Sample records for distribution primary circuits

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured tomore » pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.« less

  2. Evolution of a Family Nurse Practitioner Program to Improve Primary Care Distribution

    ERIC Educational Resources Information Center

    Andrus, Len Hughes; Fenley, Mary D.

    1976-01-01

    Describes a Family Nurse Practitioner Program that has effectively improved the distribution of primary health care manpower in rural areas. Program characteristics include selection of personnel from areas of need, decentralization of clinical and didactic training sites, competency-based portable curriculum, and circuit-riding institutionally…

  3. Multiple output power supply circuit for an ion engine with shared upper inverter

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)

    2001-01-01

    A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.

  4. Modeling the transport of nitrogen in an NPP-2006 reactor circuit

    NASA Astrophysics Data System (ADS)

    Stepanov, O. E.; Galkin, I. Yu.; Sledkov, R. M.; Melekh, S. S.; Strebnev, N. A.

    2016-07-01

    Efficient radiation protection of the public and personnel requires detecting an accident-initiating event quickly. Specifically, if a heat-exchange tube in a steam generator is ruptured, the 16N radioactive nitrogen isotope, which contributes to a sharp increase in the steam activity before the turbine, may serve as the signaling component. This isotope is produced in the core coolant and is transported along the circulation circuit. The aim of the present study was to model the transport of 16N in the primary and the secondary circuits of a VVER-1000 reactor facility (RF) under nominal operation conditions. KORSAR/GP and RELAP5/Mod.3.2 codes were used to perform the calculations. Computational models incorporating the major components of the primary and the secondary circuits of an NPP-2006 RF were constructed. These computational models were subjected to cross-verification, and the calculation results were compared to the experimental data on the distribution of the void fraction over the steam generator height. The models were proven to be valid. It was found that the time of nitrogen transport from the core to the heat-exchange tube leak was no longer than 1 s under RF operation at a power level of 100% N nom with all primary circuit pumps activated. The time of nitrogen transport from the leak to the γ-radiation detection unit under the same operating conditions was no longer than 9 s, and the nitrogen concentration in steam was no less than 1.4% (by mass) of its concentration at the reactor outlet. These values were obtained using conservative approaches to estimating the leak flow and the transport time, but the radioactive decay of nitrogen was not taken into account. Further research concerned with the calculation of thermohydraulic processes should be focused on modeling the transport of nitrogen under RF operation with some primary circuit pumps deactivated.

  5. Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig; Lin, John K.; Scarborough, Stephen E.

    2005-01-01

    Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution.

  6. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1974-01-01

    Solid state power controllers (SSPC's) are to be considered for use as replacements of electromechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 v(dc). They have the advantage over conventional relay/circuit breaker systems in that they can be located near the utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small gauge wire for control, computer interface, logic, electrical multiplexing, onboard testing, power management, and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability. Conventional systems require the heavy gage load wiring and the control wiring to be routed from the bus to the load to other remote relay contacts, switches, sensors, etc. and to the circuit breaker located in the flight engineer's compartment for purposes of manual reset.

  7. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  8. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  9. Implementation and initial test result of a prototype solid state modulator for pulsed magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dake, Vishal; Mangalvedekar, H.A., E-mail: vishaldake90@gmail.com; Tillu, Abhijit

    2014-07-01

    A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluatingmore » the ESL of locally available metalized polypropylene capacitors will also be presented. (author)« less

  10. 30 CFR 77.501 - Electric distribution circuits and equipment; repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric distribution circuits and equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.501 Electric distribution circuits and equipment; repair. No electrical work shall be performed on electric distribution circuits or equipment...

  11. 29 CFR 1915.181 - Electrical circuits and distribution boards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Electrical circuits and distribution boards. 1915.181... Electrical Machinery § 1915.181 Electrical circuits and distribution boards. (a) The provisions of this... employee is permitted to work on an electrical circuit, except when the circuit must remain energized for...

  12. Safety and performance enhancement circuit for primary explosive detonators

    DOEpatents

    Davis, Ronald W [Tracy, CA

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  13. PCSIM: A Parallel Simulation Environment for Neural Circuits Fully Integrated with Python

    PubMed Central

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2008-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations. PMID:19543450

  14. JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.

    1963-01-01

    ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less

  15. Audio distribution and Monitoring Circuit

    NASA Technical Reports Server (NTRS)

    Kirkland, J. M.

    1983-01-01

    Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.

  16. Engine Tune-Up Service. Unit 3: Primary Circuit. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Morse, David T.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 3, Primary Circuit, available separately as CE 031 211. Focus of the posttests is setting the primary ignition circuit. One multiple choice posttest is provided, covering the eight performance objectives contained in the unit. (No answer key is…

  17. 49 CFR 234.213 - Grounds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: circuits that include track rail; alternating current power distribution circuits that are grounded in the...) Circuits that include track rail; (2) Alternating current power distribution circuits that are grounded in...

  18. Triple voltage dc-to-dc converter and method

    DOEpatents

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  19. Engine Tune-Up Service. Unit 3: Primary Circuit. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 3, Primary Circuit, available separately as CE 031 211. Focus of the exercises and pretests is testing the primary ignition circuit. Pretests and performance checklists are provided for each of the eight performance objectives…

  20. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  1. Engine Tune-Up Service. Unit 3: Primary Circuit. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 3, Primary Circuit, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the primary ignition circuit. A companion review exercise book and posttests are available separately as CE 031 212-213. An introduction tells how this unit fits into the total tune-up service,…

  2. [Not Available].

    PubMed

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2009-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations.

  3. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    NASA Astrophysics Data System (ADS)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  4. Integrated-Circuit Pseudorandom-Number Generator

    NASA Technical Reports Server (NTRS)

    Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur

    1992-01-01

    Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.

  5. NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1962-12-01

    A power plant is described that comprises a nuclear reactor and a heat exchanger which is included in primary and secondary circuits. Fluid in the primary circuit extracts heat from the reactor and transfers it in the heat exchanger to the fluid in the secondary circuit which transmits energy to one or more utilization points. Means are provided for detecting, isolating, and removing radioactive fluid from the secondary circuit. (R.J.S.)

  6. Short circuit protection for a power distribution system

    NASA Technical Reports Server (NTRS)

    Owen, J. R., III

    1969-01-01

    Sensing circuit detects when the output from a matrix is present and when it should be present. The circuit provides short circuit protection for a power distribution system where the selection of the driven load is accomplished by digital logic.

  7. Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus

    PubMed Central

    Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.

    2014-01-01

    Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087

  8. A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords

    PubMed Central

    Garagnani, Max; Lucchese, Guglielmo; Tomasello, Rosario; Wennekers, Thomas; Pulvermüller, Friedemann

    2017-01-01

    Experimental evidence indicates that neurophysiological responses to well-known meaningful sensory items and symbols (such as familiar objects, faces, or words) differ from those to matched but novel and senseless materials (unknown objects, scrambled faces, and pseudowords). Spectral responses in the high beta- and gamma-band have been observed to be generally stronger to familiar stimuli than to unfamiliar ones. These differences have been hypothesized to be caused by the activation of distributed neuronal circuits or cell assemblies, which act as long-term memory traces for learned familiar items only. Here, we simulated word learning using a biologically constrained neurocomputational model of the left-hemispheric cortical areas known to be relevant for language and conceptual processing. The 12-area spiking neural-network architecture implemented replicates physiological and connectivity features of primary, secondary, and higher-association cortices in the frontal, temporal, and occipital lobes of the human brain. We simulated elementary aspects of word learning in it, focussing specifically on semantic grounding in action and perception. As a result of spike-driven Hebbian synaptic plasticity mechanisms, distributed, stimulus-specific cell-assembly (CA) circuits spontaneously emerged in the network. After training, presentation of one of the learned “word” forms to the model correlate of primary auditory cortex induced periodic bursts of activity within the corresponding CA, leading to oscillatory phenomena in the entire network and spontaneous across-area neural synchronization. Crucially, Morlet wavelet analysis of the network's responses recorded during presentation of learned meaningful “word” and novel, senseless “pseudoword” patterns revealed stronger induced spectral power in the gamma-band for the former than the latter, closely mirroring differences found in neurophysiological data. Furthermore, coherence analysis of the simulated responses uncovered dissociated category specific patterns of synchronous oscillations in distant cortical areas, including indirectly connected primary sensorimotor areas. Bridging the gap between cellular-level mechanisms, neuronal-population behavior, and cognitive function, the present model constitutes the first spiking, neurobiologically, and anatomically realistic model able to explain high-frequency oscillatory phenomena indexing language processing on the basis of dynamics and competitive interactions of distributed cell-assembly circuits which emerge in the brain as a result of Hebbian learning and sensorimotor experience. PMID:28149276

  9. Dopamine-Modulated Recurrent Corticoefferent Feedback in Primary Sensory Cortex Promotes Detection of Behaviorally Relevant Stimuli

    PubMed Central

    Handschuh, Juliane

    2014-01-01

    Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection. PMID:24453315

  10. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    DOEpatents

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  11. DISTRIBUTED RC NETWORKS WITH RATIONAL TRANSFER FUNCTIONS,

    DTIC Science & Technology

    A distributed RC circuit analogous to a continuously tapped transmission line can be made to have a rational short-circuit transfer admittance and...one rational shortcircuit driving-point admittance. A subcircuit of the same structure has a rational open circuit transfer impedance and one rational ...open circuit driving-point impedance. Hence, rational transfer functions may be obtained while considering either generator impedance or load

  12. The NATO III 5 MHz Distribution System

    NASA Technical Reports Server (NTRS)

    Vulcan, A.; Bloch, M.

    1981-01-01

    A high performance 5 MHz distribution system is described which has extremely low phase noise and jitter characteristics and provides multiple buffered outputs. The system is completely redundant with automatic switchover and is self-testing. Since the 5 MHz reference signals distributed by the NATO III distribution system are used for up-conversion and multiplicative functions, a high degree of phase stability and isolation between outputs is necessary. Unique circuit design and packaging concepts insure that the isolation between outputs is sufficient to quarantee a phase perturbation of less than 0.0016 deg when other outputs are open circuited, short circuited or terminated in 50 ohms. Circuit design techniques include high isolation cascode amplifiers. Negative feedback stabilizes system gain and minimizes circuit phase noise contributions. Balanced lines, in lieu of single ended coaxial transmission media, minimize pickup.

  13. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  14. Distribution system model calibration with big data from AMI and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  15. Input clustering in the normal and learned circuits of adult barn owls.

    PubMed

    McBride, Thomas J; DeBello, William M

    2015-05-01

    Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. IP Network Design and Implementation for the Caltech-USGS Element of TriNet

    NASA Astrophysics Data System (ADS)

    Johnson, M. L.; Busby, R.; Watkins, M.; Schwarz, S.; Hauksson, E.

    2001-12-01

    The new seismic network IP numbering scheme for the Caltech-USGS element of TriNet is designed to provide emergency response plans for computer outages and/or telemetry circuit failures so that data acquisition may continue with minimal interruption. IP numbers from the seismic stations through the Caltech acquisition machines are numbered using private, non-routable IP addresses, which allows the network administrator to create redundancy in the network design, more freedom in choosing IP numbers, and uniformity in the LAN and WAN network addressing. The network scheme used by the Caltech-USGS element of TriNet is designed to create redundancy and load sharing over three or more T1 circuits. A T1 circuit can support 80 dataloggers sending data at a design rate of 19.2 kbps or 120 dataloggers transmitting at a nominal rate of 12.8 kbps. During a circuit detour, the 80 dataloggers on the failed T1 are equally divided between the remaining two circuits. This increases the loads on the remaining two circuits to 120 dataloggers, which is the maximum load each T1 can handle at the nominal rate. Each T1 circuit has a router interface onto a LAN at Caltech with an independent subnet address. Some devices, such as Solaris computers, allow a single interface to be numbered with several IP addresses, a so called "multinetted" interface. This allows the central acquisition computers to appear with distinct addresses that are routable via different T1 circuits, but simplifies the physical cables between devices. We identify these T1 circuits as T1-1, T1-2, and T1-3. At the remote end, each Frame Relay Access Device (FRAD) and connected datalogger(s) is a subnetted LAN. The numbering is arranged so the second octet in the LAN IP address of the FRAD and datalogger identify the datalogger's primary and alternate T1 circuits. For example; a LAN with an IP address of 10.12.0.0/24 has T1-1 as its primary T1, and T1-2 as its alternate circuit. Stations with this number scheme are sometimes referred to as group "12". LANs with IP addresses of 10.23.0.0/24 have T1-2 as the primary circuit, and T1-3 as the alternate circuit. Static routes on the acquisition system are used to direct traffic through the primary T1. The network can operate in one of three modes. The most common and desirable mode is "normal", where all three T1's are operational and Caltech has both a primary and secondary central acquisition system running. The second mode is a "failover", where the primary acquisition system is down (due to maintenance or failure) and the secondary acquisition system assumes the primary role. This includes sending acknowledgments to dataloggers and multicasts to the rest of the network. The third mode is a circuit detour. The port numbers on the central acquisition system for the dataloggers on the failed T1 are changed to match the auxiliary ports on the dataloggers. This allows for the auxiliary ports on the dataloggers to receive acknowledgements from the acquiring system through the detoured circuit. The static routes on the system are changed to go through the detoured circuit as specified by the group's IP numbers. At this point the two working T1's will be running at full capacity but the data acquisition will continue with minimal interruption while the third T1 is being restored. The primary acquisition computer continues to listen for data on the failed T1 should things improve spontaneously.

  17. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices to provide protection against under voltage, grounded phase, short circuit and overcurrent. High... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High...

  18. Feasibility Study of a 400 Hz, 4160 Volt 3-Phase Electrical Power Distribution System

    DTIC Science & Technology

    1977-02-25

    accordance with HIL-E-917. 8. The primary insulation shall be adequate to withstand a high potential test of 60 Hz voltage windings to winding and to ground... withstand a short circuit current of 500 percent for 10 seconds without exceeding the voltage rating of any capacitors. They shall operate within...shaft. separation is required to withstand high voltages . The limited contact movement results in a very small contactor size be- cause it permits the use

  19. Single event upset protection circuit and method

    DOEpatents

    Wallner, John; Gorder, Michael

    2016-03-22

    An SEU protection circuit comprises first and second storage means for receiving primary and redundant versions, respectively, of an n-bit wide data value that is to be corrected in case of an SEU occurrence; the correction circuit requires that the data value be a 1-hot encoded value. A parity engine performs a parity operation on the n bits of the primary data value. A multiplexer receives the primary and redundant data values and the parity engine output at respective inputs, and is arranged to pass the primary data value to an output when the parity engine output indicates `odd` parity, and to pass the redundant data value to the output when the parity engine output indicates `even` parity. The primary and redundant data values are suitably state variables, and the parity engine is preferably an n-bit wide XOR or XNOR gate.

  20. LCRE and SNAP 50-DR-1 programs. Engineering progress report, October 1, 1962--December 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, reactor kinetics, fuel elements, primary coolant circuit, secondary coolant circuit, materials development, and fabrication; and SNAP50-DR- 1 specifications, primary pump, and materials development. (DCC)

  1. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., single-break, signal control circuits using a grounded common, and alternating current power distribution...) Alternating current power distribution circuits that are grounded in the interest of safety. ...

  2. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  3. 30 CFR 75.800-3 - Testing, examination and maintenance of circuit breakers; procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... High-Voltage Distribution § 75.800-3 Testing, examination and maintenance of circuit breakers; procedures. (a) Circuit breakers and their auxiliary devices protecting underground high-voltage circuits...

  4. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 56.6402...

  5. Conduction-coupled Tesla transformer.

    PubMed

    Reed, J L

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.

  6. 30 CFR 75.800-4 - Testing, examination, and maintenance of circuit breakers; record.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Underground High-Voltage Distribution § 75.800-4 Testing, examination, and maintenance of circuit breakers... adjustment of all circuit breakers protecting high-voltage circuits which enter any underground area of the...

  7. Reliable inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.

  8. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    PubMed

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Work accidents and automatic circuit reclosers in the electricity sector: beyond the immediate causes].

    PubMed

    Silva, Alessandro Jose Nunes da; Almeida, Ildeberto Muniz de; Vilela, Rodolfo Andrade de Gouveia; Mendes, Renata Wey Berti; Hurtado, Sandra Lorena Beltran

    2018-05-10

    The Brazilian electricity sector has recorded high work-related mortality rates that have been associated with outsourcing, used to cut costs. In order to decrease the power outage time for consumers, the industry adopted the automatic circuit recloser as the technical solution. The device has hazardous implications for maintenance workers. The aim of this study was to analyze the origins and consequences of work accidents in power systems with automatic circuit recloser, using the Accident Analysis and Prevention (AAP) model. The AAP model was used to investigate two work accidents, aimed to explore the events' organizational origins. Case 1 - when changing a deenergized secondary line, a worker received a shock from the energized primary cable (13.8kV). The system reclosed three times, causing severe injury to the worker (amputation of a lower limb). Case 2 - a fatal work accident occurred during installation of a new crosshead on a partially insulated energized line. The tip of a metal cross arm section strap touched the energized secondary line and electrocuted the maintenance operator. The circuit breaker component of the automatic circuit recloser failed. The analyses revealed how business management logic can participate in the root causes of work accidents through failures in maintenance management, outsourced workforce management, and especially safety management in systems with reclosers. Decisions to adopt automation to guarantee power distribution should not overlook the risks to workers in overhead power lines or fail to acknowledge the importance of ensuring safe conditions.

  10. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  11. Gas tube-switched high voltage DC power converter

    DOEpatents

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  12. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuit, except circuits which include any track rail and except the common return wires of single-wire, single-break, signal control circuits using a grounded common, and alternating current power distribution...

  13. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circuit, except circuits which include any track rail and except the common return wires of single-wire, single-break, signal control circuits using a grounded common, and alternating current power distribution...

  14. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuit, except circuits which include any track rail and except the common return wires of single-wire, single-break, signal control circuits using a grounded common, and alternating current power distribution...

  15. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  16. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  17. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  18. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  19. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  20. Power supply circuit for an ion engine sequentially operated power inverters

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor)

    2000-01-01

    A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.

  1. CIRCUS--A digital computer program for transient analysis of electronic circuits

    NASA Technical Reports Server (NTRS)

    Moore, W. T.; Steinbert, L. L.

    1968-01-01

    Computer program simulates the time domain response of an electronic circuit to an arbitrary forcing function. CIRCUS uses a charge-control parameter model to represent each semiconductor device. Given the primary photocurrent, the transient behavior of a circuit in a radiation environment is determined.

  2. Subranging scheme for SQUID sensors

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor)

    2008-01-01

    A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.

  3. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  4. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  5. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  6. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  7. 14 CFR 25.1357 - Circuit protective devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...

  8. 14 CFR 25.1357 - Circuit protective devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...

  9. 14 CFR 25.1357 - Circuit protective devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...

  10. 14 CFR 25.1357 - Circuit protective devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...

  11. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests...

  12. PARALYZER FOR PULSE HEIGHT DISTRIBUTION ANALYZER

    DOEpatents

    Fairstein, E.

    1960-01-19

    A paralyzer circuit is described for use with a pulseheight distribution analyzer to prevent the analyzer from counting overlapping pulses where they would serve to provide a false indication. The paralyzer circuit comprises a pair of cathode-coupled amplifiers for amplifying pulses of opposite polarity. Diodes are provided having their anodes coupled to the separate outputs of the amplifiers to produce only positive signals, and a trigger circuit is coupled to the diodes ior operation by input pulses of either polarity from the amplifiers. A delay network couples the output of the trigger circuit for delaying the pulses.

  13. Design of MSR primary circuit with minimum pressure losses

    NASA Astrophysics Data System (ADS)

    Noga, Tomáš; Žitek, Pavel; Valenta, Václav

    This article describes a design of a MSR primary circuit with minimum pressure losses. It includes a brief description of this type of a reactor and its integral layout, properties, purpose, etc. The objective of this paper is to define problems of pressure losses calculation and to design a proper device for a primary circuit of MSR reactor, including its basic dimensions. Thanks to this, it can become an initial project for a construction of a real piece of work. This is the main contribution of the carried out study. Of course, this article is not a detailed solution, but it points out facts and problems, which future designers may have to face. The further step of our work will be a reconstruction of the current experiment for a two-stage flowing.

  14. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and supplying...

  15. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and supplying...

  16. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and supplying...

  17. An egalitarian network model for the emergence of simple and complex cells in visual cortex

    PubMed Central

    Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert

    2004-01-01

    We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891

  18. Relationship between physiological excitatory and inhibitory measures of excitability in the left vs. right human motor cortex and peripheral electrodermal activity.

    PubMed

    Bracco, Martina; Turriziani, Patrizia; Smirni, Daniela; Mangano, Renata Giuseppa; Oliveri, Massimiliano

    2017-02-22

    The current study was aimed at investigating the relationships of excitatory and inhibitory circuits of the left vs. right primary motor cortex with peripheral electrodermal activity (EDA). Ten healthy subjects participated in two experimental sessions. In each session, EDA was recorded for 10min from the palmar surface of the left hand. Immediately after EDA recording, Transcranial Magnetic Stimulation (TMS) was used to probe excitatory and inhibitory circuits of the left or right primary motor cortex using two protocols of stimulation: the input-output curve for recording of motor evoked potentials, for testing excitatory circuits; the long-interval cortical inhibition (LICI) protocol, for testing inhibitory circuits. In both cases, motor evoked potentials were recorded with surface electrodes from a contralateral hand muscle. The main results showed that in the right motor cortex, excitatory circuits directly correlate and inhibitory circuits inversely correlate with sympathetic activation. In the left motor cortex, both excitatory and inhibitory circuits are inversely correlated with sympathetic activation. These findings may suggest a bi-hemispheric mode of control of vegetative system by motor cortices, with the right hemisphere mainly involved in sympathetic control. Copyright © 2017. Published by Elsevier B.V.

  19. Miners' Misconceptions of Flow Distribution Within Circuits as a Factor Influencing Underground Mining Accidents.

    NASA Astrophysics Data System (ADS)

    Passaro, Perry David

    Misconceptions can be thought of as naive approaches to problem solving that are perceptually appealing but incorrect and inconsistent with scientific evidence (Piaget, 1929). One type of misconception involves flow distributions within circuits. This concept is important because miners' conceptual errors about flow distribution changes within complex circuits may be in part responsible for fatal mine disasters. Based on the theory that misconceptions of flow distribution changes within circuits were responsible for underground mine disasters involving mine ventilation circuits, a series of studies was undertaken with mining engineering students, professional mining engineers, as well as mine foremen, mine supervisors, mine rescue members, mine maintenance personnel, mining researchers and working miners to identify these conceptual errors and errors in mine ventilation procedures. Results indicate that misconceptions of flow distribution changes within circuits exist in over 70 percent of the subjects sampled. It is assumed that these misconceptions of flow distribution changes within circuits result in errors of judgment when miners are faced with inferring and changing ventilation arrangements when two or more mine sections are connected. Furthermore, it is assumed that these misconceptions are pervasive in the mining industry and may be responsible for at least two mine ventilation disasters. The findings of this study are consistent with Piaget's (1929) model of figurative and operative knowledge. This model states that misconceptions are in part due to a lack of knowledge of dynamic transformations and how to apply content information. Recommendations for future research include the development of an interactive expert system for training miners with ventilation arrangements. Such a system would meet the educational recommendations made by Piaget (1973b) by involving a hands-on approach that allows discovery, interaction, the opportunity to make mistakes and to review the cognitive concepts on which the subject relied during his manipulation of the ventilation system.

  20. 46 CFR 28.860 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... current carrying conductor must be protected in accordance with its current carrying capacity by a circuit breaker or fuse at the connection to the switchboard or distribution panel bus. (d) Each circuit breaker...

  1. 46 CFR 28.860 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... current carrying conductor must be protected in accordance with its current carrying capacity by a circuit breaker or fuse at the connection to the switchboard or distribution panel bus. (d) Each circuit breaker...

  2. Working Memory and Decision-Making in a Frontoparietal Circuit Model

    PubMed Central

    2017-01-01

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071

  3. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    PubMed

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.

  4. Distributed coupling and multi-frequency microwave accelerators

    DOEpatents

    Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp

    2016-07-05

    A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  6. Gas cooled traction drive inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  7. Gas cooled traction drive inverter

    DOEpatents

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  8. Electric Vehicle Interaction at the Electrical Circuit Level

    DOT National Transportation Integrated Search

    2018-01-01

    The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...

  9. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits; maximum... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  10. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits; maximum... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  11. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    PubMed

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  12. Fault-tolerant power distribution system

    NASA Technical Reports Server (NTRS)

    Volp, Jeffrey A. (Inventor)

    1987-01-01

    A fault-tolerant power distribution system which includes a plurality of power sources and a plurality of nodes responsive thereto for supplying power to one or more loads associated with each node. Each node includes a plurality of switching circuits, each of which preferably uses a power field effect transistor which provides a diode operation when power is first applied to the nodes and which thereafter provides bi-directional current flow through the switching circuit in a manner such that a low voltage drop is produced in each direction. Each switching circuit includes circuitry for disabling the power field effect transistor when the current in the switching circuit exceeds a preselected value.

  13. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  14. Computer Power: Part 1: Distribution of Power (and Communications).

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1988-01-01

    Discussion of the distribution of power to personal computers and computer terminals addresses options such as extension cords, perimeter raceways, and interior raceways. Sidebars explain: (1) the National Electrical Code; (2) volts, amps, and watts; (3) transformers, circuit breakers, and circuits; and (4) power vs. data wiring. (MES)

  15. New equivalent lumped electrical circuit for piezoelectric transformers.

    PubMed

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  16. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  17. Shared neural circuits for mentalizing about the self and others.

    PubMed

    Lombardo, Michael V; Chakrabarti, Bhismadev; Bullmore, Edward T; Wheelwright, Sally J; Sadek, Susan A; Suckling, John; Baron-Cohen, Simon

    2010-07-01

    Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.

  18. Power dissipation in fractal AC circuits

    NASA Astrophysics Data System (ADS)

    Chen, Joe P.; Rogers, Luke G.; Anderson, Loren; Andrews, Ulysses; Brzoska, Antoni; Coffey, Aubrey; Davis, Hannah; Fisher, Lee; Hansalik, Madeline; Loew, Stephen; Teplyaev, Alexander

    2017-08-01

    We extend Feynman’s analysis of an infinite ladder circuit to fractal circuits, providing examples in which fractal circuits constructed with purely imaginary impedances can have characteristic impedances with positive real part. Using (weak) self-similarity of our fractal structures, we provide algorithms for studying the equilibrium distribution of energy on these circuits. This extends the analysis of self-similar resistance networks introduced by Fukushima, Kigami, Kusuoka, and more recently studied by Strichartz et al.

  19. 30 CFR 75.809 - Identification of circuit breakers and disconnecting switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disconnecting switches. 75.809 Section 75.809 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.809 Identification of circuit breakers and disconnecting switches. [Statutory Provisions] Circuit breakers and disconnecting switches underground shall be marked for...

  20. 30 CFR 75.809 - Identification of circuit breakers and disconnecting switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disconnecting switches. 75.809 Section 75.809 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.809 Identification of circuit breakers and disconnecting switches. [Statutory Provisions] Circuit breakers and disconnecting switches underground shall be marked for...

  1. 30 CFR 75.809 - Identification of circuit breakers and disconnecting switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disconnecting switches. 75.809 Section 75.809 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.809 Identification of circuit breakers and disconnecting switches. [Statutory Provisions] Circuit breakers and disconnecting switches underground shall be marked for...

  2. 30 CFR 75.809 - Identification of circuit breakers and disconnecting switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disconnecting switches. 75.809 Section 75.809 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.809 Identification of circuit breakers and disconnecting switches. [Statutory Provisions] Circuit breakers and disconnecting switches underground shall be marked for...

  3. 30 CFR 75.809 - Identification of circuit breakers and disconnecting switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disconnecting switches. 75.809 Section 75.809 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.809 Identification of circuit breakers and disconnecting switches. [Statutory Provisions] Circuit breakers and disconnecting switches underground shall be marked for...

  4. Sub-millimeter-Wave Equivalent Circuit Model for External Parasitics in Double-Finger HEMT Topologies

    NASA Astrophysics Data System (ADS)

    Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay

    2018-02-01

    We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.

  5. Discontinuous Mode Power Supply

    NASA Technical Reports Server (NTRS)

    Lagadinos, John; Poulos, Ethel

    2012-01-01

    A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.

  6. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  7. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  8. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    PubMed

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  9. Automatic quadrature control and measuring system. [using optical coupling circuitry

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  10. Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.

  11. A novel analytical description of periodic volume coil geometries in MRI

    NASA Astrophysics Data System (ADS)

    Koh, D.; Felder, J.; Shah, N. J.

    2018-03-01

    MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.

  12. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  13. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  14. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution

    DOE PAGES

    Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; ...

    2017-01-01

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  15. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.

    PubMed

    Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L

    2017-05-29

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  16. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Long, Christopher M.; DeRose, Christopher T.

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  17. Analysis Impact of Distributed Generation Injection to Profile of Voltage and Short-Circuit Fault in 20 kV Distribution Network System

    NASA Astrophysics Data System (ADS)

    Mulyadi, Y.; Sucita, T.; Rahmawan, M. D.

    2018-01-01

    This study was a case study in PT. PLN (Ltd.) APJ Bandung area with the subject taken was the installation of distributed generation (DG) on 20-kV distribution channels. The purpose of this study is to find out the effect of DG to the changes in voltage profile and three-phase short circuit fault in the 20-kV distribution system with load conditions considered to be balanced. The reason for this research is to know how far DG can improve the voltage profile of the channel and to what degree DG can increase the three-phase short circuit fault on each bus. The method used in this study was comparing the simulation results of power flow and short-circuit fault using ETAP Power System software with manual calculations. The result obtained from the power current simulation before the installation of DG voltage was the drop at the end of the channel at 2.515%. Meanwhile, the three-phase short-circuit current fault before the DG installation at the beginning of the channel was 13.43 kA. After the installation of DG with injection of 50%, DG power obtained voltage drop at the end of the channel was 1.715% and the current fault at the beginning network was 14.05 kA. In addition, with injection of 90%, DG power obtained voltage drop at the end of the channel was 1.06% and the current fault at the beginning network was 14.13%.

  18. The Global Distribution of Precipitation and Clouds. Chapter 2.4

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Adler, Robert; Huffman, George; Rossow, William; Ritter, Michael; Curtis, Scott

    2004-01-01

    The water cycle is the key circuit moving water through the Earth's system. This large system, powered by energy from the sun, is a continuous exchange of moisture between the oceans, the atmosphere, and the land. Precipitation (including rain, snow, sleet, freezing rain, and hail), is the primary mechanism for transporting water from the atmosphere back to the Earth's surface and is the key physical process that links aspects of climate, weather, and the global water cycle. Global precipitation and associate cloud processes are critical for understanding the water cycle balance on a global scale and interactions with the Earth's climate system. However, unlike measurement of less dynamic and more homogenous meteorological fields such as pressure or even temperature, accurate assessment of global precipitation is particularly challenging due to its highly stochastic and rapidly changing nature. It is not uncommon to observe a broad spectrum of precipitation rates and distributions over very localized time scales. Furthermore, precipitating systems generally exhibit nonhomogeneous spatial distributions of rain rates over local to global domains.

  19. Improved RF Isolation Amplifier

    NASA Technical Reports Server (NTRS)

    Stevens, G. L.; Macconnell, J.

    1985-01-01

    Circuit has high reverse isolation and wide bandwidth. Wideband isolation amplifier has low intermodulation distortion and high reverse isolation. Circuit does not require selected or matched components or directional coupling device. Circuit used in applications requiring high reverse isolation such as receiver intermediate-frequency (IF) strips and frequency distribution systems. Also applicable in RF and video signaling.

  20. 30 CFR 75.800-3 - Testing, examination and maintenance of circuit breakers; procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Testing, examination and maintenance of circuit breakers; procedures. 75.800-3 Section 75.800-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.800-3 Testing, examination and maintenance of circuit breakers...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández-Rosales, E.; Cedeño, E.; Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam ismore » focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.« less

  2. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  3. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  4. Optimization of discharge circuit of the TEA CO II laser with two discharge channels

    NASA Astrophysics Data System (ADS)

    Hu, Xiao Yong; Zhang, LiLi; Ren, DeMing; Qu, YanChen; Zhao, WeiJiang; Song, BaoAn

    2007-01-01

    In order to achieve the highest peak power of radiation pulse and highest output energy, the primary circuit parameters are investigated to optimize the discharge circuit performance of the laser. The structure and the discharge circuit of the laser are discussed at first. To realize synchronous discharge in two discharge channels, the conjunct electrode device for two pairs of discharge electrodes is designed. Finally, the results of the experiments on the primary circuit parameters are given. The discharge is most stable at a pressure of 5.33×10 4Pa when the pressure of gaseous mixture CO II:N II:He=1:1:3 is changed from 2.67×10 4 Pa to 6.67×10 4 Pa. The ratio of storage capacitance to peak capacitance is chosen to be about 1.5-7/3, because residual voltage is lower on this condition and residual voltage is adverse to discharge. When the inductance 330μH is used, the homogeneous glow discharge in a widest voltage range is obtained. The duration of when the stimuli voltage is increased in homogeneous glow discharge condition. The discharge circuit allows charge and discharge and the magnitude of residual voltage decrease the homogeneous glow discharge in a wide range of pressure of gaseous mixture when these circuit parameters are used. Thus it offers reference to the improvement of output characteristic of TEA CO II laser with two discharge channels.

  5. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.

    PubMed

    Naumann, Eva A; Fitzgerald, James E; Dunn, Timothy W; Rihel, Jason; Sompolinsky, Haim; Engert, Florian

    2016-11-03

    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    ERIC Educational Resources Information Center

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  7. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  8. An electronic circuit that detects left ventricular ejection events by processing the arterial pressure waveform

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.

  9. Interference and memory capacity effects in memristive systems

    NASA Astrophysics Data System (ADS)

    Hermiz, John; Chang, Ting; Du, Chao; Lu, Wei

    2013-02-01

    Short-term memory implies the existence of a capacity limit beyond which memory cannot be securely formed and retained. The underlying mechanisms are believed to be two primary factors: decay and interference. Here, we demonstrate through both simulation and experiment that the memory capacity effect can be implemented in a parallel memristor circuit, where decay and interference are achieved by the inherent ion diffusion in the device and the competition for current supply in the circuit, respectively. This study suggests it is possible to emulate high-level biological behaviors with memristor circuits and will stimulate continued studies on memristor-based neuromorphic circuits.

  10. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (c) Each ungrounded current carrying conductor must be protected in accordance with its current carrying capacity by a circuit breaker or fuse at the connection to the switchboard or distribution panel...

  11. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... alternating current power distribution circuits grounded in the interest of safety. [49 FR 3384, Jan. 26, 1984] ... paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits, the...

  12. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... alternating current power distribution circuits grounded in the interest of safety. [49 FR 3384, Jan. 26, 1984] ... paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits, the...

  13. 46 CFR 169.682 - Distribution and circuit loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the rating of the overcurrent protective device, computed using the greater of— (1) The lamp sizes to be installed; or (2) 50 watts per outlet. (b) Circuits supplying electrical discharge lamps must be...

  14. Negative Correlations in Visual Cortical Networks

    PubMed Central

    Chelaru, Mircea I.; Dragoi, Valentin

    2016-01-01

    The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function. PMID:25217468

  15. Standardization of Schwarz-Christoffel transformation for engineering design of semiconductor and hybrid integrated-circuit elements

    NASA Astrophysics Data System (ADS)

    Yashin, A. A.

    1985-04-01

    A semiconductor or hybrid structure into a calculable two-dimensional region mapped by the Schwarz-Christoffel transformation and a universal algorithm can be constructed on the basis of Maxwell's electro-magnetic-thermal similarity principle for engineering design of integrated-circuit elements. The design procedure involves conformal mapping of the original region into a polygon and then the latter into a rectangle with uniform field distribution, where conductances and capacitances are calculated, using tabulated standard mapping functions. Subsequent synthesis of a device requires inverse conformal mapping. Devices adaptable as integrated-circuit elements are high-resistance film resistors with periodic serration, distributed-resistance film attenuators with high transformation ratio, coplanar microstrip lines, bipolar transistors, directional couplers with distributed coupling to microstrip lines for microwave bulk devices, and quasirregular smooth matching transitions from asymmetric to coplanar microstrip lines.

  16. Fault diagnosis for analog circuits utilizing time-frequency features and improved VVRKFA

    NASA Astrophysics Data System (ADS)

    He, Wei; He, Yigang; Luo, Qiwu; Zhang, Chaolong

    2018-04-01

    This paper proposes a novel scheme for analog circuit fault diagnosis utilizing features extracted from the time-frequency representations of signals and an improved vector-valued regularized kernel function approximation (VVRKFA). First, the cross-wavelet transform is employed to yield the energy-phase distribution of the fault signals over the time and frequency domain. Since the distribution is high-dimensional, a supervised dimensionality reduction technique—the bilateral 2D linear discriminant analysis—is applied to build a concise feature set from the distributions. Finally, VVRKFA is utilized to locate the fault. In order to improve the classification performance, the quantum-behaved particle swarm optimization technique is employed to gradually tune the learning parameter of the VVRKFA classifier. The experimental results for the analog circuit faults classification have demonstrated that the proposed diagnosis scheme has an advantage over other approaches.

  17. Fabrication of a multiplexed microfluidic system for scaled up production of cross-linked biocatalytic microspheres

    NASA Astrophysics Data System (ADS)

    Mbanjwa, Mesuli B.; Chen, Hao; Fourie, Louis; Ngwenya, Sibusiso; Land, Kevin

    2014-06-01

    Multiplexed or parallelised droplet microfluidic systems allow for increased throughput in the production of emulsions and microparticles, while maintaining a small footprint and utilising minimal ancillary equipment. The current paper demonstrates the design and fabrication of a multiplexed microfluidic system for producing biocatalytic microspheres. The microfluidic system consists of an array of 10 parallel microfluidic circuits, for simultaneous operation to demonstrate increased production throughput. The flow distribution was achieved using a principle of reservoirs supplying individual microfluidic circuits. The microfluidic devices were fabricated in poly (dimethylsiloxane) (PDMS) using soft lithography techniques. The consistency of the flow distribution was determined by measuring the size variations of the microspheres produced. The coefficient of variation of the particles was determined to be 9%, an indication of consistent particle formation and good flow distribution between the 10 microfluidic circuits.

  18. Annual Summary Report on Thermionic Cathode Project.

    DTIC Science & Technology

    1986-01-09

    Voltage Operation The electron gun cathode is driven negative by a high voltageRadiation pulse modulator in the circuit of Figure 3-1. Typical current...tungsten filament. The bombardment heating system is stabilized by a feed- back control circuit . The power required to heat tne cathode is 315 W bom...project. The primary purpose of the first phase was to develop the bombardment heating circuit used to heat the LaB 6 cathode, and to test the beam

  19. A Flipped First-Year Digital Circuits Course for Engineering and Technology Students

    ERIC Educational Resources Information Center

    Yelamarthi, Kumar; Drake, Eron

    2015-01-01

    This paper describes a flipped and improved first-year digital circuits (DC) course that incorporates several active learning strategies. With the primary objective of increasing student interest and learning, an integrated instructional design framework is proposed to provide first-year engineering and technology students with practical knowledge…

  20. On issue of reconstruction at central distribution substation by example of one of plants of Chelyabinsk region

    NASA Astrophysics Data System (ADS)

    Brylina, O. G.; Semenova, K. D.; Shashkin, V. YU

    2018-03-01

    The article considers the issues of increasing the reliability and economy of the distribution substation. The result is found due to the reconstruction of the central distribution substation and one of the plants of Chelyabinsk region. The reasons for the reconstruction are explained. A comparison of oil and vacuum circuit breakers is made. The advantages of vacuum circuit breakers are shown. Alternative replacement of cables is offered. The basic technical characteristics of the cable brands are shown. The results of reconstruction are proved.

  1. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  2. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  3. [Problems in diagnosing sexually transmitted infections and human immunodeficiency virus in primary health care in Spain].

    PubMed

    Agustí, Cristina; Fernández, Laura; Mascort, Juanjo; Carrillo, Ricard; Casabona, Jordi

    2013-01-01

    To describe the clinical practice of the General Practitioner (GP) in HIV and sexually transmitted infections (STIs) and the obstacles they face in diagnosing them. An anonymous questionnaire was distributed online to members of two Spanish GP Societies. A total of 1.308 GP took part in the survey, which showed that 39.3% had received training on HIV/STI in the last three years, and 21.2% felt uncomfortable talking about sex with the patient. We identified important deficiencies in the resources needed for diagnosis of HIV/STI and in the circuits for referral. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  4. Development of ultrasonic electrostatic microjets for distributed propulsion and microflight

    NASA Astrophysics Data System (ADS)

    Amirparviz, Babak

    This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.

  5. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  6. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  7. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  8. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  9. Study on Power Loss Reduction Considering Load Variation with Large Penetration of Distributed Generation in Smart Grid

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Lv, Xiangyu; Guo, Li; Cai, Lixia; Jie, Jinxing; Su, Kuo

    2017-05-01

    With the increasing of penetration of distributed in the smart grid, the problems that the power loss increasing and short circuit capacity beyond the rated capicity of circuit breaker will become more serious. In this paper, a methodology (Modified BPSO) is presented for network reconfiguration which is based on hybrid approach of Tabu Search and BPSO algorithms to prevent the local convergence and to decrease the calculation time using double fitnesses to consider the constraints. Moreover, an average load simulated method (ALS method) load variation considered is proposed that the average load value is used to instead of the actual load to calculation. Finally, from a case study, the results of simulation certify the approaches will decrease drastically the losses and improve the voltage profiles obviously, at the same time, the short circuit capacity is also decreased into less the shut-off capacity of circuit breaker. The power losses won’t be increased too much even if the short circuit capacity constraint is considered; voltage profiles are better with the constraint of short circuit capacity considering. The ALS method is simple and calculated time is speed.

  10. Simple evaporation controller for thin-film deposition from a resistively heated boat

    NASA Technical Reports Server (NTRS)

    Scofield, John H.; Bajuk, Lou; Mohler, William

    1990-01-01

    A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.

  11. Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  12. Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and Somatosensory Microcircuitry

    PubMed Central

    Sadovsky, Alexander J.

    2013-01-01

    Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field (S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable principles of neocortical circuit design. PMID:23986241

  13. Further Development, Fabrication, and Testing of XM36E1 Fuze Setter

    DTIC Science & Technology

    1978-08-01

    primary func- tion of this circuit, has the same timing characteristics as the original circuit: Half-period pulses are required to be greater than...temperature of -40 0 C. 9 The following corrective action was taken for this mal- fuction : (1) The batteries were replaced, and an investigation of battery

  14. Turkish Students' Conceptions about the Simple Electric Circuits

    ERIC Educational Resources Information Center

    Cepni, Salih; Keles, Esra

    2006-01-01

    In this study, the Turkish students' understanding level of electric circuits consisting of two bulbs and one battery was investigated by using open-ended questions. Two-hundred fifty students, whose ages range from 11 to 22, were chosen from five different groups at primary, secondary and university levels in Trabzon in Turkey. In analyzing…

  15. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...

  16. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...

  17. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...

  18. Sunlamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J

    The purpose of this model was to facilitate the design of a control system that uses fine grained control of residential and small commercial HVAC loads to counterbalance voltage swings caused by intermittent solar power sources (e.g., rooftop panels) installed in that distribution circuit. Included is the source code and pre-compiled 64 bit dll for adding building HVAC loads to an OpenDSS distribution circuit. As written, the Makefile assumes you are using the Microsoft C++ development tools.

  19. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  20. Computer modeling of batteries from nonlinear circuit elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waaben, S.; Dyer, C.K.; Federico, J.

    1985-06-01

    Circuit analogs for a single battery cell have previously been composed of resistors, capacitors, and inductors. This work introduces a nonlinear circuit model for cell behavior. The circuit is configured around the PIN junction diode, whose charge-storage behavior has features similar to those of electrochemical cells. A user-friendly integrated circuit simulation computer program has reproduced a variety of complex cell responses including electrica isolation effects causing capacity loss, as well as potentiodynamic peaks and discharge phenomena hitherto thought to be thermodynamic in origin. However, in this work, they are shown to be simply due to spatial distribution of stored chargemore » within a practical electrode.« less

  1. Orbiter CCTV video signal noise analysis

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  2. Planet-B: Technical notes and drawings

    NASA Technical Reports Server (NTRS)

    Carignan, George R.

    1996-01-01

    The design of the transformer designated as T101 (061-0351) in the Filament/Bias module (061-0119) in the Planet-B NMS instrument was verified because of the differences from the GCMS and INMS instrument designs. A breadboard of a representation of the Hybrid 2301065, Bias Drive A driving a 2N3700 NPN transistor, with dual 75V secondaries, with loads, was used to test the circuit. The initial transformer design that was wound with bifilar secondaries was too unstable to test. The second 1408 transformer with a split bobbin and the feedback winding below the primary was also found to be unstable. (It was nearly impossible to keep the circuit from squeeging). The third transformer tested has the feedback on the outside of the resonant winding. The primary goal of the design was to have as tight a magnetic coupling as possible to the resonant winding, and as loose a coupling as possible to the primary. Further, the circuit AC ground is connected to the winding at the feedback end of the secondary winding. This transformer proved to be very stable - it is virtually impossible to make this design squeg. An emitter resistor (Rl29A) was added to this circuit, as referenced to the GCMS design, to protect Q102 from thermal runaway in the event of a turn on with a non- resonate circuit or load short. This was verified to protect Q102 for at least 30 seconds in the event of a short. Approximately 1% of the 4lmW input power is lost in this protection resistor under normal operation. The circuit was verified to operate normally when a radiated Q102 (2N3700), (low Beta) transistor was substituted for the normal 2N3700. It should be noted that the monitored drive voltage went to approximately 2.7V with this low gain transistor.

  3. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  4. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    PubMed

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.

    PubMed

    Leinwand, Sarah G; Yang, Claire J; Bazopoulou, Daphne; Chronis, Nikos; Srinivasan, Jagan; Chalasani, Sreekanth H

    2015-09-22

    Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWC(ON) and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines.

  6. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans

    PubMed Central

    Leinwand, Sarah G; Yang, Claire J; Bazopoulou, Daphne; Chronis, Nikos; Srinivasan, Jagan; Chalasani, Sreekanth H

    2015-01-01

    Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWCON and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines. DOI: http://dx.doi.org/10.7554/eLife.10181.001 PMID:26394000

  7. Variable Delay Element For Jitter Control In High Speed Data Links

    DOEpatents

    Livolsi, Robert R.

    2002-06-11

    A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.

  8. VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti).

    PubMed

    Balaram, Pooja; Takahata, Toru; Kaas, Jon H

    2011-03-01

    Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex.

  9. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., single-break, signal control circuits using a grounded common, and alternating current power distribution... TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR... General § 236.2 Grounds. Each circuit, the functioning of which affects the safety of train operations...

  10. Building a Library for Microelectronics Verification with Topological Constraints

    DTIC Science & Technology

    2017-03-01

    Tables 1d, 3b); 1-bit full adder cell (Fig. 1), respectively. Table 5. Frequency distributions for the genus of logically equivalent circuit...Figure 1 shows that switching signal pairs produces logically- equivalent topologies of the 1-bit full adder cell with three values of the genus (g = 3 [1...case], 4, 5, 6). Figure 1. Frequency distribution for logically equivalent circuit topologies of the 1-bit full adder cell (2048) in Table 1(e

  11. Red mud flocculation process in alumina production

    NASA Astrophysics Data System (ADS)

    Fedorova, E. R.; Firsov, A. Yu

    2018-05-01

    The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.

  12. 75 FR 56124 - Notice of Issuance of Final Determination Concerning APC InfraStruXure® Solutions and of Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    .... It also features output metering, branch current/circuit monitoring and auto-detection by the Infra...). Small system: 1 40 kW N+1 Symmetra PX UPS 1 40 kW InfraStruXure PDU with pre-fabricated circuits 10 Net...Xure PDU with pre-fabricated circuits 50 NetShelter SX enclosures 50 Rack power distribution units 16...

  13. The Confidence-Accuracy Relationship in Diagnostic Assessment: The Case of the Potential Difference in Parallel Electric Circuits

    ERIC Educational Resources Information Center

    Saglam, Murat

    2015-01-01

    This study explored the relationship between accuracy of and confidence in performance of 114 prospective primary school teachers in answering diagnostic questions on potential difference in parallel electric circuits. The participants were required to indicate their confidence in their answers for each question. Bias and calibration indices were…

  14. 46 CFR 97.55-1 - Master's responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OPERATIONS De-Energizing of Cargo Hold Lighting Circuits When Grain or Other Combustible Bulk Cargo Is... be loaded de-energized at the distribution panel or panel board. He shall thereafter have periodic... circuits remain de-energized while this bulk cargo remains within the vessel. ...

  15. Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit

    NASA Astrophysics Data System (ADS)

    Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen

    This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.

  16. Reward processing in neurodegenerative disease

    PubMed Central

    Perry, David C.; Kramer, Joel H.

    2015-01-01

    Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses. PMID:24417286

  17. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  18. Powerplexer

    NASA Technical Reports Server (NTRS)

    Woods, J. M. (Inventor)

    1973-01-01

    An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.

  19. A Secure Content Delivery System Based on a Partially Reconfigurable FPGA

    NASA Astrophysics Data System (ADS)

    Hori, Yohei; Yokoyama, Hiroyuki; Sakane, Hirofumi; Toda, Kenji

    We developed a content delivery system using a partially reconfigurable FPGA to securely distribute digital content on the Internet. With partial reconfigurability of a Xilinx Virtex-II Pro FPGA, the system provides an innovative single-chip solution for protecting digital content. In the system, a partial circuit must be downloaded from a server to the client terminal to play content. Content will be played only when the downloaded circuit is correctly combined (=interlocked) with the circuit built in the terminal. Since each circuit has a unique I/O configuration, the downloaded circuit interlocks with the corresponding built-in circuit designed for a particular terminal. Thus, the interface of the circuit itself provides a novel authentication mechanism. This paper describes the detailed architecture of the system and clarify the feasibility and effectiveness of the system. In addition, we discuss a fail-safe mechanism and future work necessary for the practical application of the system.

  20. Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code

    DTIC Science & Technology

    1979-06-01

    dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was

  1. A three-limb amorphous magnetic circuit for three-phase 200 kVA distribution transformers

    NASA Astrophysics Data System (ADS)

    Kolano, R.; Wójcik, N.; Gawior, W.

    1996-07-01

    This paper describes the construction and method of preparation of a three-limb amorphous magnetic circuit. The circuit consists of three single cores: two smaller cores of the same size, surrounded by a third larger one with appropriate window dimensions. The no-load loss and exciting power of the single cores have been investigated as a function of the magnetic induction and stresses applied to the third core.

  2. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    NASA Astrophysics Data System (ADS)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  3. Wireless power transfer electric vehicle supply equipment installation and validation tool

    DOEpatents

    Jones, Perry T.; Miller, John M.

    2015-05-19

    A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.

  4. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  5. Applying analog integrated circuits for HERO protection

    NASA Technical Reports Server (NTRS)

    Willis, Kenneth E.; Blachowski, Thomas J.

    1994-01-01

    One of the most efficient methods for protecting electro-explosive devices (EED's) from HERO and ESD is to shield the EED in a conducting shell (Faraday cage). Electrical energy is transferred to the bridge by means of a magnetic coupling which passes through a portion of the conducting shell that is made from a magnetically permeable but electrically conducting material. This technique was perfected by ML Aviation, a U.K. company, in the early 80's, and was called a Radio Frequency Attenuation Connector (RFAC). It is now in wide use in the U.K. Previously, the disadvantage of RFAC over more conventional methods was its relatively high cost, largely driven by a thick film hybrid circuit used to switch the primary of the transformer. Recently, through a licensing agreement, this technology has been transferred to the U.S. and significant cost reductions and performance improvements have been achieved by the introduction of analog integrated circuits. An integrated circuit performs the following functions: (1) Chops the DC input to a signal suitable for driving the primary of the transformer; (2) Verifies the input voltage is above a threshold; (3) Verifies the input voltage is valid for a pre set time before enabling the device; (4) Provides thermal protection of the circuit; and (5) Provides an external input for independent logic level enabling of the power transfer mechanism. This paper describes the new RFAC product and its applications.

  6. Primary and secondary room temperature molten salt electrochemical cells

    NASA Astrophysics Data System (ADS)

    Reynolds, G. F.; Dymek, C. J., Jr.

    1985-07-01

    Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.

  7. An Experience of Teaching for Learning by Observation: Remote-Controlled Experiments on Electrical Circuits

    ERIC Educational Resources Information Center

    Kong, Siu Cheung; Yeung, Yau Yuen; Wu, Xian Qiu

    2009-01-01

    In order to facilitate senior primary school students in Hong Kong to engage in learning by observation of the phenomena related to electrical circuits, a design of a specific courseware system, of which the interactive human-machine interface was created with the use of an open-source software called the LabVNC, for conducting online…

  8. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided...

  9. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided...

  10. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided...

  11. Chattanooga Electric Power Board Case Study Distribution Automation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Jim; Melin, Alexander M.; Starke, Michael R.

    In 2009, the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA) awarded a grant to the Chattanooga, Tennessee, Electric Power Board (EPB) as part of the Smart Grid Investment Grant Program. The grant had the objective “to accelerate the transformation of the nation’s electric grid by deploying smart grid technologies.” This funding award enabled EPB to expedite the original smart grid implementation schedule from an estimated 10-12 years to 2.5 years. With this funding, EPB invested heavily in distribution automation technologies including installing over 1,200 automated circuit switches and sensors on 171 circuits. For utilities consideringmore » a commitment to distribution automation, there are underlying questions such as the following: “What is the value?” and “What are the costs?” This case study attempts to answer these questions. The primary benefit of distribution automation is increased reliability or reduced power outage duration and frequency. Power outages directly impact customer economics by interfering with business functions. In the past, this economic driver has been difficult to effectively evaluate. However, as this case study demonstrates, tools and analysis techniques are now available. In this case study, the impact on customer costs associated with power outages before and after the implementation of distribution automation are compared. Two example evaluations are performed to demonstrate the benefits: 1) a savings baseline for customers under normal operations1 and 2) customer savings for a single severe weather event. Cost calculations for customer power outages are performed using the US Department of Energy (DOE) Interruption Cost Estimate (ICE) calculator2. This tool uses standard metrics associated with outages and the customers to calculate cost impact. The analysis shows that EPB customers have seen significant reliability improvements from the implementation of distribution automation. Under normal operations, the investment in distribution automation has enabled a 43.5% reduction in annual outage minutes since 2012. This has led to an estimated total savings of $26.8 million per year. Examining a single severe weather event3, the distribution automation was able to restore power to 40,579 (nearly 56%) customers within 1–2 seconds and reduce outage minutes by 29.0%. This saved customers an estimated $23.2 million over the course of the storm.« less

  12. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    NASA Astrophysics Data System (ADS)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  13. Hydraulic and hydrological aspects of an evapotranspiration-constructed wetland combined system for household greywater treatment.

    PubMed

    Filho, Fernando Jorge C Magalhães; Sobrinho, Teodorico Alves; Steffen, Jorge L; Arias, Carlos A; Paulo, Paula L

    2018-05-12

    Constructed wetlands systems demand preliminary and primary treatment to remove solids present in greywater (GW) to avoid or reduce clogging processes. The current paper aims to assess hydraulic and hydrological behavior in an improved constructed wetland system, which has a built-in anaerobic digestion chamber (AnC), GW is distributed to the evapotranspiration and treatment tank (CEvaT), combined with a subsurface horizontal flow constructed wetland (SSHF-CW). The results show that both the plants present in the units and the AnC improve hydraulic and volumetric efficiency, decrease short-circuiting and improve mixing conditions in the system. Moreover, the hydraulic conductivity measured on-site indicates that the presence of plants in the system and the flow distribution pattern provided by the AnC might reduce clogging in the SSHF-CW. It is observed that rainfall enables salt elimination, thus increasing evapotranspiration (ET), which promotes effluent reduction and enables the system to have zero discharge when reuse is unfeasible.

  14. Two-Stage Series-Resonant Inverter

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.

  15. Estimation of Operating Condition of Appliances Using Circuit Current Data on Electric Distribution Boards

    NASA Astrophysics Data System (ADS)

    Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie

    The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.

  16. A Formalized Design Process for Bacterial Consortia That Perform Logic Computing

    PubMed Central

    Sun, Rui; Xi, Jingyi; Wen, Dingqiao; Feng, Jingchen; Chen, Yiwei; Qin, Xiao; Ma, Yanrong; Luo, Wenhan; Deng, Linna; Lin, Hanchi; Yu, Ruofan; Ouyang, Qi

    2013-01-01

    The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation. PMID:23468999

  17. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Qing; Zhao, Junyu; Chen, Hui

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasingmore » stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.« less

  18. Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-09

    GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltagemore » DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.« less

  19. Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia.

    PubMed

    Tan, Rachel H; Wong, Stephanie; Kril, Jillian J; Piguet, Olivier; Hornberger, Michael; Hodges, John R; Halliday, Glenda M

    2014-07-01

    Despite accruing evidence for relative preservation of episodic memory in the semantic variant of primary progressive aphasia (previously semantic dementia), the neural basis for this remains unclear, particularly in light of their well-established hippocampal involvement. We recently investigated the Papez network of memory structures across pathological subtypes of behavioural variant frontotemporal dementia and demonstrated severe degeneration of all relay nodes, with the anterior thalamus in particular emerging as crucial for intact episodic memory. The present study investigated the status of key components of Papez circuit (hippocampus, mammillary bodies, anterior thalamus, cingulate cortex) and anterior temporal cortex using volumetric and quantitative cell counting methods in pathologically-confirmed cases with semantic variant of primary progressive aphasia (n = 8; 61-83 years; three males), behavioural variant frontotemporal dementia with TDP pathology (n = 9; 53-82 years; six males) and healthy controls (n = 8, 50-86 years; four males). Behavioural variant frontotemporal dementia cases with TDP pathology were selected because of the association between the semantic variant of primary progressive aphasia and TDP pathology. Our findings revealed that the semantic variant of primary progressive aphasia and behavioural variant frontotemporal dementia show similar degrees of anterior thalamic atrophy. The mammillary bodies and hippocampal body and tail were preserved in the semantic variant of primary progressive aphasia but were significantly atrophic in behavioural variant frontotemporal dementia. Importantly, atrophy in the anterior thalamus and mild progressive atrophy in the body of the hippocampus emerged as the main memory circuit regions correlated with increasing dementia severity in the semantic variant of primary progressive aphasia. Quantitation of neuronal populations in the cingulate cortices confirmed the selective loss of anterior cingulate von Economo neurons in behavioural variant frontotemporal dementia. We also show that by end-stage these neurons selectively degenerate in the semantic variant of primary progressive aphasia with preservation of neurons in the posterior cingulate cortex. Overall, our findings demonstrate for the first time, severe atrophy, although not necessarily neuronal loss, across all relay nodes of Papez circuit with the exception of the mammillary bodies and hippocampal body and tail in the semantic variant of primary progressive aphasia. Despite the longer disease course in the semantic variant of primary progressive aphasia compared with behavioural variant frontotemporal dementia, we suggest here that the neural preservation of crucial memory relays (hippocampal→mammillary bodies and posterior cingulate→hippocampus) likely reflects the conservation of specific episodic memory components observed in most patients with semantic variant of primary progressive aphasia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Charging system and method for multicell storage batteries

    DOEpatents

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  1. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  2. Unbiased simulation of near-Clifford quantum circuits

    DOE PAGES

    Bennink, Ryan S.; Ferragut, Erik M.; Humble, Travis S.; ...

    2017-06-28

    Modeling and simulation are essential for predicting and verifying the behavior of fabricated quantum circuits, but existing simulation methods are either impractically costly or require an unrealistic simplification of error processes. In this paper, we present a method of simulating noisy Clifford circuits that is both accurate and practical in experimentally relevant regimes. In particular, the cost is weakly exponential in the size and the degree of non-Cliffordness of the circuit. Our approach is based on the construction of exact representations of quantum channels as quasiprobability distributions over stabilizer operations, which are then sampled, simulated, and weighted to yield unbiasedmore » statistical estimates of circuit outputs and other observables. As a demonstration of these techniques, we simulate a Steane [[7,1,3

  3. 40 CFR 98.438 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substations, circuit breakers, other switchgear, gas-insulated lines, or power transformers. Fluorinated GHG... transformers containing a fluorinated GHG prior to sale or distribution, or offer for sale or distribution in...

  4. 40 CFR 98.438 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substations, circuit breakers, other switchgear, gas-insulated lines, or power transformers. Fluorinated GHG... transformers containing a fluorinated GHG prior to sale or distribution, or offer for sale or distribution in...

  5. 40 CFR 98.438 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substations, circuit breakers, other switchgear, gas-insulated lines, or power transformers. Fluorinated GHG... transformers containing a fluorinated GHG prior to sale or distribution, or offer for sale or distribution in...

  6. 49 CFR 234.213 - Grounds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... current power distribution circuits that are grounded in the interest of safety; and common return wires... Maintenance Standards § 234.213 Grounds. Each circuit that affects the proper functioning of a highway-rail... permit a current flow of 75 percent or more of the release value of any relay or electromagnetic device...

  7. The Global Circuit.

    ERIC Educational Resources Information Center

    Lansford, Henry

    1983-01-01

    Discusses the nature of and research related to a theory explaining the earth's electric budget. The theory suggests a global electric circuit completed by a positive current flowing up into thunderstorm clouds, from clouds to ionosphere, distributed around the globe, and down to earth through the lower atmosphere in fair-weather regions. (JN)

  8. 46 CFR 97.55-1 - Master's responsibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OPERATIONS De-Energizing of Cargo Hold Lighting Circuits When Grain or Other Combustible Bulk Cargo Is... which the grain or bulk solid cargo is to be loaded de-energized at the distribution panel or panel... necessary to ascertain that the affected circuits remain de-energized while this bulk cargo remains within...

  9. Fundamentals of Digital Engineering: Designing for Reliability

    NASA Technical Reports Server (NTRS)

    Katz, R.; Day, John H. (Technical Monitor)

    2001-01-01

    The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples

  10. Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro

    PubMed Central

    Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.

    2010-01-01

    Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636

  11. Statistical theory of synaptic connectivity in the neocortex

    NASA Astrophysics Data System (ADS)

    Escobar, Gina

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can be mediated by modulation of existing synapses and structural reorganization of circuits through growth and retraction of dendritic spines. In the first part of this thesis, we describe a theoretical framework for the analysis of spine remodeling plasticity. New synaptic contacts appear in the neuropil where gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. We derive expressions for the densities of potential synapses in the neuropil. We calculate the ratio of actual to potential synapses, called the connectivity fraction, and use it to find the number of structurally different circuits attainable with spine remodeling. These parameters are calculated in four systems: mouse occipital cortex, rat hippocampal area CA1, monkey primary visual (V1), and human temporal cortex. The neurogeometric results indicate that a dendritic spine can choose among an average of 4-7 potential targets in rodents, while in primates it can choose from 10-20 potential targets. The potential of the neuropil to undergo circuit remodeling is found to be highest in rat CA1 (4.9-6.0 nats/mum 3) and lowest in monkey V1 (0.9-1.0 nats/mum3). We evaluate the lower bound of neuron selectivity in the choice of synaptic partners and find that post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. Another plasticity mechanism is included in the second part of this work: long-term potentiation and depression of excitatory synaptic connections. Because synaptic strength is correlated with the size of the synapse, the former can be inferred from the distribution of spine head volumes. To this end we analyze and compare 166 distributions of spine head volumes and spine lengths from mouse, rat, monkey, and human brains. We develope a statistical theory in which the equilibrium distribution of dendritic spine shapes is governed by the principle of synaptic entropy maximization under a "generalized cost" constraint. We find the generalized cost of dendritic spines and show that it universally depends on the spine shape, i.e. the dependence is the same in all the considered systems. We show that the modulatory and structural plasticity mechanisms in adults are in a statistical equilibrium with each other, the numbers of dendritic spines in different cortical areas are nearly optimally chosen for memory storage, and the distribution of spine shapes is governed by a single parameter -- the effective temperature. Our results suggest that the effective temperature of a cortical area may be viewed as a measure of longevity of stored memories. Finally, we test the hypothesis that the number of spines in the neuropil is chosen to optimize its storage information capacity.

  12. Analogies as Tools for Meaning Making in Elementary Science Education: How Do They Work in Classroom Settings?

    ERIC Educational Resources Information Center

    Guerra-Ramos, Maria Teresa

    2011-01-01

    In this paper there is a critical overview of the role of analogies as tools for meaning making in science education, their advantages and disadvantages. Two empirical studies on the use of analogies in primary classrooms are discussed and analysed. In the first study, the "string circuit" analogy was used in the teaching of electric circuits with…

  13. Conceptions of Pupils of the Primary on the Topic of an Electric Circuit in Three Countries (Canada, France and Morocco)

    ERIC Educational Resources Information Center

    Métioui, Abdeljalil; MacWillie, Mireille Baulu; Trudel, Louis

    2016-01-01

    Qualitative research conducted with 237 pupils from Canada, France, and Morocco, between 10 and 12 years of age, on the setting and functioning of simple electric circuits, demonstrates that similar explanatory systems of the students. For this, we had given them a paper and pencil questionnaire of a sixty minutes duration. The first question was…

  14. The modelling of carbon-based supercapacitors: Distributions of time constants and Pascal Equivalent Circuits

    NASA Astrophysics Data System (ADS)

    Fletcher, Stephen; Kirkpatrick, Iain; Dring, Roderick; Puttock, Robert; Thring, Rob; Howroyd, Simon

    2017-03-01

    Supercapacitors are an emerging technology with applications in pulse power, motive power, and energy storage. However, their carbon electrodes show a variety of non-ideal behaviours that have so far eluded explanation. These include Voltage Decay after charging, Voltage Rebound after discharging, and Dispersed Kinetics at long times. In the present work, we establish that a vertical ladder network of RC components can reproduce all these puzzling phenomena. Both software and hardware realizations of the network are described. In general, porous carbon electrodes contain random distributions of resistance R and capacitance C, with a wider spread of log R values than log C values. To understand what this implies, a simplified model is developed in which log R is treated as a Gaussian random variable while log C is treated as a constant. From this model, a new family of equivalent circuits is developed in which the continuous distribution of log R values is replaced by a discrete set of log R values drawn from a geometric series. We call these Pascal Equivalent Circuits. Their behaviour is shown to resemble closely that of real supercapacitors. The results confirm that distributions of RC time constants dominate the behaviour of real supercapacitors.

  15. A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA

    DOE PAGES

    Marcicki, James; Zhu, Min; Bartlett, Alexander; ...

    2017-02-04

    The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less

  16. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    NASA Technical Reports Server (NTRS)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  17. Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali

    2017-05-01

    Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).

  18. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  19. The effect of a defective BSF layer on solar cell open circuit voltage. [Back Surface Field

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1985-01-01

    A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.

  20. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  1. Paul Drude's Prediction of Nonreciprocal Mutual Inductance for Tesla Transformers

    PubMed Central

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed. PMID:25542040

  2. Paul Drude's prediction of nonreciprocal mutual inductance for Tesla transformers.

    PubMed

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed.

  3. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  4. The 30/20 GHz mixed user architecture development study: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The baseline 30/30 GHz satellite communication system, designed for cost-effective communications in the years 1990 to 2000, incorporates on-board satellite demodulation and routing of individual 64 kbps digital voice-grade circuits. This level of routing flexibility is necessary to provide efficient communications to the large number of direct-to-user terminals (DTU) projected. The circuit interfacing hardware is distributed among all the DTU and master control stations. The switching circuitry which provides full interconnectivity between 30 to 45 thousand circuits is in the satellite. The DTU terminal cost, perhaps the largest element in the system cost, represents the largest economic value element of the system because it avoids using terrestrial signal distribution and routing and the charges associated with these functions. Satellite baseline design and power requirements for the system are examined.

  5. The effect of body bias of the metal-oxide-semiconductor field-effect transistor in the resistive network on spatial current distribution in a bio-inspired complementary metal-oxide-semiconductor vision chip

    NASA Astrophysics Data System (ADS)

    Kong, Jae-Sung; Hyun, Hyo-Young; Seo, Sang-Ho; Shin, Jang-Kyoo

    2008-11-01

    Complementary metal-oxide-semiconductor (CMOS) vision chips for edge detection based on a resistive circuit have recently been developed. These chips help in the creation of neuromorphic systems of a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends predominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the metal-oxide-semiconductor field-effect transistor for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160 × 120 CMOS vision chips have been fabricated using a standard CMOS technology. The experimental results nicely match our prediction.

  6. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1989-05-01

    The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.

  7. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  8. 46 CFR 111.97-7 - Distribution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-7 Distribution. (a) Each distribution... locking. (b) Each feeder supplying a watertight door operating system must be above the uppermost continuous deck. (c) Each watertight door operating system must have a separate branch circuit. ...

  9. 46 CFR 111.97-7 - Distribution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-7 Distribution. (a) Each distribution... locking. (b) Each feeder supplying a watertight door operating system must be above the uppermost continuous deck. (c) Each watertight door operating system must have a separate branch circuit. ...

  10. 46 CFR 111.97-7 - Distribution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-7 Distribution. (a) Each distribution... locking. (b) Each feeder supplying a watertight door operating system must be above the uppermost continuous deck. (c) Each watertight door operating system must have a separate branch circuit. ...

  11. 46 CFR 111.97-7 - Distribution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-7 Distribution. (a) Each distribution... locking. (b) Each feeder supplying a watertight door operating system must be above the uppermost continuous deck. (c) Each watertight door operating system must have a separate branch circuit. ...

  12. 46 CFR 111.97-7 - Distribution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-7 Distribution. (a) Each distribution... locking. (b) Each feeder supplying a watertight door operating system must be above the uppermost continuous deck. (c) Each watertight door operating system must have a separate branch circuit. ...

  13. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOEpatents

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  14. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe ground check circuits; maximum voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check...

  15. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits; maximum voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check...

  16. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits; maximum voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check...

  17. Brain Embodiment of Syntax and Grammar: Discrete Combinatorial Mechanisms Spelt Out in Neuronal Circuits

    ERIC Educational Resources Information Center

    Pulvermuller, Friedemann

    2010-01-01

    Neuroscience has greatly improved our understanding of the brain basis of abstract lexical and semantic processes. The neuronal devices underlying words and concepts are distributed neuronal assemblies reaching into sensory and motor systems of the cortex and, at the cognitive level, information binding in such widely dispersed circuits is…

  18. Nonlinear computations shaping temporal processing of precortical vision.

    PubMed

    Butts, Daniel A; Cui, Yuwei; Casti, Alexander R R

    2016-09-01

    Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage. Copyright © 2016 the American Physiological Society.

  19. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon.

    PubMed

    Smolilo, D J; Costa, M; Hibberd, T J; Wattchow, D A; Spencer, Nick J

    2018-07-01

    The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility. © 2018 Wiley Periodicals, Inc.

  20. Vision Technology for Automated Inspection of Hybrid Microelectronics Assemblies

    DTIC Science & Technology

    1988-06-01

    circuits are a very efficient packaging technique, with the primary advantages of size, better resistance to environ - 0 ments, and the flexibility to...produced for the military are much more complex and have more stringent performance requirements, particularly in their resistance to environments and...boards, particularly because of the need to protect circuits from a hostile environment such as salt, heat, and moisture. Included among the major U.S

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Meng-Zheng; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ye, Liu, E-mail: yeliu@ahu.edu.cn

    An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC)more » transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.« less

  2. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    PubMed

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  3. Development of circuit model for arcing on solar panels

    NASA Astrophysics Data System (ADS)

    Mehta, Bhoomi K.; Deshpande, S. P.; Mukherjee, S.; Gupta, S. B.; Ranjan, M.; Rane, R.; Vaghela, N.; Acharya, V.; Sudhakar, M.; Sankaran, M.; Suresh, E. P.

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator and conductor, arc resistance, stored charge in the solar cell coverglass and the external capacitor that simulates wire harness. A close correlation between the experiments and circuit model results has been observed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennink, Ryan S.; Ferragut, Erik M.; Humble, Travis S.

    Modeling and simulation are essential for predicting and verifying the behavior of fabricated quantum circuits, but existing simulation methods are either impractically costly or require an unrealistic simplification of error processes. In this paper, we present a method of simulating noisy Clifford circuits that is both accurate and practical in experimentally relevant regimes. In particular, the cost is weakly exponential in the size and the degree of non-Cliffordness of the circuit. Our approach is based on the construction of exact representations of quantum channels as quasiprobability distributions over stabilizer operations, which are then sampled, simulated, and weighted to yield unbiasedmore » statistical estimates of circuit outputs and other observables. As a demonstration of these techniques, we simulate a Steane [[7,1,3

  5. A simple theoretical model for ⁶³Ni betavoltaic battery.

    PubMed

    Zuo, Guoping; Zhou, Jianliang; Ke, Guotu

    2013-12-01

    A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Development of a Temperature Sensor for Jet Engine and Space Mission Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis

    2008-01-01

    Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.

  7. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  8. PC based graphic display real-time particle beam uniformity

    NASA Technical Reports Server (NTRS)

    Huebner, M. A.; Malone, C. J.; Smith, L. S.; Soli, G. A.

    1989-01-01

    A technique has been developed to support the study of the effects of cosmic rays on integrated circuits. The system is designed to determine the particle distribution across the surface of an integrated circuit accurately while the circuit is bombarded by a particle beam. The system uses photomultiplier tubes, an octal discriminator, a computer-controlled NIM quad counter, and an IBM PC. It provides real-time operator feedback for fast beam tuning and monitors momentary fluctuations in the particle beam. The hardware, software, and system performance are described.

  9. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  10. Shielded multi-stage EMI noise filter

    DOEpatents

    Kisner, Roger Allen; Fugate, David Lee

    2016-11-08

    Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.

  11. Space Station power distribution and control

    NASA Technical Reports Server (NTRS)

    Willis, A. H.

    1986-01-01

    A general description of the Space Station is given with the basic requirements of the power distribution and controls system presented. The dual bus and branch circuit concepts are discussed and a computer control method presented.

  12. Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations

    NASA Technical Reports Server (NTRS)

    Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, Dave

    2016-01-01

    From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Primary Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. A key aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Intermittent and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5 testing.

  13. A neural circuit for gamma-band coherence across the retinotopic map in mouse visual cortex

    PubMed Central

    Hakim, Richard; Shamardani, Kiarash

    2018-01-01

    Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex. PMID:29480803

  14. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.

    PubMed

    Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R; Tonegawa, Susumu

    2014-02-01

    The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.

  15. Computer-Aided Engineering Of Cabling

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1989-01-01

    Program generates data sheets, drawings, and other information on electrical connections. DFACS program, centered around single data base, has built-in menus providing easy input of, and access to, data for all personnel involved in system, subsystem, and cabling. Enables parallel design of circuit-data sheets and drawings of harnesses. Also recombines raw information to generate automatically various project documents and drawings, including index of circuit-data sheets, list of electrical-interface circuits, lists of assemblies and equipment, cabling trees, and drawings of cabling electrical interfaces and harnesses. Purpose of program to provide engineering community with centralized data base for putting in, and gaining access to, functional definition of system as specified in terms of details of pin connections of end circuits of subsystems and instruments and data on harnessing. Primary objective to provide instantaneous single point of interchange of information, thus avoiding

  16. Binary selectable detector holdoff circuit: Design, testing, and application. [to laser radar data acquisition system

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.

  17. Formal Multilevel Hierarchical Verification of Synchronous MOS VLSI Circuits.

    DTIC Science & Technology

    1987-06-01

    166 12.4 Capacitance Coupling............................. 166 12.5 Multiple Abstraction Fuctions ....................... 168...depend on whether it is performing flat verification or hierarchical verification. The primary operations of Silica Pithecus when performing flat...signals never arise. The primary operation of Silica Pithecus when performing hierarchical verification is processing constraints to show they hold

  18. More than Skin Deep: Body Representation beyond Primary Somatosensory Cortex

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Azanon, Elena; Haggard, Patrick

    2010-01-01

    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond Somatosensation.…

  19. Implementation of a transcutaneous charger for fully implantable middle ear hearing device.

    PubMed

    Lim, H; Yoon, Y; Lee, C; Park, I; Song, B; Cho, J

    2005-01-01

    A transcutaneous charger for the fully implantable middle ear hearing device (F-IMEHD), which can monitor the charging level of battery, has been designed and implemented. In order to recharge the battery of F-IMEHD, the electromagnetic coupling between primary coil at outer body and secondary coil at inner body has been used. Considering the implant condition of the F-IMEHD, the primary coil and the secondary coil have been designed. Using the resonance of LC tank circuit at each coil, transmission efficiency was increased. Since the primary and the secondary coil are magnetically coupled, the current variation of the primary coil is related with the impedance of internal resonant circuit. Using the principle mentioned above, the implanted module could transmit outward the information about charging state of battery or coupling between two coils by the changing internal impedance. As in the demonstrated results of experiment, the implemented charger has supplied the sufficient operating voltage for the implanted battery within about 10 mm distance. And also, it has been confirmed that the implanted module can transmit information outward by control of internal impedance.

  20. Performance of the high speed anechoic wind tunnel at Lyon University

    NASA Technical Reports Server (NTRS)

    Sunyach, M.; Brunel, B.; Comte-Bellot, G.

    1986-01-01

    The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.

  1. The intralaminar thalamus—an expressway linking visual stimuli to circuits determining agency and action selection

    PubMed Central

    Fisher, Simon D.; Reynolds, John N. J.

    2014-01-01

    Anatomical investigations have revealed connections between the intralaminar thalamic nuclei and areas such as the superior colliculus (SC) that receive short latency input from visual and auditory primary sensory areas. The intralaminar nuclei in turn project to the major input nucleus of the basal ganglia, the striatum, providing this nucleus with a source of subcortical excitatory input. Together with a converging input from the cerebral cortex, and a neuromodulatory dopaminergic input from the midbrain, the components previously found necessary for reinforcement learning in the basal ganglia are present. With this intralaminar sensory input, the basal ganglia are thought to play a primary role in determining what aspect of an organism’s own behavior has caused salient environmental changes. Additionally, subcortical loops through thalamic and basal ganglia nuclei are proposed to play a critical role in action selection. In this mini review we will consider the anatomical and physiological evidence underlying the existence of these circuits. We will propose how the circuits interact to modulate basal ganglia output and solve common behavioral learning problems of agency determination and action selection. PMID:24765070

  2. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization

    NASA Astrophysics Data System (ADS)

    Ghazavi, Atefeh; Cogan, Stuart F.

    2018-06-01

    Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.

  3. VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti)

    PubMed Central

    Balaram, Pooja; Takahata, Toru; Kaas, Jon H

    2011-01-01

    Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex. PMID:22984342

  4. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    PubMed

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. DAMT - DISTRIBUTED APPLICATION MONITOR TOOL (HP9000 VERSION)

    NASA Technical Reports Server (NTRS)

    Keith, B.

    1994-01-01

    Typical network monitors measure status of host computers and data traffic among hosts. A monitor to collect statistics about individual processes must be unobtrusive and possess the ability to locate and monitor processes, locate and monitor circuits between processes, and report traffic back to the user through a single application program interface (API). DAMT, Distributed Application Monitor Tool, is a distributed application program that will collect network statistics and make them available to the user. This distributed application has one component (i.e., process) on each host the user wishes to monitor as well as a set of components at a centralized location. DAMT provides the first known implementation of a network monitor at the application layer of abstraction. Potential users only need to know the process names of the distributed application they wish to monitor. The tool locates the processes and the circuit between them, and reports any traffic between them at a user-defined rate. The tool operates without the cooperation of the processes it monitors. Application processes require no changes to be monitored by this tool. Neither does DAMT require the UNIX kernel to be recompiled. The tool obtains process and circuit information by accessing the operating system's existing process database. This database contains all information available about currently executing processes. Expanding the information monitored by the tool can be done by utilizing more information from the process database. Traffic on a circuit between processes is monitored by a low-level LAN analyzer that has access to the raw network data. The tool also provides features such as dynamic event reporting and virtual path routing. A reusable object approach was used in the design of DAMT. The tool has four main components; the Virtual Path Switcher, the Central Monitor Complex, the Remote Monitor, and the LAN Analyzer. All of DAMT's components are independent, asynchronously executing processes. The independent processes communicate with each other via UNIX sockets through a Virtual Path router, or Switcher. The Switcher maintains a routing table showing the host of each component process of the tool, eliminating the need for each process to do so. The Central Monitor Complex provides the single application program interface (API) to the user and coordinates the activities of DAMT. The Central Monitor Complex is itself divided into independent objects that perform its functions. The component objects are the Central Monitor, the Process Locator, the Circuit Locator, and the Traffic Reporter. Each of these objects is an independent, asynchronously executing process. User requests to the tool are interpreted by the Central Monitor. The Process Locator identifies whether a named process is running on a monitored host and which host that is. The circuit between any two processes in the distributed application is identified using the Circuit Locator. The Traffic Reporter handles communication with the LAN Analyzer and accumulates traffic updates until it must send a traffic report to the user. The Remote Monitor process is replicated on each monitored host. It serves the Central Monitor Complex processes with application process information. The Remote Monitor process provides access to operating systems information about currently executing processes. It allows the Process Locator to find processes and the Circuit Locator to identify circuits between processes. It also provides lifetime information about currently monitored processes. The LAN Analyzer consists of two processes. Low-level monitoring is handled by the Sniffer. The Sniffer analyzes the raw data on a single, physical LAN. It responds to commands from the Analyzer process, which maintains the interface to the Traffic Reporter and keeps track of which circuits to monitor. DAMT is written in C-language for HP-9000 series computers running HP-UX and Sun 3 and 4 series computers running SunOS. DAMT requires 1Mb of disk space and 4Mb of RAM for execution. This package requires MIT's X Window System, Version 11 Revision 4, with OSF/Motif 1.1. The HP-9000 version (GSC-13589) includes sample HP-9000/375 and HP-9000/730 executables which were compiled under HP-UX, and the Sun version (GSC-13559) includes sample Sun3 and Sun4 executables compiled under SunOS. The standard distribution medium for the HP version of DAMT is a .25 inch HP pre-formatted streaming magnetic tape cartridge in UNIX tar format. It is also available on a 4mm magnetic tape in UNIX tar format. The standard distribution medium for the Sun version of DAMT is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. DAMT was developed in 1992.

  6. Full circuit calculation for electromagnetic pulse transmission in a high current facility

    NASA Astrophysics Data System (ADS)

    Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun

    2014-11-01

    We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.

  7. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.

    PubMed

    Nelissen, Koen; Fiave, Prosper Agbesi; Vanduffel, Wim

    2018-04-01

    Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.

  8. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  9. Failure Mode/Mechanism Distributions

    DTIC Science & Technology

    1991-09-01

    circuits , hybrids, discrete semiconductors, microwave devices, optoelectronics and nonelectronic parts employed in military, space, industrial and...FMEA may be performed as a hardware analysis, a functional analysis, or a combination analysis and is ideally initiated at the part, circuit or...by a single replaceable module , a separate FMEA could be performed on the internal functions of the module , viewing the module as a system. The level

  10. Modulation of distributed feedback (DFB) laser diode with the autonomous Chua's circuit: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Talla Mbé, Jimmi Hervé; Woafo, Paul

    2018-03-01

    We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.

  11. Tachometers Derived From a Brushless DC Motor

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.

    2007-01-01

    The upper part of the figure illustrates the major functional blocks of a direction-sensitive analog tachometer circuit based on the use of an unexcited two-phase brushless dc motor as a rotation transducer. The primary advantages of this circuit over many older tachometer circuits include the following: Its output inherently varies linearly with the rate of rotation of the shaft. Unlike some tachometer circuits that rely on differentiation of voltages with respect to time, this circuit relies on integration, which results in signals that are less noisy. There is no need for an additional shaft-angle sensor, nor is there any need to supply electrical excitation to a shaft-angle sensor. There is no need for mechanical brushes (which tend to act as sources of electrical noise). The underlying concept and electrical design are relatively simple. This circuit processes the back-electromagnetic force (back-emf) outputs of the two motor phases into a voltage directly proportional to the instantaneous rate (sign magnitude) of rotation of the shaft. The processing in this circuit effects a straightforward combination of mathematical operations leading to a final operation based on the well-known trigonometric identity (sin x)2 + (cos x)2 = 1 for any value of x. The principle of operation of this circuit is closely related to that of the tachometer circuit described in Tachometer Derived From Brushless Shaft-Angle Resolver (MFS-28845), NASA Tech Briefs, Vol. 19, No. 3 (March 1995), page 39. However, the present circuit is simpler in some respects because there is no need for sinusoidal excitation of shaftangle- resolver windings.

  12. Particle leakage in extracorporeal blood purification systems based on microparticle suspensions.

    PubMed

    Hartmann, Jens; Schildboeck, Claudia; Brandl, Martin; Falkenhagen, Dieter

    2005-01-01

    The newly developed 'Microspheres based Detoxification System' (MDS) designed for any extracorporeal adsorption therapy uses microparticles as adsorbents characterized by a size of 1-20 microm in diameter which are recirculated in the secondary (filtrate) circuit connected to a hollow fiber filter located in the primary (blood) circuit. In the case of a leakage or rupture in the hollow fiber filter, microspheres can enter patients' blood circuits and cause embolic episodes in different organs with varying degrees of clinical relevance. Aim of this study was to determine the amount of particles infused to a patient during a long-term treatment under different failure conditions of the filter. The filters were prepared by cutting single hollow fibers. Fresh-frozen plasma (FFP) and a mixture of glycerol and water were used as a medium together with microparticles potentially used in the MDS. The amounts of particles transferred from the filtrate into the primary circuit were measured. The analysis of particle transfer in the case of a single cut hollow fiber inside the membrane results in particle volumes of up to 26 ml calculated for 10 h. Particle leakage in microparticle suspension based detoxification systems can lead to considerable particle transfer to the patient. Therefore, a particle detection unit which is able to detect critical amounts of particles (<1 ml particle volume/treatment) in the extracorporeal blood line is necessary for patient safety. (c) 2005 S. Karger AG, Basel.

  13. Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro

    PubMed Central

    Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian

    2016-01-01

    For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467

  14. Error Mitigation for Short-Depth Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  15. [Anesthesia ventilators].

    PubMed

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand-alone mechanical ventilators modified to allow the administration of inhalational anaesthetic agents.

  16. High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    NASA Astrophysics Data System (ADS)

    Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  17. Development of a Bio-nanobattery for Distributed Power Storage Systems

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Park, Yeonjoon; Lillehei, Peter; Watt, Gerald D.; Davis, Robert; Harb, John N.

    2004-01-01

    Currently available power storage systems, such as those used to supply power to microelectronic devices, typically consist of a single centralized canister and a series of wires to supply electrical power to where it is needed in a circuit. As the size of electrical circuits and components become smaller, there exists a need for a distributed power system to reduce Joule heating, wiring, and to allow autonomous operation of the various functions performed by the circuit. Our research is being conducted to develop a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Both Co-ferritin and Fe-ferritin were synthesized and characterized as candidates for the bio-nanobattery. The reducing capability was determined as well as the half-cell electrical potentials, indicating an electrical output of nearly 0.5 V for the battery cell. Ferritins having other metallic cores are also being investigated, in order to increase the overall electrical output. Two dimensional ferritin arrays were also produced on various substrates, demonstrating the necessary building blocks for the bio-nanobattery. The bio-nanobattery will play a key role in moving to a distributed power storage system for electronic applications.

  18. Modifications to the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2008-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of 2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of a closeable orifice in the test section. Modifications are now complete and testing has resumed. Performance of the ALIp, provided by Idaho National Laboratory (INL), is the subject of the first round ofexperimentation. This paper provides a summary of the tests conducted on the original circuit, details the physical changes that have since been made to it, and describes the current test program.

  19. Primary Auditory Cortex is Required for Anticipatory Motor Response.

    PubMed

    Li, Jingcheng; Liao, Xiang; Zhang, Jianxiong; Wang, Meng; Yang, Nian; Zhang, Jun; Lv, Guanghui; Li, Haohong; Lu, Jian; Ding, Ran; Li, Xingyi; Guang, Yu; Yang, Zhiqi; Qin, Han; Jin, Wenjun; Zhang, Kuan; He, Chao; Jia, Hongbo; Zeng, Shaoqun; Hu, Zhian; Nelken, Israel; Chen, Xiaowei

    2017-06-01

    The ability of the brain to predict future events based on the pattern of recent sensory experience is critical for guiding animal's behavior. Neocortical circuits for ongoing processing of sensory stimuli are extensively studied, but their contributions to the anticipation of upcoming sensory stimuli remain less understood. We, therefore, used in vivo cellular imaging and fiber photometry to record mouse primary auditory cortex to elucidate its role in processing anticipated stimulation. We found neuronal ensembles in layers 2/3, 4, and 5 which were activated in relationship to anticipated sound events following rhythmic stimulation. These neuronal activities correlated with the occurrence of anticipatory motor responses in an auditory learning task. Optogenetic manipulation experiments revealed an essential role of such neuronal activities in producing the anticipatory behavior. These results strongly suggest that the neural circuits of primary sensory cortex are critical for coding predictive information and transforming it into anticipatory motor behavior. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    PubMed

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Three types of solid state remote power controllers

    NASA Technical Reports Server (NTRS)

    Baker, D. E.

    1975-01-01

    Three types of solid state Remote Power Controller (RPC) circuits for 120 Vdc spacecraft distribution systems have been developed and evaluated. Both current limiting and noncurrent limiting modes of overload protection were developed and were demonstrated to be feasible. A second generation of circuits was developed which offers comparable performance with substantially less cost and complexity. Electrical efficiency for both generations is 98.5 to 99%. This paper describes various aspects of the circuit design, trade-off studies, and experimental test results. Comparisons of design parameters, component requirements, and engineering model evaluations will emphasize the high efficiency and reliability of the designs.

  2. CCTV Surveillance in Primary Schools: Normalisation, Resistance, and Children's Privacy Consciousness

    ERIC Educational Resources Information Center

    Birnhack, Michael; Perry-Hazan, Lotem; German Ben-Hayun, Shiran

    2018-01-01

    This study explored how primary school children perceive school surveillance by Closed Circuit TV systems (CCTVs) and how their perceptions relate to their privacy consciousness. It drew on interviews with 57 children, aged 9-12, who were enrolled in three Israeli public schools that had installed CCTVs, and on information gathered from members of…

  3. Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays

    NASA Technical Reports Server (NTRS)

    Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard

    1999-01-01

    Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.

  4. High accuracy switched-current circuits using an improved dynamic mirror

    NASA Technical Reports Server (NTRS)

    Zweigle, G.; Fiez, T.

    1991-01-01

    The switched-current technique, a recently developed circuit approach to analog signal processing, has emerged as an alternative/compliment to the well established switched-capacitor circuit technique. High speed switched-current circuits offer potential cost and power savings over slower switched-capacitor circuits. Accuracy improvements are a primary concern at this stage in the development of the switched-current technique. Use of the dynamic current mirror has produced circuits that are insensitive to transistor matching errors. The dynamic current mirror has been limited by other sources of error including clock-feedthrough and voltage transient errors. In this paper we present an improved switched-current building block using the dynamic current mirror. Utilizing current feedback the errors due to current imbalance in the dynamic current mirror are reduced. Simulations indicate that this feedback can reduce total harmonic distortion by as much as 9 dB. Additionally, we have developed a clock-feedthrough reduction scheme for which simulations reveal a potential 10 dB total harmonic distortion improvement. The clock-feedthrough reduction scheme also significantly reduces offset errors and allows for cancellation with a constant current source. Experimental results confirm the simulated improvements.

  5. Substorm Birkeland currents and Cowling channels in the ionosphere

    NASA Astrophysics Data System (ADS)

    Fujii, R.

    2016-12-01

    Field-aligned current (FAC) connects electromagnetically the ionosphere with the magnetosphere and plays important roles on dynamics and energetics in the magnetosphere and the ionosphere. In particular, connections between FACs in the ionosphere give important information on various current sources in the magnetosphere and the linkage between them, although the connection between FACs in the ionosphere does not straightforwardly give that in the magnetosphere. FACs in the ionosphere are closed to each other through ionospheric currents determined with the electric field and the Hall and Pedersen conductivities. The electric field and the conductivities are not independently distributed, but rather they are harmonized with each other spatially and temporarily in a physically consistent manner to give a certain FAC. In particular, the divergence of the Hall current due to the inhomogeneity of the Hall conductivity either flows in/out to the magnetosphere as a secondary FAC or accumulates excess charges that produce a secondary electric field. This electric field drives a current circuit connecting the Hall current with the Pedersen current; a Cowling channel current circuit. The FAC (the electric field) we observe is the sum of the primary and secondary FACs (electric fields). The talk will present characteristics of FACs and associated electric field and auroras during substorms, and the ionospheric current closures between the FACs. A statistical study has shown that the majority of region 1 currents are connected to their adjacent region 2 or region 0 currents, indicating the Pedersen current closure rather than the Hall current closure is dominant. On the other hand, the Pedersen currents associated with surge and substorm-related auroras often are connected to the Hall currents, forming a Cowling channel current circuit within the ionosphere.

  6. Laminar- and Target-Specific Amygdalar Inputs in Rat Primary Gustatory Cortex.

    PubMed

    Haley, Melissa S; Fontanini, Alfredo; Maffei, Arianna

    2016-03-02

    The primary gustatory cortex (GC) receives projections from the basolateral nucleus of the amygdala (BLA). Behavioral and electrophysiological studies demonstrated that this projection is involved in encoding the hedonic value of taste and is a source of anticipatory activity in GC. Anatomically, this projection is largest in the agranular portion of GC; however, its synaptic targets and synaptic properties are currently unknown. In vivo electrophysiological recordings report conflicting evidence about BLA afferents either selectively activating excitatory neurons or driving a compound response consistent with the activation of inhibitory circuits. Here we demonstrate that BLA afferents directly activate excitatory neurons and two distinct populations of inhibitory neurons in both superficial and deep layers of rat GC. BLA afferents recruit different proportions of excitatory and inhibitory neurons and show distinct patterns of circuit activation in the superficial and deep layers of GC. These results provide the first circuit-level analysis of BLA inputs to a sensory area. Laminar- and target-specific differences of BLA inputs likely explain the complexity of amygdalocortical interactions during sensory processing. Projections from the basolateral nucleus of the amygdala (BLA) to the cortex convey information about the emotional value and the expectation of a sensory stimulus. Although much work has been done to establish the behavioral role of BLA inputs to sensory cortices, very little is known about the circuit organization of BLA projections. Here we provide the first in-depth analysis of connectivity and synaptic properties of the BLA input to the gustatory cortex. We show that BLA afferents activate excitatory and inhibitory circuits in a layer-specific and pattern-specific manner. Our results provide important new information about how neural circuits establishing the hedonic value of sensory stimuli and driving anticipatory behaviors are organized at the synaptic level. Copyright © 2016 the authors 0270-6474/16/362623-15$15.00/0.

  7. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  8. Energy Optimization Assessments at U.S. Army Installations: Caserma Ederle Vicenza, Italy

    DTIC Science & Technology

    2009-01-17

    Caserma Ederle has one central plant, described in ECM CEP #2. In addi- tion to looking at the planned renovation of the central plant, this study...serving Bldgs 10B, 23, 44 and 66 • east circuit serving Bldg 290 (New Commissary building). The north circuit was recently renovated . Up to the New...water lines as a primary system for the hot water generators. New central plant concept The existing Central Energy Plant is going to be renovated by

  9. Automatic recloser circuit breaker integrated with GSM technology for power system notification

    NASA Astrophysics Data System (ADS)

    Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.

    2015-05-01

    Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.

  10. Data on the natural ventilation performance of windcatcher with anti-short-circuit device (ASCD).

    PubMed

    Nejat, Payam; Calautit, John Kaiser; Majid, Muhd Zaimi Abd; Hughes, Ben Richard; Jomehzadeh, Fatemeh

    2016-12-01

    This article presents the datasets which were the results of the study explained in the research paper 'Anti-short-circuit device: a new solution for short-circuiting in windcatcher and improvement of natural ventilation performance' (P. Nejat, J.K. Calautit, M.Z. Abd. Majid, B.R. Hughes, F. Jomehzadeh, 2016) [1] which introduces a new technique to reduce or prevent short-circuiting in a two-sided windcatcher and also lowers the indoor CO2 concentration and improve the ventilation distribution. Here, we provide details of the numerical modeling set-up and data collection method to facilitate reproducibility. The datasets includes indoor airflow, ventilation rates and CO2 concentration data at several points in the flow field. The CAD geometry of the windcatcher models are also included.

  11. Synthesis of energy-efficient FSMs implemented in PLD circuits

    NASA Astrophysics Data System (ADS)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The mainmore » conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.« less

  13. Development and Simulation of Increased Generation on a Secondary Circuit of a Microgrid

    NASA Astrophysics Data System (ADS)

    Reyes, Karina

    As fossil fuels are depleted and their environmental impacts remain, other sources of energy must be considered to generate power. Renewable sources, for example, are emerging to play a major role in this regard. In parallel, electric vehicle (EV) charging is evolving as a major load demand. To meet reliability and resiliency goals demanded by the electricity market, interest in microgrids are growing as a distributed energy resource (DER). In this thesis, the effects of intermittent renewable power generation and random EV charging on secondary microgrid circuits are analyzed in the presence of a controllable battery in order to characterize and better understand the dynamics associated with intermittent power production and random load demands in the context of the microgrid paradigm. For two reasons, a secondary circuit on the University of California, Irvine (UCI) Microgrid serves as the case study. First, the secondary circuit (UC-9) is heavily loaded and an integral component of a highly characterized and metered microgrid. Second, a unique "next-generation" distributed energy resource has been deployed at the end of the circuit that integrates photovoltaic power generation, battery storage, and EV charging. In order to analyze this system and evaluate the impact of the DER on the secondary circuit, a model was developed to provide a real-time load flow analysis. The research develops a power management system applicable to similarly integrated systems. The model is verified by metered data obtained from a network of high resolution electric meters and estimated load data for the buildings that have unknown demand. An increase in voltage is observed when the amount of photovoltaic power generation is increased. To mitigate this effect, a constant power factor is set. Should the real power change dramatically, the reactive power is changed to mitigate voltage fluctuations.

  14. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  15. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

    NASA Astrophysics Data System (ADS)

    Pei, Yalu; Liu, Yilun; Zuo, Lei

    2018-06-01

    This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

  16. Teaching Resistance through an interactive gaming lab

    NASA Astrophysics Data System (ADS)

    O'Brien, James G.; Sirokman, Greg; Rueckert, Franz; Cascio, Derek

    2015-04-01

    The use of gaming as an educational tool has proven to be an effective paradigm in modern pedagogy. Following the success of their previous work ``Sector Vector,'' the authors present a new interactive game-based laboratory to highlight the basic manipulation and calculation of resistors in circuits. ``Resistance is Futile'' delivers the lesson of basic resistor combinations in a game based exercise where teams build a continually evolving circuit. As the game progresses, students must develop long and short term plans to modify an ever-changing circuit and meet primary and secondary objectives. Each turn requires quick calculations of resistor combinations and the assessment of future options. Students are also exposed to the creation of a modular circuit, which may not conform to standard textbook examples. To determine a winner, the students work together to analyze and evaluate a potentially complex final circuit diagram. The dynamic atmosphere and competitive nature established by the gaming environment have been shown to increase student engagement and concept retention. In this presentation, we will discuss both the structure of the lab-based game and the pedagogical implications this implementation versus the traditional resistor combination laboratory exercise.

  17. Geometric dependence of the parasitic components and thermal properties of HEMTs

    NASA Astrophysics Data System (ADS)

    Vun, Peter V.; Parker, Anthony E.; Mahon, Simon J.; Fattorini, Anthony

    2007-12-01

    For integrated circuit design up to 50GHz and beyond accurate models of the transistor access structures and intrinsic structures are necessary for prediction of circuit performance. The circuit design process relies on optimising transistor geometry parameters such as unit gate width, number of gates, number of vias and gate-to-gate spacing. So the relationship between electrical and thermal parasitic components in transistor access structures, and transistor geometry is important to understand when developing models for transistors of differing geometries. Current approaches to describing the geometric dependence of models are limited to empirical methods which only describe a finite set of geometries and only include unit gate width and number of gates as variables. A better understanding of the geometric dependence is seen as a way to provide scalable models that remain accurate for continuous variation of all geometric parameters. Understanding the distribution of parasitic elements between the manifold, the terminal fingers, and the reference plane discontinuities is an issue identified as important in this regard. Examination of dc characteristics and thermal images indicates that gate-to-gate thermal coupling and increased thermal conductance at the gate ends, affects the device total thermal conductance. Consequently, a distributed thermal model is proposed which accounts for these effects. This work is seen as a starting point for developing comprehensive scalable models that will allow RF circuit designers to optimise circuit performance parameters such as total die area, maximum output power, power-added-efficiency (PAE) and channel temperature/lifetime.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshetenko, T. V.; Bender, G.; Bethune, K.

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less

  19. Adaptive protection algorithm and system

    DOEpatents

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  20. Research on burnout fault of moulded case circuit breaker based on finite element simulation

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei

    2017-09-01

    In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.

  1. CUGatesDensity—Quantum circuit analyser extended to density matrices

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2013-12-01

    CUGatesDensity is an extension of the original quantum circuit analyser CUGates (Loke and Wang, 2011) [7] to provide explicit support for the use of density matrices. The new package enables simulation of quantum circuits involving statistical ensemble of mixed quantum states. Such analysis is of vital importance in dealing with quantum decoherence, measurements, noise and error correction, and fault tolerant computation. Several examples involving mixed state quantum computation are presented to illustrate the use of this package. Catalogue identifier: AEPY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5368 No. of bytes in distributed program, including test data, etc.: 143994 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer installed with a copy of Mathematica 6.0 or higher. Operating system: Any system with a copy of Mathematica 6.0 or higher installed. Classification: 4.15. Nature of problem: To simulate arbitrarily complex quantum circuits comprised of single/multiple qubit and qudit quantum gates with mixed state registers. Solution method: A density matrix representation for mixed states and a state vector representation for pure states are used. The construct is based on an irreducible form of matrix decomposition, which allows a highly efficient implementation of general controlled gates with multiple conditionals. Running time: The examples provided in the notebook CUGatesDensity.nb take approximately 30 s to run on a laptop PC.

  2. Results of module electrical measurement of the DOE 46-kilowatt procurement

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.

    1978-01-01

    Current-voltage measurements have been made on terrestrial solar cell modules of the DOE/JPL Low Cost Silicon Solar Array procurement. Data on short circuit current, open circuit voltage, and maximum power for the four types of modules are presented in normalized form, showing distribution of the measured values. Standard deviations from the mean values are also given. Tests of the statistical significance of the data are discussed.

  3. Photonic integrated circuits unveil crisis-induced intermittency.

    PubMed

    Karsaklian Dal Bosco, Andreas; Akizawa, Yasuhiro; Kanno, Kazutaka; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki

    2016-09-19

    We experimentally investigate an intermittent route to chaos in a photonic integrated circuit consisting of a semiconductor laser with time-delayed optical feedback from a short external cavity. The transition from a period-doubling dynamics to a fully-developed chaos reveals a stage intermittently exhibiting these two dynamics. We unveil the bifurcation mechanism underlying this route to chaos by using the Lang-Kobayashi model and demonstrate that the process is based on a phenomenon of attractor expansion initiated by a particular distribution of the local Lyapunov exponents. We emphasize on the crucial importance of the distribution of the steady-state solutions introduced by the time-delayed feedback on the existence of this intermittent dynamics.

  4. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  5. Use of Fuzzy Logic Systems for Assessment of Primary Faults

    NASA Astrophysics Data System (ADS)

    Petrović, Ivica; Jozsa, Lajos; Baus, Zoran

    2015-09-01

    In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.

  6. Diminishing detonator effectiveness through electromagnetic effects

    DOEpatents

    Schill, Jr, Robert A.

    2016-09-20

    An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.

  7. Providing Limited Local Electric Service During a Major Grid Outage: A First Assessment Based on Customer Willingness to Pay.

    PubMed

    Baik, Sunhee; Morgan, M Granger; Davis, Alexander L

    2018-02-01

    While they are rare, widespread blackouts of the bulk power system can result in large costs to individuals and society. If local distribution circuits remain intact, it is possible to use new technologies including smart meters, intelligent switches that can change the topology of distribution circuits, and distributed generation owned by customers and the power company, to provide limited local electric power service. Many utilities are already making investments that would make this possible. We use customers' measured willingness to pay to explore when the incremental investments needed to implement these capabilities would be justified. Under many circumstances, upgrades in advanced distribution systems could be justified for a customer charge of less than a dollar a month (plus the cost of electricity used during outages), and would be less expensive and safer than the proliferation of small portable backup generators. We also discuss issues of social equity, extreme events, and various sources of underlying uncertainty. © 2017 Society for Risk Analysis.

  8. Performance analysis of a brushless dc motor due to magnetization distribution in a continuous ring magnet

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup

    2003-05-01

    This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.

  9. Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.

    2005-01-15

    Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.

  10. A novel surrogate-based approach for optimal design of electromagnetic-based circuits

    NASA Astrophysics Data System (ADS)

    Hassan, Abdel-Karim S. O.; Mohamed, Ahmed S. A.; Rabie, Azza A.; Etman, Ahmed S.

    2016-02-01

    A new geometric design centring approach for optimal design of central processing unit-intensive electromagnetic (EM)-based circuits is introduced. The approach uses norms related to the probability distribution of the circuit parameters to find distances from a point to the feasible region boundaries by solving nonlinear optimization problems. Based on these normed distances, the design centring problem is formulated as a max-min optimization problem. A convergent iterative boundary search technique is exploited to find the normed distances. To alleviate the computation cost associated with the EM-based circuits design cycle, space-mapping (SM) surrogates are used to create a sequence of iteratively updated feasible region approximations. In each SM feasible region approximation, the centring process using normed distances is implemented, leading to a better centre point. The process is repeated until a final design centre is attained. Practical examples are given to show the effectiveness of the new design centring method for EM-based circuits.

  11. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    PubMed

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  12. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, A.F.; Petersen, R.W.

    1993-08-31

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  13. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, Anthony F.; Petersen, Robert W.

    1993-01-01

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  14. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  15. The auroral current circuit and field-aligned currents observed by FAST

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Bonnell, J. W.; Strangeway, R. J.; Kepko, L.; Ergun, R. E.; McFadden, J. P.; Carlson, C. W.; Peria, W.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.; Pfaff, R.

    FAST observes signatures of small-scale downward-going current at the edges of the inverted-V regions where the primary (auroral) electrons are found. In the winter pre-midnight auroral zone these downward currents are carried by upward flowing low- and medium-energy (up to several keV) electron beams. FAST instrumentation shows agreement between the current densities inferred from both the electron distributions and gradients in the magnetic field. FAST data taken near apogee (˜4000-km altitude) commonly show downward current magnetic field deflections consistent with the observed upward flux of ˜109 electrons cm-2 s-1, or current densities of several µA m-2. The electron, field-aligned current and electric field signatures indicate the downward currents may be associated with “black aurora” and auroral ionospheric cavities. The field-aligned voltage-current relationship in the downward current region is nonlinear.

  16. Investigation of Dielectric Breakdown Characteristics for Double-break Vacuum Interrupter and Dielectric Breakdown Probability Distribution in Vacuum Interrupter

    NASA Astrophysics Data System (ADS)

    Shioiri, Tetsu; Asari, Naoki; Sato, Junichi; Sasage, Kosuke; Yokokura, Kunio; Homma, Mitsutaka; Suzuki, Katsumi

    To investigate the reliability of equipment of vacuum insulation, a study was carried out to clarify breakdown probability distributions in vacuum gap. Further, a double-break vacuum circuit breaker was investigated for breakdown probability distribution. The test results show that the breakdown probability distribution of the vacuum gap can be represented by a Weibull distribution using a location parameter, which shows the voltage that permits a zero breakdown probability. The location parameter obtained from Weibull plot depends on electrode area. The shape parameter obtained from Weibull plot of vacuum gap was 10∼14, and is constant irrespective non-uniform field factor. The breakdown probability distribution after no-load switching can be represented by Weibull distribution using a location parameter. The shape parameter after no-load switching was 6∼8.5, and is constant, irrespective of gap length. This indicates that the scatter of breakdown voltage was increased by no-load switching. If the vacuum circuit breaker uses a double break, breakdown probability at low voltage becomes lower than single-break probability. Although potential distribution is a concern in the double-break vacuum cuicuit breaker, its insulation reliability is better than that of the single-break vacuum interrupter even if the bias of the vacuum interrupter's sharing voltage is taken into account.

  17. Net current control device. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, D.; Cooper, J.H.

    1998-11-01

    Net currents generally result in elevated magnetic fields because the alternate paths are distant from the circuit conductors. Investigations have shown that one of the primary sources of power frequency magnetic fields in residential buildings is currents that return to their source via paths other than the neutral conductors. As part of EPRI`s Magnetic Field Shielding Project, ferromagnetic devices, called net current control (NCC) devices, were developed and tested for use in reducing net currents on electric power cables and the resulting magnetic fields. Applied to a residential service drop, an NCC device reduces net current by forcing current offmore » local non-utility ground paths, and back onto the neutral conductor. Circuit models and basic design equations for the NCC concept were developed, and proof-of-principles tests were carried out on an actual residence with cooperation from the local utility. After proving the basic concepts, three prototype NCC devices were built and tested on a simulated neighborhood power system. Additional prototypes were built for testing by interested EPRI utility members. Results have shown that the NCC prototypes installed on residential service drops reduce net currents to milliampere levels with compromising the safety of the ground system. Although the focus was on application to residential service cables, the NCC concept is applicable to single-phase and three-phase distribution systems as well.« less

  18. Gustatory and reward brain circuits in the control of food intake

    PubMed Central

    Oliveira-Maia, Albino J.; Roberts, Craig D.; Simon, Sidney A.; Nicolelis, Miguel A.L.

    2012-01-01

    Gustation is a multisensory process allowing for the selection of nutrients and the rejection of irritating and/or toxic compounds. Since obesity is a highly prevalent condition that is critically dependent on food intake and energy expenditure, a deeper understanding of gustatory processing is an important objective in biomedical research. Recent findings have provided evidence that central gustatory processes are distributed across several cortical and sub-cortical brain areas. Furthermore, these gustatory sensory circuits are closely related to the circuits that process reward. Here, we present an overview of the activation and connectivity between central gustatory and reward areas. Moreover, and given the limitations in number and effectiveness of treatments currently available for overweight patients, we discuss the possibility of modulating neuronal activity in these circuits as an alternative in the treatment of obesity. PMID:21197607

  19. Laser beam apparatus and method for analyzing solar cells

    DOEpatents

    Staebler, David L.

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  20. Investigation and Modeling of Capacitive Human Body Communication.

    PubMed

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  1. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja

    Electric utilities have a main responsibility to protect the lives and safety of their workers when they are working on low-, medium-, and high-voltage power lines and distribution circuits. With the anticipated widespread deployment of smart grids, a secure and highly reliable means of maintaining isolation of customer-owned distributed generation (DG) from the affected distribution circuits during maintenance is necessary to provide a fully de-energized work area, ensure utility personnel safety, and prevent hazards that can lead to accidents such as accidental electrocution from unanticipated power sources. Some circuits are serviced while energized (live line work) while others are de-energizedmore » for maintenance. For servicing de-energized circuits and equipment, lock-out tag-out (LOTO) programs provide a verifiable procedure for ensuring that circuit breakers are locked in the off state and tagged to indicate that status to operational personnel so that the lines will be checked for voltage to verify they are de-energized. The de-energized area is isolated from any energized sources, which traditionally are the substations. This procedure works well when all power sources and their interconnections are known armed with this knowledge, utility personnel can determine the appropriate circuits to de-energize for isolating the target line or equipment. However, with customer-owned DG tied into the grid, the risk of inadvertently reenergizing a circuit increases because circuit connections may not be adequately documented and are not under the direct control of the local utility. Thus, the active device may not be properly de-energized or isolated from the work area. Further, a remote means of de-energizing and locking out energized devices provides an opportunity for greatly reduced safety risk to utility personnel compared to manual operations. In this paper, we present a remotely controllable LOTO system that allows individual workers to determine the configuration and status of electrical system circuits and permit them to lock out customer-owned DG devices for safety purposes using a highly secure and ultra-reliable radio signal. The system consists of: (1) individual personal lockout devices, (2) lockout communications and logic module at circuit breakers, which are located at all DG devices, and (3) a database and configuration control process located at the utility operations center. The lockout system is a close permissive, i.e., loss of control power or communications will cause the circuit breaker to open. Once the DG device is tripped open, a visual means will provide confirmation of a loss of voltage and current that verifies the disconnected status of the DG. Further the utility personnel will be able to place their own lock electronically on the system to ensure a lockout functionally. The proposed LOTO system provides enhanced worker safety and protection against unintended energized lines when DG is present. The main approaches and challenges encountered through designing the proposed region-wide LOTO system are discussed in this paper. These approaches include: (1) evaluating the reliability of the proposed approach under N-modular redundancy with voter/spares configurations and (2) conducting a system level risk assessment study using the failure modes and effects analysis (FMEA) technique to identify and rank failure modes by probability of occurrence, probability of detection, and severity of consequences. This ranking allows a cost benefits analysis to be conducted such that dollars and efforts will be applied to the failures that provide greatest incremental gains in system capability (resilience, survivability, security, reliability, availability, etc.) per dollar spent whether capital, operations, or investment. Several simulation scenarios and their results are presented to demonstrate the viability of these approaches.« less

  3. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    PubMed

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupca, L.; Beno, P.

    A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

  6. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  8. Faster Blood Flow Rate Does Not Improve Circuit Life in Continuous Renal Replacement Therapy: A Randomized Controlled Trial.

    PubMed

    Fealy, Nigel; Aitken, Leanne; du Toit, Eugene; Lo, Serigne; Baldwin, Ian

    2017-10-01

    To determine whether blood flow rate influences circuit life in continuous renal replacement therapy. Prospective randomized controlled trial. Single center tertiary level ICU. Critically ill adults requiring continuous renal replacement therapy. Patients were randomized to receive one of two blood flow rates: 150 or 250 mL/min. The primary outcome was circuit life measured in hours. Circuit and patient data were collected until each circuit clotted or was ceased electively for nonclotting reasons. Data for clotted circuits are presented as median (interquartile range) and compared using the Mann-Whitney U test. Survival probability for clotted circuits was compared using log-rank test. Circuit clotting data were analyzed for repeated events using hazards ratio. One hundred patients were randomized with 96 completing the study (150 mL/min, n = 49; 250 mL/min, n = 47) using 462 circuits (245 run at 150 mL/min and 217 run at 250 mL/min). Median circuit life for first circuit (clotted) was similar for both groups (150 mL/min: 9.1 hr [5.5-26 hr] vs 10 hr [4.2-17 hr]; p = 0.37). Continuous renal replacement therapy using blood flow rate set at 250 mL/min was not more likely to cause clotting compared with 150 mL/min (hazards ratio, 1.00 [0.60-1.69]; p = 0.68). Gender, body mass index, weight, vascular access type, length, site, and mode of continuous renal replacement therapy or international normalized ratio had no effect on clotting risk. Continuous renal replacement therapy without anticoagulation was more likely to cause clotting compared with use of heparin strategies (hazards ratio, 1.62; p = 0.003). Longer activated partial thromboplastin time (hazards ratio, 0.98; p = 0.002) and decreased platelet count (hazards ratio, 1.19; p = 0.03) were associated with a reduced likelihood of circuit clotting. There was no difference in circuit life whether using blood flow rates of 250 or 150 mL/min during continuous renal replacement therapy.

  9. Analog Integrated Circuit Design for Spike Time Dependent Encoder and Reservoir in Reservoir Computing Processors

    DTIC Science & Technology

    2018-01-01

    14. ABSTRACT The objective of this effort was to: (a) develop novel and fundamental methodologies for data representation using hardware-based spike...Distribution Unlimited. 1 1.0 SUMMARY This effort is a critical part of an overall program to develop novel and fundamental methodologies for data...to fabrication a dynamic-reservoir circuit that utilizes sensory encoding methodologies similar to those employed in biological brains. Inspired

  10. A Design Methodology for Switched-Capacitor DC-DC Converters

    DTIC Science & Technology

    2009-05-21

    phase piezoelectric energy harvesters ,” IEEE International Solid-State Circuits Conference, pp. 302–303, Feb. 2008. [20] P. Hazucha, G. Schrom, J. Hahn...2007. [42] Y. K. Ramadass and A. P. Chandrakasan, “An efficient piezoelectric energy- harvesting interface circuit using a bias-flip rectifier and...made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to

  11. Experimental Performance of a Frequency Measurement Circuit.

    DTIC Science & Technology

    1984-12-01

    STANDARDS 1963-A NAVAL POSTGRADUATE SCHOOL Monterey, California N O In DTISEL ECTE. APR 26 1985 THESIS EXPERIMENTAL PERFORMANCE OF A FREQUENCY MEASUREMENT...CIRCUIT by CO George H. Eastwood December 198𔃾 Thesis Advisor: G. A. Myers * Approved for public release; distribution is unlimited. * 85 4 2 105...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Experimental Performance of a Master’s Thesis

  12. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  13. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  14. Understanding in an instant: neurophysiological evidence for mechanistic language circuits in the brain.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Hauk, Olaf

    2009-08-01

    How long does it take the human mind to grasp the idea when hearing or reading a sentence? Neurophysiological methods looking directly at the time course of brain activity indexes of comprehension are critical for finding the answer to this question. As the dominant cognitive approaches, models of serial/cascaded and parallel processing, make conflicting predictions on the time course of psycholinguistic information access, they can be tested using neurophysiological brain activation recorded in MEG and EEG experiments. Seriality and cascading of lexical, semantic and syntactic processes receives support from late (latency approximately 1/2s) sequential neurophysiological responses, especially N400 and P600. However, parallelism is substantiated by early near-simultaneous brain indexes of a range of psycholinguistic processes, up to the level of semantic access and context integration, emerging already 100-250ms after critical stimulus information is present. Crucially, however, there are reliable latency differences of 20-50ms between early cortical area activations reflecting lexical, semantic and syntactic processes, which are left unexplained by current serial and parallel brain models of language. We here offer a mechanistic model grounded in cortical nerve cell circuits that builds upon neuroanatomical and neurophysiological knowledge and explains both near-simultaneous activations and fine-grained delays. A key concept is that of discrete distributed cortical circuits with specific inter-area topographies. The full activation, or ignition, of specifically distributed binding circuits explains the near-simultaneity of early neurophysiological indexes of lexical, syntactic and semantic processing. Activity spreading within circuits determined by between-area conduction delays accounts for comprehension-related regional activation differences in the millisecond range.

  15. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  16. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  17. 46 CFR 129.390 - Shore power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Power Sources and Distribution Systems § 129.390 Shore power. Each vessel that has an electrical system... the switchboard or main distribution panel for the shore-power connection. (d) The circuit breaker... 46 Shipping 4 2013-10-01 2013-10-01 false Shore power. 129.390 Section 129.390 Shipping COAST...

  18. 46 CFR 129.390 - Shore power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Power Sources and Distribution Systems § 129.390 Shore power. Each vessel that has an electrical system... the switchboard or main distribution panel for the shore-power connection. (d) The circuit breaker... 46 Shipping 4 2012-10-01 2012-10-01 false Shore power. 129.390 Section 129.390 Shipping COAST...

  19. 46 CFR 129.390 - Shore power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Power Sources and Distribution Systems § 129.390 Shore power. Each vessel that has an electrical system... the switchboard or main distribution panel for the shore-power connection. (d) The circuit breaker... 46 Shipping 4 2014-10-01 2014-10-01 false Shore power. 129.390 Section 129.390 Shipping COAST...

  20. 46 CFR 183.390 - Shore power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.390 Shore power. A vessel with an... at the switchboard or main distribution panel for the shore power connection; and (d) The circuit... 46 Shipping 7 2011-10-01 2011-10-01 false Shore power. 183.390 Section 183.390 Shipping COAST...

  1. 46 CFR 183.390 - Shore power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.390 Shore power. A vessel with an... at the switchboard or main distribution panel for the shore power connection; and (d) The circuit... 46 Shipping 7 2013-10-01 2013-10-01 false Shore power. 183.390 Section 183.390 Shipping COAST...

  2. 46 CFR 129.390 - Shore power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Power Sources and Distribution Systems § 129.390 Shore power. Each vessel that has an electrical system... the switchboard or main distribution panel for the shore-power connection. (d) The circuit breaker... 46 Shipping 4 2011-10-01 2011-10-01 false Shore power. 129.390 Section 129.390 Shipping COAST...

  3. Looking for Trouble

    ERIC Educational Resources Information Center

    Rice, Mike

    2006-01-01

    Circuit breakers are the linchpin of an institution's power-distribution system, so it's not surprising that several warning signs of an aging system relate to these devices. When warning signs occur, it's a message to facilities managers and administrators that breakers may need to be upgraded to help the power distribution system meet existing…

  4. Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs

    DOE PAGES

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...

    2016-02-01

    Our paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 degrees C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 degrees C. Moreover, the experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermalmore » model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Finally, numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.« less

  5. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  6. Metropolitan Quantum Key Distribution with Silicon Photonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less

  7. Metropolitan Quantum Key Distribution with Silicon Photonics

    DOE PAGES

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; ...

    2018-04-06

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less

  8. Variability-aware compact modeling and statistical circuit validation on SRAM test array

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Spanos, Costas J.

    2016-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose a variability-aware compact model characterization methodology based on stepwise parameter selection. Transistor I-V measurements are obtained from bit transistor accessible SRAM test array fabricated using a collaborating foundry's 28nm FDSOI technology. Our in-house customized Monte Carlo simulation bench can incorporate these statistical compact models; and simulation results on SRAM writability performance are very close to measurements in distribution estimation. Our proposed statistical compact model parameter extraction methodology also has the potential of predicting non-Gaussian behavior in statistical circuit performances through mixtures of Gaussian distributions.

  9. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    NASA Astrophysics Data System (ADS)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  10. Distributed computation: the new wave of synthetic biology devices.

    PubMed

    Macía, Javier; Posas, Francesc; Solé, Ricard V

    2012-06-01

    Synthetic biology (SB) offers a unique opportunity for designing complex molecular circuits able to perform predefined functions. But the goal of achieving a flexible toolbox of reusable molecular components has been shown to be limited due to circuit unpredictability, incompatible parts or random fluctuations. Many of these problems arise from the challenges posed by engineering the molecular circuitry: multiple wires are usually difficult to implement reliably within one cell and the resulting systems cannot be reused in other modules. These problems are solved by means of a nonstandard approach to single cell devices, using cell consortia and allowing the output signal to be distributed among different cell types, which can be combined in multiple, reusable and scalable ways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Metropolitan Quantum Key Distribution with Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk

    2018-04-01

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  12. Transfer-matrices for series-type microwave antenna circuits. [L-band radiometer

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1981-01-01

    Transfer matrices are developed which permit analysis and computer evaluation of certain series type microwave antenna circuits associated with an L-Band microwave radiometer (LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several diverse instrument designs to be used for the determination of soil moisture, sea state, salinity, and temperature data. Four port matrix notation is used throughout for the evaluation of LBMR circuits with mismatched couplers and lossy transmission lines. Matrix parameters in examples are predicted on an impedance analysis and an assumption of an array aperture distribution. The notation presented is easily adapted to longer and more varied chains of matrices, and to matrices of larger dimension.

  13. Analysis of the resistive network in a bio-inspired CMOS vision chip

    NASA Astrophysics Data System (ADS)

    Kong, Jae-Sung; Sung, Dong-Kyu; Hyun, Hyo-Young; Shin, Jang-Kyoo

    2007-12-01

    CMOS vision chips for edge detection based on a resistive circuit have recently been developed. These chips help develop neuromorphic systems with a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends dominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the MOSFET for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160×120 CMOS vision chips have been fabricated by using a standard CMOS technology. The experimental results have been nicely matched with our prediction.

  14. Cryptanalysis of the Sodark Family of Cipher Algorithms

    DTIC Science & Technology

    2017-09-01

    software project for building three-bit LUT circuit representations of S- boxes is available as a GitHub repository [40]. It contains several improvements...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The...second- and third-generation automatic link establishment (ALE) systems for high frequency radios. Radios utilizing ALE technology are in use by a

  15. Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method

    PubMed Central

    Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing

    2013-01-01

    A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368

  16. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  17. Model of lightning strike to a steel reinforce structure using PSpice

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-03-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.

  18. Finite Ground Coplanar (FGC) Waveguide: It's Characteristics and Advantages for Use in RF and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1998-01-01

    To solve many of the problems encountered when using conventional coplanar waveguide (CPW) with its semi-infinite ground planes, a new version of coplanar waveguide with electrically narrow ground planes has been developed. This new transmission line which we call Finite Ground Coplanar (FGC) waveguide has several advantages which make it a better transmission line for RF and wireless circuits. Since the ground planes are electrically narrow, spurious resonances created by the CPW ground planes and the metal carrier or package base are eliminated. In addition, lumped and distributed circuit elements may now be integrated into the ground strips in the same way as they traditionally have been integrated into the center conductor to realize novel circuit layouts that are smaller and have less parasitic reactance. Lastly, FGC is shown to have lower coupling between adjacent transmission lines than conventional CPW.

  19. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    NASA Astrophysics Data System (ADS)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  20. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    PubMed

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  1. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  2. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    PubMed Central

    Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588

  3. SENARIET, A Programme To Solve Transient Flows Of Liquids In Complex Circuits

    NASA Astrophysics Data System (ADS)

    Vargas-Munoz, M.; Rodriguez-Fernandez, M.; Perena-Tapiador, A.

    2011-05-01

    SENARIET is a programme to study fluid transients in pipeline systems in order to obtain pressure and velocity distributions along a circuit. When a transient process occurs in periods of the same order of the pressure waves’ travelling time along a circuit (the order of the circuit length divided by the effective propagation speed), the compressibility effects in liquids have to be considered. Taking this effect into account, the appropriate equations of continuity and momentum are solved by the method of characteristics, to obtain pressure and velocity along pipes as a function of time. The simulated results have been compared to theoretical and experimental ones to validate and evaluate the precision of the software. The results help to perform efficient and accurate predictions in order to define the propulsion sub-system. This type of analysis is very important in order to evaluate the water hammer effects in propulsion systems used on spacecrafts and launchers.

  4. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  5. The Drosophila Circadian Pacemaker Circuit: Pas de Deux or Tarantella?

    PubMed Central

    Sheeba, Vasu; Kaneko, Maki; Sharma, Vijay Kumar; Holmes, Todd C.

    2008-01-01

    Molecular genetic analysis of the fruit fly Drosophila melanogaster has revolutionized our understanding of the transcription/translation loop mechanisms underlying the circadian molecular oscillator. More recently, Drosophila has been used to understand how different neuronal groups within the circadian pacemaker circuit interact to regulate the overall behavior of the fly in response to daily cyclic environmental cues as well as seasonal changes. Our present understanding of circadian timekeeping at the molecular and circuit level is discussed with a critical evaluation of the strengths and weaknesses of present models. Two models for circadian neural circuits are compared: one that posits that two anatomically distinct oscillators control the synchronization to the two major daily morning and evening transitions, versus a distributed network model that posits that many cell-autonomous oscillators are coordinated in a complex fashion and respond via plastic mechanisms to changes in environmental cues. PMID:18307108

  6. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  7. History of Physics as a Tool to Detect the Conceptual Difficulties Experienced by Students: The Case of Simple Electric Circuits in Primary Education

    ERIC Educational Resources Information Center

    Leone, Matteo

    2014-01-01

    The present paper advocates the use of History of Science into the teaching of science in primary education through a case study in the field of electricity. In this study, which provides both historical and experimental evidence, a number of conceptual difficulties faced by early nineteenth century physicists are shown to be a useful tool to…

  8. Breast cancer subtype distribution is different in normal weight, overweight, and obese women.

    PubMed

    Gershuni, Victoria; Li, Yun R; Williams, Austin D; So, Alycia; Steel, Laura; Carrigan, Elena; Tchou, Julia

    2017-06-01

    Obesity is associated with tumor promoting pathways related to insulin resistance and chronic low-grade inflammation which have been linked to various disease states, including cancer. Many studies have focused on the relationship between obesity and increased estrogen production, which contributes to the pathogenesis of estrogen receptor-positive breast cancers. The link between obesity and other breast cancer subtypes, such as triple-negative breast cancer (TNBC) and Her2/neu+ (Her2+) breast cancer, is less clear. We hypothesize that obesity may be associated with the pathogenesis of specific breast cancer subtypes resulting in a different subtype distribution than normal weight women. A single-institution, retrospective analysis of tumor characteristics of 848 patients diagnosed with primary operable breast cancer between 2000 and 2013 was performed to evaluate the association between BMI and clinical outcome. Patients were grouped based on their BMI at time of diagnosis stratified into three subgroups: normal weight (BMI = 18-24.9), overweight (BMI = 25-29.9), and obese (BMI > 30). The distribution of breast cancer subtypes across the three BMI subgroups was compared. Obese and overweight women were more likely to present with TNBC and normal weight women with Her2+ breast cancer (p = 0.008). We demonstrated, for the first time, that breast cancer subtype distribution varied significantly according to BMI status. Our results suggested that obesity might activate molecular pathways other than the well-known obesity/estrogen circuit in the pathogenesis of breast cancer. Future studies are needed to understand the molecular mechanisms that drive the variation in subtype distribution across BMI subgroups.

  9. Spatial integration in mouse primary visual cortex.

    PubMed

    Vaiceliunaite, Agne; Erisken, Sinem; Franzen, Florian; Katzner, Steffen; Busse, Laura

    2013-08-01

    Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.

  10. Mems: Platform for Large-Scale Integrated Vacuum Electronic Circuits

    DTIC Science & Technology

    2017-03-20

    SECURITY CLASSIFICATION OF: The objective of the LIVEC advanced study project was to develop a platform for large-scale integrated vacuum electronic ...Distribution Unlimited UU UU UU UU 20-03-2017 1-Jul-2014 30-Jun-2015 Final Report: MEMS Platform for Large-Scale Integrated Vacuum Electronic ... Electronic Circuits (LIVEC) Contract No: W911NF-14-C-0093 COR Dr. James Harvey U.S. ARO RTP, NC 27709-2211 Phone: 702-696-2533 e-mail

  11. Tropic Test of Bradley Fighting Vehicle Systems.

    DTIC Science & Technology

    1985-05-23

    CM-R AMSTE-SG-H AMSTE-PT-MT AMSTE-RM Aberden Proving Ground , MD 21005-5055 Commander U.S. Army Armament Research and Development Command ATTN: AMSMC...Requirements Appendix E -Vision Devices Appendix F - Grounding Circuit Resistance Appendix G - Human Factors Appendix H - Distribution List -" -"" 3...miles of operation o Time-on-Target Baseline Tests o Selected electrical and grounding circuit resistances o Armament Firing (25mm, 7.62mm and TOW) o Fire

  12. System Control for the Transitional DCS. Appendices.

    DTIC Science & Technology

    1978-12-01

    the deployment of the AN/TTC-39 circuit switch. This is a hybrid analog/digital switch providing the following services: o Non- secure analog telephone...service. o Non- secure 16 Kb/s digital telephone service. o Secure 16 Kb/s digital telephone service with automatic key distribution and end to end... security . o Analog circuits to support current inventory 50 Kb/sec and 9.6 Kb/sec secure digital communications. In the deployment model for this study

  13. Superior model for fault tolerance computation in designing nano-sized circuit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  14. Is ultraviolet radiation on haemodialysis RO water beneficial?

    PubMed

    Stragier, A

    2005-01-01

    The quality of dialysis fluids has become increasingly important in the treatment of HD patients. Purified water represents over 95% of its volume. Bacterial and endotoxin content of Reverse Osmosis (RO) water is usually kept under control by bacterial filters, inserted in the distribution departure loop, and by monthly disinfection of the distribution circuit; the simpler the circuit, the better. This paper reports 12 years experience during which Ultraviolet Irradiation (UV) has replaced bacterial filters. To keep the bacterial growth under control in a complex RO water circuit (including a tank and multiple loops) a simple UV lamp was inserted in the departure line. It proved sufficient to keep bacterial count within AAMI norms. Failure of the UV lamp was associated with a rise of up to 500 cfu/ml in the last (fourth week) before routine disinfection. Normal levels were again obtained after replacement of the UV lamp. Six years later, a second UV lamp was added on the return loop. Bacterial counts and endotoxin levels in RO water promptly fell to <1 cfu/ml and <0.125 EU, till today. It is concluded that UV lamps should be favoured over bacterial filters in systems that are not disinfected daily, such as the RO water circuit. The principle of UV irradiation is explained and its advantage over bacterial filters is discussed. Future possible applications of UV are presented.

  15. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 2: Tests with the closed circuit

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period June - August 1991. Throughout the testing the tunnel was operated in the 'closed circuit mode,' that is when the airflow was set up by an axial flow fan, which was located inside the tunnel circuit and was directly driven by a motor. The tests were first performed with the closed test section and were subsequently repeated with the open test section, the latter operating with the nozzle-diffuser at its optimum setting. On this subject, reference is made to the report (1) issued January 1991, under contract 17-GFY900125, which summarizes the result obtained with the tunnel operating in the 'open circuit mode.' The tests confirmed the viability of the tunnel design, and the flow distributions in most of the tunnel components were considered acceptable. There were found, however, some locations where the flow distribution requires improvement. This applies to the flow upstream of the fan where the flow was found skewed, thus affecting the flow downstream. As a result of this, the flow appeared separated at the end of the large diffuser at the outer side. All tests were performed at NASA LaRC.

  16. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex.

    PubMed

    Sohn, Jaerin; Hioki, Hiroyuki; Okamoto, Shinichiro; Kaneko, Takeshi

    2014-05-01

    Dynorphins, leumorphin, and neoendorphins are preprodynorphin (PPD)-derived peptides and ligands for κ-opioid receptors. Using an antibody to PPD C-terminal, we investigated the chemical and molecular characteristics of PPD-expressing neurons in mouse neocortex. PPD-immunopositive neuronal somata were distributed most frequently in layer 5 and less frequently in layers 2-4 and 6 throughout neocortical regions. Combined labeling of immunofluorescence and fluorescent mRNA signals revealed that almost all PPD-immunopositive neurons expressed glutamic acid decarboxylase but not vesicular glutamate transporter, indicating their γ-aminobutyric acid (GABA)ergic characteristics, and that PPD-immunopositive neurons accounted for 15% of GABAergic interneurons in the primary somatosensory area. As GABAergic interneurons were divided into several groups by specific markers, we further examined the chemical characteristics of PPD-expressing neurons by the double immunofluorescence labeling method. More than 95% of PPD-immunopositive neurons were also somatostatin (SOM)-immunopositive in the primary somatosensory, primary motor, orbitofrontal, and primary visual areas, but only 24% were SOM-immunopositive in the medial prefrontal cortex. In the primary somatosensory area, PPD-immunopositive neurons constituted 50%, 79%, 55%, and 17% of SOM-immunopositive neurons in layers 2-3, 4, 5, and 6, respectively. Although SOM-expressing neurons contained calretinin-, neuropeptide Y-, nitric oxide synthase-, and reelin-expressing neurons as subgroups, only reelin immunoreactivity was detected in many PPD-immunopositive neurons. These results indicate that PPD-expressing neurons constitute a large subgroup of SOM-expressing cortical interneurons, and the PPD/SOM-expressing GABAergic neurons might serve not only as inhibitory elements in the local cortical circuit, but also as modulators for cortical neurons expressing κ-opioid and/or SOM receptors. Copyright © 2013 Wiley Periodicals, Inc.

  17. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    PubMed

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  18. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  19. Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit Activity

    PubMed Central

    Sadovsky, Alexander J.

    2014-01-01

    Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical microcircuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs, indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of neurons. PMID:24899701

  20. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    PubMed

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended cortical damage within the motor circuit of ALS patients. The functional changes in non-primary motor cortices pertaining to fronto-parietal circuit suggest an over-recruitment of a pre-existing physiological sensory-motor network. However, the concomitant fronto-parietal cortical atrophy arises the possibility that such a hyper-activation reflects cortical hyper-excitability due to loss of inhibitory inter-neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Multi-variants synthesis of Petri nets for FPGA devices

    NASA Astrophysics Data System (ADS)

    Bukowiec, Arkadiusz; Doligalski, Michał

    2015-09-01

    There is presented new method of synthesis of application specific logic controllers for FPGA devices. The specification of control algorithm is made with use of control interpreted Petri net (PT type). It allows specifying parallel processes in easy way. The Petri net is decomposed into state-machine type subnets. In this case, each subnet represents one parallel process. For this purpose there are applied algorithms of coloring of Petri nets. There are presented two approaches of such decomposition: with doublers of macroplaces or with one global wait place. Next, subnets are implemented into two-level logic circuit of the controller. The levels of logic circuit are obtained as a result of its architectural decomposition. The first level combinational circuit is responsible for generation of next places and second level decoder is responsible for generation output symbols. There are worked out two variants of such circuits: with one shared operational memory or with many flexible distributed memories as a decoder. Variants of Petri net decomposition and structures of logic circuits can be combined together without any restrictions. It leads to existence of four variants of multi-variants synthesis.

  2. Ground and CHAMP observations of field-aligned current circuits generated by lower atmospheric disturbances and expectations to the SWARM to clarify their three dimensional structure

    NASA Astrophysics Data System (ADS)

    Iyemori, Toshihiko; Nakanishi, Kunihito; Aoyama, Tadashi; Lühr, Hermann

    2014-05-01

    Acoustic gravity waves propagated to the ionosphere cause dynamo currents in the ionosphere. They divert along geomagnetic field lines of force to another hemisphere accompanying electric field and then flow in the ionosphere of another hemisphere by the electric field forming closed current circuits. The oscillating current circuits with the period of acoustic waves generate magnetic variations on the ground, and they are observed as long period geomagnetic pulsations. This effect has been detected during big earthquakes, strong typhoons, tornados etc. On a low-altitude satellite orbit, the spatial distribution (i.e., structure) of the current circuits along the satellite orbit should be detected as temporal magnetic oscillations, and the effect is confirmed by a CHAMP data analysis. On the spatial structure, in particular, in the longitudinal direction, it has been difficult to examine by a single satellite or from ground magnetic observations. The SWARM satellites will provide an unique opportunity to clarify the three dimensional structure of the field-aligned current circuits.

  3. Experimental Study on Short Circuit Phenomena in Air Switch of Distribution Line due to Sparkover between Different Poles on Which One Surge Arrester of the Three Ones is Omitted

    NASA Astrophysics Data System (ADS)

    Sato, Tomoyuki; Uemura, Satoshi; Asakawa, Akira; Yokoyama, Shigeru; Honda, Hideki; Horikoshi, Kazuhiro

    In this study, we experimentally examined the possibility of the internal short circuit of an air switch due to the sparkover between different poles under the condition that no surge arrester exists in neighboring poles and one of three surge arresters is omitted at the pole with an air switch. Experiments at Shiobara Testing Yard and Akagi Testing Center of CRIEPI clarified the following. Fault current may flow via the grounding point of a pole with an air switch and that of the next pole on a different phase from grounded phase of the pole with an air switch. If the low-voltage wire, overhead ground wire or communication wire forms a short circuit between them, ultimately the air switch may burn out. Moreover Fault current continues even if the length of the short-circuit between different poles is increased. Although the increase of the short-circuit length results in the increase of wire impedance, the amount of increase is still small compared with source impedance.

  4. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.

    PubMed

    Ghavami, Behnam; Raji, Mohsen; Pedram, Hossein

    2011-08-26

    Carbon nanotube field-effect transistors (CNFETs) show great promise as building blocks of future integrated circuits. However, synthesizing single-walled carbon nanotubes (CNTs) with accurate chirality and exact positioning control has been widely acknowledged as an exceedingly complex task. Indeed, density and chirality variations in CNT growth can compromise the reliability of CNFET-based circuits. In this paper, we present a novel statistical compact model to estimate the failure probability of CNFETs to provide some material and process guidelines for the design of CNFETs in gigascale integrated circuits. We use measured CNT spacing distributions within the framework of detailed failure analysis to demonstrate that both the CNT density and the ratio of metallic to semiconducting CNTs play dominant roles in defining the failure probability of CNFETs. Besides, it is argued that the large-scale integration of these devices within an integrated circuit will be feasible only if a specific range of CNT density with an acceptable ratio of semiconducting to metallic CNTs can be adjusted in a typical synthesis process.

  5. Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations.

    PubMed

    Genewein, Tim; Braun, Daniel A

    2016-06-01

    Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

  6. Bivariate normal, conditional and rectangular probabilities: A computer program with applications

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Brownlow, J. D.; Ashwworth, G. R.; Winter, W. R.

    1980-01-01

    Some results for the bivariate normal distribution analysis are presented. Computer programs for conditional normal probabilities, marginal probabilities, as well as joint probabilities for rectangular regions are given: routines for computing fractile points and distribution functions are also presented. Some examples from a closed circuit television experiment are included.

  7. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  8. Autism: A “Critical Period” Disorder?

    PubMed Central

    LeBlanc, Jocelyn J.; Fagiolini, Michela

    2011-01-01

    Cortical circuits in the brain are refined by experience during critical periods early in postnatal life. Critical periods are regulated by the balance of excitatory and inhibitory (E/I) neurotransmission in the brain during development. There is now increasing evidence of E/I imbalance in autism, a complex genetic neurodevelopmental disorder diagnosed by abnormal socialization, impaired communication, and repetitive behaviors or restricted interests. The underlying cause is still largely unknown and there is no fully effective treatment or cure. We propose that alteration of the expression and/or timing of critical period circuit refinement in primary sensory brain areas may significantly contribute to autistic phenotypes, including cognitive and behavioral impairments. Dissection of the cellular and molecular mechanisms governing well-established critical periods represents a powerful tool to identify new potential therapeutic targets to restore normal plasticity and function in affected neuronal circuits. PMID:21826280

  9. Experimental characterization of a bi-dimensional array of negative capacitance piezo-patches for vibroacoustic control

    NASA Astrophysics Data System (ADS)

    Tateo, F.; Collet, M.; Ouisse, M.; Ichchou, M. N.; Cunefare, K. A.

    2013-04-01

    A recent technological revolution in the fields of integrated MEMS has finally rendered possible the mechanical integration of active smart materials, electronics and power supply systems for the next generation of smart composite structures. Using a bi-dimensional array of electromechanical transducers, composed by piezo-patches connected to a synthetic negative capacitance, it is possible to modify the dynamics of the underlying structure. In this study, we present an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization, by means of distributed shunted piezoelectric material. In the context of periodically distributed damped 2D mechanical systems, this numerical approach allows one to compute the multi-modal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semi-active distributed set of cells. Furthermore, we present experimental evidence that proves the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventy-five piezo-patches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (open-circuit and controlled circuit). The resulting data clearly show how this proposed technique is able to damp and selectively reflect the incident waves.

  10. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption

    NASA Astrophysics Data System (ADS)

    Cheng, Xian; Duan, Xiongying; Liao, Minfu; Huang, Zhihui; Luo, Yan; Zou, Jiyan

    2013-08-01

    Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.

  11. Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney

    2018-01-01

    Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) {KQ}≈ 1.3× {10}5 per node and error threshold 1.1× {10}-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

  12. Laminar circuit organization and response modulation in mouse visual cortex

    PubMed Central

    Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin

    2012-01-01

    The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751

  13. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  14. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    NASA Astrophysics Data System (ADS)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  15. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    NASA Astrophysics Data System (ADS)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  16. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  17. A 25-kW Series-Resonant Power Converter

    NASA Technical Reports Server (NTRS)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  18. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  19. Basic Guidelines for Application of Performance Standards to Commissioning of DCS Digital Circuits

    DTIC Science & Technology

    1992-06-01

    V6Z2J7 Canada Gustavo A. Cubas E. 1 Engineered Systems, Inc 2 Seccion De Transmission ATTN: Mr. David Gilfillan Direccion De Ingenieria Y Proyectos 14775...buffering, and and filter delay (for a voice circuit). Propagation delay is independent of data rate, while buffering delay is inversely proportional to...Complexe Des Jardins, 15th Fl. 171 N. Covington Drive 75 Rene Levesque West Bloomingdale, IL 60108 Montreal, PG H2Z Canada DISTRIBUTION LIST Department

  20. Four Projects in Electricity Suitable for Primary Schools.

    ERIC Educational Resources Information Center

    Ward, Alan

    1983-01-01

    Describes simple, electrical projects with dry cell batteries and lamps designed to teach children about conductors, insulators, and switches. Instructions for construction of circuits, the science ideas in each project, and suggestions for extending each of the investigations are included. (JM)

  1. Single Crystal Diffractometry

    NASA Astrophysics Data System (ADS)

    Arndt, U. W.; Willis, B. T. M.

    2009-06-01

    Preface; Acknowledgements; Part I. Introduction; Part II. Diffraction Geometry; Part III. The Design of Diffractometers; Part IV. Detectors; Part V. Electronic Circuits; Part VI. The Production of the Primary Beam (X-rays); Part VII. The Production of the Primary Beam (Neutrons); Part VIII. The Background; Part IX. Systematic Errors in Measuring Relative Integrated Intensities; Part X. Procedure for Measuring Integrated Intensities; Part XI. Derivation and Accuracy of Structure Factors; Part XII. Computer Programs and On-line Control; Appendix; References; Index.

  2. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    PubMed

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  3. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (AVC-TeDP)

    NASA Technical Reports Server (NTRS)

    Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve; hide

    2015-01-01

    The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.

  4. Solid State Remote Power Controllers for high voltage DC distribution systems

    NASA Technical Reports Server (NTRS)

    Billings, W. W.; Sundberg, G. R.

    1977-01-01

    Presently, hybrid Remote Power Controllers (RPC's) are in production and prototype units are available for systems utilizing 28VDC, 120VDC, 115VAC/400 Hz and 230VAC/400 Hz. This paper describes RPC development in a new area of application: HVDC distribution systems utilizing 270/300VDC. Two RPC current ratings, 1 amp and 2 amps, were selected for development as they are adequate to control 90% of projected system loads. The various aspects and trade-offs encountered in circuit development are discussed with special focus placed on the circuits that see the duress of the high dc potentials. The comprehensive evaluation tests are summarized which confirmed the RPC compliance with the specification and with system/load compatibility requirements. In addition, present technology status and new applications are summarized.

  5. A plausible neural circuit for decision making and its formation based on reinforcement learning.

    PubMed

    Wei, Hui; Dai, Dawei; Bu, Yijie

    2017-06-01

    A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.

  6. Maximum Power Game as a Physical and Social Extension of Classical Games

    NASA Astrophysics Data System (ADS)

    Kim, Pilwon

    2017-03-01

    We consider an electric circuit in which the players participate as resistors and adjust their resistance in pursuit of individual maximum power. The maximum power game(MPG) becomes very complicated in a circuit which is indecomposable into serial/parallel components, yielding a nontrivial power distribution at equilibrium. Depending on the circuit topology, MPG covers a wide range of phenomena: from a social dilemma in which the whole group loses to a well-coordinated situation in which the individual pursuit of power promotes the collective outcomes. We also investigate a situation where each player in the circuit has an intrinsic heat waste. Interestingly, it is this individual inefficiency which can keep them from the collective failure in power generation. When coping with an efficient opponent with small intrinsic resistance, a rather inefficient player gets more power than efficient one. A circuit with multiple voltage inputs forms the network-based maximum power game. One of our major interests is to figure out, in what kind of the networks the pursuit for private power leads to greater total power. It turns out that the circuits with the scale-free structure is one of the good candidates which generates as much power as close to the possible maximum total.

  7. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    NASA Astrophysics Data System (ADS)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  8. Circuit Design Optimization Using Genetic Algorithm with Parameterized Uniform Crossover

    NASA Astrophysics Data System (ADS)

    Bao, Zhiguo; Watanabe, Takahiro

    Evolvable hardware (EHW) is a new research field about the use of Evolutionary Algorithms (EAs) to construct electronic systems. EHW refers in a narrow sense to use evolutionary mechanisms as the algorithmic drivers for system design, while in a general sense to the capability of the hardware system to develop and to improve itself. Genetic Algorithm (GA) is one of typical EAs. We propose optimal circuit design by using GA with parameterized uniform crossover (GApuc) and with fitness function composed of circuit complexity, power, and signal delay. Parameterized uniform crossover is much more likely to distribute its disruptive trials in an unbiased manner over larger portions of the space, then it has more exploratory power than one and two-point crossover, so we have more chances of finding better solutions. Its effectiveness is shown by experiments. From the results, we can see that the best elite fitness, the average value of fitness of the correct circuits and the number of the correct circuits of GApuc are better than that of GA with one-point crossover or two-point crossover. The best case of optimal circuits generated by GApuc is 10.18% and 6.08% better in evaluating value than that by GA with one-point crossover and two-point crossover, respectively.

  9. Engineering-Aligned 3D Neural Circuit in Microfluidic Device.

    PubMed

    Bang, Seokyoung; Na, Sangcheol; Jang, Jae Myung; Kim, Jinhyun; Jeon, Noo Li

    2016-01-07

    The brain is one of the most important and complex organs in the human body. Although various neural network models have been proposed for in vitro 3D neuronal networks, it has been difficult to mimic functional and structural complexity of the in vitro neural circuit. Here, a microfluidic model of a simplified 3D neural circuit is reported. First, the microfluidic device is filled with Matrigel and continuous flow is delivered across the device during gelation. The fluidic flow aligns the extracellular matrix (ECM) components along the flow direction. Following the alignment of ECM fibers, neurites of primary rat cortical neurons are grown into the Matrigel at the average speed of 250 μm d(-1) and form axon bundles approximately 1500 μm in length at 6 days in vitro (DIV). Additionally, neural networks are developed from presynaptic to postsynaptic neurons at 14 DIV. The establishment of aligned 3D neural circuits is confirmed with the immunostaining of PSD-95 and synaptophysin and the observation of calcium signal transmission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-05-01

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  11. Applications of Electronic Devices in the Sixth Form Laboratory

    ERIC Educational Resources Information Center

    Dyson, J. E.

    1974-01-01

    Described are two experiments using electronic circuits designed for the activities. The first experiment is Ruchardt's experiment and the second demonstrates the distribution of velocity of electrons. (RH)

  12. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  13. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  14. First-year university Physics students’ knowledge about direct current circuits: probing improvement in understanding as a function of teaching and learning interventions

    NASA Astrophysics Data System (ADS)

    Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle

    2017-07-01

    Probing university students’ understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in the life sciences stream. The study involved 366 students enrolled in the physics (bio) 154 module at Stellenbosch University in 2015. Students’ understanding of DC resistive circuits was probed by means of a standardized test instrument. The instrument comprises 29 multiple choice questions that students have to answer in ~40 min. Students were required to first complete the standardized test at the start of semester (July 2015). For ease of reference we call this test the pre-test. Students answered the pre-test having no university-level formal exposure to DC circuits in theory or practice. The pre-test therefore served to probe students’ school level knowledge of DC circuits. As the semester progressed students were exposed to a practical (E1), lectures, a prescribed textbook, a tutorial and online videos focusing on DC circuits. The E1 practical required students to solve DC circuit problems by means of physically constructing circuits, algebraically using Kirchhoff's Rules and Ohm’s Law, and by means of simulating circuits using the app iCircuit running on iPads (iOS platform). Each E1 practical involved ~50 students in a three hour session. The practical was repeated three afternoons per week over an eight week period. Twenty three iPads were distributed among students on a practical afternoon in order for them to do the circuit simulations in groups (of 4-5 students). At the end of the practical students were again required to do the standardized test on circuits and complete a survey on their experience of the use of the iPad and iCircuit app. For ease of reference we refer to this second test as the post-test. The students’ average score on the post-test was found to be ~25% higher than their pre-test score. The results of the iPad use survey show that the majority of students felt that the iCircuit app enhanced their learning of DC circuits.

  15. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    PubMed

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that the mediodorsal and ventrolateral thalamus may be candidate targets for modulating abnormal network behavior underlying LGS, potentially via emerging thalamic neurostimulation therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  16. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses.

    PubMed

    Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng

    2016-11-15

    It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (p<0.001). Using GQI, we found decreases in diffusion anisotropy in the superior longitudinal fasciculus and increases in diffusion probability distribution in the frontal lobe among subjects with MDD (p<0.01). In GTA and NBS analyses, we found several disruptions in connectivity among subjects with MDD, particularly in the frontal lobes (p<0.05). In addition, structural alterations were correlated with depressive symptom severity (p<0.01). Small sample size; the cross-sectional design did not allow us to observe treatment effects in the MDD participants. Our results provide further evidence indicating that MDD may be conceptualized as a brain disorder with abnormal circuit structure and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 30 CFR 75.808 - Disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.808... branch lines in high-voltage circuits and equipped or designed in such a manner that it can be determined...

  18. Logic Gates Made of N-Channel JFETs and Epitaxial Resistors

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.

    2008-01-01

    Prototype logic gates made of n-channel junction field-effect transistors (JFETs) and epitaxial resistors have been demonstrated, with a view toward eventual implementation of digital logic devices and systems in silicon carbide (SiC) integrated circuits (ICs). This development is intended to exploit the inherent ability of SiC electronic devices to function at temperatures from 300 to somewhat above 500 C and withstand large doses of ionizing radiation. SiC-based digital logic devices and systems could enable operation of sensors and robots in nuclear reactors, in jet engines, near hydrothermal vents, and in other environments that are so hot or radioactive as to cause conventional silicon electronic devices to fail. At present, current needs for digital processing at high temperatures exceed SiC integrated circuit production capabilities, which do not allow for highly integrated circuits. Only single to small number component production of depletion mode n-channel JFETs and epitaxial resistors on a single substrate is possible. As a consequence, the fine matching of components is impossible, resulting in rather large direct-current parameter distributions within a group of transistors typically spanning multiples of 5 to 10. Add to this the lack of p-channel devices to complement the n-channel FETs, the lack of precise dropping diodes, and the lack of enhancement mode devices at these elevated temperatures and the use of conventional direct coupled and buffered direct coupled logic gate design techniques is impossible. The presented logic gate design is tolerant of device parameter distributions and is not hampered by the lack of complementary devices or dropping diodes. In addition to n-channel JFETs, these gates include level-shifting and load resistors (see figure). Instead of relying on precise matching of parameters among individual JFETS, these designs rely on choosing the values of these resistors and of supply potentials so as to make the circuits perform the desired functions throughout the ranges over which the parameters of the JFETs are distributed. The supply rails V(sub dd) and V(sub ss) and the resistors R are chosen as functions of the distribution of direct-current operating parameters of the group of transistors used.

  19. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  20. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    PubMed

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  1. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    NASA Technical Reports Server (NTRS)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  2. Cortical activity in the null space: permitting preparation without movement

    PubMed Central

    Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-01-01

    Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex (PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex (M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control communication to the muscles and between these brain areas. PMID:24487233

  3. Matrix Metalloproteinase-9 regulates neuronal circuit development and excitability

    PubMed Central

    Murase, Sachiko; Lantz, Crystal; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A.; Quinlan, Elizabeth M.

    2015-01-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here we demonstrate that deletion of the extracellular proteinase MMP-9 affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons, but decreases dendritic length and complexity while dendritic spine density is unchanged. Parallel changes in neuronal morphology are observed in primary visual cortex, and persist into adulthood. Individual CA1 neurons in MMP-9−/− mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significant increases spontaneous neuronal activity in awake MMP-9−/− mice and enhances response to acute challenge by the excitotoxin kainate. Thus MMP-9-dependent proteolysis regulates several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  4. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  5. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement

    PubMed Central

    Thompson, Andrew D; Picard, Nathalie; Min, Lia; Fagiolini, Michela; Chen, Chinfei

    2016-01-01

    SUMMARY According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection. PMID:27545712

  6. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    PubMed Central

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical to understanding how local processing in V1 relates to downstream processing. We have identified the local circuits of a population of cells in V1 layer (L)4B that project to area V2. These cells' local circuits differ from classical descriptions of L4B circuits in both the laminar and functional compartments targeted by their axons, and identify two neuron classes. Our results demonstrate that both local intra-V1 and extrinsic V1-to-V2 connections of L4B neurons preserve CO-stream segregation, suggesting that across-stream integration occurs downstream of V1, and that output targets dictate local V1 circuitry. PMID:28077720

  7. Outcomes of Prosthetic Hemodialysis Grafts after Deployment of Bare Metal versus Covered Stents at the Venous Anastomosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Charles Y., E-mail: charles.kim@duke.edu; Tandberg, Daniel J.; Rosenberg, Michael D.

    2012-08-15

    Purpose: To compare postintervention patency rates after deployment of bare metal versus covered stents across the venous anastomosis of prosthetic arteriovenous (AV) grafts. Methods: Review of our procedural database over a 6 year period revealed 377 procedures involving stent deployment in an AV access circuit. After applying strict inclusion criteria, our study group consisted of 61 stent deployments in 58 patients (median age 58 years, 25 men, 33 women) across the venous anastomosis of an upper extremity AV graft circuit that had never been previously stented. Both patent and thrombosed AV access circuits were retrospectively analyzed. Within the bare metalmore » stent group, 20 of 32 AV grafts were thrombosed at initial presentation compared to 18 of 29 AV grafts in the covered stent group. Results: Thirty-two bare metal stents and 29 covered stents were deployed across the venous anastomosis. The 3, 6, and 12 months primary access patency rates for bare metal stents were not significantly different than for covered stents: 50, 41, and 22 % compared to 59, 52, and 29 %, respectively (p = 0.21). The secondary patency rates were also not significantly different: 78, 78, and 68 % for bare metal stents compared to 76, 69, and 61 % for covered stents, respectively (p = 0.85). However, covered stents demonstrated a higher primary stent patency rate than bare metal stents: 100, 85, and 70 % compared to 75, 67, and 49 % at 3, 6, and 12 months (p < 0.01). Conclusion: The primary and secondary access patency rates after deployment of bare metal versus covered stents at the venous anastomosis were not significantly different. However, bare metal stents developed in-stent stenoses significantly sooner.« less

  8. Accumulation of radioactive corrosion products on steel surfaces of VVER-type nuclear reactors. II. 60Co

    NASA Astrophysics Data System (ADS)

    Varga, Kálmán; Hirschberg, Gábor; Németh, Zoltán; Myburg, Gerrit; Schunk, János; Tilky, Péter

    2001-10-01

    In the case of intact fuel claddings, the predominant source of radioactivity in the primary circuits of water-cooled nuclear reactors is the activation of corrosion products in the core. The most important corrosion product radionuclides in the primary coolant of pressurized water reactors (PWRs) are 60Co, 58Co, 51Cr, 54Mn, 59Fe (as well as 110mAg in some Soviet-made VVER-type reactor). The second part of this series is focused on the complex studies of the formation and build-up of 60Co-containing species on an austenitic stainless steel type 08X18H10T (GOST 5632-61) and magnetite-covered carbon steel often to be used in Soviet-planned VVERs. The kinetics and mechanism of the cobalt accumulation were studied by a combination (coupling) of an in situ radiotracer method and voltammetry in a model solution of the primary circuit coolant. In addition, independent techniques such as X-ray photoelectron spectroscopic (XPS) and ICP-OES are also used to analyze the chemical state of Co species in the passive layer formed on stainless steel as well as the chemical composition of model solution. The experimental results have revealed that: (i) The passive behavior of the austenitic stainless steel at open-circuit conditions, the slightly alkaline pH and the reducing water chemistry can be considered to be optimal to minimize the 60Co contamination. (ii) The highly potential dependent deposition of various Co-oxides at E>1.10 V (vs. RHE) offers a unique possibility to elaborate a novel electrochemical method for the decrease or removal of cobalt traces from borate-containing coolants contaminated with 60Co and/or 58Co radionuclides.

  9. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-12-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.

  10. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    PubMed

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  11. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

    PubMed Central

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416

  12. Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics.

    PubMed

    Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D

    2016-04-22

    Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2  D and p=p_{2}=8.3±0.4  D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.

  13. Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres.

    PubMed

    Lee, Byeongdu; Park, Young-Hee; Hwang, Yong-Taek; Oh, Weontae; Yoon, Jinhwan; Ree, Moonhor

    2005-02-01

    Integrated circuits that have improved functionality and speed in a smaller package and that consume less power are desired by the microelectronics industry as well as by end users, to increase device performance and reduce costs. The fabrication of high-performance integrated circuits requires the availability of materials with low or ultralow dielectric constant (low-k: k

  14. Distribution-Connected PV's Response to Voltage Sags at Transmission-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry; Ding, Fei

    The ever increasing amount of residential- and commercial-scale distribution-connected PV generation being installed and operated on the U.S.'s electric power system necessitates the use of increased fidelity representative distribution system models for transmission stability studies in order to ensure the continued safe and reliable operation of the grid. This paper describes a distribution model-based analysis that determines the amount of distribution-connected PV that trips off-line for a given voltage sag seen at the distribution circuit's substation. Such sags are what could potentially be experienced over a wide area of an interconnection during a transmission-level line fault. The results of thismore » analysis show that the voltage diversity of the distribution system does cause different amounts of PV generation to be lost for differing severity of voltage sags. The variation of the response is most directly a function of the loading of the distribution system. At low load levels the inversion of the circuit's voltage profile results in considerable differences in the aggregated response of distribution-connected PV Less variation is seen in the response to specific PV deployment scenarios, unless pushed to extremes, and in the total amount of PV penetration attained. A simplified version of the combined CMPLDW and PVD1 models is compared to the results from the model-based analysis. Furthermore, the parameters of the simplified model are tuned to better match the determined response. The resulting tuning parameters do not match the expected physical model of the distribution system and PV systems and thus may indicate that another modeling approach would be warranted.« less

  15. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans.

    PubMed

    Flavell, Steven W; Pokala, Navin; Macosko, Evan Z; Albrecht, Dirk R; Larsch, Johannes; Bargmann, Cornelia I

    2013-08-29

    Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here, we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans

    PubMed Central

    Flavell, Steven W.; Pokala, Navin; Macosko, Evan Z.; Albrecht, Dirk R.; Larsch, Johannes; Bargmann, Cornelia I.

    2013-01-01

    SUMMARY Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. PMID:23972393

  17. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    NASA Astrophysics Data System (ADS)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  18. LCRE and SNAP 50-DR-1 programs. Engineering progress report, January 1, 1963--March 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, primary coolant circuit, aaxiliary systems, fuel elements, instrumentation, materials development, and fabrication; and SNAP-50DR-1 specifications, fuel elements, pumps, steam generator, and materials development. (DCC)

  19. Innovative Internal Camera Inspection and Data Management for Effective Condition Assessment of Collection Systems

    EPA Science Inventory

    The primary objective of this guidance document is to identify and evaluate innovative closed-circuit television (CCTV) and related technologies currently used by more advanced wastewater utilities to conduct condition assessment programs. The document is intended to facilitate ...

  20. Feedback Circuit among INK4 Tumor Suppressors Constrains Human Glioblastoma Development

    PubMed Central

    Wiedemeyer, Ruprecht; Brennan, Cameron; Heffernan, Timothy P.; Xiao, Yonghong; Mahoney, John; Protopopov, Alexei; Zheng, Hongwu; Bignell, Graham; Furnari, Frank; Cavenee, Webster K.; Hahn, William C.; Ichimura, Koichi; Collins, V. Peter; Chu, Gerald C.; Stratton, Michael R.; Ligon, Keith L.; Futreal, P. Andrew; Chin, Lynda

    2008-01-01

    Summary We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation. PMID:18394558

  1. Constant power speed range extension of surface mounted PM motors

    DOEpatents

    Lawler, Jack Steward; Bailey, John Milton

    2001-01-01

    A circuit and method for controlling a rotating machine (11) in the constant horsepower range above base speed uses an inverter (15) having SCR's (T1-T6) connected in series with the primary commutation switches (Q1-Q6) to control turn off of the primary commutation switches and to protect the primary commutation switches from faults. The primary commutation switches (Q1-Q6) are controlled by a controller (14), to fire in advance or after a time when the back emf equals the applied voltage, and then to turn off after a precise dwell time, such that suitable power is developed at speeds up to at least six times base speed.

  2. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  3. Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

    PubMed Central

    Solari, Soren Van Hout; Stoner, Rich

    2011-01-01

    Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717

  4. Stacked color image sensor using wavelength-selective organic photoconductive films with zinc-oxide thin film transistors as a signal readout circuit

    NASA Astrophysics Data System (ADS)

    Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi

    2010-01-01

    Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.

  5. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit theory, using lumped circuit elements, to electromagnetics, using distributed electrical quantities. We show this development using first principles, but, in a more general sense, Maxwell's equations of electromagnetics could be applied.

  6. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage.

  7. A continuously pulsed copper halide laser with a cable-capacitor Blumlein discharge circuit

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    Experimental characteristics of a continuously pulsed copper halide laser with a cable-capacitor Blumlein discharge circuit are reported. Quartz laser tubes 1 m in length and 1.5 and 2.5 cm in diameter were employed to study the effects of the electrical circuit, lasant, and buffer gas on laser performance. Measured properties of the Blumlein circuit are compared with an analytic solution for an idealized circuit. Both CuCl and CuBr with neon and helium buffer gas were studied. A maximum average power of 12.5 W was obtained with a 1.5 nF capacitor charged to 8 kV and discharged at 31 kHz with CuCl and neon buffer gas at 0.7 kPa in a 2.5-cm-diam tube. A maximum efficiency of 0.72 percent was obtained at 9 W average power. Measurements of the radial distribution of the power in the laser beam and the variation of laser power at 510.6 and 578.2 nm with halide vapor density are also reported. Double and continuously pulsed laser characteristics are compared, and the role of copper metastable level atoms in limiting the laser pulse energy density is discussed.

  8. The Generalized Hellmann-Feynman Theorem Approach to Quantum Effects of Mesoscopic Complicated Coupling Circuit at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Xia

    2016-02-01

    By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of (\\vartriangle {hat {H}})2 is almost zero and the values of e and (\\vartriangle hat {{H}})2are basically constant, but while the temperature rises to the specific temperature, both of them move upward rapidly. The energy fluctuation of the system becomes larger when the coupling inductance is larger or the coupling capacitance is smaller.

  9. Conception et realisation d'un echantillonneur de grande vitesse en technologie HIGFET (transistor a effet de champ avec heterostructure et grille isolee)

    NASA Astrophysics Data System (ADS)

    Tazlauanu, Mihai

    The research work reported in this thesis details a new fabrication technology for high speed integrated circuits in the broadest sense, including original contributions to device modeling, circuit simulation, integrated circuit design, wafer fabrication, micro-physical and electrical characterization, process flow and final device testing as part of an electrical system. The primary building block of this technology is the heterostructure insulated gate field effect transistor, HIGFET. We used an InP/InGaAs epitaxial heterostructure to ensure a high charge carrier mobility and hence obtain a higher operating frequency than that currently possible for silicon devices. We designed and built integrated circuits with two system architectures. The first architecture integrates the clock signal generator with the sample and hold circuitry on the InP die, while the second is a hybrid architecture of an InP sample and hold assembled with an external clock signal generator made with ECL circuits on GaAs. To generate the clock signals on the same die with the sample and hold circuits, we developed a digital circuit family based on an original inverter, appropriate for depletion mode NMOS technology. We used this circuit to design buffer amplifiers and ring oscillators. Four mask sets produced in a Cadence environment, have permitted the fabrication of test and working devices. Each new mask generation has reflected the previous achievements and has implemented new structures and circuit techniques. The fabrication technology has undergone successive modifications and refinements to optimize device manufacturing. Particular attention has been paid to the technological robustness. The plasma enhanced etching process (RIE) had been used for an exhaustive study for the statistical simulation of the technological steps. Electrical measurements, performed on the experimental samples, have permitted the modeling of the devices, technological processing to be adjusted and circuit design improved. Electrical measurements performed on dedicated test structures, during the fabrication cycle, allowed the identification and correction of some technological problems (ohmic contacts, current leakage, interconnection integrity, and thermal instabilities). Feedback corrections were validated by dedicated experiments with the experimental effort optimized by statistical techniques (factorial fractional design). (Abstract shortened by UMI.)

  10. Current distribution in a three-dimensional IC analyzed by a perturbation method. Part 1: A simple steady state theory

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1987-01-01

    The steady state current distribution in a three dimensional integrated circuit is presented. A device physics approach, based on a perturbation method rather than an equivalent lumped circuit approach, is used. The perturbation method allows the various currents to be expressed in terms of elementary solutions which are solutions to very simple boundary value problems. A Simple Steady State Theory is the subtitle because the most obvious limitation of the present version of the analysis is that all depletion region boundary surfaces are treated as equipotential surfaces. This may be an adequate approximation in some applications but it is an obvious weakness in the theory when applied to latched states. Examples that illustrate the use of these analytical methods are not given because they will be presented in detail in the future.

  11. A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution

    NASA Technical Reports Server (NTRS)

    Shetler, Russell E.; Stuart, Thomas A.

    1989-01-01

    Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.

  12. Pinhole induced efficiency variation in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Agarwal, Sumanshu; Nair, Pradeep R.

    2017-10-01

    Process induced efficiency variation is a major concern for all thin film solar cells, including the emerging perovskite based solar cells. In this article, we address the effect of pinholes or process induced surface coverage aspects on the efficiency of such solar cells through detailed numerical simulations. Interestingly, we find that the pinhole size distribution affects the short circuit current and open circuit voltage in contrasting manners. Specifically, while the JS C is heavily dependent on the pinhole size distribution, surprisingly, the VO C seems to be only nominally affected by it. Further, our simulations also indicate that, with appropriate interface engineering, it is indeed possible to design a nanostructured device with efficiencies comparable to those of ideal planar structures. Additionally, we propose a simple technique based on terminal I-V characteristics to estimate the surface coverage in perovskite solar cells.

  13. Cellular complexity in subcortical white matter: a distributed control circuit?

    PubMed

    Colombo, Jorge A

    2018-03-01

    The subcortical white matter (SWM) has been traditionally considered as a site for passive-neutral-information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial "interstitial" cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal-glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the "interstitial" neuronal cells-associated with local glial cells-traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM.

  14. Distributed task-specific processing of somatosensory feedback for voluntary motor control

    PubMed Central

    Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H

    2016-01-01

    Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors. DOI: http://dx.doi.org/10.7554/eLife.13141.001 PMID:27077949

  15. Redox Flow Batteries, Hydrogen and Distributed Storage.

    PubMed

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  16. Assessment of the Charging Policy in Energy Efficiency of the Enterprise

    NASA Astrophysics Data System (ADS)

    Shutov, E. A.; E Turukina, T.; Anisimov, T. S.

    2017-04-01

    The forecasting problem for energy facilities with a power exceeding 670 kW is currently one of the main. In connection with rules of the retail electricity market such customers also pay for actual energy consumption deviations from plan value. In compliance with the hierarchical stages of the electricity market a guaranteeing supplier is to respect the interests of distribution and generation companies that require load leveling. The answer to this question for industrial enterprise is possible only within technological process through implementation of energy-efficient processing chains with the adaptive function and forecasting tool. In such a circumstance the primary objective of a forecasting is reduce the energy consumption costs by taking account of the energy cost correlation for 24 hours for forming of pumping unit work schedule. The pumping unit virtual model with the variable frequency drive is considered. The forecasting tool and the optimizer are integrated into typical control circuit. Economic assessment of the optimization method was estimated.

  17. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    PubMed

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with drugs.

  18. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  19. A system for measuring the pulse height distribution of ultrafast photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1977-01-01

    A system for measuring the pulse height distribution of gigahertz bandwidth photomultipliers was developed. This system uses a sampling oscilloscope as a sample-hold circuit and has a bandwidth of 12 gigahertz. Test results are given for a static crossed-filed photomultiplier tested with a demonstration system. Calculations on system amplitude resolution capabilities are included for currently available system components.

  20. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less

  1. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  2. Characterization of quantum well structures using a photocathode electron microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Scott, Craig J.

    1989-01-01

    Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).

  3. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. B.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs monolithic microwave integrated circuit (MMIC) based phased array antennas. The performance of a hybrid GaAs optoelectronic integrated circuit (OEIC) is described, as well as its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 30b Mbps. The performance characteristics and potential applications of the device are presented.

  4. Cholecystokinin: A multi-functional molecular switch of neuronal circuits

    PubMed Central

    Lee, Soo Yeun; Soltesz, Ivan

    2010-01-01

    Cholecystokinin (CCK), a peptide originally discovered in the gastrointestinal tract, is one of the most the abundant and widely distributed neuropeptides in the brain. In spite of its abundance, recent data indicate that that CCK modulates intrinsic neuronal excitability and synaptic transmission in a surprisingly cell-type specific manner, acting as a key molecular switch to regulate the functional output of neuronal circuits. The central importance of CCK in neuronal networks is also reflected in its involvement in a variety of neuropsychiatric and neurological disorders including panic attacks and epilepsy. PMID:21154912

  5. Fiber optic sensors for nuclear power plant applications

    NASA Astrophysics Data System (ADS)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-01

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  6. Geostatistical Approach to Estimating the Gold Ore Characteristics and Gold Reserves: A Case Study Daksa Area, Quang Nam Province, Viet Nam

    NASA Astrophysics Data System (ADS)

    Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan

    2015-04-01

    Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat and gold mine Daksa.

  7. Circuit for Communication Over Power Lines

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer

    2011-01-01

    Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.

  8. Optical printed circuit board (O-PCB) and VLSI photonic integrated circuits: visions, challenges, and progresses

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.

    2006-09-01

    A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.

  9. Inquiry-Based Pre-Engineering Activities for K-4 Students

    ERIC Educational Resources Information Center

    Perrin, Michele

    2004-01-01

    This paper uses inquiry-based learning to introduce primary students to the concepts and terminology found in four introductory engineering courses: Differential Equations, Circuit Analysis, Thermodynamics, and Dynamics. Simple electronic sensors coupled with everyday objects, such as a troll doll, demonstrate and reinforce the physical principles…

  10. Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion

    NASA Astrophysics Data System (ADS)

    Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.

    2016-05-01

    As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.

  11. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    PubMed

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All rights reserved.

  12. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  13. Leak Detectives Saving Money, Water in Virginia

    EPA Pesticide Factsheets

    “Circuit riders” from the Virginia Rural Water Association (VRWA) are traveling to small communities across the Commonwealth using special equipment financed by EPA to locate expensive and wasteful leaks in drinking water distribution systems.

  14. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified by simulation and experimental tests under various conditions considering all possible cases such as different amounts of voltage sag depth (VSD), different amounts of point-on-wave (POW) at which voltage sag occurs, harmonic distortion, line frequency variation, and phase jump (PJ). Furthermore, the ripple amount of fundamental voltage amplitude calculated by the proposed method and its error is analyzed considering the line frequency variation together with harmonic distortion. The best and worst detection time of proposed method were measured 1ms and 8.8ms, respectively. Finally, the proposed method has been compared with other voltage sag detection methods available in literature. Part 2: Power System Modeling for Renewable Energy Integration: As power distribution systems are evolving into more complex networks, electrical engineers have to rely on software tools to perform circuit analysis. There are dozens of powerful software tools available in the market to perform the power system studies. Although their main functions are similar, there are differences in features and formatting structures to suit specific applications. This creates challenges for transferring power system circuit models data (PSCMD) between different software and rebuilding the same circuit in the second software environment. The objective of this part of thesis is to develop a Unified Platform (UP) to facilitate transferring PSCMD among different software packages and relieve the challenges of the circuit model conversion process. UP uses a commonly available spreadsheet file with a defined format, for any home software to write data to and for any destination software to read data from, via a script-based application called PSCMD transfer application. The main considerations in developing the UP are to minimize manual intervention and import a one-line diagram into the destination software or export it from the source software, with all details to allow load flow, short circuit and other analyses. In this study, ETAP, OpenDSS, and GridLab-D are considered, and PSCMD transfer applications written in MATLAB have been developed for each of these to read the circuit model data provided in the UP spreadsheet. In order to test the developed PSCMD transfer applications, circuit model data of a test circuit and a power distribution circuit from Southern California Edison (SCE) - a utility company - both built in CYME, were exported into the spreadsheet file according to the UP format. Thereafter, circuit model data were imported successfully from the spreadsheet files into above mentioned software using the PSCMD transfer applications developed for each software. After the SCE studied circuit is transferred into OpenDSS software using the proposed UP scheme and developed application, it has been studied to investigate the impacts of large-scale solar energy penetration. The main challenge of solar energy integration into power grid is its intermittency (i.e., discontinuity of output power) nature due to cloud shading of photovoltaic panels which depends on weather conditions. In order to conduct this study, OpenDSS time-series simulation feature, which is required due to intermittency of solar energy, is utilized. In this study, the impacts of intermittency of solar energy penetration, especially high-variability points, on voltage fluctuation and operation of capacitor bank and voltage regulator is provided. In addition, the necessity to interpolate and resample unequally spaced time-series measurement data and convert them to equally spaced time-series data as well as the effect of resampling time-interval on the amount of error is discussed. Two applications are developed in Matlab to do interpolation and resampling as well as to calculate the amount of error for different resampling time-intervals to figure out the suitable resampling time-interval. Furthermore, an approach based on cumulative distribution, regarding the length for lines/cables types and the power rating for loads, is presented to prioritize which loads, lines and cables the meters should be installed at to have the most effect on model validation.

  15. Immunocytochemistry and neurobiology.

    PubMed

    Cuello, A C; Priestley, J V; Sofroniew, M V

    1983-10-01

    Immunocytochemistry enables the localization of transmitter-related antigens in tissue sections at either the light microscopic or the electron microscopic level. In the case of neuropeptides and certain transmitters (e.g. serotonin) it has been possible to produce antibodies directed against the putative transmitter itself. In other cases it has not been possible to produce useful antibodies against transmitters but antibodies have been raised against enzymes involved in transmitter metabolism (e.g. tyrosine hydroxylase, glutamic acid decarboxylase) and these antibodies are suitable markers for transmitter systems. Successful immunostaining with an antibody depends on a number of factors, two of the most important being the fixation of the antigen in the tissue and the visualization of the primary antibody once it has bound to the antigen. Techniques available for the visualization of bound primary antibody include the indirect-labelled immunofluorescence procedure and the unlabelled peroxidase-antiperoxidase (PAP) procedure. Direct-labelled immunocytochemistry is not now widely used but is likely to become increasingly important with the introduction of monoclonal antibodies and the development of techniques for the simultaneous localization of multiple antigens. Monoclonal antibody procedures also allow the production of antibodies against antigens which are difficult to purify such as certain transmitter markers (e.g. choline acetyltransferase) and constituents of neuronal membranes. Immunocytochemistry allows the production of detailed maps of the distribution of putative transmitters in the nervous system and in combination with tract tracing procedures is being used increasingly to identify transmitters in neuronal circuits. It has also been important in establishing the transmitter status of various neuroactive compounds in single neurones. Immunocytochemistry can be carried out on post-mortem samples and is providing information on transmitter distribution in normal and abnormal human brain.

  16. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    NASA Astrophysics Data System (ADS)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data-processing complex. An example of the multilevel calculation of the heat-hydraulic modes of main heat networks and those connected to them through central heat point distribution networks in Petropavlovsk-Kamchatskii is examined.

  17. Battery Charge Equalizer with Transformer Array

    NASA Technical Reports Server (NTRS)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  18. Temperature Distribution Within a Defect-Free Silicon Carbide Diode Predicted by a Computational Model

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Neudeck, Philip G.

    2000-01-01

    Most solid-state electronic devices diodes, transistors, and integrated circuits are based on silicon. Although this material works well for many applications, its properties limit its ability to function under extreme high-temperature or high-power operating conditions. Silicon carbide (SiC), with its desirable physical properties, could someday replace silicon for these types of applications. A major roadblock to realizing this potential is the quality of SiC material that can currently be produced. Semiconductors require very uniform, high-quality material, and commercially available SiC tends to suffer from defects in the crystalline structure that have largely been eliminated in silicon. In some power circuits, these defects can focus energy into an extremely small area, leading to overheating that can damage the device. In an effort to better understand the way that these defects affect the electrical performance and reliability of an SiC device in a power circuit, the NASA Glenn Research Center at Lewis Field began an in-house three-dimensional computational modeling effort. The goal is to predict the temperature distributions within a SiC diode structure subjected to the various transient overvoltage breakdown stresses that occur in power management circuits. A commercial computational fluid dynamics computer program (FLUENT-Fluent, Inc., Lebanon, New Hampshire) was used to build a model of a defect-free SiC diode and generate a computational mesh. A typical breakdown power density was applied over 0.5 msec in a heated layer at the junction between the p-type SiC and n-type SiC, and the temperature distribution throughout the diode was then calculated. The peak temperature extracted from the computational model agreed well (within 6 percent) with previous first-order calculations of the maximum expected temperature at the end of the breakdown pulse. This level of agreement is excellent for a model of this type and indicates that three-dimensional computational modeling can provide useful predictions for this class of problem. The model is now being extended to include the effects of crystal defects. The model will provide unique insights into how high the temperature rises in the vicinity of the defects in a diode at various power densities and pulse durations. This information also will help researchers in understanding and designing SiC devices for safe and reliable operation in high-power circuits.

  19. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    PubMed

    Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng

    2017-02-05

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.

  20. Local Circuit Inhibition in the Cerebral Cortex as the source of Gain Control and Untuned Suppression

    PubMed Central

    Shapley, Robert M.; Xing, Dajun

    2012-01-01

    Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is experimental evidence and theoretical support for the idea that local circuit inhibition acts as a local automatic gain control throughout the cortex. Second, inhibition increases cortical feature selectivity: many studies of different sensory cortical areas have reported that suppressive mechanisms contribute to feature selectivity. Synaptic inhibition from the local microcircuit should be untuned (or broadly tuned) for stimulus features because of the microarchitecture of the cortical microcircuit. Untuned inhibition probably is the source of Untuned Suppression that enhances feature selectivity. We studied inhibition’s function in our experiments, guided by a neuronal network model, on orientation selectivity in the primary visual cortex, V1, of the Macaque monkey. Our results revealed that Untuned Suppression, generated by local circuit inhibition, is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:23036513

  1. Stress redistribution and damage in interconnects caused by electromigration

    NASA Astrophysics Data System (ADS)

    Chiras, Stefanie Ruth

    Electromigration has long been recognized as a phenomenon that induces mass redistribution in metals which, when constrained, can lead to the creation of stress. Since the development of the integrated circuit, electromigration. in interconnects, (the metal lines which carry current between devices in integrated circuits), has become a reliability concern. The primary failure mechanism in the interconnects is usually voiding, which causes electrical resistance increases in the circuit. In some cases, however, another failure mode occurs, fracture of the surrounding dielectric driven by electromigration induced compressive stresses within the interconnect. It is this failure mechanism that is the focus of this thesis. To study dielectric fracture, both residual processing stresses and the development of electromigration induced stress in isolated, constrained interconnects was measured. The high-resolution measurements were made using two types of piezospectroscopy, complemented by finite element analysis (FEA). Both procedures directly measured stress in the underlying or neighboring substrate and used FEA to determine interconnect stresses. These interconnect stresses were related to the effected circuit failure mode through post-test scanning electron microscopy and resistance measurements taken during electromigration testing. The results provide qualitative evidence of electromigration driven passivation fracture, and quantitative analysis of the theoretical model of the failure, the "immortal" interconnect concept.

  2. Distribution Feeder Modeling for Time-Series Simulation of Voltage Management Strategies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldez Miner, Julieta I; Gotseff, Peter; Nagarajan, Adarsh

    This paper presents techniques to create baseline distribution models using a utility feeder from Hawai'ian Electric Company. It describes the software-to-software conversion, steady-state, and time-series validations of a utility feeder model. It also presents a methodology to add secondary low-voltage circuit models to accurately capture the voltage at the customer meter level. This enables preparing models to perform studies that simulate how customer-sited resources integrate into legacy utility distribution system operations.

  3. Impacts on the Voltage Profile of DC Distribution Network with DG Access

    NASA Astrophysics Data System (ADS)

    Tu, J. J.; Yin, Z. D.

    2017-07-01

    With the development of electronic, more and more distributed generations (DGs) access into grid and cause the research fever of direct current (DC) distribution network. Considering distributed generation (DG) location and capacity have great impacts on voltage profile, so use IEEE9 and IEEE33 typical circuit as examples, with DGs access in centralized and decentralized mode, to compare voltage profile in alternating and direct current (AC/DC) distribution network. Introducing the voltage change ratio as an evaluation index, so gets the general results on voltage profile of DC distributed network with DG access. Simulation shows that, in the premise of reasonable location and capacity, DC distribution network is more suitable for DG access.

  4. Distribution of androgen receptor mRNA expression in vocal, auditory, and neuroendocrine circuits in a teleost fish.

    PubMed

    Forlano, Paul M; Marchaterre, Margaret; Deitcher, David L; Bass, Andrew H

    2010-02-15

    Across all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus). In the forebrain, AR mRNA is abundant in proposed homologs of the mammalian striatum and amygdala, and in anterior and posterior parvocellular and magnocellular nuclei of the preoptic area, nucleus preglomerulosus, and posterior, ventral and anterior tuberal nuclei of the hypothalamus. Many of these nuclei are part of the known vocal and auditory circuitry in midshipman. The midbrain periaqueductal gray, an essential link between forebrain and hindbrain vocal circuitry, and the lateral line recipient nucleus medialis in the rostral hindbrain also express abundant AR mRNA. In the caudal hindbrain-spinal vocal circuit, high AR mRNA is found in the vocal prepacemaker nucleus and along the dorsal periphery of the vocal motor nucleus congruent with the known pattern of expression of aromatase-containing glial cells. Additionally, abundant AR mRNA expression is shown for the first time in the inner ear of a vertebrate. The distribution of AR mRNA strongly supports the role of androgens as modulators of behaviorally defined vocal, auditory, and neuroendocrine circuits in teleost fish and vertebrates in general. 2009 Wiley-Liss, Inc.

  5. A fractional calculus perspective of distributed propeller design

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J.; Galhano, Alexandra M.

    2018-02-01

    A new generation of aircraft with distributed propellers leads to operational performances superior to those exhibited by standard designs. Computational simulations and experimental tests show a reduction of fuel consumption and noise. This paper proposes an analogy between aerodynamics and electrical circuits. The model reveals properties similar to those of fractional-order systems and gives a deeper insight into the dynamics of multi-propeller coupling.

  6. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    NASA Astrophysics Data System (ADS)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  8. Fault-Tolerant Signal Processing Architectures with Distributed Error Control.

    DTIC Science & Technology

    1985-01-01

    Zm, Revisited," Information and Control, Vol. 37, pp. 100-104, 1978. 13. J. Wakerly , Error Detecting Codes. SeIf-Checkino Circuits and Applications ...However, the newer results concerning applications of real codes are still in the publication process. Hence, two very detailed appendices are included to...significant entities to be protected. While the distributed finite field approach afforded adequate protection, its applicability was restricted and

  9. Construction and Operation of Three-Dimensional Memory and Logic Molecular Devices and Circuits

    DTIC Science & Technology

    2013-07-01

    higher currents and less leakage. We also constructed a ferrocene -based self-assembling monolayer attached to gold nanoparticles, exhibiting a...charging transistor utilizing Ferrocene -based SAM attached to gold nano-particle. Our experiments are, to our knowledge, the first to exhibit an...The molecular layer includes a ferrocene SAM attached to Au Distribution A: Approved for public release; distribution is unlimited

  10. Effects of Random Circuit Fabrication Errors on Small Signal Gain and on Output Phase In a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Rittersdorf, I. M.; Antonsen, T. M., Jr.; Chernin, D.; Lau, Y. Y.

    2011-10-01

    Random fabrication errors may have detrimental effects on the performance of traveling-wave tubes (TWTs) of all types. A new scaling law for the modification in the average small signal gain and in the output phase is derived from the third order ordinary differential equation that governs the forward wave interaction in a TWT in the presence of random error that is distributed along the axis of the tube. Analytical results compare favorably with numerical results, in both gain and phase modifications as a result of random error in the phase velocity of the slow wave circuit. Results on the effect of the reverse-propagating circuit mode will be reported. This work supported by AFOSR, ONR, L-3 Communications Electron Devices, and Northrop Grumman Corporation.

  11. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution.

    PubMed

    Sasaki, Takuma; Kakesu, Izumi; Mitsui, Yusuke; Rontani, Damien; Uchida, Atsushi; Sunada, Satoshi; Yoshimura, Kazuyuki; Inubushi, Masanobu

    2017-10-16

    We experimentally achieve common-signal-induced synchronization in two photonic integrated circuits with short external cavities driven by a constant-amplitude random-phase light. The degree of synchronization can be controlled by changing the optical feedback phase of the two photonic integrated circuits. The change in the optical feedback phase leads to a significant redistribution of the spectral energy of optical and RF spectra, which is a unique characteristic of PICs with the short external cavity. The matching of the RF and optical spectra is necessary to achieve synchronization between the two PICs, and stable synchronization can be obtained over an hour in the presence of optical feedback. We succeed in generating information-theoretic secure keys and achieving the final key generation rate of 184 kb/s using the PICs.

  12. Development of design, qualification, screening, and application requirements for plastic encapsulated solid-state devices for space applications

    NASA Astrophysics Data System (ADS)

    1981-12-01

    Test data were collected on 1035 plastic encapsulated devices and 75 hermetically scaled control group devices that were purchased from each of five different manufacturers in the categories of (1) low power Schottsky TTL (bipolar) digital circuits; (2) CMOS digital circuits; (3) operational amplifier linear circuits; and (4) NPN transistors. These parts were subjected to three different initial screening conditions, then to extended life testing, to determine any possible advantages or trends for any particular screen. Several tests were carried out in the areas of flammability testing, humidity testing, high pressure steam (auroclave) testing, and high temperature storage testing. Test results are presented. Procurement and application considerations for use of plastic encapsulated semiconductors are presented and a statistical analysis program written to study the log normal distributions resulting from life testing is concluded.

  13. Development of design, qualification, screening, and application requirements for plastic encapsulated solid-state devices for space applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Test data were collected on 1035 plastic encapsulated devices and 75 hermetically scaled control group devices that were purchased from each of five different manufacturers in the categories of (1) low power Schottsky TTL (bipolar) digital circuits; (2) CMOS digital circuits; (3) operational amplifier linear circuits; and (4) NPN transistors. These parts were subjected to three different initial screening conditions, then to extended life testing, to determine any possible advantages or trends for any particular screen. Several tests were carried out in the areas of flammability testing, humidity testing, high pressure steam (auroclave) testing, and high temperature storage testing. Test results are presented. Procurement and application considerations for use of plastic encapsulated semiconductors are presented and a statistical analysis program written to study the log normal distributions resulting from life testing is concluded.

  14. Conceptual studies for a mercury target circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigg, B.

    1996-06-01

    For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less

  15. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  16. On Per-Phase Topology Control and Switching in Emerging Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mousavi, Mirrasoul J.

    This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less

  17. Effects of Distributed Generation on Overcurrent Relay Coordination and an Adaptive Protection Scheme

    NASA Astrophysics Data System (ADS)

    Ilik, Semih C.; Arsoy, Aysen B.

    2017-07-01

    Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.

  18. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  19. Rates of Cerebral Protein Synthesis in Primary Visual Cortex during Sleep-Dependent Memory Consolidation, a Study in Human Subjects.

    PubMed

    Picchioni, Dante; Schmidt, Kathleen C; McWhirter, Kelly K; Loutaev, Inna; Pavletic, Adriana J; Speer, Andrew M; Zametkin, Alan J; Miao, Ning; Bishu, Shrinivas; Turetsky, Kate M; Morrow, Anne S; Nadel, Jeffrey L; Evans, Brittney C; Vesselinovitch, Diana M; Sheeler, Carrie A; Balkin, Thomas J; Smith, Carolyn B

    2018-05-15

    If protein synthesis during sleep is required for sleep-dependent memory consolidation, we might expect rates of cerebral protein synthesis (rCPS) to increase during sleep in the local brain circuits that support performance on a particular task following training on that task. To measure circuit-specific brain protein synthesis during a daytime nap opportunity, we used the L-[1-(11)C]leucine positron emission tomography (PET) method with simultaneous polysomnography. We trained subjects on the visual texture discrimination task (TDT). This was followed by a nap opportunity during the PET scan, and we retested them later in the day after the scan. The TDT is considered retinotopically specific, so we hypothesized that higher rCPS in primary visual cortex would be observed in the trained hemisphere compared to the untrained hemisphere in subjects who were randomized to a sleep condition. Our results indicate that the changes in rCPS in primary visual cortex depended on whether subjects were in the wakefulness or sleep condition but were independent of the side of the visual field trained. That is, only in the subjects randomized to sleep, rCPS in the right primary visual cortex was higher than the left regardless of side trained. Other brain regions examined were not so affected. In the subjects who slept, performance on the TDT improved similarly regardless of the side trained. Results indicate a regionally selective and sleep-dependent effect that occurs with improved performance on the TDT.

  20. An enhanced lumped element electrical model of a double barrier memristive device

    NASA Astrophysics Data System (ADS)

    Solan, Enver; Dirkmann, Sven; Hansen, Mirko; Schroeder, Dietmar; Kohlstedt, Hermann; Ziegler, Martin; Mussenbrock, Thomas; Ochs, Karlheinz

    2017-05-01

    The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model.

Top