors. We propose a method for modeling the BRDF based on a separate optical-property (refractive-index) estimation by polarization measurement. Because the BRDF and the refractive index for precisely the same place can be determined, errors cased by individual difference or spatial dependence can be eliminated. Our BRDF model treats the surface as an aggregation of microfacets, and the diffractive effect is negligible because of randomness. An example model of a painted aluminum plate is presented.

  11. Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    NASA Technical Reports Server (NTRS)

    Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.

    2007-01-01

    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.

  12. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions relative to the extinction obtained from the sunphotometer measurements. However, a more extensive analysis of all available AATS-6 and in situ size distribution data is necessary to ascertain whether the preliminary results regarding the degree of extinction closure is representative of the entire range of dust conditions encountered in PRIDE. Finally, we will compare the spectral extinction measurements obtained in PRIDE to similar data obtained in Saharan dust layers encountered above the Canary Islands during ACE-2 (Aerosol Characterization Experiment) in July 1997. Thus, the evolution of Saharan dust spectral properties during its transport across the Atlantic can be investigated, provided the dust origin and microphysical properties are found to be comparable.

  13. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.

  14. Assessment of the impact of forest fires on aerosols distribution in the atmosphere over Kyiv based on AERONET and satellites measurement techniques

    NASA Astrophysics Data System (ADS)

    Galytska, Evgenia; Danylevsky, Vassyl; Snizhko, Sergiy

    2015-04-01

    The study of the dynamics of aerosol particles, revealing their sources in the atmosphere is one of the urgent problems of modern meteorology, climatology, atmospheric physics, and ecology. Monitoring of the air pollution caused by aerosols contributes to the determination of its effects on the climate and to the reduction of its negative impacts on the health of the population. The research work comprises latest technologies and approaches: remote ground-based together with satellite measurements of the optical properties of aerosol particles, atmospheric dynamics research and modeling of transport of particles. The dynamics of aerosol layer properties over Ukrainian cities as Kyiv, Sevastopol, and over the rural site Martova is the subject of the remote sensing investigation made by the sun photometers network AERONET/PHOTONS, dealing with the columnar aerosol optical properties particularly aerosol optical depth (AOD). As well the CALIOP lidar data on board of CALIPSO satellite were used for AOD analysis for appropriate territory and further comparison with AERONET measurements. It was stated that during warm periods a large concentration of impurities was observed due to natural sources, such as forest fires in Ukraine and the European Russia. Especially in summer 2010 the high-altitude anticyclone and a ridge above the European Russia and Ural caused the hottest weather in the East Europe region for the period that promoted origin of vast and intensive forest fires in Central and Western Russia that caused reach pollution of the atmosphere over Ukraine by aerosols. Thus, in August 15, 2010 an aerosol optical depth over Kyiv at a wavelength of 440 nm reached a value of 1.5, which was associated with the aerosols arrival from these fires. Thus, the values of aerosol optical depth that date was triple more in comparison to usual distribution. The ways of aerosols arrival to the atmosphere over Kyiv from the fires centers during some days of August 2010 and effect on the aerosol optical properties were studied using synoptic analysis and back-trajectories techniques. The fires localization and intensity were detected from MODIS measurements on board of Terra and Aqua satellites.

  15. Effective spectral index properties for Fermi blazars

    NASA Astrophysics Data System (ADS)

    Yang, JiangHe; Fan, JunHui; Liu, Yi; Zhang, YueLian; Tuo, ManXian; Nie, JianJun; Yuan, YuHai

    2018-05-01

    Blazars are a special subclass of active galactic nuclei with extreme observation properties. This subclass can be divided into two further subclasses of flat spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs) according to their emission line features. To compare the spectral properties of FSRQs and BL Lacs, the 1.4 GHz radio, optical R-band, 1 keV X-ray, and 1 GeV γ-ray flux densities for 1108 Fermi blazars are calculated to discuss the properties of the six effective spectral indices of radio to optical ( α RO), radio to X-ray ( α RX), radio to γ ray ( α Rγ), optical to X-ray ( α OX), optical to γ ray ( α Oγ), and X-ray to γ ray ( α Xγ). The main results are as follows: For the averaged effective spectral indices, \\overline {{α _{OX}}} > \\overline {{α _{Oγ }}} > \\overline {{α _{Xγ }}} > \\overline {{α _{Rγ }}} > \\overline {{α _{RX}}} > \\overline {{α _{RO}}} for samples of whole blazars and BL Lacs; \\overline {{α _{Xγ }}} ≈ \\overline {{α _{Rγ }}} ≈ \\overline {{α _{RX}}} for FSRQs and low-frequency-peaked BL Lacs (LBLs); and \\overline {{α _{OX}}} ≈ \\overline {{α _{Oγ }}} ≈ \\overline {{α _{Xγ }}} for high-synchrotron-frequency-peaked BL Lacs (HBLs). The distributions of the effective spectral indices involving optical emission ( α RO, α OX, and α Oγ) for LBLs are different from those for FSRQs, but if the effective spectral index does not involve optical emission ( α RX, α Rγ, and α Xγ), the distributions for LBLs and FSRQs almost come from the same parent population. X-ray emissions from blazars include both synchrotron and inverse Compton (IC) components; the IC component for FSRQs and LBLs accounts for a larger proportion than that for HBLs; and the radiation mechanism for LBLs is similar to that for FSRQs, but the radiation mechanism for HBLs is different from that for both FSRQs and LBLs in X-ray bands. The tendency of α Rγ decreasing from LBLs to HBLs suggests that the synchrotron self-Compton model explains the main process for highly energetic γ rays in BL Lacs.

  16. Aircraft Natural/Artificial Icing

    DTIC Science & Technology

    2009-02-12

    LWC are 0.1 to 0.8 g/m3 for stratiform clouds and 0.2 to 2.5 g/m3 for cumuliform clouds. The drop size distribution in the cloud is usually...cloud hydrometeor size distributions from 0.5 to 50 um, particle shape (discrimination between water and ice), particle optical properties (refractive...index), precipitation size distributions from 25 um to 1550 um, liquid water content from 0.01 to 3 gm-3 and aircraft velocity and atmospheric

  17. Interaction of light with hematite hierarchical structures: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang

    2017-03-01

    Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.

  18. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  19. Nonlinear multilayers as optical limiters

    NASA Astrophysics Data System (ADS)

    Turner-Valle, Jennifer Anne

    1998-10-01

    In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.

  20. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data

    PubMed Central

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2016-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230

  1. Aerosol optical properties in the Marine Environment during the TCAP-I campaign

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.

    2013-12-01

    The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (γ) will be presented and discussed.

  2. Observation and analysis of aerosol optical properties and aerosol growth in two New Year celebrations in Manila Observatory (14.64N, 127.07E)

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Bautista, D. L. B.; Miranda, J. P.

    2016-12-01

    Aerosol optical properties and growth were measured during 2014 and 2016 New Year celebrations at Manila Observatory, Philippines. Measurements were done using a USB2000 spectrometer from 22:00 of 31 December 2013 to 03:00 of 01 January 2014 and from 18:00 of 31 December 2015 to 05:30 01 January 2016. A xenon lamp was used as a light source 150m from the spectrometer. Fireworks and firecrackers were the main sources of aerosols during these festivities. Data were collected every 60s and 10s for 2014 and 2016 respectively. The aerosol volume size distribution was derived using the parametric inversion method proposed by Kaijser (1983). The method is performed by selecting 8 wavelengths from 387.30nm to 600.00nm. The reference intensities were obtained when firework activities were considerably low and the air was assumed to be relatively clean. Using Mie theory and assuming that the volume size distribution is a linear combination of 33 bimodal lognormal distribution functions with geometric mean radii between 0.003um and 1.2um, a least-square minimization process was implemented between measured optical depths and computed optical depths. The 2016 New Year distribution showed mostly a unimodal size distribution (mean radius = 0.3um) from 23:00 to 05:30 (Fig. 1a). The mean Angstrom coefficient value during the same time interval was approximately 0.75. This could be attributed to a constant RH (100%) during this time interval. A bimodal distribution was observed when RH value was 94% from 18:30 to 21:30. The transition to a unimodal distribution was observed at 21:00 when the RH value changes from 94% to 100%. In contrast to the 2016 New Year celebration, the 2014 size distribution was bimodal from 23:30 to 02:30 (Fig 1b). The bimodal distribution is the result of firework activities before New Year. Aerosol growth was evident when the size distribution became unimodal after 02:30 (mean radius = 1.1um). The mean Angstrom coefficient, when the size distribution is unimodal, was around 0.5 and this could be attributed to increasing RH from 78% to 88% during this time interval. The two New Year celebrations showed different patterns of aerosols growth. Aerosols produced at high RH tend to be unimodal while aerosols produced at low RH tend to have a bimodal distribution. As RH increased, the bimodal distribution became unimodal.

  3. Thermal analysis of microlens formation on a sensitized gelatin layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muric, Branka; Pantelic, Dejan; Vasiljevic, Darko

    2009-07-01

    We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.

  4. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    NASA Astrophysics Data System (ADS)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  5. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.

    PubMed

    de Miranda, Regina Maura; Lopes, Fabio; do Rosário, Nilton Évora; Yamasoe, Marcia Akemi; Landulfo, Eduardo; de Fatima Andrade, Maria

    2016-12-01

    The air quality in the Metropolitan Area of São Paulo (MASP) is primarily determined by the local pollution source contribution, mainly the vehicular fleet, but there is a concern about the role of remote sources to the fine mode particles (PM 2.5 ) concentration and composition. One of the most important remote sources of atmospheric aerosol is the biomass burning emissions from São Paulo state's inland and from the central and north portions of Brazil. This study presents a synergy of different measurements of atmospheric aerosol chemistry and optical properties in the MASP in order to show how they can be used as a tool to identify particles from local and remote sources. For the clear identification of the local and remote source contribution, aerosol properties measurements at surface level were combined with vertical profiles information. Over 15 days in the austral winter of 2012, particulate matter (PM) was collected using a cascade impactor and a Partisol sampler in São Paulo City. Mass concentrations were determined by gravimetry, black carbon concentrations by reflectance, and trace element concentrations by X-ray fluorescence. Aerosol optical properties were studied using a multifilter rotating shadowband radiometer (MFRSR), a Lidar system and satellite data. Optical properties, concentrations, size distributions, and elemental composition of atmospheric particles were strongly related and varied according to meteorological conditions. During the sampling period, PM mean mass concentrations were 17.4 ± 10.1 and 15.3 ± 6.9 μg/m 3 for the fine and coarse fractions, respectively. The mean aerosol optical depths at 415 nm and Ångström exponent (AE) over the whole period were 0.29 ± 0.14 and 1.35 ± 0.11, respectively. Lidar ratios reached values of 75 sr. The analyses of the impacts of an event of biomass burning smoke transport to the São Paulo city revealed significant changing on local aerosol concentrations and optical parameters. The identification of the source contributions, local and remote, to the fine particles in MASP can be more precisely achieved when particle size composition and distribution, vertical profile of aerosols, and air mass trajectories are analyzed in combination.

  6. Micro-Optical Distributed Sensors for Aero Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Otugen, V.

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  7. Micro-optical Distributed Sensors for Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  8. Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data

    NASA Technical Reports Server (NTRS)

    Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.

    2016-01-01

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.

  9. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    PubMed

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  10. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  11. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    NASA Astrophysics Data System (ADS)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  12. AERONET-Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Sayer, Andrew M.; Bettenhausen, Corey; Yang, Ping

    2017-10-01

    Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA "Deep Blue" aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models and the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical model representative for Capo Verde site is used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at five island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables, which is observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; that is, AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

  13. Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta Region of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianjun; Zheng, Youfei; Li, Zhanqing

    2012-02-09

    Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibitmore » weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower troposphere.« less

  14. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light absorption ability and its vertical distribution.

  15. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  16. Validation of Satellite Aerosol Retrievals from AERONET Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Remer, Lorraine; Torres, Omar; Zhao, Tom; Smith, David E. (Technical Monitor)

    2001-01-01

    Accurate and comprehensive assessment of the parameters that control key atmospheric and biospheric processes including assessment of anthropogenic effects on climate change is a fundamental measurement objective of NASA's EOS program (King and Greenstone, 1999). Satellite assessment programs and associated global climate models require validation and additional parameterization with frequent reliable ground-based observations. A critical and highly uncertain element of the measurement program is characterization of tropospheric aerosols requiring basic observations of aerosols optical and microphysical properties. Unfortunately as yet we do not know the aerosol burden man is contributing to the atmosphere and thus we will have no definitive measure of change for the future. This lack of aerosol assessment is the impetus for some of the EOS measurement activities (Kaufman et al., 1997; King et al., 1999) and the formation of the AERONET program (Holben et al., 1998). The goals of the AERONET program are to develop long term monitoring at globally distributed sites providing critical data for multiannual trend changes in aerosol loading and optical properties with the specific goal of providing a data base for validation of satellite derived aerosol optical properties. The AERONET program has evolved into an international federated network of approximately 100 ground-based remote sensing monitoring stations to characterize the optical and microphysical properties of aerosols.

  17. Statistical properties of light from optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Vyas, Reeta; Singh, Surendra

    2009-12-01

    Coherence properties of light beams generated by optical parametric oscillators (OPOs) are discussed in the region of threshold. Analytic expressions, that are valid throughout the threshold region, for experimentally measurable quantities such as the mean and variance of photon number fluctuations, squeezing of field quadratures, and photon counting distributions are derived. These expressions describe non-Gaussian fluctuations of light in the region of threshold and reproduce Gaussian fluctuations below and above threshold, thus providing a bridge between below and above threshold regimes of operation. They are used to study the transformation of fluctuation properties of light as the OPOs make a transition from below to above threshold. The results for the OPOs are compared to those for the single-mode and two-mode lasers and their similarities and differences are discussed.

  18. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems.

    PubMed

    Cai, Yangjian; Lin, Qiang

    2004-06-01

    A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

  19. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Lin, Qiang

    2004-06-01

    A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

  20. Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Jiang, ShengBao; Jiang, Chun; Zhu, Haibin

    2014-07-01

    A hollow sinh-Gaussian beam (HsG) is an appropriate model to describe the dark-hollow beam. Based on Collins integral formula and the fact that a hard-edged-aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of a HsG beam passing through fractional Fourier transform (FRFT) optical systems with and without apertures have been studied in detail by some typical numerical examples. The results obtained using the approximate analytical formula are in good agreement with those obtained using numerical integral calculation. Further, the studies indicate that the normalized intensity distribution of the HsG beam in FRFT plane is closely related with not only the fractional order but also the beam order and the truncation parameter. The FRFT optical systems provide a convenient way for laser beam shaping.

  1. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid.

    PubMed

    Intartaglia, Romuald; Bagga, Komal; Genovese, Alessandro; Athanassiou, Athanassia; Cingolani, Roberto; Diaspro, Alberto; Brandi, Fernando

    2012-11-28

    Ultra small silicon nanoparticles (Si-NPs) with narrow size distribution are prepared in a one step process by UV picosecond laser ablation of silicon bulk in liquid. Characterization by electron microscopy and absorption spectroscopy proves Si-NPs generation with an average size of 2 nm resulting from an in situ photofragmentation effect. In this context, the current work aims to explore the liquid medium (water and toluene) effect on the Si-NPs structure and on the optical properties of the colloidal solution. Si-NPs with high pressure structure (s.g. Fm3m) and diamond-like structure (s.g. Fd3m), in water, and SiC moissanite 3C phase (s.g. F4[combining macron]3m) in toluene are revealed by the means of High-Resolution TEM and HAADF-STEM measurements. Optical investigations show that water-synthesized Si-NPs have blue-green photoluminescence emission characterized by signal modulation at a frequency of 673 cm(-1) related to electron-phonon coupling. The synthesis in toluene leads to generation of Si-NPs embedded in the graphitic carbon-polymer composite which has intrinsic optical properties at the origin of the optical absorption and luminescence of the obtained colloidal solution.

  3. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, J.; Sola, D.; Vázquez de Aldana, J. R.; Lifante, G.; de Aza, A. H.; Pena, P.; Peña, J. I.

    2015-01-01

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  4. The effects of temperature on optical properties of InGaN/GaN multiple quantum well light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhu, Youhua; Huang, Jing; Deng, Honghai; Wang, Meiyu; Yin, HaiHong

    2017-02-01

    The effects of temperature on the optical properties of InGaN/GaN quantum well (QW) light-emitting diodes have been investigated by using the six-by-six K-P method taking into account the temperature dependence of band gaps, lattice constants, and elastic constants. The numerical results indicate that the increase of temperature leads to the decrease of the spontaneous emission rate at the same injection current density due to the redistribution of carrier density and the increase of the non-radiative recombination rate. The product of Fermi-Dirac distribution functions of electron fc n and hole ( 1 - fv U m ) for the transitions between the three lowest conduction subbands (c1-c3) and the top six valence subbands (v1-v6) is larger at the lower temperature, which indicates that there are more electron-hole pairs distributed on the energy levels. It should be noted that the optical matrix elements of the inter-band transitions slightly increase at the higher temperature. In addition, the internal quantum efficiency of the InGaN/GaN QW structure is evidently decreased with increasing temperature.

  5. Initial studies of the bidirectional reflectance distribution function of carbon nanotube structures for stray light control applications

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Georgiev, Georgi T.; Tveekrem, June L.; Quijada, Manuel; Getty, Stephanie; Hagopian, John G.

    2010-10-01

    The Bidirectional Reflectance Distribution Function (BRDF) at visible and near-infrared wavelengths of Multi-Wall Carbon NanoTubes (MWCNTs) grown on substrate materials are reported. The BRDF measurements were performed in the Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center, and results at 500nm and 900nm are reported here. In addition, the 8° Directional/Hemispherical Reflectance of the samples is reported from the ultraviolet to shortwave infrared. The 8° Directional/Hemispherical Reflectance was measured in the Optics Branch at NASA's Goddard Space Flight Center. The BRDF was measured at 0° and 45° incident angles and from -80° to +80° scatter angles using a monochromatic source. The optical scatter properties of the samples as represented by their BRDF were found to be strongly influenced by the choice of substrate. As a reference, the optical scattering properties of the carbon nanotubes are compared to the BRDF of Aeroglaze Z306TM and Rippey Ultrapol IVTM, a well-known black paint and black appliqué, respectively. The possibility, promise, and challenges of employing carefully engineered carbon nanotubes in straylight control applications particularly for spaceflight instrumentation is also discussed.

  6. Vertical Distributions of Coccolithophores, PIC, POC, Biogenic Silica, and Chlorophyll a Throughout the Global Ocean.

    PubMed

    Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily

    2018-01-01

    Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.

  7. Vertical Distributions of Coccolithophores, PIC, POC, Biogenic Silica, and Chlorophyll a Throughout the Global Ocean

    PubMed Central

    Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily

    2018-01-01

    Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683

  8. Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data

    NASA Astrophysics Data System (ADS)

    Shalygina, O. S.; Markiewicz, W. J.; Hviid, S. F.

    2012-09-01

    It is well known that the aerosol play a major role in the energy budget of the Martian atmosphere. The importance of the aerosols for the radiative loading of the atmosphere has hence, direct impact on the Martian present weather and its seasonal cycle as well as consequences for its long term climate. Very accurate models of the sky brightness are required to separate the atmospheric illumination from the spectrum of the Martian surface, and hence to understand the mineralogy of the surface rocks and soil. Such accurate models are only possible if the optical properties of the Martian aerosols are known. In this work we analyze the images of the brightness of the Martian sky at midday acquired from the surface of the Mars during the Mars Pathfinder mission. The Imager for Mars Pathfinder (IMP) obtained data in filters centered at 443.6, 481.0, 670.8, 896.1 and 965.3 nm. Useful data sets were returned on sols 27, 40, 56, 65, 68, 74 and 82. Although the coverage in scattering angles of this sequence is limited to about 100°, having the Sun near zenith minimizes multiple scattering. This property should help in accuracy of constraining the size distribution and material properties. The shape of the particles can be expected to be less well constrained, as scattering events at angles around 150° are only present through multiple scattering. Data from sol 56 (Figure 1) were fitted with multiple scattering radiative transfer calculations to extract the size distribution, optical properties, and shape of the aerosols suspended in the atmosphere [1].

  9. Super-resolution atomic force photoactivated microscopy of biological samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong

    2017-03-01

    Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.

  10. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing efficiency is +23.7 W m-2 at the surface, -7.9 W m-2 within the atmosphere, and +15.8 W m-2 at the top of the atmosphere. The use of column-integrated dust PSD from AERONET may also produce a good agreement with measured irradiances and BTs, but with significantly different values of the RI. This implies large differences, up to a factor of 2.5 at surface, in the estimated dust radiative forcing, and in the IR heating rate. This study shows that spectrally resolved measurements of BTs are important to better constrain the dust IR optical properties, and to obtain a reliable estimate of its radiative effects. Efforts should be directed at obtaining an improved description of the dust size distribution and its vertical distribution, as well as at including regionally resolved optical properties.

  11. Assessing the changes in the spatial stiffness of the posterior sclera as a function of IOP with air-pulse OCE

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Aglyamov, Salavat R.; Wu, Chen; Han, Zhaolong; Lafon, Ericka; Larin, Kirill V.

    2017-02-01

    The mechanophysiology of tissues in the posterior eye have been implicated for diseases such as myopia and glaucoma. For example, the eye-globe shape, and consequently optical axial length, can be affected by scleral stiffness. In glaucoma, an elevated intraocular pressure is the primary risk factor for glaucoma, which is the 2nd most prevalent known cause of blindness. Recent work has shown that biomechanical properties of the optic nerve are critical for the onset and progression of glaucoma because weak tissues cause large displacements in the optic nerve, causing tissue damage. In this work, we utilize air-pulse optical coherence elastography (OCE) to quantify the spatial distribution of biomechanical properties of the optic nerve, its surrounding tissues, and the posterior sclera. Air-pulse measurements were made in a grid on in situ porcine eyes in the whole eye-globe configuration as various IOPs. The OCE-measured displacement process was linked to tissue stiffness by a simple kinematic equation. The results show that the optic nerve and peripapillary sclera are much stiffer than the surrounding sclera, and the stiffness of the optic nerve and peripapillary sclera increased as a function of IOP. However, the stiffness of the surrounding sclera did not dramatically increase. Our results show that understanding the dynamics of the biomechanical properties of the eye are critical to understand the aforementioned diseases and may provide additional information for assessing visual health and integrity.

  12. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.

  13. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGES

    Caselli, Niccolò; La China, Federico; Bao, Wei; ...

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  14. Reliable Wide-Area Wavelength Division Multiplexing Passive Optical Network Accommodating Gigabit Ethernet and 10-Gb Ethernet Services

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi

    2006-05-01

    This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.

  15. Study of the thermal distribution in vocal cords irradiated by an optical source for the treatment of voice disabilities

    NASA Astrophysics Data System (ADS)

    Arce-Diego, José L.; Fanjul-Vélez, Félix; Borragán-Torre, Alfonso

    2006-02-01

    Vocal cords disorders constitute an important problem for people suffering from them. Particularly the reduction of mucosal wave movement is not appropriately treated by conventional therapies, like drugs administration or surgery. In this work, an alternative therapy, consisting in controlled temperature increases by means of optical sources is proposed. The distribution of heat inside vocal cords when an optical source illuminates them is studied. Optical and thermal properties of tissue are discussed, as a basis for the appropriate knowledge of its behaviour. Propagation of light is shown using the Radiation Transfer Theory (RTT) and a numerical Monte Carlo model. A thermal transfer model, that uses the results of the propagation of radiation, determines the distribution of temperature in the tissue. Two widely used lasers are considered, Nd:YAG (1064 nm) and KTP (532 nm). Adequate amounts of radiation, resulting in temperature rise, must be achieved in order to avoid damage in vocal cords and so to assure an improvement in the vocal functions of the patient. The limits in temperature should be considered with a combined temperature-time and Arrhenius analysis.

  16. First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type KMgH3 crystals: novel hydrogen storage material.

    PubMed

    Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S

    2011-03-31

    We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.

  17. Optically Tunable Chiral Plasmonic Guest-Host Cellulose Films Weaved with Long-range Ordered Silver Nanowires.

    PubMed

    Chu, Guang; Wang, Xuesi; Chen, Tianrui; Gao, Jianxiong; Gai, Fangyuan; Wang, Yu; Xu, Yan

    2015-06-10

    Plasmonic materials with large chiroptical activity at visible wavelength have attracted considerable attention due to their potential applications in metamaterials. Here we demonstrate a novel guest-host chiral nematic liquid crystal film composed of bulk self-co-assembly of the dispersed plasmonic silver nanowires (AgNWs) and cellulose nanocrystals (CNCs). The AgNWs-CNCs composite films show strong plasmonic optical activities, that are dependent on the chiral photonic properties of the CNCs host medium and orientation of the guest AgNWs. Tunable chiral distribution of the aligned anisotropic AgNWs with long-range order is obtained through the CNCs liquid crystal mediated realignment. The chiral plasmonic optical activity of the AgNWs-CNCs composite films can be tuned by changing the interparticle electrostatic repulsion between the CNCs nanorods and AgNWs. We also observe an electromagnetic energy transfer phenomena among the plasmonic bands of AgNWs, due to the modulation of the photonic band gap of the CNCs host matrix. This facile approach for fabricating chiral macrostructured plasmonic materials with optically tunable property is of interest for a variety of advanced optics applications.

  18. Bayesian estimation of optical properties of the human head via 3D structural MRI

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander H.; Culver, Joseph P.; Sorensen, A. Gregory; Dale, Anders M.; Boas, David A.

    2003-10-01

    Knowledge of the baseline optical properties of the tissues of the human head is essential for absolute cerebral oximetry, and for quantitative studies of brain activation. In this work we numerically model the utility of signals from a small 6-optode time-resolved diffuse optical tomographic apparatus for inferring baseline scattering and absorption coefficients of the scalp, skull and brain, when complete geometric information is available from magnetic resonance imaging (MRI). We use an optical model where MRI-segmented tissues are assumed homogeneous. We introduce a noise model capturing both photon shot noise and forward model numerical accuracy, and use Bayesian inference to predict errorbars and correlations on the measurments. We also sample from the full posterior distribution using Markov chain Monte Carlo. We conclude that ~ 106 detected photons are sufficient to measure the brain"s scattering and absorption to a few percent. We present preliminary results using a fast multi-layer slab model, comparing the case when layer thicknesses are known versus unknown.

  19. Nitrogen Incorporation Effects On Site-Controlled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Pelucchi, E.

    2011-12-01

    We report here on the optical properties of site-controlled diluted nitride In0.25Ga0.75As1-xNx quantum dots grown by metalorganic vapour phase epitaxy (MOVPE). We show photoluminescence energy shift as a function of nitrogen precursor U-dimethylhydrazine, with a maximum value of 35 meV achieved. Optical features, substantially different from the counterpart nitrogen-free dots, are presented: an antibinding biexciton, a large distribution of lifetimes, significantly reduced fine structure splitting.

  20. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  1. Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Yao, Yicun; Chen, Feng

    2012-12-01

    Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.

  2. Light-induced electronic non-equilibrium in plasmonic particles.

    PubMed

    Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar

    2013-05-07

    We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.

  3. Predictive analysis of photodynamic therapy applied to esophagus cancer

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; del Campo-Gutiérrez, M.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2008-04-01

    The use of optical techniques in medicine has revolutionized in many cases the medical praxis, providing new tools for practitioners or improving the existing ones in the fight against diseases. The application of this technology comprises mainly two branches, characterization and treatment of biological tissues. Photodynamic Therapy (PDT) provides a solution for malignant tissue destruction, by means of the inoculation of a photosensitizer and irradiation by an optical source. The key factor of the procedure is the localization of the damage to avoid collateral harmful effects. The volume of tissue destroyed depends on the type of photosensitizer inoculated, both on its reactive characteristics and its distribution inside the tissue, and also on the specific properties of the optical source, that is, the optical power, wavelength and exposition time. In this work, a model for PDT based on the one-dimensional diffusion equation, extensible to 3D, to estimate the optical distribution in tissue, and on photosensitizer parameters to take into account the photobleaching effect is proposed. The application to esophagus cancer allows the selection of the right optical source parameters, like irradiance, wavelength or exposition time, in order to predict the area of tissue destruction.

  4. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  5. Origin of the bright prompt optical emission in the naked eye burst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hascoeet, R.; Daigne, F.; Mochkovitch, R.

    The huge optical brightness of GRB 080319B (the 'Naked Eye Burst') makes this event really challenging for models of the prompt GRB emission. In the framework of the internal shock model, we investigate a scenario where the dominant radiative process is synchrotron emission and the high optical flux is due to the dynamical properties of the relativistic outflow : if the initial Lorentz factor distribution in the jet is highly variable, many internal shocks will form within the outflow at various radii. The most violent shocks will produce the main gamma-ray component while the less violent ones will contribute atmore » lower energy, including the optical range.« less

  6. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less

  7. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.

  8. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    NASA Technical Reports Server (NTRS)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  9. Studies on the synthesis, spectroscopic analysis, molecular docking and DFT calculations on 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazol 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Sheena, Mary Y.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.

    2017-02-01

    In this work we have investigated in details the spectroscopic and reactive properties of newly synthesized imidazole derivative, namely the 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide (HHPDI). FT-IR and NMR spectra were measured and compared with theoretically obtained data provided by calculations of potential energy distribution and chemical shifts, respectively. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbitals, while local reactivity properties have been investigated by analysis of charge distribution, ionization energies and Fukui functions. NBO analysis was also employed to understand the stability of molecule, while hyperpolarizability has been calculated in order to assess the nonlinear optical properties of title molecule. Sensitivity towards autoxidation and hydrolysis mechanisms has been investigated by calculations of bond dissociation energies and radial distribution functions, respectively. Molecular docking study was also performed, in order to determine the pharmaceutical potential of the investigated molecule.

  10. A dynamic Monte Carlo model for predicting radiant exposure distribution in dental composites: model development and verifications

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.

    2005-03-01

    Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to understand the light transport within the composites and to predict the depth of cure. Our previous work showed that the absorption and scattering coefficients of the composite changed after the composite was cured. The static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC) model simulating light propagation in dental composites that have dynamic optical properties while photons are absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light absorbed in each cube was calculated using Beer's Law and was used to determine the next optical properties in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during curing were verified numerically and experimentally. Our results showed that the model predicted values agreed with the theoretical values within 1% difference. The DMC model results are comparable with experimental results within 5% differences.

  11. Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment

    NASA Astrophysics Data System (ADS)

    Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.

    2017-01-01

    Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.

  12. Optical properties of embedded metal nanoparticles at low temperatures

    NASA Astrophysics Data System (ADS)

    Heilmann, A.; Kreibig, U.

    2000-06-01

    Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.

  13. Changes in diffusion path length with old age in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric

    2012-05-01

    Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.

  14. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity

    NASA Astrophysics Data System (ADS)

    Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.

    2016-05-01

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures.

  15. Unified interatomic potential and energy barrier distributions for amorphous oxides.

    PubMed

    Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping

    2013-10-21

    Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics potentials have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body potentials modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the potential accurately produces energy barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these potentials will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.

  16. Optical and Near-Infrared Structural Properties of Cluster Galaxies at z ~ 0.3

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Busarello, G.; Merluzzi, P.; Massarotti, M.; Capaccioli, M.

    2002-06-01

    Structural parameters (half-light radius re, mean effective surface brightness <μ>e, and Sersic index n, parameterizing the light profile shape) are derived for a sample of galaxies in the rich cluster AC 118 at z=0.31, so far the largest (N=93) sample of galaxies at intermediate redshift with structural parameters measured in the near-infrared. The parameters are obtained in two optical wavebands (V and R) and in the K band, corresponding approximately to the B, V, and H rest frame. The distributions of re at z=0.31 match those for the Coma Cluster (i.e., for the local universe) both in the optical and in the NIR. The K-band distribution is of particular interest, since the NIR light mimics the mass distribution of galaxies. The similarity of the distributions for the two clusters (AC 118 and Coma) proves that the galaxies at the bright end of the luminosity function did not significantly change their sizes since z~0.3 to the present epoch. The ratio of the optical to the NIR half-light radius shows a marked trend with the shape of the light profile (Sersic index n). In galaxies with n>~4 (typical bright ellipticals) re,NIR~0.6re,opt, while the average ratio is 0.8 for galaxies with lower n (typical disk systems). Moreover, the NIR Sersic index is systematically larger than in the optical for n<~4. These results, translated into optical and optical-NIR color gradients, imply that the optical color gradients at z~0.3 are similar to those of nearby galaxies. The optical-NIR color gradients are in the average larger, ranging from -0.73 mag dex-1 for n<~4 to -0.35 mag dex-1 for n>~4. Models with ``pure age'' or ``pure metallicity'' gradients are unable to reconcile our color gradients estimates with observations at z~0, but we argue that the combined effects of age and metallicity might explain consistently the observed data: passive evolution (plus the possible effect of dust absorption) may account for the differences between the optical and NIR structural properties. The lack of any major change in re,NIR since z~0.3 suggests that merging involving bright galaxies did not play a significant role in the last ~4.4 Gyr (ΩM=0.3, ΩΛ=0, H0=50 km s-1 Mpc-1). The results of the present paper will be applied to the study of the scaling laws in subsequent works. Based on observations collected at European Southern Observatory (ESO 62.O-0369, 63.O-0257, 64.O-0236) and on data from the STScI Science Archive.

  17. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  18. Inverse problems biomechanical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  19. Investigation of Trends in Aerosol Direct Radiative Effects over North America Using a Coupled Meteorology-Chemistry Model

    EPA Science Inventory

    A comprehensive investigation of the processes regulating tropospheric aerosol distributions, their optical properties, and their radiative effects in conjunction with verification of their simulated radiative effects for past conditions relative to measurements is needed in orde...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salhi, Marouane; Passian, Ali; Siopsis, George

    Electronic excitations in metallic nanoparticles in the optical regime that have been of great importance in surface-enhanced spectroscopy and emerging applications of molecular plasmonics, due to control and confinement of electromagnetic energy, may also be of potential to control the motion of nanoparticles and molecules. Here, we propose a concept for trapping polarizable particles and molecules using toroidal metallic nanoparticles. Specifically, gold nanorings are investigated for their scattering properties and field distribution to computationally show that the response of these optically resonant particles to incident photons permit the formation of a nanoscale trap when proper aspect ratio, photon wavelength, andmore » polarization are considered. However, interestingly the resonant plasmonic response of the nanoring is shown to be detrimental to the trap formation. The results are in good agreement with analytic calculations in the quasistatic limit within the first-order perturbation of the scalar electric potential. The possibility of extending the single nanoring trapping properties to two-dimensional arrays of nanorings is suggested by obtaining the field distribution of nanoring dimers and trimers.« less

  1. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    PubMed

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  2. Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi

    2018-03-01

    We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.

  3. Toroidal nanotraps for cold polar molecules

    DOE PAGES

    Salhi, Marouane; Passian, Ali; Siopsis, George

    2015-09-14

    Electronic excitations in metallic nanoparticles in the optical regime that have been of great importance in surface-enhanced spectroscopy and emerging applications of molecular plasmonics, due to control and confinement of electromagnetic energy, may also be of potential to control the motion of nanoparticles and molecules. Here, we propose a concept for trapping polarizable particles and molecules using toroidal metallic nanoparticles. Specifically, gold nanorings are investigated for their scattering properties and field distribution to computationally show that the response of these optically resonant particles to incident photons permit the formation of a nanoscale trap when proper aspect ratio, photon wavelength, andmore » polarization are considered. However, interestingly the resonant plasmonic response of the nanoring is shown to be detrimental to the trap formation. The results are in good agreement with analytic calculations in the quasistatic limit within the first-order perturbation of the scalar electric potential. The possibility of extending the single nanoring trapping properties to two-dimensional arrays of nanorings is suggested by obtaining the field distribution of nanoring dimers and trimers.« less

  4. Radiative transfer modeling applied to sea water constituent determination. [Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Faller, K. H.

    1979-01-01

    Optical radiation from the sea is influenced by pigments dissolved in the water and contained in discrete organisms suspended in the sea, and by pigmented and unpigmented inorganic and organic particles. The problem of extracting the information concerning these pigments and particulates from the optical properties of the sea is addressed and the properties which determine characteristics of the radiation that a remote sensor will detect and measure are considered. The results of the application of the volume scattering function model to the data collected in the Gulf of Mexico and its environs indicate that the size distribution of the concentrations of particles found in the sea can be predicted from measurements of the volume scattering function. Furthermore, with the volume scattering function model and knowledge of the absorption spectra of dissolved pigments, the radiative transfer model can compute a distribution of particle sizes and indices of refraction and concentration of dissolved pigments that give an upwelling light spectrum that closely matches measurements of that spectrum at sea.

  5. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol.

    PubMed

    Siddiqa, Asima; Masih, Dilshad; Anjum, Dalaver; Siddiq, Muhammad

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process. Copyright © 2015. Published by Elsevier B.V.

  6. Thermal and optical design analyses, optimizations, and experimental verification for a novel glare-free LED lamp for household applications.

    PubMed

    Khan, M Nisa

    2015-07-20

    Light-emitting diode (LED) technologies are undergoing very fast developments to enable household lamp products with improved energy efficiency and lighting properties at lower cost. Although many LED replacement lamps are claimed to provide similar or better lighting quality at lower electrical wattage compared with general-purpose incumbent lamps, certain lighting characteristics important to human vision are neglected in this comparison, which include glare-free illumination and omnidirectional or sufficiently broad light distribution with adequate homogeneity. In this paper, we comprehensively investigate the thermal and lighting performance and trade-offs for several commercial LED replacement lamps for the most popular Edison incandescent bulb. We present simulations and analyses for thermal and optical performance trade-offs for various LED lamps at the chip and module granularity levels. In addition, we present a novel, glare-free, and production-friendly LED lamp design optimized to produce very desirable light distribution properties as demonstrated by our simulation results, some of which are verified by experiments.

  7. Remote sensing of PM2.5 from ground-based optical measurements

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.

    2014-12-01

    Remote sensing of particulate matter concentration with aerodynamic diameter smaller than 2.5 um(PM2.5) by using ground-based optical measurements of aerosols is investigated based on 6 years of hourly average measurements of aerosol optical properties, PM2.5, ceilometer backscatter coefficients and meteorological factors from Howard University Beltsville Campus facility (HUBC). The accuracy of quantitative retrieval of PM2.5 using aerosol optical depth (AOD) is limited due to changes in aerosol size distribution and vertical distribution. In this study, ceilometer backscatter coefficients are used to provide vertical information of aerosol. It is found that the PM2.5-AOD ratio can vary largely for different aerosol vertical distributions. The ratio is also sensitive to mode parameters of bimodal lognormal aerosol size distribution when the geometric mean radius for the fine mode is small. Using two Angstrom exponents calculated at three wavelengths of 415, 500, 860nm are found better representing aerosol size distributions than only using one Angstrom exponent. A regression model is proposed to assess the impacts of different factors on the retrieval of PM2.5. Compared to a simple linear regression model, the new model combining AOD and ceilometer backscatter can prominently improve the fitting of PM2.5. The contribution of further introducing Angstrom coefficients is apparent. Using combined measurements of AOD, ceilometer backscatter, Angstrom coefficients and meteorological parameters in the regression model can get a correlation coefficient of 0.79 between fitted and expected PM2.5.

  8. Experimental Evaluation of Turbidity Impact on the Fluence Rate Distribution in a UV Reactor Using a Microfluorescent Silica Detector.

    PubMed

    Li, Mengkai; Li, Wentao; Wen, Dong; Qiang, Zhimin; Blatchley, Ernest R

    2017-11-21

    Turbidity is a common parameter used to assess particle concentration in water using visible light. However, the fact that particles play multiple roles (e.g., scattering, refraction, and reflection) in influencing the optical properties of aqueous suspensions complicates examinations of their effects on ultraviolet (UV) photoreactor performance. To address this issue, UV fluence rate (FR) distributions in a photoreactor containing various particle suspensions (SiO 2 , MgO, and TiO 2 ) were measured using a microfluorescent silica detector (MFSD). Reflectance of solid particles, as well as transmittance and scattering properties of the suspensions were characterized at UV, visible, and infrared (IR) wavelengths. The results of these measurements indicated that the optical properties of all three particle types were similar at visible and IR wavelengths, but obvious differences were evident in the UV range. The FR results indicated that for turbidity associated with SiO 2 and MgO suspensions, the weighted average FR (WAFR) increased relative to deionized water. These increases were attributed to low particle photon absorption and strong scattering. In contrast, the WAFR values decreased with increasing turbidity for TiO 2 suspensions because of their high particle photon absorption and low scattering potential. The findings also indicate that measurements of scattering and transmittance at UV wavelengths can be used to quantify the effects of turbidity on UV FR distributions.

  9. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  10. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.

    PubMed

    Shen, J; Song, Y; Lee, M L; Cha, J J

    2014-11-21

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.

  11. Material platforms for spin-based photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg

    2018-05-01

    A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.

  12. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  13. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  14. Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx

    NASA Astrophysics Data System (ADS)

    Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.

    2018-04-01

    The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.

  15. BOREAS RS-12 Automated Ground Sunphotometer Measurements in the SSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct some remotely sensed data acquired during BOREAS. These data cover selected days and times from May to September 1994 and were taken from one of two ground sites near Candle Lake in the SSA. The data described in this document are from the field sunphotometer data. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  17. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    NASA Astrophysics Data System (ADS)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  18. Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during the 7-SEAS/BASELInE field campaign

    NASA Astrophysics Data System (ADS)

    Lin, N. H.; Wang, S. H.; Welton, E. J.; Holben, B. N.; Tsay, S. C.; Giles, D. M.; Stewart, S. A.; Janjai, S.; Anh, N. X.; Hsiao, T. C.; Chen, W. N.; Lin, T. H.; Buntoung, S.; Chantara, S.; Wiriya, W.

    2015-12-01

    In this study, the aerosol optical properties and vertical distributions in major biomass-burning emission area of northern Indochina were investigated using ground-based remote sensing (i.e., four Sun-sky radiometers and one lidar) during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment conducted during spring 2014. Despite the high spatial variability of the aerosol optical depth (AOD; which at 500 nm ranged from 0.75 to 1.37 depending on the site), the temporal variation of the daily AOD demonstrated a consistent pattern among the observed sites, suggesting the presence of widespread smoke haze over the region. Smoke particles were characterized as small (Ångström exponent at 440-870 nm of 1.72 and fine mode fraction of 0.96), strongly absorbing (single-scattering albedo at 440 nm of 0.88), mixture of black and brown carbon particles (absorption Ångström exponent at 440-870 nm of 1.5) suspended within the planetary boundary layer (PBL). Smoke plumes driven by the PBL dynamics in the mountainous region reached as high as 5 km above sea level; these plumes subsequently spread out by westerly winds over northern Vietnam, southern China, and the neighboring South China Sea. Moreover, the analysis of diurnal variability of aerosol loading and optical properties as well as vertical profile in relation to PBL development, fire intensity, and aerosol mixing showed that various sites exhibited different variability based on meteorological conditions, fuel type, site elevation, and proximity to biomass-burning sources. These local factors influence the aerosol characteristics in the region and distinguish northern Indochina smoke from other biomass-burning regions in the world.

  19. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.

  20. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time a complete set of vertically resolved aerosol size distribution and refractive index data, yielding the vertical distribution of aerosol optical properties required for the determination of aersol-induced radiative flux changes

  1. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; hide

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time, a complete set of vertically resolved aerosol size distribution and refractive index data. yielding the vertical distribution of aerosol optical properties required for the determination of aerosol-induced radiative flux changes.

  2. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  3. Optical properties and mechanisms in Cr3+, Bi3+-codoped oxide-based spinel nanoparticles

    NASA Astrophysics Data System (ADS)

    Pellerin, Morgane; Coelho-Diogo, Cristina; Bonhomme, Christian; Touatib, Nadia; Binet, Laurent; Gourier, Didier; Ueda, Jumpei; Tanabe, Setsuhisa; Viana, Bruno; Chanéac, Corinne

    2017-02-01

    At the nanoscale, the ZnGa2O4 spinel doped with chromium (III) is an interesting material for in vivo optical imaging due to its bright red persistent luminescence after UV and visible excitation. Moreover its persistent luminescent properties can be improved with the incorporation of bismuth (III) as a co-dopant without any structure changes. The nanoparticles are synthesized by soft chemistry using microwave heating in aqueous media. These very small sized nanophosphors (around 10 nm) present interesting long lasting persistent luminescence after annealing at 1000°C and they can be excited both under UV and under visible LED excitation. In this work we try to understand the mechanisms of the persistent luminescent properties of such nanomaterials. Thermoluminescence is performed to investigate trapping and detrapping processes as well as trap distribution. The chromium local environment is studied by Electron Paramagnetic Resonance. 71Ga Nuclear Magnetic Resonance is used to get information on the gallium ions repartition (tetrahedral or octahedral site) in the structure. Comparison of optical properties versus local structure increases the understanding of the persistent luminescence mechanism and gives insights to the new modalities for their use as nanoprobes for in vivo imaging.

  4. Laboratory Simulations of Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes: Particle Color and Size Distribution

    NASA Astrophysics Data System (ADS)

    He, Chao; Hörst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.-R.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Super-Earths and mini-Neptunes are the most abundant types of planets among the ∼3500 confirmed exoplanets, and are expected to exhibit a wide variety of atmospheric compositions. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. However, the compositions, size distributions, and optical properties of these particles in exoplanet atmospheres are poorly understood. Here, we present the results of experimental laboratory investigations of photochemical haze formation within a range of planetary atmospheric conditions, as well as observations of the color and size of produced haze particles. We find that atmospheric temperature and metallicity strongly affect particle color and size, thus altering the particles’ optical properties (e.g., absorptivity, scattering, etc.); on a larger scale, this affects the atmospheric and surface temperature of the exoplanets, and their potential habitability. Our results provide constraints on haze formation and particle properties that can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of super-Earths and mini-Neptunes with the Transiting Exoplanet Survey Satellite, the James Webb Space Telescope, and the Wide-Field Infrared Survey Telescope.

  5. Answering the Call for Model-Relevant Observations of Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3.We discuss the challenges in making observations that really address deficiencies in models, with some of the more relevant aspects being representativeness of the observations for climatological states, and whether a given model-measurement difference addresses a sampling or a model error.

  6. Experimental demonstration of the switching dose-rate method on doped optical fibers

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  7. Optical modeling of stratopheric aerosols - Present status

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.

    1986-01-01

    A stratospheric aerosol optical model is developed which is based on a size distribution conforming to direct measurements. Additional constraints are consistent with large data sets of independently measured macroscopic aerosol properties such as mass and backscatter. The period under study covers background as well as highly disturbed volcanic conditions and an altitude interval ranging from the tropopause to about 30 km. The predictions of the model are used to form a basis for interpreting and intercomparing several diverse types of stratospheric aerosol measurement.

  8. Microscopic Optical Characterization of Free Standing III-Nitride Substrates, ZnO Bulk Crystals, and III-V Structures for Non-Linear Optics

    DTIC Science & Technology

    2013-03-01

    necessary. Therefore, a study of the main defects involved in these materials is essential to the understanding of their main properties and to...working with various strains, growth conditions, temperature variation, and impurities, and studies crystal growth parameters necessary to improve the...Sirtl applied with Light), and the stress distribution around the domain walls. This study shows how to improve the crystal quality of the OP GaAs

  9. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading during JJA.

  10. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and single scattering albedo) as a function of height, and changes in aerosol loading, chemical composition, and mixing state with height and distance from the coast.

  11. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

  12. Modelling the KIC8462852 light curves: compatibility of the dips and secular dimming with an exocomet interpretation

    NASA Astrophysics Data System (ADS)

    Wyatt, M. C.; van Lieshout, R.; Kennedy, G. M.; Boyajian, T. S.

    2018-02-01

    This paper shows how the dips and secular dimming in the KIC8462852 light curve can originate in circumstellar material distributed around a single elliptical orbit (e.g. exocomets). The expected thermal emission and wavelength dependent dimming is derived for different orbital parameters and geometries, including dust that is optically thick to stellar radiation, and for a size distribution of dust with realistic optical properties. We first consider dust distributed evenly around the orbit, then show how to derive its uneven distribution from the optical light curve and to predict light curves at different wavelengths. The fractional luminosity of an even distribution is approximately the level of dimming times stellar radius divided by distance from the star at transit. Non-detection of dust thermal emission for KIC8462852 thus provides a lower limit on the transit distance to complement the 0.6 au upper limit imposed by 0.4 d dips. Unless the dust distribution is optically thick, the putative 16 per cent century-long secular dimming must have disappeared before the WISE 12 μm measurement in 2010, and subsequent 4.5 μm observations require transits at >0.05 au. However, self-absorption of thermal emission removes these constraints for opaque dust distributions. The passage of dust clumps through pericentre is predicted to cause infrared brightening lasting tens of days and dimming during transit, such that total flux received decreases at wavelengths <5 μm, but increases to potentially detectable levels at longer wavelengths. We suggest that lower dimming levels than seen for KIC8462852 are more common in the Galactic population and may be detected in future transit surveys.

  13. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  14. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    NASA Astrophysics Data System (ADS)

    Esparza, Angel Eduardo

    2011-12-01

    The assessment and characterization of atmospheric aerosols and their optical properties are of great significance for several applications such as air pollution studies, atmospheric visibility, remote sensing of the atmosphere, and impacts on climate change. Decades ago, the interest in atmospheric aerosols was primarily for visibility impairment problems; however, recently interest has intensified with efforts to quantify the optical properties of aerosols, especially because of the uncertainties surrounding the role of aerosols in climate change. The main objective of the optical characterization of aerosols is to understand their properties. These properties are determined by the aerosols' chemical composition, size, shape and concentration. The general purpose of this research was to contribute to a better characterization of the aerosols present in the Paso del Norte Basin. This study permits an alternative approach in the understanding of air pollution for this zone by analyzing the predominant components and their contributions to the local environment. This dissertation work had three primary objectives, in which all three are intertwined by the general purpose of the aerosol characterization in the Paso del Norte region. The first objective was to retrieve the columnar aerosol size distribution for two different cases (clean and polluted scenarios) at each season (spring, summer, fall and winter) of the year 2009. In this project, instruments placed in buildings within the University of Texas at El Paso (UTEP) as well as a monitoring site (CAMS 12) from the Texas Commission on Environmental Quality (TCEQ) provided the measurements that delimited the aerosol size distribution calculated by our model, the Environmental Physics Inverse Reconstruction (EPIRM) model. The purpose of this objective was to provide an alternate method of quantifying and size-allocating aerosols in situ, by using the optical properties of the aerosols and inversely reconstruct and retrieve the size distribution of them. This method permits the assessment of aerosols in the ambient in-situ, without physically extracting them from their current state, as the filter technique does. The second objective was an analysis and comparison of the aerosol optical thickness (AOT) data between ground-based instruments and satellite data. In this project, the groundbased instruments are the Multi Filter Rotating Shadowband Radiometers (MFRSR) installed at UTEP and the nearest sun photometer facility, a NASA's Aerosol Robotic Network (AERONET), located at White Sands, New Mexico. The satellite data is provided by the NASA's Multi-angle Imaging Spectro-radiometer (MISR) instrument located in the Terra satellite. Finally, the third objective was to estimate ground particulate matter concentration of particles no greater than 2.5 mum in diameter (PM2.5) by using the MISR's satellite data. This objective was achieved by implementing an empirical mathematical model that includes measured data. In addition, this model addressed the geographic characteristics of the region as well as several factors such as season, relative humidity (RH) and the height of the planetary boundary layer (PBL).

  15. Evolution of size distribution, optical properties, and structure of Si nanoparticles obtained by laser-assisted fragmentation

    NASA Astrophysics Data System (ADS)

    Plautz, G. L.; Graff, I. L.; Schreiner, W. H.; Bezerra, A. G.

    2017-05-01

    We investigate the physical properties of Si-based nanoparticles produced by an environment-friendly three-step method relying on: (1) laser ablation of a solid target immersed in water, (2) centrifugation and separation, and (3) laser-assisted fragmentation. The evolution of size distribution is followed after each step by means of dynamic light scattering (DLS) measurements and crosschecked by transmission electron microscopy (TEM). The as-ablated colloidal suspension of Si nanoparticles presents a large size distribution, ranging from a few to hundreds of nanometers. Centrifugation drives the very large particles to the bottom eliminating them from the remaining suspension. Subsequent irradiation of height-separated suspensions with a second high-fluence (40 mJ/pulse) Nd:YAG laser operating at the fourth harmonic (λ =266 nm) leads to size reduction and ultra-small nanoparticles are obtainable depending on the starting size. Si nanoparticles as small as 1.5 nm with low dispersion (± 0.7 nm) are observed for the uppermost part after irradiation. These nanoparticles present a strong blue photoluminescence that remains stable for at least 8 weeks. Optical absorption (UV-Vis) measurements demonstrate an optical gap widening as a consequence of size decrease. Raman spectra present features related to pure silicon and silicon oxides for the irradiated sample. Interestingly, a defect band associated with silicon oxide is also identified, indicating the possible formation of defect states, which, in turn, supports the idea that the blue photoluminescence has its origin in defects.

  16. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  17. Thermo-optical properties of residential coals and combustion aerosols

    NASA Astrophysics Data System (ADS)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  18. In vivo measurements of optical properties of human muscles with visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin

    2018-02-01

    Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.

  19. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  20. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.

    2015-05-01

    Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.

  1. Fusion of UAV photogrammetry and digital optical granulometry for detection of structural changes in floodplains

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Lendzioch, Theodora; Mirijovsky, Jakub

    2016-04-01

    Granulometric analysis represents a traditional, important and for the description of sedimentary material substantial method with various applications in sedimentology, hydrology and geomorphology. However, the conventional granulometric field survey methods are time consuming, laborious, costly and are invasive to the surface being sampled, which can be limiting factor for their applicability in protected areas.. The optical granulometry has recently emerged as an image analysis technique, enabling non-invasive survey, employing semi-automated identification of clasts from calibrated digital imagery, taken on site by conventional high resolution digital camera and calibrated frame. The image processing allows detection and measurement of mixed size natural grains, their sorting and quantitative analysis using standard granulometric approaches. Despite known limitations, the technique today presents reliable tool, significantly easing and speeding the field survey in fluvial geomorphology. However, the nature of such survey has still limitations in spatial coverage of the sites and applicability in research at multitemporal scale. In our study, we are presenting novel approach, based on fusion of two image analysis techniques - optical granulometry and UAV-based photogrammetry, allowing to bridge the gap between the needs of high resolution structural information for granulometric analysis and spatially accurate and data coverage. We have developed and tested a workflow that, using UAV imaging platform enabling to deliver seamless, high resolution and spatially accurate imagery of the study site from which can be derived the granulometric properties of the sedimentary material. We have set up a workflow modeling chain, providing (i) the optimum flight parameters for UAV imagery to balance the two key divergent requirements - imagery resolution and seamless spatial coverage, (ii) the workflow for the processing of UAV acquired imagery by means of the optical granulometry and (iii) the workflow for analysis of spatial distribution and temporal changes of granulometric properties across the point bar. The proposed technique was tested on a case study of an active point bar of mid-latitude mountain stream at Sumava mountains, Czech Republic, exposed to repeated flooding. The UAV photogrammetry was used to acquire very high resolution imagery to build high-precision digital terrain models and orthoimage. The orthoimage was then analyzed using the digital optical granulometric tool BaseGrain. This approach allowed us (i) to analyze the spatial distribution of the grain size in a seamless transects over an active point bar and (ii) to assess the multitemporal changes of granulometric properties of the point bar material resulting from flooding. The tested framework prove the applicability of the proposed method for granulometric analysis with accuracy comparable with field optical granulometry. The seamless nature of the data enables to study spatial distribution of granulometric properties across the study sites as well as the analysis of multitemporal changes, resulting from repeated imaging.

  2. Optical technologies for the Internet of Things era

    NASA Astrophysics Data System (ADS)

    Ji, Philip N.

    2017-08-01

    Internet of Things (IoT) is a network of interrelated physical objects that can collect and exchange data with one another through embedded electronics, software, sensors, over the Internet. It extends Internet connectivity beyond traditional networking devices to a diverse range of physical devices and everyday things that utilize embedded technologies to communicate and interact with the external environment. The IoT brings automation and efficiency improvement to everyday life, business, and society. Therefore IoT applications and market are growing rapidly. Contrary to common belief that IoT is only related to wireless technology, optical technologies actually play important roles in the growth of IoT and contribute to its advancement. Firstly, fiber optics provides the backbone for transporting large amount of data generated by IoT network in the core , metro and access networks, and in building or in the physical object. Secondly, optical switching technologies, including all-optical switching and hybrid optical-electrical switching, enable fast and high bandwidth routing in IoT data processing center. Thirdly, optical sensing and imaging delivers comprehensive information of multiple physical phenomena through monitoring various optical properties such as intensity, phase, wavelength, frequency, polarization, and spectral distribution. In particular, fiber optic sensor has the advantages of high sensitivity, low latency, and long distributed sensing range. It is also immune to electromagnetic interference, and can be implemented in harsh environment. In this paper, the architecture of IoT is described, and the optical technologies and their applications in the IoT networks are discussed with practical examples.

  3. Determination of optical properties in heterogeneous turbid media using a cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2012-10-01

    For interstitial photodynamic therapy (PDT), cylindrical diffusing fibers (CDFs) are often used to deliver light. This study examines the feasibility and accuracy of using CDFs to characterize the absorption (μa) and reduced scattering (μ‧s) coefficients of heterogeneous turbid media. Measurements were performed in tissue-simulating phantoms with μa between 0.1 and 1 cm-1 and μ‧s between 3 and 10 cm-1 with CDFs 2 to 4 cm in length. Optical properties were determined by fitting the measured light fluence rate profiles at a fixed distance from the CDF axis using a heterogeneous kernel model in which the cylindrical diffusing fiber is treated as a series of point sources. The resulting optical properties were compared with independent measurement using a point source method. In a homogenous medium, we are able to determine the absorption coefficient μa using a value of μ‧s determined a priori (uniform fit) or μ‧s obtained by fitting (variable fit) with standard (maximum) deviations of 6% (18%) and 18% (44%), respectively. However, the CDF method is found to be insensitive to variations in μ‧s, thus requiring a complementary method such as using a point source for determination of μ‧s. The error for determining μa decreases in very heterogeneous turbid media because of the local absorption extremes. The data acquisition time for obtaining the one-dimensional optical properties distribution is less than 8 s. This method can result in dramatically improved accuracy of light fluence rate calculation for CDFs for prostate PDT in vivo when the same model and geometry is used for forward calculations using the extrapolated tissue optical properties.

  4. Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.

  5. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institutemore » for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.« less

  6. Optical properties and vertical distribution of pollution aerosols in the Mediterranean basin in summertime: airborne observations from the Charmex SOP0, SOP1, and SOP2 campaigns

    NASA Astrophysics Data System (ADS)

    Di Biagio, Claudia; Beekmann, Matthias; Chevallier, Servanne; Denjean, Cyrielle; Doppler, Lionel; Gaimoz, Cecile; Grand, Noel; Loisil, Rodrigue; Mallet, Marc; Pelon, Jacques; Ravetta, Francois; Sartelet, Karine; Schnitt, Sabrina; Triquet, Sylvain; Zapf, Pascal; Formenti, Paola

    2014-05-01

    The Mediterranean basin is a very complex area where high concentrations of atmospheric aerosols of different origin and types may be found. The North-Western part of the Mediterranean basin, due to its closeness with high polluted industrialized areas and coastal high populated cities, is frequently affected by severe pollution episodes. The strength of these episodes is particularly intense during summer when stable meteorological conditions favour the accumulation of pollutants in the lowermost atmospheric layers. Three intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, June-July 2012), ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, June 2013) and SAFMED (Secondary Aerosol Formation in the MEDiterranean, July 2013) have been conducted over the North-Western and Central Mediterranean basin with the SAFIRE ATR-42 aircraft in the framework of the ChArMex Special Observing Periods 0 and 1. During the different campaigns the ATR-42 was equipped with a large set of instruments for the measurements of the aerosol physico-chemical (GRIMM, SMPS, PCASP, USHAS, FSSP for size distribution, and three lines for filter sampling on polycarbonate and quartz membranes in order to derive the bulk aerosol composition) and optical properties (TSI nephelometer, Magee Sci. aethalomether, and CAPS for scattering, absorption, and extinction coefficients at several wavelengths in the visible). Lidar backscatter profiles at 355, 532, and 1064 nm, meteorological parameters, upward and downward shortwave and longwave radiative fluxes, and atmospheric composition (H2O, CO2, CO, and O3) were also measured from aircraft instrumentation. In this work we present data on the aerosol physico-chemical and optical properties obtained during the 25 scientific flights of TRAQA, ADRIMED, and SAFMED performed in correspondence of pollution episodes. During the campaigns the Western Mediterranean basin was interested by different synoptic conditions which lead to the export of anthropogenic plumes from different polluted source regions (northern Italy and the Po Valley, Marseille and the Fos/Berre region, and Barcelona). The differences in terms of physico-chemical and optical properties for the different cases will be investigated and the variability of optical properties will be discussed in term of aerosol origin and airmass history.

  7. Tunable high-refractive index hybrid for solution-processed light management devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bachevillier, Stefan

    2016-10-01

    After the use of highly efficient but expensive inorganic optical materials, solution-processable polymers and hybrids have drawn more and more interest. Our group have recently developed a novel polymer-based hybrid optical material from titanium oxide hydrate exhibiting an outstanding set of optical and material properties. Firstly, their low cost, processability and cross-linked states are particularly attractive for many applications. Moreover, a high refractive index can be repeatedly achieved while optical losses stays considerably low over the entire visible and near-infrared wavelength regime. Indeed, the formation of inorganic nanoparticles, usually present in nanocomposites, is avoided by a specific formulation process. Even more remarkably, the refractive index can be tuned by either changing the inorganic content, using different titanium precursors or via a low-temperature curing process. A part of our work is focused on the reliable optical characterization of these properties, in particular a microscope-based setup allowing in-situ measurement and sample mapping has been developed. Our efforts are also concentrated on various applications of these exceptional properties. This hybrid material is tailored for photonic devices, with a specific emphasis on the production of highly efficient solution processable Distributed Bragg Reflectors (DBR) and anti-reflection coatings. Furthermore, waveguides can be fabricated from thin films along with in-coupling and out-coupling structures. These light managements structures are particularly adapted to organic photovoltaic cells (OPVs) and light emitting diodes (OLEDs).

  8. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G.; Sola, D.

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been comparedmore » to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin

    Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and highmore » thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.« less

  10. Size tunability and optical properties of CdSe quantum dots for various growth conditions

    NASA Astrophysics Data System (ADS)

    Ko, Eun Yee; Lee, Joo In; Jeon, Ju-Won; Lee, In Hwan; Shin, Yong Hyeon; Han, Il Ki

    2013-01-01

    We report the optical properties of CdSe quantum dots (QDs) synthesized under various growth conditions, such as growth temperature, growth time, ligand ratio, and Cd:Se ratio of the precursors. As the growth temperature and time was increased, the peaks of the photoluminescence (PL) spectra were a red shifted, indicating that the size of QDs increased. Different ligand ratios and Cd:Se ratios of the precursors played important roles in determining the QDs size. From the PL spectra and the transmission electron microscopy image, the size distribution, as well as the size of CdSe QDs, could be controlled by using the growth conditions. The temperature-dependent PL of CdSe QDs dropped and dried on Si substrates was measured at temperatures from 15 K to 290 K. With increasing temperature, the red shift of the QDs was about 35 meV, which is noticeably smaller than that of bulk CdSe (˜100 meV). The influence of the temperature on the optical properties of colloidal CdSe QDs is important for an application to various devices.

  11. Tuning of optical properties of CdS nanoparticles synthesized in a glass matrix

    NASA Astrophysics Data System (ADS)

    Popov, Ivan D.; Kuznetsova, Yulia V.; Rempel, Svetlana V.; Rempel, Andrey A.

    2018-03-01

    Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV-Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.

  12. Quiescent Prominences in the Era of ALMA. II. Kinetic Temperature Diagnostics

    NASA Astrophysics Data System (ADS)

    Gunár, Stanislav; Heinzel, Petr; Anzer, Ulrich; Mackay, Duncan H.

    2018-01-01

    We provide the theoretical background for diagnostics of the thermal properties of solar prominences observed by the Atacama Large Millimeter/submillimeter Array (ALMA). To do this, we employ the 3D Whole-Prominence Fine Structure (WPFS) model that produces synthetic ALMA-like observations of a complex simulated prominence. We use synthetic observations derived at two different submillimeter/millimeter (SMM) wavelengths—one at a wavelength at which the simulated prominence is completely optically thin and another at a wavelength at which a significant portion of the simulated prominence is optically thick—as if these were the actual ALMA observations. This allows us to develop a technique for an analysis of the prominence plasma thermal properties from such a pair of simultaneous high-resolution ALMA observations. The 3D WPFS model also provides detailed information about the distribution of the kinetic temperature and the optical thickness along any line of sight. We can thus assess whether the measure of the kinetic temperature derived from observations accurately represents the actual kinetic temperature properties of the observed plasma. We demonstrate here that in a given pixel the optical thickness at the wavelength at which the prominence plasma is optically thick needs to be above unity or even larger to achieve a sufficient accuracy of the derived information about the kinetic temperature of the analyzed plasma. Information about the optical thickness cannot be directly discerned from observations at the SMM wavelengths alone. However, we show that a criterion that can identify those pixels in which the derived kinetic temperature values correspond well to the actual thermal properties in which the observed prominence can be established.

  13. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  14. Probing the Fluctuations of Optical Properties in Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Esposito, Martina; Giusti, Francesca; Misochko, Oleg; Parmigiani, Fulvio; Fausti, Daniele; Eckstein, Martin

    2017-11-01

    We show that, in optical pump-probe experiments on bulk samples, the statistical distribution of the intensity of ultrashort light pulses after interaction with a nonequilibrium complex material can be used to measure the time-dependent noise of the current in the system. We illustrate the general arguments for a photoexcited Peierls material. The transient noise spectroscopy allows us to measure to what extent electronic degrees of freedom dynamically obey the fluctuation-dissipation theorem, and how well they thermalize during the coherent lattice vibrations. The proposed statistical measurement developed here provides a new general framework to retrieve dynamical information on the excited distributions in nonequilibrium experiments, which could be extended to other degrees of freedom of magnetic or vibrational origin.

  15. Effect of Abrasion-Induced Contact Damage on the Optical Properties and Strength of Float Glass

    DTIC Science & Technology

    2018-06-07

    method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature. West Conshohocken (PA): ASTM International; 2015. 18... methods . J Eur Ceram Soc. 2017;37:4243–4257. Approved for public release; distribution is unlimited. 11 1 DEFENSE TECHNICAL (PDF) INFORMATION

  16. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  17. Full scattering profile for detecting physiological tissue properties

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2017-02-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (FSP), which is the angular distribution of exiting photons, provides more comprehensive information when measuring from a cylindrical tissue, such as earlobe, fingertip and pinched tissue. Our hypothesis is that the change in blood vessel diameter is more significant than the change in optical properties. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.

  18. Stacking fault related luminescence in GaN nanorods.

    PubMed

    Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G

    2015-09-04

    Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.

  19. One-pot green synthesis of carbon quantum dot for biological application

    NASA Astrophysics Data System (ADS)

    Asghar, Khushnuma; Qasim, Mohd; Das, D.

    2017-05-01

    A one-pot microwave assisted method for synthesizing carbon quantum dots (CQDs) from honey is presented in this paper. The structural, morphological and optical properties of synthesized CQDs were characterized by XRD, TEM, UV-Vis spectrophotometer, and Raman techniques. The average particle size of CQDs is found to be 2 to 7 nm. The main advantage of this work is the use of inexpensive, less toxic and environmental friendly precursors and synthesis procedure for CQDs. In addition to this, the particle size of prepared CQDs was found to be ultrafine with narrow size distribution. The as-prepared CQDs, with smaller particle size, good stability, good optical properties, water dispersibility and low toxicity, show promising potential for applications in biomedical field.

  20. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E. K.; Prokofiev, A. V.; Velichko, E. N.; Pleshakov, I. V.; Kuzmin, Yu I.

    2017-06-01

    Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe3O4) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.

  1. Polarisation effects in twin-core fibre: Application for mode locking in a fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobach, I A; Kablukov, S I; Podivilov, Evgenii V

    2012-09-30

    We report the first measurements of the longitudinal power distribution in a twin-core optical fibre at different input light polarisations. Experimental evidence is presented that, because of the difference in birefringence between the cores, the power in them depends on which core the beam is launched into. Experimental data are interpreted in terms of a modified polarisation model for mode coupling in twin-core fibres which takes into account the birefringence of the cores. In addition, we demonstrate for the first time the use of the polarisation properties of a twincore fibre for mode locking in a fibre laser. (optical fibres,more » lasers and amplifiers. properties and applications)« less

  2. PHOTONICS AND NANOTECHNOLOGY Microscopic theory of optical properties of composite media with chaotically distributed nanoparticles

    NASA Astrophysics Data System (ADS)

    Shalin, A. S.

    2010-12-01

    The boundary problem of light reflection and transmission by a film with chaotically distributed nanoinclusions is considered. Based on the proposed microscopic approach, analytic expressions are derived for distributions inside and outside the nanocomposite medium. Good agreement of the results with exact calculations and (at low concentrations of nanoparticles) with the integral Maxwell-Garnett effective-medium theory is demonstrated. It is shown that at high nanoparticle concentrations, averaging the dielectric constant in volume as is done within the framework of the effective-medium theory yields overestimated values of the optical film density compared to the values yielded by the proposed microscopic approach. We also studied the dependence of the reflectivity of a system of gold nanoparticles on their size, the size dependence of the plasmon resonance position along the wavelength scale, and demonstrated a good agreement with experimental data.

  3. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured. Denuding of the aerosols, removed the outer organic coatings leaving behind the inner core of black carbon (soot) and any compounds that did not volatize completely. By simultaneously measuring the optical properties of the non-denuded as well as the denuded aerosol, we can study how the coatings affect the optical properties. The absorption coefficient measurements showed that coatings can cause an increase or decrease in absorption. The photoacoustic measurements were also combined with SP2 measurements to gain a mechanistic understanding of the effect of composition on the mass light absorption cross-sections of carbonaceous aerosols emitted by fires.

  4. Sensitivity of Photolysis Frequencies and Key Tropospheric Oxidants in a Global Model to Cloud Vertical Distributions and Optical Properties

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.

    2009-01-01

    Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.

  5. Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.

    2005-01-01

    The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution infrared data under ice cloudy con&tion. The error analysis shows that the uncertainty of the retrieved optical thickness and effective particle size has a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud'temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding e m r in the uncertainty of optical thickness is within 5-2096, depending on the value of cloud optical thickness. The applicability of the technique is demonstrated using the aircraft-based High- resolution Interferometer Sounder (HIS) data from the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) in 1996 and the First ISCCP Regional Experiment - Arctic Clouds Experiment (FIRE-ACE) in 1998.

  6. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  7. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  8. BOREAS TE-10 Leaf Optical Properties

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Chan, Stephen S.; Middleton, Elizabeth

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the reflectance, transmittance, gas exchange, oxygen evolution, and biochemical properties of boreal vegetation. This data set describes the spectral optical properties (reflectance and transmittance) of boreal forest conifers and broadleaf tree leaves as measured with a Spectron Engineering SE590 spectroradiometer at the Southern Study Area Old Black Spruce (SSA OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), Old Aspen (OA), Old Aspen Auxiliary (OA-AUX), Young Aspen Auxiliary (YA-AUX), and Young Aspen (YA) sites. The data were collected during the growing seasons of 1994 and 1996 and are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide.

    PubMed

    Erogbogbo, Folarin; Yong, Ken-Tye; Hu, Rui; Law, Wing-Cheung; Ding, Hong; Chang, Ching-Wen; Prasad, Paras N; Swihart, Mark T

    2010-09-28

    Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanoprobes. Multiple nanoparticles of each type are coencapsulated within the hydrophobic core of biocompatible phospholipid-polyethyleneglycol (DSPE-PEG) micelles. The size distribution and composition of the magnetofluorescent nanoprobes were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Enhanced cellular uptake of these probes in the presence of a magnetic field was demonstrated in vitro. Their luminescence stability in a prostate cancer tumor model microenvironment was demonstrated in vivo. This paves the way for multimodal silicon quantum-dot-based nanoplatforms for a variety of imaging and delivery applications.

  10. Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities

    NASA Astrophysics Data System (ADS)

    Sumlin, Benjamin J.; Heinson, William R.; Chakrabarty, Rajan K.

    2018-01-01

    The complex refractive index m = n + ik of a particle is an intrinsic property which cannot be directly measured; it must be inferred from its extrinsic properties such as the scattering and absorption cross-sections. Bohren and Huffman called this approach "describing the dragon from its tracks", since the inversion of Lorenz-Mie theory equations is intractable without the use of computers. This article describes PyMieScatt, an open-source module for Python that contains functionality for solving the inverse problem for complex m using extensive optical and physical properties as input, and calculating regions where valid solutions may exist within the error bounds of laboratory measurements. Additionally, the module has comprehensive capabilities for studying homogeneous and coated single spheres, as well as ensembles of homogeneous spheres with user-defined size distributions, making it a complete tool for studying the optical behavior of spherical particles.

  11. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    NASA Astrophysics Data System (ADS)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  12. The properties of water in swollen cross-linked polystyrene sulfo acids

    NASA Astrophysics Data System (ADS)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  13. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  14. Modeling aerosol water uptake in the arctic based on the κ-Kohler theory

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.

    2013-05-01

    Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.

  15. ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2).

    PubMed

    Ostadhossein, Alireza; Rahnamoun, Ali; Wang, Yuanxi; Zhao, Peng; Zhang, Sulin; Crespi, Vincent H; van Duin, Adri C T

    2017-02-02

    Two-dimensional layers of molybdenum disulfide, MoS 2 , have been recognized as promising materials for nanoelectronics due to their exceptional electronic and optical properties. Here we develop a new ReaxFF reactive potential that can accurately describe the thermodynamic and structural properties of MoS 2 sheets, guided by extensive density functional theory simulations. This potential is then applied to the formation energies of five different types of vacancies, various vacancy migration barriers, and the transition barrier between the semiconducting 2H and metallic 1T phases. The energetics of ripplocations, a recently observed defect in van der Waals layers, is examined, and the interplay between these defects and sulfur vacancies is studied. As strain engineering of MoS 2 sheets is an effective way to manipulate the sheets' electronic and optical properties, the new ReaxFF description can provide valuable insights into morphological changes that occur under various loading conditions and defect distributions, thus allowing one to tailor the electronic properties of these 2D crystals.

  16. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  17. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    NASA Astrophysics Data System (ADS)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  18. Characterization of AlMn TES Impedance, Noise, and Optical Efficiency in the First 150 mm Multichroic Array for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Crowley, Kevin T.; Choi, Steve K.; Kuan, Jeffrey; Austermann, Jason E.; Beall, James A.; Datta, Rahul; Duff, Shannon M.; Gallardo, Patricia A.; Hasselfield, Matthew; Henderson, Shawn W.; hide

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope features large arrays of multichroic pixels consisting of two orthogonal-polarization pairs of superconducting bolometers at two observing frequency bands. We present measurements of the detector properties and noise data in a subset of a fielded multichroic array of AlMn transition-edge sensor (TES) detectors. In this array, the distribution of critical temperature T(sub c) across detectors appears uniform at the percent level. The measured noise-equivalent power (NEP) distributions over approximately 1200 detectors are consistent with expectations. We find median NEPs of 4.0×10(exp -17) W/ v Hz for low-band detectors and 6.2×10(exp -17) W/ v Hz for high-band detectors under covered-window telescope test conditions with optical loading comparable to observing with precipitable water vapor approximately 0.5 mm. Lastly, we show the estimated detector optical efficiency, and demonstrate the ability to perform optical characterization over hundreds of detectors at once using a cryogenic blackbody source.

  19. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  20. Monthly and diurnal variations in aerosol size distributions, downwind of the Seoul metropolitan area

    NASA Astrophysics Data System (ADS)

    Kim, B. S.; Choi, Y.; Ghim, Y. S.

    2014-12-01

    The size distribution of aerosols is a physical property. However, since major aerosol types such as mineral dust, secondary inorganic ions, and carbonaceous aerosols are typically in specific size ranges, we can estimate the chemical composition of aerosols from the size distribution. We measured the mass size distribution of aerosols using an optical particle counter (Grimm Model 1.109) for a year from February 2013 to February 2014 at intervals of 10 minutes. The optical particle counter measures number concentrations between 0.25 and 32 μm in 31 bins and converts them into mass concentrations assuming a sphere and densities of aerosols in urban environment which originate from traffic and other combustion sources and are secondarily formed from photochemical reactions. The measurement site is at the rooftop of the five-story building on the hill (37.34 °N, 127.27 °E, 167 m above sea level), about 35 km southeast of downtown Seoul, the downwind area of which is affected by prevailing northwesterlies. There are no major emission sources nearby except a 4-lane road running about 1.4 km to the west. We tried to characterize the bimodal property of the mass size distribution, consisting of fine and coarse modes, in terms of mass concentration and mean diameter. Monthly and diurnal variations in mass concentration and mean diameter of each mode were investigated to estimate major aerosol types as well as major factors causing those variations.

  1. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  2. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Instrument Improvements

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Redemann, Jens; Chang, Cecilia; Dahlgren, Robert; Fahey, Lauren; Flynn, Connor; Johnson, Roy; Kacenelenbogen, Meloe; Leblanc, Samuel; Liss, Jordan; hide

    2017-01-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with grating spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution and climate. Hyper-spectral measurements of direct-beam solar irradiance provide retrievals of gas constituents, aerosol optical depth, and aerosol and thin cloud optical properties. Sky radiance measurements in the principal and almucantar planes enhance retrievals of aerosol absorption, aerosol type, and size mode distribution. Zenith radiance measurements are used to retrieve cloud properties and phase, which in turn are used to quantify the radiative transfer below cloud layers. These airborne measurements tighten the closure between satellite and ground-based measurements. In contrast to the Ames Airborne Tracking Sunphotometer (AATS-14) predecessor instrument, new technologies for each subsystem have been incorporated into 4STAR. In particular, 4STAR utilizes a modular sun-trackingsky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and spectrometerdetector configurations that may be tailored for specific scientific objectives. This paper discusses technical challenges relating to compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage at high resolution. Test results benchmarking the performance of the instrument against the AATS-14 standard and emerging science requirements are presented.

  3. Parameterization of Cloud Optical Properties for a Mixture of Ice Particles for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.

  4. Lightning charge moment changes estimated by high speed photometric observations from ISS

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.

    2017-12-01

    Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.

  5. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in optical fibers, there is no existing methodology that meets all of these requirements. Therefore, the primary objective of the research presented in this thesis was to provide a methodology that is capable of characterizing concurrently the three-dimensional RSD and RID in optical fibers and fiber-based devices. This research represents a detailed study of the requirements for characterizing optical fibers and how these requirements are met through appropriate data analysis and experimental apparatus design and implementation. To validate the developed methodology, the secondary objective of this research was to characterize both unperturbed and modified optical fibers. The RSD and the RID were measured in a standard telecommunications-grade optical fiber, Corning SMF-28. The effects of cleaving this fiber were also analyzed and the longitudinal variations that result from cleaving were explored for the first time. The fabrication of carbon-dioxide-laser-induced (CO2 -laser-induced) LPFGs was also examined. These devices provide many of the functionalities required for fiber-based communications components as well as fiber-based sensors, and they offer relaxed fabrication requirements when compared to LPFGs fabricated by other methods. The developed methodology was used to perform the first measurements of the changes that occur in the RSD and the RID during LPFG fabrication. The analysis of these measurements ties together many of the existing theories of CO2-laser-induced LPFG fabrication to present a more coherent understanding of the processes that occur. In addition, new evidence provides detailed information on the functional form of the RSD and the RID in LPFGs. This information is crucial for the modeling of LPFG behavior, for the design of LPFGs for specific applications, for the tailoring of fabrication parameters to meet design requirements, and for understanding the limitations of LPFG fabrication in commercial optical fibers. Future areas of research concerning the improvement of the developed methodology, the need to characterize other fibers and fiber-based devices, and the characterization of CO2-laser-induced LPFGs are identified and discussed.

  6. Changes in Optical Properties of Spacecraft Materials Due to Combined Effects of Aging Factors in a Space Environment

    DTIC Science & Technology

    2013-07-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 16-07-2013 2...Bidirectional scattering distribution function (BSDF) and Bidirectional reflectance distribution function ( BRDF ) measurements were conducted for the...radiation (visible, ultraviolet, vacuum ultraviolet and soft X-ray radiation) at an altitude of 400 km 4) BSDF/ BRDF measurements have been conducted for

  7. Particle Size Distributions and Attenuation on a Stratified Inner Continental Shelf

    DTIC Science & Technology

    2013-11-01

    ERDC/CHL TR-13-14 4 Inherent optical properties (IOPs) were collected using a nine-wavelength Wetlabs absorption/attenuation meter (ac-9). The ac-9...groups these in the transmitted signal , and so their scattering signature remains undetected. These results show the importance of using a suite of...ra u lic s La b or at or y Richard Styles November 2013 Approved for public release; distribution is unlimited. The US Army Engineer Research

  8. Digital holographic tomography method for 3D observation of domain patterns in ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.

    2016-11-01

    We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.

  9. Imaging bio-distribution of a topically applied dermatological cream on minipig skin using fluorescence lifetime imaging microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Chaney, Eric J.; Criley, Jennifer M.; Spillman, Darold R.; Hutchison, Phaedra B.; Li, Joanne; Marjanovic, Marina; Frey, Steve; Cook, Steven; Boppart, Stephen A.; Arp, Zane A.

    2017-02-01

    Currently there is a lack of in vivo techniques to evaluate the spatial bio-distribution of dermal drugs over time without the need to take multiple serial biopsies. To address this gap, we investigated the use of multi-photon optical imaging methods to non-invasively track drug distribution on miniature pig (Species: Sus scrofa, Strain: Göttingen) skin in vivo. Minipig skin is the standard comparative research model to human skin, and is anatomically and functionally similar. We employed fluorescence lifetime imaging microscopy (FLIM) to visualize the spatial distribution and residency time of a topically applied experimental dermatological cream. This was made possible by the endogenous fluorescent optical properties of the experimental drug (fluorescence lifetime > 3000 ps). Two different drug formulations were applied on 2 minipigs for 7 consecutive days, with the control creams applied on the contralateral side, followed by 7 days of post-application monitoring using a multi-modal optical imaging system (MPTflex-CARS, JenLab, Germany). FLIM images were obtained from the treated regions 24 hr post-application from day 1 to day 14 that allowed visualization of cellular and sub-cellular features associated with different dermal layers non-invasively to a depth of 200 µm. Five punch biopsies per animal were obtained from the corresponding treated regions between days 8 and 14 for bioanalytical analysis and comparison with results obtained using FLIM. In conclusion, utilization of non-invasive optical biopsy methods for dermal drug evaluation can provide true longitudinal monitoring of drug spatial distribution, remove sampling limitations, and be more time-efficient compared to traditional methods.

  10. Diatom frustules decorated with zinc oxide nanoparticles for enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Lamastra, F. R.; Grilli, M. L.; Leahu, G.; Belardini, A.; Li Voti, R.; Sibilia, C.; Salvatori, D.; Cacciotti, I.; Nanni, F.

    2017-09-01

    Zinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn2+ chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments. The optical properties of ZnO/DE hybrid powders were measured for the first time by means of photoacoustic spectroscopy (PAS). A new method to retrieve both the optical absorption and scattering coefficients from PAS is here discussed for powder aggregates. The fingerprint of the zinc oxide nanoparticles has been highlighted in the Mie scattering resonance in the UV-Vis range, and in the enhancement of the optical absorption with respect to diatomite.

  11. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate models. Moreover, the 3-D distribution of the simulated AOTs also provides information about the vertical structure of the dust aerosol extinction.

  12. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Mona, L.; D'Amico, G.; Wandinger, U.; Adam, M.; Amodeo, A.; Ansmann, A.; Apituley, A.; Alados Arboledas, L.; Balis, D.; Boselli, A.; Bravo-Aranda, J. A.; Chaikovsky, A.; Comeron, A.; Cuesta, J.; De Tomasi, F.; Freudenthaler, V.; Gausa, M.; Giannakaki, E.; Giehl, H.; Giunta, A.; Grigorov, I.; Groß, S.; Haeffelin, M.; Hiebsch, A.; Iarlori, M.; Lange, D.; Linné, H.; Madonna, F.; Mattis, I.; Mamouri, R.-E.; McAuliffe, M. A. P.; Mitev, V.; Molero, F.; Navas-Guzman, F.; Nicolae, D.; Papayannis, A.; Perrone, M. R.; Pietras, C.; Pietruczuk, A.; Pisani, G.; Preißler, J.; Pujadas, M.; Rizi, V.; Ruth, A. A.; Schmidt, J.; Schnell, F.; Seifert, P.; Serikov, I.; Sicard, M.; Simeonov, V.; Spinelli, N.; Stebel, K.; Tesche, M.; Trickl, T.; Wang, X.; Wagner, F.; Wiegner, M.; Wilson, K. M.

    2013-04-01

    The eruption of the Icelandic volcano Eyjafjallajökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.

  13. Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method.

    PubMed

    Vermeulen, A; Devaux, C; Herman, M

    2000-11-20

    A method has been developed for retrieving the scattering and microphysical properties of atmospheric aerosol from measurements of solar transmission, aureole, and angular distribution of the scattered and polarized sky light in the solar principal plane. Numerical simulations of measurements have been used to investigate the feasibility of the method and to test the algorithm's performance. It is shown that the absorption and scattering properties of an aerosol, i.e., the single-scattering albedo, the phase function, and the polarization for single scattering of incident unpolarized light, can be obtained by use of radiative transfer calculations to correct the values of scattered radiance and polarized radiance for multiple scattering, Rayleigh scattering, and the influence of ground. The method requires only measurement of the aerosol's optical thickness and an estimate of the ground's reflectance and does not need any specific assumption about properties of the aerosol. The accuracy of the retrieved phase function and polarization of the aerosols is examined at near-infrared wavelengths (e.g., 0.870 mum). The aerosol's microphysical properties (size distribution and complex refractive index) are derived in a second step. The real part of the refractive index is a strong function of the polarization, whereas the imaginary part is strongly dependent on the sky's radiance and the retrieved single-scattering albedo. It is demonstrated that inclusion of polarization data yields the real part of the refractive index.

  14. Laser-Induced Damage as a Function of Dielectric Properties at 1.06 Micrometers

    DTIC Science & Technology

    1976-07-01

    properties and manufacturing techniques of thin films applied to optical substrates were examined. A prima purpose of this study was to correlate the...field Sintensity distributions. This method, although time consuming , indicated a proper selection of 1.9 ± 0.05 m. The 1.8-rm aperture was no...although very time consuming and difficult to perform and analyze. For this reason the FECO measurement was used in calculations in- volving surface

  15. Bio-optical properties of Porsnagerfjorden (Norway) waters based on data collected in 2014 and 2015

    NASA Astrophysics Data System (ADS)

    Białogrodzka, Jagoda; Stramska, Małgorzata; Burska, Dorota; Ficek, Dariusz; Stoń-Egiert, Joanna; Winogradow, Aleksandra

    2016-04-01

    Oceanographic data collected in the Arctic are valuable in view of the role of this region in the studies on global climate change and the fact that historically the number of in situ measurements is relatively low. Porsangerfjorden, Norway, is an example of oceanic basin with case 2 water according to the optical classification. Optical data from coastal seas are difficult in interpretation because the concentrations of optically important components can be high, variable, and not covarying with each other. Porsanger Fjord can be divided into three basins: inner, middle and outer, where physical and bio-optical properties of water masses differ. We collected optical data and water samples for phytoplankton pigments, dissolved organic matter, particulate (POC) and dissolved (DOC) organic carbon, and particulate inorganic carbon (PIC) during our two summer expeditions in 2014 and 2015. In this presentation we focus on data collected with WETLabs' ac-9 and ac-s spectrophotometers and ECO-Triplet and ECO-Triplet-w fluorometers. Concurrently with in situ optical measurements water samples were collected in situ and soon afterwards they were filtered in the laboratory at the station, stored and transported for further processing in Poland. Our analysis includes 146 of in situ measurements and discrete water samples: 62 of POC, 52 of PIC, 33 of DOC, 68 of dissolved organic matter and 89 of phytoplankton pigments. During our analysis we compare chlorophyll (Chl_a), dissolved organic matter (CDOM) and carbon concentrations with in situ collected inherent optical properties of sea water to find empirical proxies allowing to estimate various water component concentrations from optical data. Application of these proxies to available bio-optical data allowed us to derive spatial distribution of these water constituents and their variability. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX).

  16. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly.

    PubMed

    Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik

    2015-04-22

    The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.

  17. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly

    NASA Astrophysics Data System (ADS)

    Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik

    2015-04-01

    The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.

  18. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  19. Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian A.; Evans, David G.; Boss, Emmanuel

    2008-01-01

    Understanding the sources of dissolved organic carbon (DOC) in drinking-water reservoirs is an important management issue because DOC may form disinfection by-products, interfere with disinfection, or increase treatment costs. DOC may be derived from a host of sources-algal production of DOC in the reservoir, marginal production of DOC from mucks and vascular plants at the margins, and sediments in the reservoir. The purpose of this study was to assess if release of DOC from reservoir sediments containing ferric chloride coagulant was a significant source of DOC to the reservoir. We examined the source-specific contributions of DOC using a profiling system to measure the in situ distribution of optical properties of absorption and fluorescence at various locations in the reservoir. Vertical optical profiles were coupled with discrete water samples measured in the laboratory for DOC concentration and optical properties: absorption spectra and excitation emission matrix spectra (EEMs). Modeling the in situ optical data permitted estimation of the bulk DOC profile in the reservoir as well as separation into source-specific contributions. Analysis of the source-specific profiles and their associated optical characteristics indicated that the sedimentary source of DOC to the reservoir is significant and that this DOC is labile in the reservoir. We conclude that optical profiling is a useful technique for understanding complex biogeochemical processes in a reservoir.

  20. The physical properties of black carbon and other light-absorbing material emitted from prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kreidenweis, S. M.; Yokelson, R. J.; Sullivan, A. P.; Lee, T.; Collett, J. L.; Fortner, E.; Onasch, T. B.; Akagi, S. K.; Taylor, J.; Coe, H.

    2012-12-01

    Black carbon (BC) aerosol emitted from fires absorbs light, leading to visibility degradation as well as regional and global climate impacts. Fires also emit a wide range of trace gases and particulates that can interact with emitted BC and alter its optical properties and atmospheric lifetime. Non-BC particulate species emitted by fires can also scatter and absorb light, leading to additional effects on visibility. Recent work has shown that certain organic species can absorb light strongly at shorter wavelengths, giving it a brown or yellow color. This material has been classified as brown carbon, though it is not yet well defined. Land managers must find a balance between the negative impacts of prescribed fire emissions on visibility and air quality and the need to prevent future catastrophic wildfire as well as manage ecosystems for habitat restoration or other purposes. This decision process requires accurate assessments of the visibility impacts of fire emissions, including BC and brown carbon, which in turn depend on their optical properties. We present recent laboratory and aircraft measurements of black carbon and aerosol optical properties emitted from biomass burning. All measurement campaigns included a single particle soot photometer (SP2) instrument capable of providing size-resolved measurements of BC mass and number distributions and mixing state, which are needed to separate the BC and brown carbon contributions to total light absorption. The laboratory experiments also included a three-wavelength photoacoustic spectrometer that provided accurate measurements of aerosol light absorption. The laboratory systems also characterized emissions after they had been treated with a thermal denuder to remove semi-volatile coatings, allowing an assessment of the role of non-BC coatings on bulk aerosol optical properties. Emissions were also aged in an environmental smog chamber to examine the role of secondary aerosol production on aerosol optical properties.

  1. Determining Size Distribution at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Mason, E. L.; Lemmon, M. T.

    2016-12-01

    Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.

  2. The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.

    2013-12-01

    One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near-field spectroscopy (TINS) for broadband chemical nano-spectroscopic imaging, where the thermally driven vibrational optical dipoles provide their own intrinsic light source.

  3. Aerosol optical properties of Western Mediterranean basin from multi-year AERONET data

    NASA Astrophysics Data System (ADS)

    Benkhalifa, Jamel; Léon, Jean François; Chaabane, Mabrouk

    2017-11-01

    Aerosol optical properties including the total and coarse mode aerosol extinction optical depth (AODt and AODc respectively), Angstrom exponent (AE), size distribution, single scattering albedo (SSA) were examined using long-term ground-based radiometric measurements at 9 sites in the Western Mediterranean: Oujda, Malaga, Barcelona, Carpentras, Rome Tor Vergata, Ersa, Ispra, Venice and Evora, during the 4-year study period (2010-2013). The South-North gradient in the fraction of AODc represents the signature of the increasing influence of coarse particles on the optical properties at southern stations. This fraction has a daily mean ranging from 48 ± 18% at the southern site Oujda and to 8 ± 8% at Ispra. The low average AE444-870 value (<0.7) at Oujda confirms the major influence of large dust particles. Conversely, the AOD at urban stations are dominated by fine mode particles. The Angstrom Exponent (AE444-870) above 1.5 in Ispra and Venice indicates an atmospheric situation corresponding to the urban pollution controlled by small particles. We have analyzed the intrinsic dust optical properties by selecting the dusty days corresponding to a total optical depth above 0.3 and a fraction of the coarse mode optical depth above 30%. For these cases, the mean AODt during dusty days was shown to be close to 0.4. During dusty days, the coarse mode fraction represents 88% of the total volume at Oudja and above 83% for all other sites. There is a weak variability in the mean coarse mode volume median radius, showing an average of 1.98 ± 0.1. A maximum in the AODc was observed in the summer of 2012, with particular high events on June 27. The forward trajectory starting at Evora on June 27 clearly indicates that all the sites were affected by such dust events in the following days.

  4. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.

  5. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.

  6. Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols

    NASA Astrophysics Data System (ADS)

    Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.

    2002-05-01

    Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and settling of the aerosol, thus this analysis allowed to get a qualitative relation with trajectories and transport models. An additional finding is that except for the dust storms, the aerosol optical properties defined by fine particles, i.e. product of urban pollution. Possible explanations for this situation are the pollution sources in the Israeli Mediterranean coast, where population and industrial centers are concentrated, and long-range transport of polluted air masses from the European region.

  7. Photoemf in cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1971-01-01

    Theoretical and experimental investigations on CdS single crystals and CuxS:CdS photovoltaic cells prepared from CdS single crystals by a chemical-dip procedure are described. The studies are aimed at clarifying cell mechanisms which affect key cell properties (efficiency, reliability, and lifetime) by examining the properties of intrinsic and extrinsic defects in the junction and surface regions and their effects on carrier transport through these regions. The experimental research described includes studies of thermal, infrared, and field quenching of acceptor-doped CdS crystals; investigation of optical and electrical properties of CuxS:CdS photovoltaic cells (current-voltage characteristics, spectral distribution of photocurrent and photovoltage) and the dependence of these properties on temperature and light intensity; measurement of changes, as a result of heat treatment in ultrahigh vacuum, in the spectral distribution of photoconductivity at room temperature and liquid nitrogen temperature, the luminescence spectrum at liquid nitrogen temperature, and the thermally stimulated current curves of CdS crystals; determination of the effect of irradiation with 150 keV (maximum) X-rays on the spectral distribution of photoconductivity and thermally-stimulated current of CdS crystals; and studies of the effect of growth conditions on the photoconductive properties of CdS crystals.

  8. Light-driven liquid microlenses

    NASA Astrophysics Data System (ADS)

    Angelini, A.; Pirani, F.; Frascella, F.; Ricciardi, S.; Descrovi, E.

    2017-02-01

    We propose a liquid polymeric compound based on photo-responsive azo-polymers to be used as light-activated optical element with tunable and reversible functionalities. The interaction of a laser beam locally modifies the liquid density thus producing a refractive index gradient. The laser induced refractive index profiles are observed along the optical axis of the microscope to evaluate the total phase shift induced and along the orthogonal direction to provide the axial distribution of the refractive index variation. The focusing and imaging properties of the liquid lenses as functions of the light intensity are illustrated.

  9. Crystal structure and optical properties of silver nanorings

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  10. Aircraft observations of the physical and radiative properties of biomass aerosol particles during SAFARI-2000.

    NASA Astrophysics Data System (ADS)

    Osborne, S. R.; Haywood, J. M.

    2001-12-01

    An initial analysis will be shown from the ~80 h of data collected between 2--18 September 2000 by the UK Met Office C-130 aircraft during the dry season campaign of the Southern African Regional Science Initiative (SAFARI-2000). The talk will concentrate on the physical and optical properties of the biomass aerosol. The evolution of the particle size spectrum and its optical properties at emission and after ageing will be shown. The vertical distribution of the biomass plume over the land and sea will be compared in view of the local meteorology. A generalised three log-normal model is shown to represent aged biomass aerosol over the sea areas, both in terms of the number and mass particle size spectra, but also derived optical properties (e.g. asymmetry factor, single scatter albedo (ω 0) and extinction coefficient) as calculated using Mie theory and appropriate refractive indices. ω 0 was determined independently using a particle soot absorption photometer (giving the absorption coefficient at a wavelength of 0.567 μ m) and a nephelometer (giving the scattering coefficients at 0.45, 0.55 and 0.65 μ m). Good agreement was found between the measurements and those obtained from the Mie calculations and observed size distributions. A typical value of ω 0 at 0.55 μ m for aged biomass aerosol was 0.90. The radiative properties of the biomass aerosol over both land and sea will be summarised. Stratocumulus cloud was present on some of the days over the sea and the surprising lack of interaction between the elevated biomass plume (containing significant levels of cloud condensation nuclei) and the cloud capping the marine boundary layer will be illustrated. Using the cloud-free and cloudy case studies we can begin to elucidate the levels of direct and indirect forcing of the biomass aerosol on a regional scale. >http://www.mrfnet.demon.co.uk/africa/SAFARI2000.htm

  11. UV-Vis-IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning

    NASA Astrophysics Data System (ADS)

    Sumlin, Benjamin J.; Heinson, Yuli W.; Shetty, Nishit; Pandey, Apoorva; Pattison, Robert S.; Baker, Stephen; Hao, Wei Min; Chakrabarty, Rajan K.

    2018-02-01

    Constraining the complex refractive indices, optical properties and size of brown carbon (BrC) aerosols is a vital endeavor for improving climate models and satellite retrieval algorithms. Smoldering wildfires are the largest source of primary BrC, and fuel parameters such as moisture content, source depth, geographic origin, and fuel packing density could influence the properties of the emitted aerosol. We measured in situ spectral (375-1047 nm) optical properties of BrC aerosols emitted from smoldering combustion of Boreal and Indonesian peatlands across a range of these fuel parameters. Inverse Lorenz-Mie algorithms used these optical measurements along with simultaneously measured particle size distributions to retrieve the aerosol complex refractive indices (m = n + iκ). Our results show that the real part n is constrained between 1.5 and 1.7 with no obvious functionality in wavelength (λ), moisture content, source depth, or geographic origin. With increasing λ from 375 to 532 nm, κ decreased from 0.014 to 0.003, with corresponding increase in single scattering albedo (SSA) from 0.93 to 0.99. The spectral variability of κ follows the Kramers-Kronig dispersion relation for a damped harmonic oscillator. For λ ≥ 532 nm, both κ and SSA showed no spectral dependency. We discuss differences between this study and previous work. The imaginary part κ was sensitive to changes in FPD, and we hypothesize mechanisms that might help explain this observation.

  12. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension ( D max) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bulletmore » rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large D max, near-infrared single-scattering albedo and asymmetry parameter ( g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  13. Radiative characterization of random fibrous media with long cylindrical fibers: Comparison of single- and multi-RTE approaches

    NASA Astrophysics Data System (ADS)

    Randrianalisoa, Jaona; Haussener, Sophia; Baillis, Dominique; Lipiński, Wojciech

    2017-11-01

    Radiative heat transfer is analyzed in participating media consisting of long cylindrical fibers with a diameter in the limit of geometrical optics. The absorption and scattering coefficients and the scattering phase function of the medium are determined based on the discrete-level medium geometry and optical properties of individual fibers. The fibers are assumed to be randomly oriented and positioned inside the medium. Two approaches are employed: a volume-averaged two-intensity approach referred to as multi-RTE approach and a homogenized single-intensity approach referred to as the single-RTE approach. Both approaches require effective properties, determined using direct Monte Carlo ray tracing techniques. The macroscopic radiative transfer equations (for single intensity or two volume-averaged intensities) with the corresponding effective properties are solved using Monte Carlo techniques and allow for the determination of the radiative flux distribution as well as overall transmittance and reflectance of the medium. The results are compared against predictions by the direct Monte Carlo simulation on the exact morphology. The effects of fiber volume fraction and optical properties on the effective radiative properties and the overall slab radiative characteristics are investigated. The single-RTE approach gives accurate predictions for high porosity fibrous media (porosity about 95%). The multi-RTE approach is recommended for isotropic fibrous media with porosity in the range of 79-95%.

  14. Stratospheric aerosols and precursor gases

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  15. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    PubMed

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  16. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  17. The near-infrared waveguide properties of an LGS crystal formed by swift Kr8+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian; Sun, Jian-Rong; Wang, Zhi-Guang; Wang, Xue-Lin

    2013-11-01

    In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr8+-ion implantation at a fluence of 1 × 1012 cm-2. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr8+ ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.

  18. Optical properties of truncated Au nanocages with different size and shape

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Qi, Hong; Ren, Ya-Tao; Sun, Jian-Ping; Ruan, Li-Ming

    2017-06-01

    The hollow nanostructures are conducive to applications including drug delivery, energy storage and conversion, and catalysis. In the present work, a versatile type of Au nanoparticles, i.e. nanocage with hollow interior, was studied thoroughly. Simulation of the optical properties of nanocages with different sizes and shapes was presented, which is essential for tuning the localized surface plasmon resonance peak. The edge length, side length of triangle, and wall thickness were used as structural parameters of truncated Au nanocage. The dependence of absorption efficiency, resonant wavelength, and absorption quantum yield on the structural parameters were discussed. Meanwhile, the applications of absorption quantum yield in biomedical imaging and laser induced thermal therapy were investigated. It was found that the phenomenon of multipolar plasmon resonances exists on truncated Au nanocage. Furthermore, the electric field distribution at different resonant wavelengths was also investigated. It is found that the electromagnetic field corresponds to the dipolar mode in an individual nanocage is largely distributed at the corners. Whereas, the electromagnetic field corresponds to the multipolar region is mainly located in the internal corners and edges.

  19. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  20. New properties of a fiber optic sensor in application of a composite fence for critical infrastructure protection

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Markowski, P.

    2015-09-01

    This paper presents a new solution of using the composite fence with a novel fiber optic modalmetric sensor integrated within its structure. The modalmetric sensor is based on changes in a transverse modal field which is generated at the output of a multimode fiber. By a spatial limitation of the transverse modal field observation to its fragment thereof, changes' transformation in the modal distribution into changes of the output signal amplitude is made. Due to a constant analysis of the structure output signal, detection of an external disorder is possible. Integration of optical fibers with the fence structure allows for an accurate reproduction of the fence movement onto the optical fiber by significantly improving sensitivity of the modalmetric fiber sensor structure.

  1. Co-Precipitation Synthesis and Optical Properties of Mn4+-Doped Hexafluoroaluminate w-LED Phosphors

    PubMed Central

    Geitenbeek, Robin G.; Meijerink, Andries

    2017-01-01

    Mn4+-activated hexafluoroaluminates are promising red-emitting phosphors for white light emitting diodes (w-LEDs). Here, we report the synthesis of Na3AlF6:Mn4+, K3AlF6:Mn4+ and K2NaAlF6:Mn4+ phosphors through a simple two-step co-precipitation method. Highly monodisperse large (~20 μm) smoothed-octahedron shaped crystallites are obtained for K2NaAlF6:Mn4+. The large size, regular shape and small size distribution are favorable for application in w-LEDs. All Mn4+-doped hexafluoroaluminates show bright red Mn4+ luminescence under blue light excitation. We compare the optical properties of Na3AlF6:Mn4+, K3AlF6:Mn4+ and K2NaAlF6:Mn4+ at room temperature and 4 K. The luminescence measurements reveal that multiple Mn4+ sites exist in M3AlF6:Mn4+ (M = Na, K), which is explained by the charge compensation that is required for Mn4+ on Al3+ sites. Thermal cycling experiments show that the site distribution changes after annealing. Finally, we investigate thermal quenching and show that the luminescence quenching temperature is high, around 460–490 K, which makes these Mn4+-doped hexafluoroaluminates interesting red phosphors for w-LEDs. The new insights reported on the synthesis and optical properties of Mn4+ in the chemically and thermally stable hexafluoroaluminates can contribute to the optimization of red-emitting Mn4+ phosphors for w-LEDs. PMID:29149083

  2. A discussion on validity of the diffusion theory by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Li, Hui; Xie, Shusen

    2008-12-01

    Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.

  3. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam

    2014-03-01

    It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.

  4. Measurements of Intensive Aerosol Optical Properties During TexAQS II

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Wright, M. E.

    2007-12-01

    Time-resolved measurements of the bulk extensive aerosol optical properties - particle extinction coefficient (bext) and particle scattering coefficient (bscat) - and particle number concentrations were made as part of the six-week TRAMP experiment during the TexAQS II (2006) study. These measurements were done at a nominal surface site (the roof of an 18 story building) on the University of Houston campus near downtown Houston, Texas. Our ground-based tandem cavity ring-down transmissometer/nephelometer instrument (CRDT/N) provided the aerosol optical property measurements. A commercial Condensation Particle Counter (TSI 3007) was used to measure the number concentrations during part of the study period. The optical data was used to construct the intensive aerosol optical properties single scattering albedo ω0 at 532 nm and the Angstrom exponent for extinction between 532 nm and 1064 nm. Recent validation studies of size- selected laboratory generated aerosols are presented to illustrate the soundness of this approach using our instrument. The Angstrom exponent is compared to values from other instruments operating in the area and is found to be a characteristic of the regional air mass under some conditions. Size distributions measured during the study were used to create a new empirical adjustment to scattering measured by the Radiance Research nephelometer, resulting in improved results for particle absorption coefficient and single scattering albedo. The study average value of ω0(532 nm) = 0.78 is lower than expected from comparable field studies and even lower values are experienced during the study. Possible causes of this discrepancy are examined and the utility of using the current version of the CRDT/N instrument to measure the key radiative property ω0 is assessed. Observed episodes of rapid increases in particle number concentration with little corresponding growth in the optical properties can presumably be used to signal the occurrence of particle nucleation or growth via gas-phase condensation. These results may be confirmed by other data taken during the TRAMP experiment. These results will be discussed in the context of aerosol effects on regional and larger scale climate.

  5. Exploring the Full Range of Properties of Quasar Spectral Distributions

    NASA Technical Reports Server (NTRS)

    Wilkes, B.

    1998-01-01

    The aim of this work is to support our ISO, far-infrared (IR) observing program of quasars and active galaxies. We have obtained, as far as possible, complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modelling of that continuum. This includes: ground-based optical, near-IR and mm data, the spectral ranges closest to the ISO data, within 1-2 years of the ISO observations themselves. ISO was launched in Nov 1995 and is currently observing routinely. It has an estimated lifetime is 2 years. All near-IR and optical imaging and spectroscopy are now in hand and in the process of being reduced, mm data collection and proposal writing continues.

  6. Optical properties of porous polylactide scaffolds

    NASA Astrophysics Data System (ADS)

    Yusupov, Vladimir I.; Sviridov, Alexander P.; Zhigarkov, Vyacheslav S.; Shubnyy, Andrey G.; Vorobieva, Nataliya N.; Churbanov, Semyon N.; Minaev, Nikita V.; Timashev, Peter S.; Rochev, Yury A.; Bagratashvili, Victor N.

    2018-04-01

    Light field intensity distribution in three-dimensional polylactide scaffolds after irradiation with low-intensity light from one side of the samples has been determined in the visible and near-infrared regions of the spectrum. Two different types of scaffolds manufactured by the methods of supercritical fluid foaming and surface selective laser sintering have been investigated. The problem is solved by numerical calculation according to the Monte Carlo method involving experimentally obtained information about effective optical parameters of the scaffold material. Information about intensity distribution of the incident light in the matrix volume is needed to assess the radiation level for the scaffold cells after photobiostimulation. It has been shown that the formation of the light field in case of strongly scattering media, such as polylactide scaffolds, is determined by anisotropy g and the scattering coefficient μs.

  7. Projection systems with a cut-off line for automotive applications

    NASA Astrophysics Data System (ADS)

    Kloos, G.; Eichhorn, K.

    2005-08-01

    The lighting systems of a car provide a variety of challenges from the point of view of illumination science and technology. Engineering work in this field has to deal both with reflector and lens design as well as with opto-mechanical design and sensor technology. It has direct implications on traffic safety and the efficiency in which energy is used. Therefore, these systems are continuously improved and optimized. In this context, adaptive systems that we investigate for automotive applications gain increasing importance. The properties of the light distribution in the vicinity of the cut-off line are of key importance for the safe and efficient operation of automotive headlamps. An alternative approach is proposed to refine the description of these properties in an attempt to make it more quantitative. This description is intended to facilitate intercomparison between different systems and/or to study environmental influences on the cut-off line of a system under investigation. Designing projection systems it is necessary to take a delicate trade-off between efficiency, light-distribution characteristics, mechanical boundary conditions, and legal requirements into account. Considerations and results on optical properties of three-axial reflectors in dependence of layout parameters will be given. They can serve as a guideline for the optical workshop and for free-form optimization.

  8. Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra

    2013-01-01

    In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.

  9. Optical and Nanoparticle Analysis of Normal and Cancer Cells by Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Szajko, John; Sander, Christopher; Rebuyon, Roland; Easton, Judah; Tanner, Carol; Ruggiero, Steven

    2015-03-01

    We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for intra-cellular material (lysates) in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000 nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of approximately 50 to 250 nm. Especially significant is a clearly higher density of particles at about 100 nm and smaller for normal cells. Department of Physics, Harper Cancer Research Institute, and the Office of Research at the University of Notre Dame.

  10. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer

    PubMed Central

    Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei

    2016-01-01

    The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444

  11. Noncontact optical coherence elastography of the posterior porcine sclera in situ as a function of IOP

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Aglyamov, Salavat R.; Wu, Chen; Han, Zhaolong; Lafon, Ericka; Larin, Kirill V.

    2017-02-01

    Recent work has shown that the biomechanical properties of tissues in the posterior eye have are critical for understanding the etiology and progression of ocular diseases. For instance, the primary risk for glaucoma is an elevated intraocular pressure (IOP). Weak tissues will deform under the large pressure, causing damage to vital tissues. In addition, scleral elasticity can influence the shape of the eye-globe, altering the axial length. In this work, we utilize a noncontact form of optical coherence elastography (OCE) to quantify the spatial distribution of biomechanical properties of the optic nerve, its surrounding tissues, and posterior sclera on the exterior of in situ porcine eyes in the whole eyeglobe configuration. The OCE measurements were taken at various IOPs to evaluate the biomechanical properties of the tissues as a function of IOP. The air-pulse induced dynamic response of the tissues was linked to Young's modulus by a simple kinematic equation by quantified the damped natural frequency (DNF). The results show that the posterior sclera is not as stiff as the optic nerve and its surrounding tissues ( 460 Hz and 894 Hz at 10 mmHg IOP, respectively). Moreover, the scleral stiffness was generally unaffected by IOP ( 460 Hz at 10 mmHg IOP as compared to 516 Hz at 20 mmHg), whereas the optic nerve and its surrounding tissues stiffened as IOP was increased ( 894 Hz at 10 mmHg to 1221 Hz at 20 mmHg).

  12. Estimating surface visibility at Hong Kong from ground-based LIDAR, sun photometer and operational MODIS products.

    PubMed

    Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W

    2013-09-01

    Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.

  13. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 2. Global analysis from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Platnick, Steven

    2008-01-01

    Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.

  14. Channel analysis for single photon underwater free space quantum key distribution.

    PubMed

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  15. A search for applications of Fiber Optics in early warning systems for natural hazards.

    NASA Astrophysics Data System (ADS)

    Wenker, Koen; Bogaard, Thom

    2013-04-01

    In order to reduce the societal risk associated with natural hazards novel technologies could help to advance in early warning systems. In our study we evaluate the use of multi-sensor technologies as possible early-warning systems for landslides and man-made structures, and the integration of the information in a simple Decision Support System (DSS). In this project, particular attention will be paid to some new possibilities available in the field of distributed monitoring systems of relevant parameters for landslide and man-made structures monitoring (such as large dams and bridges), and among them the distributed monitoring of temperature, strain and acoustic signals by FO cables. Fiber Optic measurements are becoming more and more popular. Fiber optic cables have been developed in the telecommunication business to send large amounts of information over large distances with the speed of light. Because of the commercial application, production costs are relatively low. Using fiber optics for measurements has several advantages. This novel technology is, for instance, immune to electromagnetic interference, appears stable, very accurate, and has the potential to measure several independent physical properties in a distributed manner. The high resolution spatial and temporal distributed information on e.g. temperature or strain (or both) make fiber optics an interesting measurement technique. Several applications have been developed in both engineering as science and the possibilities seem numerous. We will present a thorough literature review that was done to assess the applicability and limitations of FO cable technology. This review was focused but not limited to application in landslide research. Several examples of current practices will be shown, also from outside the natural hazard practice and possible application will be discussed.

  16. In Situ Aerosol Size Distributions and Clear Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, D. R.; Johnson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.; hide

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and two OPCS. During the campaign, the boundary layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on four missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol size distributions and those measured directly by an airborne 14-wavelength sunphotometer and three nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size distribution based calculations. Simultaneous comparison with such a wide range of directly measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly measured optical properties varied for different measurements and for different cases. Averaged over the four case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotomoter by 2.5% in the clean boundary later, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and nondusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the > 100 individual comparisons from which they were averaged, were within estimated uncertainties.

  17. Optical filter for highlighting spectral features part I: design and development of the filter for discrimination of human skin with and without an application of cosmetic foundation.

    PubMed

    Nishino, Ken; Nakamura, Mutsuko; Matsumoto, Masayuki; Tanno, Osamu; Nakauchi, Shigeki

    2011-03-28

    Light reflected from an object's surface contains much information about its physical and chemical properties. Changes in the physical properties of an object are barely detectable in spectra. Conventional trichromatic systems, on the other hand, cannot detect most spectral features because spectral information is compressively represented as trichromatic signals forming a three-dimensional subspace. We propose a method for designing a filter that optically modulates a camera's spectral sensitivity to find an alternative subspace highlighting an object's spectral features more effectively than the original trichromatic space. We designed and developed a filter that detects cosmetic foundations on human face. Results confirmed that the filter can visualize and nondestructively inspect the foundation distribution.

  18. Noninvasive imaging of absolute PpIX concentration distribution in nonmelanoma skin tumors at pre-PDT

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    Photodynamic Therapy (PDT) has proven to be an effective treatment option for nonmelanoma skin cancers. The ability to quantify the concentration of drug in the treated area is crucial for effective treatment planning as well as predicting outcomes. We utilized spatial frequency domain imaging for quantifying the accurate concentration of protoporphyrin IX (PpIX) in phantoms and in vivo. We correct fluorescence against the effects of native tissue absorption and scattering parameters. First we quantified the absorption and scattering of the tissue non-invasively. Then, we corrected raw fluorescence signal by compensating for optical properties to get the absolute drug concentration. After phantom experiments, we used basal cell carcinoma (BCC) model in Gli mice to determine optical properties and drug concentration in vivo at pre-PDT.

  19. Radar Imaging Using The Wigner-Ville Distribution

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem; Kenny, Owen P.; Whitehouse, Harper J.

    1989-12-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. This paper first discusses the radar equation in terms of the time-frequency representation of the signal received from a radar system. It then presents a method of tomographic reconstruction for time-frequency images to estimate the scattering function of the aircraft. An optical archi-tecture is then discussed for the real-time implementation of the analysis method based on the WVD.

  20. Enhanced structural and optical properties of the polyaniline-calcium tungstate (PANI-CaWO4 nanocomposite for electronics applications

    NASA Astrophysics Data System (ADS)

    Sabu, N. Aloysius; Francis, Xavier; Anjaly, Jose; Sankararaman, S.; Varghese, Thomas

    2017-06-01

    In this article, we report the synthesis and characterization of polyaniline-calcium tungstate nanocomposite, a novel material for potential applications. The PANI-CaWO4 nanocomposite was prepared by in situ oxidative polymerization of aniline in the presence of CaWO4 nanoparticles dispersed in ethanol. Investigations using X-ray diffraction, Fourier-transformed infrared spectroscopy, UV-visible, photoluminescence and Raman spectroscopy confirmed the formation of the nanocomposite of PANI with CaWO4 nanoparticles. Scanning electron microscopy revealed almost uniform distribution of CaWO4 nanoparticles in the polyaniline matrix. These studies also confirmed electronic structure modification as a result of incorporating CaWO4 nanoparticles in PANI. Composite formation resulted in large decrease in the optical band gap and enhanced photoluminescence. The augmented structural, optical and photoluminescence properties of the PANI-CaWO4 nanocomposite can be used to explore potential applications in micro- and optoelectronics. This is the first report presenting synthesis and characterization of the PANI-CaWO4 nanocomposite.

  1. To construct a stable and tunable optical trap in the focal region of a high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Kandasamy, Gokulakrishnan; Ponnan, Suresh; Sivasubramonia Pillai, T. V.; Balasundaram, Rajesh K.

    2014-05-01

    Based on the diffraction theory, the focusing properties of a radially polarized quadratic Bessel-Gaussian beam (QBG) with on-axis radial phase variance wavefront are investigated theoretically in the focal region of a high numerical aperture (NA) objective lens. The phase wavefront C and pupil beam parameter μ of QBG are the functions of the radial coordinate. The detailed numerical calculation of the focusing property of a QBG beam is presented. The numerical calculation shows that the beam parameter μ and phase parameter C have greater effect on the total electric field intensity distribution. It is observed that under the condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. Also, some different focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, and triangle dark hollow focus, which find wide optical applications such as optical trapping and nanopatterning.

  2. Ferroelectric and optical properties of `Ba-doped' new double perovskites

    NASA Astrophysics Data System (ADS)

    Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.

    2018-06-01

    Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.

  3. Parameterization of Shortwave Cloud Optical Properties for a Mixture of Ice Particle Habits for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.

  4. Mueller matrix signature in advanced fluorescence microscopy imaging

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Qiu, Jianjun; Kao, Fu-Jen; Diaspro, Alberto

    2017-02-01

    We have demonstrated the measurement and characterization of the polarization properties of a fluorescence signal using four-channel photon counting based Stokes-Mueller polarization microscopy. Thus, Lu-Chipman decomposition was applied to extract the critical polarization properties such as depolarization, linear retardance and the optical rotation of collagen type I fiber. We observed the spatial distribution of anisotropic and helical molecules of collagen from the reconstructed 2D Mueller images based on the fluorescence signal in a pixel-by-pixel manner.

  5. Pan-Arctic Distributions of Continental Runoff in the Arctic Ocean

    DTIC Science & Technology

    2013-01-11

    lignin is well established as a biomarker of tDOM in oceanic waters10,11 and has been successfully applied as a tracer of riverine inputs in the... Lignin is also an important chro- mophore in tDOM, a property that facilitates detection using optical properties. Here, we demonstrate that the spectral...solved lignin and tDOM across various river-influenced ocean mar- gins of the Arctic Ocean12,13 (Fig. 1a). An increase in S2752295 is indicative of a

  6. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  7. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.

    PubMed

    Fredriksson, Ingemar; Larsson, Marcus

    2017-10-01

    Laser speckle-based techniques are frequently used to assess microcirculatory blood flow. Perfusion estimates are calculated either by analyzing the speckle fluctuations over time as in laser Doppler flowmetry (LDF), or by analyzing the speckle contrast as in laser speckle contrast imaging (LSCI). The perfusion estimates depend on the amount of blood and its speed distribution. However, the perfusion estimates are commonly given in arbitrary units as they are nonlinear and depend on the magnitude and the spatial distribution of the optical properties in the tissue under investigation. We describe how the spatial confinement of blood to vessels, called the vessel packaging effect, can be modeled in LDF and LSCI, which affect the Doppler power spectra and speckle contrast, and the underlying bio-optical mechanisms for these effects. As an example, the perfusion estimate is reduced by 25% for LDF and often more than 50% for LSCI when blood is located in vessels with an average diameter of 40  μm, instead of being homogeneously distributed within the tissue. This significant effect can be compensated for only with knowledge of the average diameter of the vessels in the tissue. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    PubMed

    Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.

  9. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  10. Detoxification of aflatoxins on prospective approach: effect on structural, mechanical, and optical properties under pressures.

    PubMed

    Wei, Yong-Kai; Zhao, Xiao-Miao; Li, Meng-Meng; Yu, Jing-Xin; Gurudeeban, Selvaraj; Hu, Yan-Fei; Ji, Guang-Fu; Wei, Dong-Qing

    2018-06-01

    Aflatoxins are sequential of derivatives of coumarin and dihydrofuran with similar chemical structures and well-known carcinogenic agent. Many studies performed to detoxify aflatoxins, but the result is not ideal. Therefore, we studied structural, infrared spectrum, mechanical, and optical properties of these compounds in the aim of perspective physics. Mulliken charge distributions and infrared spectral analysis performed to understand the structural difference between the basic types of aflatoxins. In addition, the effect of pressure, different polarized, and incident directions on their structural changes was determined. It is found that AFB 1 is most stable structure among four basic types aflatoxins (AFB 1 , AFB 2 , AFG 1 , and AFG 2 ), and IR spectra are analyzed to exhibit the difference on structures of them. The mechanical properties of AFB 1 indicate that the structure of this toxin can be easily changed by pressure. The real [Formula: see text] and imaginary [Formula: see text] parts of the dielectric function, and the absorption coefficient [Formula: see text] and energy loss spectrum [Formula: see text] were also obtained under different polarized and incident directions. Furthermore, biological experiments needed to support the toxic level of AFB 1 using optical technologies.

  11. Optical properties of a nanostructured glass-based film using spectroscopic ellipsometry

    DOE PAGES

    Jellison, G. E.; Aytug, T.; Lupini, A. R.; ...

    2015-12-22

    Nanostructured glass films, which are fabricated using spinodally phase-separated low-alkali glasses, have several interesting and useful characteristics, including being robust, non-wetting and antireflective. Spectroscopic ellipsometry measurements have been performed on one such film and its optical properties were analyzed using a 5-layer structural model of the near-surface region. Since the glass and the film are transparent over the spectral region of the measurement, the Sellmeier model is used to parameterize the dispersion in the refractive index. To simulate the variation of the optical properties of the film over the spot size of the ellipsometer (~ 3 × 5 mm), themore » Sellmeier amplitude is convoluted using a Gaussian distribution. The transition layers between the ambient and the film and between the film and the substrate are modeled as graded layers, where the refractive index varies as a function of depth. These layers are modeled using a two-component Bruggeman effective medium approximation where the two components are the layer above and the layer below. Lastly, the fraction is continuous through the transition layer and is modelled using the incomplete beta function.« less

  12. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  13. Modis Collection 6 Shortwave-Derived Cloud Phase Classification Algorithm and Comparisons with CALIOP

    NASA Technical Reports Server (NTRS)

    Marchant, Benjamin; Platnick, Steven; Meyer, Kerry; Arnold, George Thomas; Riedi, Jerome

    2016-01-01

    Cloud thermodynamic phase (e.g., ice, liquid) classification is an important first step for cloud retrievals from passive sensors such as MODIS (Moderate-Resolution Imaging Spectroradiometer). Because ice and liquid phase clouds have very different scattering and absorbing properties, an incorrect cloud phase decision can lead to substantial errors in the cloud optical and microphysical property products such as cloud optical thickness or effective particle radius. Furthermore, it is well established that ice and liquid clouds have different impacts on the Earth's energy budget and hydrological cycle, thus accurately monitoring the spatial and temporal distribution of these clouds is of continued importance. For MODIS Collection 6 (C6), the shortwave-derived cloud thermodynamic phase algorithm used by the optical and microphysical property retrievals has been completely rewritten to improve the phase discrimination skill for a variety of cloudy scenes (e.g., thin/thick clouds, over ocean/land/desert/snow/ice surface, etc). To evaluate the performance of the C6 cloud phase algorithm, extensive granule-level and global comparisons have been conducted against the heritage C5 algorithm and CALIOP. A wholesale improvement is seen for C6 compared to C5.

  14. Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads

    PubMed Central

    Panaretos, Anastasios H.; Yuwen, Yu A.; Werner, Douglas H.; Mayer, Theresa S.

    2015-01-01

    The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism for controlling the coupling between the dimer particles, and in particular to establish a pair of coupled/de-coupled states for the total structure, that effectively results in its dual mode response. Using electron beam lithography the targeted structure has been accurately fabricated and the desired dual mode response of the nanoantenna was experimentally verified. The response of the fabricated structure is further analyzed numerically. This permits the visualization of the electromagnetic fields and polarization surface charge distributions when the structure is at resonance. In this way the switching properties of the plasmonic nanoring are revealed. The documented analysis illustrates the inherent tuning capabilities that plasmonic nanorings offer, and furthermore paves the way towards a practical implementation of tunable optical nanoantennas. Additionally, our analysis through an effective medium approach introduces the nanoring as a compact and efficient solution for realizing nanoscale circuits. PMID:25961804

  15. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less

  16. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.

    PubMed

    Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard

    2013-08-01

    Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.

  17. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the co-located Multi Filter Rotating Shadow band Radiometer (MFRSR), and the Cimel Sun photometer for aerosol load at several wavelengths. To test aerosol horizontal homogeneity we use quantitatively analysis of asymmetry of solar azimuth normalized radiances and RSP. The aerosol column microphysical properties will be compared with merged size distribution of several in-situ instruments from airborne measurements during overpasses of the DoE-G1 aircraft around the ground measurement site.

  18. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    NASA Astrophysics Data System (ADS)

    Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.; Nagle, F.; Wang, C.

    2015-10-01

    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ~ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.

  19. Resolving Ice Cloud Optical Thickness Biases Between CALIOP and MODIS Using Infrared Retrievals

    NASA Technical Reports Server (NTRS)

    Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.; hide

    2015-01-01

    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g approx. = 0.75 in the mid-visible spectrum, 5-15% smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products.This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28%), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.

  20. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    NASA Astrophysics Data System (ADS)

    Holz, Robert E.; Platnick, Steven; Meyer, Kerry; Vaughan, Mark; Heidinger, Andrew; Yang, Ping; Wind, Gala; Dutcher, Steven; Ackerman, Steven; Amarasinghe, Nandana; Nagle, Fredrick; Wang, Chenxi

    2016-04-01

    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single-habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.

Top