Sample records for distribution sed fitting

  1. GOSSIP: SED fitting code

    NASA Astrophysics Data System (ADS)

    Franzetti, Paolo; Scodeggio, Marco

    2012-10-01

    GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.

  2. Iris: Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Laurino, O.; Budynkiewicz, J.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.

    2014-05-01

    We present Iris 2.0, the latest release of the Virtual Astronomical Observatory application for building and analyzing Spectral Energy Distributions (SEDs). With Iris, users may read in and display SEDs inspect and edit any selection of SED data, fit models to SEDs in arbitrary spectral ranges, and calculate confidence limits on best-fit parameters. SED data may be loaded into the application from VOTable and FITS files compliant with the International Virtual Observatoy Alliance interoperable data models, or retrieved directly from NED or the Italian Space Agency Science Data Center; data in non-standard formats may also be converted within the application. Users may seamlessy exchange data between Iris and other Virtual Observatoy tools using the Simple Application Messaging Protocol. Iris 2.0 also provides a tool for redshifting, interpolating, and measuring integratd fluxes, and allows simple aperture corrections for individual points and SED segments. Custom Python functions, template models and template libraries may be imported into Iris for fitting SEDs. Iris may be extended through Java plugins; users can install third-party packages, or develop their own plugin using Iris' Software Development Kit. Iris 2.0 is available for Linux and Mac OS X systems.

  3. GOSSIP, a New VO Compliant Tool for SED Fitting

    NASA Astrophysics Data System (ADS)

    Franzetti, P.; Scodeggio, M.; Garilli, B.; Fumana, M.; Paioro, L.

    2008-08-01

    We present GOSSIP (Galaxy Observed-Simulated SED Interactive Program), a new tool developed to perform SED fitting in a simple, user friendly and efficient way. GOSSIP automatically builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a χ^2 minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions. User defined models can be used, but GOSSIP is also able to load models produced by the most commonly used synthesis population codes. GOSSIP can be used interactively with other visualization tools using the PLASTIC protocol for communications. Moreover, since it has been developed with large data sets applications in mind, it will be extended to operate within the Virtual Observatory framework. GOSSIP is distributed to the astronomical community from the PANDORA group web site (http://cosmos.iasf-milano.inaf.it/pandora/gossip.html).

  4. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Han, Yunkun; Han, Zhanwen

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  5. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less

  6. Extending Iris: The VAO SED Analysis Tool

    NASA Astrophysics Data System (ADS)

    Laurino, O.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.

    2013-10-01

    Iris is a tool developed by the Virtual Astronomical Observatory (VAO) for building and analyzing Spectral Energy Distributions (SEDs). Iris was designed to be extensible, so that new components and models can be developed by third parties and then included at runtime. Iris can be extended in different ways: new file readers allow users to integrate data in custom formats into Iris SEDs; new models can be fitted to the data, in the form of template libraries for template fitting, data tables, and arbitrary Python functions. The interoperability-centered design of Iris and the Virtual Observatory standards and protocols can enable new science functionalities involving SED data.

  7. Young Blue Straggler Stars in the Galactic Field

    NASA Astrophysics Data System (ADS)

    Ekanayake, Gemunu; Wilhelm, Ronald

    2018-06-01

    In this study we present an analysis of a sample of field blue straggler (BS) stars that show high ultra violet emission in their spectral energy distributions (SED): indication of a hot white dwarf (WD) companion to BS. Using photometry available in the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX ) surveys we identified 80 stars with UV excess. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed a fitting routine that could fit binary model SEDs to the observed SED. Results from this fit indicate the need for a hot WD companion to provide the excess UV flux. The WD mass distribution peaks at ˜0.4 M⊙, suggesting the primary formation channel of field BSs is case B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of the binary mass transfer efficiency to be β ˜ 0.5.

  8. LBGs properties from z˜3 to z˜6

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2011-12-01

    We analyse the spectral energy distribution (SED) of U, B, V and i-dropout samples from GOODS-MUSIC and we determine their physical properties, such as stellar age and mass, dust attenuation and star formation rate (SFR). Furthermore, we examine how the strength of Lyα emission can be constrained from broad-band SED fits instead of relying in spectroscopy. We use our SED fitting tool including the effects of nebular emission and we explore different star formation histories (SFHs). We find that SEDs are statistically better fitted with nebular emission and exponentially decreasing star formation. Considering this result, stellar mass and star formation rate (SFR) estimations modify the specific SFR (SFR/M_{⋆}) - redshift relation, in compared to previous studies. Finally, our inferred Lyα properties are in good agreement with the available spectroscopic observations.

  9. The effects of the WISE/ GALEX photometry for the SED-fitting with M31 star clusters and candidates

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Wang, Song

    2017-10-01

    Spectral energy distribution (SED) fitting of stellar population synthesis models is an important and popular way to constrain the physical parameters—e.g., the ages, metallicities, masses for stellar population analysis. The previous works suggest that both blue-bands and red-bands photometry works for the SED-fitting. Either blue-domained or red-domained SED-fitting usually lead to the unreliable or biased results. Meanwhile, it seems that extending the wavelength coverage could be helpful. Since the Galaxy Evolution Explorer ( GALEX) and Wide-field Infrared Survey Explorer (WISE) provide the FUV/NUV and mid-infrared W1/W2 band data, we extend the SED-fitting to a wider wavelength coverage. In our work, we analyzed the effect of adding the FUV/NUV and W1/W2 band to the optical and near-infrared UBVRIJHK bands for the fitting with the (Bruzual and Charlot in Mon. Not. R. Astron. Soc. 344, 1000, 2003) (BC03) models and galev models. It is found that the FUV/NUV bands data affect the fitting results of both ages and metallicities much more significantly than that of the WISE W1/W2 band with the BC03 models. While for the galev models, the effect of the WISE W1/W2 band for the metallicity fitting seems comparable to that of GALEX FUV/NUV bands, but for age the effect of the W1/W2 band seems less crucial than that of the FUV/NUV bands. Thus we conclude that the GALEX FUV/NUV bands are more crucial for the SED-fitting of ages and metallicities, than the other bands, and the high-quality UV data (with high photometry precision) are required.

  10. What can the SEDs of first hydrostatic core candidates reveal about their nature?

    NASA Astrophysics Data System (ADS)

    Young, Alison K.; Bate, Matthew R.; Mowat, Chris F.; Hatchell, Jennifer; Harries, Tim J.

    2018-02-01

    The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests that the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.

  11. Fitting the spectral energy distributions of galaxies with CIGALE : Code Investigating GALaxy Emission

    NASA Astrophysics Data System (ADS)

    Giovannoli, E.; Buat, V.

    2013-03-01

    We use the code CIGALE (Code Investigating Galaxies Emission: Burgarella et al. 2005; Noll et al. 2009) which provides physical information about galaxies by fitting their UV (ultraviolet)-to-IR (infrared) spectral energy distribuition (SED). CIGALE is based on the use of a UV-optical stellar SED plus a dust IR-emitting component. We study a sample of 136 Luminous Infrared Galaxies (LIRGs) at z˜0.7 in the ECDF-S previously studied in Giovannoli et al. (2011). We focus on the way the empirical Dale & Helou (2002) templates reproduce the observed SEDs of the LIRGs. Fig. 1 shows the total infrared luminosity (L IR ) provided by CIGALE using the 64 templates (x axis) and using 2 templates (y axis) representative of the whole sample. Despite the larger dispersion when only 1 or 2 Herschel data are available, the agreement between both values is good with Δ log L IR = 0.0013 ± 0.045 dex. We conclude that 2 IR SEDs can be used alone to determine the L IR of LIRGs at z˜0.7 in an SED-fitting procedure.

  12. Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai

    2018-05-01

    We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.

  13. The imprint of rapid star formation quenching on the spectral energy distributions of galaxies

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boselli, A.; Elbaz, D.; Boissier, S.; Buat, V.; Charmandaris, V.; Schreiber, C.; Béthermin, M.; Baes, M.; Boquien, M.; De Looze, I.; Fernández-Ontiveros, J. A.; Pappalardo, C.; Spinoglio, L.; Viaene, S.

    2016-01-01

    In high density environments, the gas content of galaxies is stripped, leading to a rapid quenching of their star formation activity. This dramatic environmental effect, which is not related to typical passive evolution, is generally not taken into account in the star formation histories (SFHs) usually assumed to perform spectral energy distribution (SED) fitting of these galaxies, yielding a poor fit of their stellar emission and, consequently, biased estimate of the star formation rate (SFR). In this work, we aim at reproducing this rapid quenching using a truncated delayed SFH that we implemented in the SED fitting code CIGALE. We show that the ratio between the instantaneous SFR and the SFR just before the quenching (rSFR) is well constrained as long as rest-frame UV data are available. This SED modeling is applied to the Herschel Reference Survey (HRS) containing isolated galaxies and sources falling in the dense environment of the Virgo cluster. The latter are Hi-deficient because of ram pressure stripping. We show that the truncated delayed SFH successfully reproduces their SED, while typical SFH assumptions fail. A good correlation is found between rSFR and Hi-def, the parameter that quantifies the gas deficiency of cluster galaxies, meaning that SED fitting results can be used to provide a tentative estimate of the gas deficiency of galaxies for which Hi observations are not available. The HRS galaxies are placed on the SFR-M∗ diagram showing that the Hi-deficient sources lie in the quiescent region, thus confirming previous studies. Using the rSFR parameter, we derive the SFR of these sources before quenching and show that they were previously on the main sequence relation. We show that the rSFR parameter is also recovered well for deeply obscured high redshift sources, as well as in the absence of IR data. SED fitting is thus a powerful tool for identifying galaxies that underwent a rapid star formation quenching.

  14. Galaxy and mass assembly (GAMA): the consistency of GAMA and WISE derived mass-to-light ratios

    NASA Astrophysics Data System (ADS)

    Kettlety, T.; Hesling, J.; Phillipps, S.; Bremer, M. N.; Cluver, M. E.; Taylor, E. N.; Bland-Hawthorn, J.; Brough, S.; De Propris, R.; Driver, S. P.; Holwerda, B. W.; Kelvin, L. S.; Sutherland, W.; Wright, A. H.

    2018-01-01

    Recent work has suggested that mid-IR wavelengths are optimal for estimating the mass-to-light ratios of stellar populations and hence the stellar masses of galaxies. We compare stellar masses deduced from spectral energy distribution (SED) models, fitted to multiwavelength optical-NIR photometry, to luminosities derived from WISE photometry in the W1 and W2 bands at 3.6 and 4.5 μm for non-star forming galaxies. The SED-derived masses for a carefully selected sample of low-redshift (z ≤ 0.15) passive galaxies agree with the prediction from stellar population synthesis models such that M*/LW1 ≃ 0.6 for all such galaxies, independent of other stellar population parameters. The small scatter between masses predicted from the optical SED and from the WISE measurements implies that random errors (as opposed to systematic ones such as the use of different initial mass functions) are smaller than previous, deliberately conservative, estimates for the SED fits. This test is subtly different from simultaneously fitting at a wide range of optical and mid-IR wavelengths, which may just generate a compromised fit: we are directly checking that the best-fitting model to the optical data generates an SED whose M*/LW1 is also consistent with separate mid-IR data. We confirm that for passive low-redshift galaxies a fixed M*/LW1 = 0.65 can generate masses at least as accurate as those obtained from more complex methods. Going beyond the mean value, in agreement with expectations from the models, we see a modest change in M*/LW1 with SED fitted stellar population age but an insignificant one with metallicity.

  15. Emitting electron spectra and acceleration processes in the jet of PKS 0447-439

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Yan, Dahai; Dai, Benzhong; Zhang, Li

    2014-02-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447-439, and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating), and the broken power-law (BPL) EED (no acceleration scenario). The corresponding fluxes of both synchrotron and SSC are then calculated. The model is applied to PKS 0447-439, and modeled SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo method. The results show that the PLC model fails to fit the observed SED well, while the LP and BPL models give comparably good fits for the observed SED. The results indicate that it is possible that a stochastic acceleration process acts in the emitting region of PKS 0447-439 and the EED is far from equilibrium (acceleration dominating) or no acceleration process works (in the emitting region). The redshift of PKS 0447-439 is also estimated in our fitting: z = 0.16 ± 0.05 for the LP case and z = 0.17 ± 0.04 for BPL case.

  16. SED Constraints on the Highest- z Blazar Jet: QSO J0906+6930

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongjun; Romani, Roger W.

    Here, we report on Gemini, NuSTAR, and eight years of Fermi observations of the most distant blazar QSO J0906+6930 (z = 5.48). We construct a broadband spectral energy distribution (SED) and model the SED using a synchro-Compton model. The measurements yield a mass of ~4 × 10 9 M ⊙ for the black hole and a spectral break at ~4 keV in the combined fit of the new NuSTAR and archival Chandra data. The SED fitting constrains the bulk Doppler factor δ of the jet to 9 +2.5 –3 for QSO J0906+6930. Similar, but weaker, constraints on δ are derivedmore » from SED modeling of the three other claimed z > 5 blazars. Together, these extrapolate to ~620 similar sources, fully 20% of the optically bright, high-mass active galactic nuclei expected at 5 < z < 5.5. This has interesting implications for the early growth of massive black holes.« less

  17. SED Constraints on the Highest-z Blazar Jet: QSO J0906+6930

    NASA Astrophysics Data System (ADS)

    An, Hongjun; Romani, Roger W.

    2018-04-01

    We report on Gemini, NuSTAR, and eight years of Fermi observations of the most distant blazar QSO J0906+6930 (z = 5.48). We construct a broadband spectral energy distribution (SED) and model the SED using a synchro-Compton model. The measurements yield a mass of ∼4 × 109 M ⊙ for the black hole and a spectral break at ∼4 keV in the combined fit of the new NuSTAR and archival Chandra data. The SED fitting constrains the bulk Doppler factor δ of the jet to 9+2.5 ‑3 for QSO J0906+6930. Similar, but weaker, constraints on δ are derived from SED modeling of the three other claimed z > 5 blazars. Together, these extrapolate to ∼620 similar sources, fully 20% of the optically bright, high-mass active galactic nuclei expected at 5 < z < 5.5. This has interesting implications for the early growth of massive black holes.

  18. SED Constraints on the Highest- z Blazar Jet: QSO J0906+6930

    DOE PAGES

    An, Hongjun; Romani, Roger W.

    2018-03-29

    Here, we report on Gemini, NuSTAR, and eight years of Fermi observations of the most distant blazar QSO J0906+6930 (z = 5.48). We construct a broadband spectral energy distribution (SED) and model the SED using a synchro-Compton model. The measurements yield a mass of ~4 × 10 9 M ⊙ for the black hole and a spectral break at ~4 keV in the combined fit of the new NuSTAR and archival Chandra data. The SED fitting constrains the bulk Doppler factor δ of the jet to 9 +2.5 –3 for QSO J0906+6930. Similar, but weaker, constraints on δ are derivedmore » from SED modeling of the three other claimed z > 5 blazars. Together, these extrapolate to ~620 similar sources, fully 20% of the optically bright, high-mass active galactic nuclei expected at 5 < z < 5.5. This has interesting implications for the early growth of massive black holes.« less

  19. SED Modeling of 20 Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.

  20. Contemporaneous broadband observations of three high-redshift BL Lac objects

    DOE PAGES

    Ackerman, M.

    2016-03-20

    We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects, 3FGL J0022.1-1855 (z=0.689), 3FGL J0630.9-2406 (z > ~1.239), and 3FGL J0811.2-7529 (z=0.774), detected by Fermi with relatively flat GeV spectra. By observing simultaneously in the near-IR to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the GeV Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, withmore » poorer fits for high UV models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components.« less

  1. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    NASA Astrophysics Data System (ADS)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  2. Constraints on the Location of γ-Ray Sample of Blazars with Radio Core-shift Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Linhui; Wu, Qingwen; Yan, Dahai; Chen, Liang; Fan, Xuliang

    2018-01-01

    We model simultaneous or quasi-simultaneous multi-band spectral energy distributions (SEDs) for a sample of 25 blazars that have radio core-shift measurements, where a one-zone leptonic model and Markov chain Monte Carlo technique are adopted. In the SED fitting for 23 low-synchrotron-peaked (LSP) blazars, the seed photons from the broad-line (BLR) and molecular torus are considered respectively in the external Compton process. We find that the SED fitting with the seed photons from the torus are better than those utilizing BLR photons, which suggest that the γ-ray emitting region may be located outside the BLR. Assuming the magnetic field strength in the γ-ray emitting region as constrained from the SED fitting follows the magnetic field distribution as derived from the radio core-shift measurements (i.e., B{(R)≃ {B}1{pc}(R/1{pc})}-1, where R is the distance from the central engine and {B}1{pc} is the magnetic field strength at 1 pc), we further calculate the location of the γ-ray emitting region, {R}γ , for these blazars. We find that {R}γ ∼ 2× {10}4{R}{{S}}≃ 10 {R}{BLR} ({R}{{S}} is the Schwarzschild radius and {R}{BLR} is the BLR size), where {R}{BLR} is estimated from the broad-line luminosities using the empirical correlations obtained using the reverberation mapping methods.

  3. Mr-Moose: An advanced SED-fitting tool for heterogeneous multi-wavelength datasets

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Falkendal, T.

    2018-04-01

    We present the public release of Mr-Moose, a fitting procedure that is able to perform multi-wavelength and multi-object spectral energy distribution (SED) fitting in a Bayesian framework. This procedure is able to handle a large variety of cases, from an isolated source to blended multi-component sources from an heterogeneous dataset (i.e. a range of observation sensitivities and spectral/spatial resolutions). Furthermore, Mr-Moose handles upper-limits during the fitting process in a continuous way allowing models to be gradually less probable as upper limits are approached. The aim is to propose a simple-to-use, yet highly-versatile fitting tool fro handling increasing source complexity when combining multi-wavelength datasets with fully customisable filter/model databases. The complete control of the user is one advantage, which avoids the traditional problems related to the "black box" effect, where parameter or model tunings are impossible and can lead to overfitting and/or over-interpretation of the results. Also, while a basic knowledge of Python and statistics is required, the code aims to be sufficiently user-friendly for non-experts. We demonstrate the procedure on three cases: two artificially-generated datasets and a previous result from the literature. In particular, the most complex case (inspired by a real source, combining Herschel, ALMA and VLA data) in the context of extragalactic SED fitting, makes Mr-Moose a particularly-attractive SED fitting tool when dealing with partially blended sources, without the need for data deconvolution.

  4. MR-MOOSE: an advanced SED-fitting tool for heterogeneous multi-wavelength data sets

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Falkendal, T.

    2018-07-01

    We present the public release of MR-MOOSE, a fitting procedure that is able to perform multi-wavelength and multi-object spectral energy distribution (SED) fitting in a Bayesian framework. This procedure is able to handle a large variety of cases, from an isolated source to blended multi-component sources from a heterogeneous data set (i.e. a range of observation sensitivities and spectral/spatial resolutions). Furthermore, MR-MOOSE handles upper limits during the fitting process in a continuous way allowing models to be gradually less probable as upper limits are approached. The aim is to propose a simple-to-use, yet highly versatile fitting tool for handling increasing source complexity when combining multi-wavelength data sets with fully customisable filter/model data bases. The complete control of the user is one advantage, which avoids the traditional problems related to the `black box' effect, where parameter or model tunings are impossible and can lead to overfitting and/or over-interpretation of the results. Also, while a basic knowledge of PYTHON and statistics is required, the code aims to be sufficiently user-friendly for non-experts. We demonstrate the procedure on three cases: two artificially generated data sets and a previous result from the literature. In particular, the most complex case (inspired by a real source, combining Herschel, ALMA, and VLA data) in the context of extragalactic SED fitting makes MR-MOOSE a particularly attractive SED fitting tool when dealing with partially blended sources, without the need for data deconvolution.

  5. Modeling Well Sampled Composite Spectral Energy Distributions of Distant Galaxies via an MCMC-driven Inference Framework

    NASA Astrophysics Data System (ADS)

    Pasha, Imad; Kriek, Mariska; Johnson, Benjamin; Conroy, Charlie

    2018-01-01

    Using a novel, MCMC-driven inference framework, we have modeled the stellar and dust emission of 32 composite spectral energy distributions (SEDs), which span from the near-ultraviolet (NUV) to far infrared (FIR). The composite SEDs were originally constructed in a previous work from the photometric catalogs of the NEWFIRM Medium-Band Survey, in which SEDs of individual galaxies at 0.5 < z < 2.0 were iteratively matched and sorted into types based on their rest-frame UV-to-NIR photometry. In a subsequent work, MIPS 24 μm was added for each SED type, and in this work, PACS 100 μm, PACS160 μm, SPIRE 25 μm, and SPIRE 350 μm photometry have been added to extend the range of the composite SEDs into the FIR. We fit the composite SEDs with the Prospector code, which utilizes an MCMC sampling to explore the parameter space for models created by the Flexible Stellar Population Synthesis (FSPS) code, in order to investigate how specific star formation rate (sSFR), dust temperature, and other galaxy properties vary with SED type.This work is also being used to better constrain the SPS models within FSPS.

  6. Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip

    2018-01-01

    The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.

  7. Cooperative photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2017-06-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.

  8. Modeling the near-ultraviolet band of GK stars. III. Dependence on abundance pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, C. Ian; Campbell, Eamonn A., E-mail: ishort@ap.smu.ca

    2013-06-01

    We extend the grid of non-LTE (NLTE) models presented in Paper II to explore variations in abundance pattern in two ways: (1) the adoption of the Asplund et al. (GASS10) abundances, (2) for stars of metallicity, [M/H], of –0.5, the adoption of a non-solar enhancement of α-elements by +0.3 dex. Moreover, our grid of synthetic spectral energy distributions (SEDs) is interpolated to a finer numerical resolution in both T {sub eff} (ΔT {sub eff} = 25 K) and log g (Δlog g = 0.25). We compare the values of T {sub eff} and log g inferred from fitting LTE andmore » NLTE SEDs to observed SEDs throughout the entire visible band, and in an ad hoc 'blue' band. We compare our spectrophotometrically derived T {sub eff} values to a variety of T {sub eff} calibrations, including more empirical ones, drawn from the literature. For stars of solar metallicity, we find that the adoption of the GASS10 abundances lowers the inferred T {sub eff} value by 25-50 K for late-type giants, and NLTE models computed with the GASS10 abundances give T {sub eff} results that are marginally in better agreement with other T {sub eff} calibrations. For stars of [M/H] = –0.5 there is marginal evidence that adoption of α-enhancement further lowers the derived T {sub eff} value by 50 K. Stellar parameters inferred from fitting NLTE models to SEDs are more dependent than LTE models on the wavelength region being fitted, and we find that the effect depends on how heavily line blanketed the fitting region is, whether the fitting region is to the blue of the Wien peak of the star's SED, or both.« less

  9. Broadband spectral fitting of blazars using XSPEC

    NASA Astrophysics Data System (ADS)

    Sahayanathan, Sunder; Sinha, Atreyee; Misra, Ranjeev

    2018-03-01

    The broadband spectral energy distribution (SED) of blazars is generally interpreted as radiation arising from synchrotron and inverse Compton mechanisms. Traditionally, the underlying source parameters responsible for these emission processes, like particle energy density, magnetic field, etc., are obtained through simple visual reproduction of the observed fluxes. However, this procedure is incapable of providing confidence ranges for the estimated parameters. In this work, we propose an efficient algorithm to perform a statistical fit of the observed broadband spectrum of blazars using different emission models. Moreover, we use the observable quantities as the fit parameters, rather than the direct source parameters which govern the resultant SED. This significantly improves the convergence time and eliminates the uncertainty regarding initial guess parameters. This approach also has an added advantage of identifying the degenerate parameters, which can be removed by including more observable information and/or additional constraints. A computer code developed based on this algorithm is implemented as a user-defined routine in the standard X-ray spectral fitting package, XSPEC. Further, we demonstrate the efficacy of the algorithm by fitting the well sampled SED of blazar 3C 279 during its gamma ray flare in 2014.

  10. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    NASA Astrophysics Data System (ADS)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  11. Modeling Protoplanetary Disks to Characterize the Evolution of their Structure

    NASA Astrophysics Data System (ADS)

    Allen, Magdelena; van der Marel, Nienke; Williams, Jonathan

    2018-01-01

    Stars form from gravitationally collapsing clouds of gas and dust. Most young stars retain a protoplanetary disk for a few million years. This disk’s dust reemits stellar flux in the infrared, producing a spectral energy distribution (SED) observable by Spitzer and other telescopes. To understand the inner clearing of dust cavities and evolution in the SED, we used the Chiang & Goldreich two-layer approximation. We first wrote a python script based on refinements by Dullemond that includes a hot, puffed inner rim, shadowed mid region, flaring outer disk, and a variable inner cavity. This was then coupled with a Markov Chain Monte Carlo procedure to fit the observed SEDs of disks in the star forming Lupus region. The fitting procedure recovers physical characteristics of the disk including temperature, size, mass, and surface density. We compare the characteristics of circumstellar disks without holes and more evolved transition disks with cleared inner regions.

  12. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  13. On the 10 μm Silicate Feature in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark

    2009-12-01

    The 10 μm silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 μm silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r -1.5 and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual ~60-80. The source bolometric luminosity is ~3 × 1012 Lsun. Our modeling suggests that lsim35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 μm emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 μm silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature never occurs deeply absorbed. Comparing such distributions in several AGN samples we also show that the silicate emission feature becomes stronger in the transition from Seyfert to quasar luminosities.

  14. A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.; La Barbera, F.; Getman, F.; Grado, A.

    2017-04-01

    Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), I.e. the European Southern Observatory (ESO) public survey on the VLT Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy data set with an exceptional image quality and depth in the optical wavebands. Using a KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived photo-z using (I) three different empirical methods based on supervised machine learning; (II) the Bayesian photometric redshift model (or BPZ); and (III) a classical spectral energy distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of the photometric parameter space properly sampled by the spectroscopic templates, machine learning methods provide better redshift estimates, with a lower scatter and a smaller fraction of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral type, which can be effectively used to constrain systematic errors and to better characterize potential catastrophic outliers. Such classification is then used to specialize the training of regression machine learning models, by demonstrating that a hybrid approach, involving SED fitting and machine learning in a single collaborative framework, can be effectively used to improve the accuracy of photo-z estimates.

  15. The Stellar Mass of M31 as inferred by the Andromeda Optical & Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan; Courteau, Stephane; Cuillandre, Jean-Charles; Dalcanton, Julianne; de Jong, Roelof; McDonald, Michael; Simard, Dana; Tully, R. Brent

    2015-04-01

    Our proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31's bulge and disk out to R=40 kpc in ugriJKs bands with CFHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31's stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31's i-band mass-to-light ratio (M/Li *) decreases from 0.5 dex in the bulge to ~ 0.2 dex at 40 kpc. The best-constrained stellar population models use the full ugriJKs SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the gi-SED alone yield M/Li * that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for M/Li via g - i colour found in the literature. We advocate a stellar mass of M *(30 kpc) = 10.3+2.3 -1.7 × 1010 M⊙ for the M31 bulge and disk.

  16. Average radio spectral energy distribution of highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Tisanić, K.; Smolčić, V.; Delhaize, J.; Novak, M.; Intema, H.; Delvecchio, I.; Schinnerer, E.; Zamorani, G.

    2018-05-01

    The infrared-radio correlation (IRRC) offers a way to assess star formation from radio emission. Multiple studies found the IRRC to decrease with increasing redshift. This may in part be due to the lack of knowledge about the possible radio spectral energy distributions (SEDs) of star-forming galaxies. We constrain the radio SED of a complete sample of highly star-forming galaxies (SFR > 100 M⊙/ yr) based on the VLA-COSMOS 1.4 GHz Joint and 3 GHz Large Project catalogs. We reduce archival GMRT 325 MHz and 610 MHz observations, broadening the rest-frame frequency range to 0.3-15 GHz. Employing survival analysis and fitting a double power law SED, we find that the slope steepens from a spectral index of α1 = 0.51+/-0.04 below 4.5 GHz to α2 = 0.98+/-0.07 above 4.5 GHz. Our results suggest that the use of a K-correction assuming a single power-law radio SED for star forming galaxies is likely not the root cause of the IRRC trend.

  17. Deriving Stellar Masses for the ALFALFA α.100 Sample

    NASA Astrophysics Data System (ADS)

    Hess, Logan; Cornell 2017 Summer REU

    2018-01-01

    For this project, we explore different methods of deriving the stellar masses of galaxies in the ALFALFA (Arecibo Legacy Fast ALFA) α.100 survey. In particular, we measure the effectiveness of SED (Spectral Energy Distribution) on the sample. SED fitting was preformed by MAGPHYS (Multi-wavelength Analysis of Galaxy Physical Properties), utilizing a wide range of photometry in the UV, optical, and IR bands. Photometry was taken from GALAX GR6/7 (UV), SDSS DR13 (optical), WISE All-Sky (near-IR), and Herschel PACS/SPIRE (far-IR). The efficiency of SED fitting increases with a broader range of photometry, however detection rates varied significantly across the different bands. Using a more “comprehensive” sample of galaxies, the GSWLC-A (GALAX, SDSS, WISE Legacy Catalog All-Sky Survey), we aimed to measure which combination of bands provided the largest sample return with the lowest amount of uncertainty, which could then be used to estimate the masses of the galaxies in the α.100 sample.

  18. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  19. VOSA: SED building and analysis of thousands of stars in the framework of Gaia

    NASA Astrophysics Data System (ADS)

    Rodrigo, C.; Solano, E.; Bayo, A.

    2014-07-01

    VOSA (http://svo2.cab.inta-csic.es/theory/vosa/), is a web-based tool designed to combine private photometric measurements with data available in VO services distributed worldwide to build the observational spectral energy distributions (SEDs) of hundreds of objects. VOSA also accesses various collections of models to simulate the equivalent theoretical SEDs, allows the user to decide the range of physical parameters to explore, performs the SED comparison, provides the best fitting models to the user following two different approaches (chi square and Bayesian fitting), and, for stellar sources, compares these parameters with isochrones and evolutionary tracks to estimate masses and ages. In particular, VOSA offers the advantage of deriving physical parameters using all the available photometric information instead of a restricted subset of colors. VOSA was firstly released in 2008 and its functionalities are described in Bayo et al. (2008). At the time of writing there are more than 300 active users in VOSA who have published more than 60 refereed papers. In the framework of the GENIUS (https://gaia.am.ub.es/Twiki/bin/view/GENIUS) project we are upgrading VOSA to, on one hand, provide a seamless access to Gaia data and, on the other hand, handle thousands of objects at a time. In this poster, the main functionalities to be implemented in the Gaia context will be described. The poster can be found at: http://svo.cab.inta-csic.es/files/svo//Public/SVOPapers/posters/vosa-poster3.pdf.

  20. Early science from the Pan-STARRS1 Optical Galaxy Survey (POGS): Maps of stellar mass and star formation rate surface density obtained from distributed-computing pixel-SED fitting

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; Vinsen, K.; Galaxy Properties Key Project, PS1

    2014-01-01

    To measure resolved galactic physical properties unbiased by the mask of recent star formation and dust features, we are conducting a citizen-scientist enabled nearby galaxy survey based on the unprecedented optical (g,r,i,z,y) imaging from Pan-STARRS1 (PS1). The PS1 Optical Galaxy Survey (POGS) covers 3π steradians (75% of the sky), about twice the footprint of SDSS. Whenever possible we also incorporate ancillary multi-wavelength image data from the ultraviolet (GALEX) and infrared (WISE, Spitzer) spectral regimes. For each cataloged nearby galaxy with a reliable redshift estimate of z < 0.05 - 0.1 (dependent on donated CPU power), publicly-distributed computing is being harnessed to enable pixel-by-pixel spectral energy distribution (SED) fitting, which in turn provides maps of key physical parameters such as the local stellar mass surface density, crude star formation history, and dust attenuation. With pixel SED fitting output we will then constrain parametric models of galaxy structure in a more meaningful way than ordinarily achieved. In particular, we will fit multi-component (e.g. bulge, bar, disk) galaxy models directly to the distribution of stellar mass rather than surface brightness in a single band, which is often locally biased. We will also compute non-parametric measures of morphology such as concentration, asymmetry using the POGS stellar mass and SFR surface density images. We anticipate studying how galactic substructures evolve by comparing our results with simulations and against more distant imaging surveys, some of which which will also be processed in the POGS pipeline. The reliance of our survey on citizen-scientist volunteers provides a world-wide opportunity for education. We developed an interactive interface which highlights the science being produced by each volunteer’s own CPU cycles. The POGS project has already proven popular amongst the public, attracting about 5000 volunteers with nearly 12,000 participating computers, and is growing rapidly.

  1. Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.

    2018-03-01

    Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.

  2. SEDEBLEND: a new method for deblending spectral energy distributions in confused imaging

    NASA Astrophysics Data System (ADS)

    MacKenzie, Todd P.; Scott, Douglas; Swinbank, Mark

    2016-11-01

    For high-redshift submillimetre or millimetre sources detected with single-dish telescopes, interferometric follow-up has shown that many are multiple submillimetre galaxies blended together. Confusion-limited Herschel observations of such targets are also available, and these sample the peak of their spectral energy distribution (SED) in the far-infrared. Many methods for analysing these data have been adopted, but most follow the traditional approach of extracting fluxes before model SEDs are fit, which has the potential to erase important information on degeneracies among fitting parameters and glosses over the intricacies of confusion noise. Here, we adapt the forward-modelling method that we originally developed to disentangle a high-redshift strongly lensed galaxy group, in order to tackle this general problem in a more statistically rigorous way, by combining source deblending and SED fitting into the same procedure. We call this method `SEDeblend'. As an application, we derive constraints on far-infrared luminosities and dust temperatures for sources within the ALMA follow-up of the LABOCA Extended Chandra Deep Field South Submillimetre Survey. We find an average dust temperature for an 870-μm-selected sample of (33.9 ± 2.4) K for the full survey. When selection effects of the sample are considered, we find no evidence that the average dust temperature evolves with redshift for sources with redshifts greater than about 1.5, when compared to those with redshifts between 0.1 and 1.5.

  3. Recovering Galaxy Properties Using Gaussian Process SED Fitting

    NASA Astrophysics Data System (ADS)

    Iyer, Kartheik; Awan, Humna

    2018-01-01

    Information about physical quantities like the stellar mass, star formation rates, and ages for distant galaxies is contained in their spectral energy distributions (SEDs), obtained through photometric surveys like SDSS, CANDELS, LSST etc. However, noise in the photometric observations often is a problem, and using naive machine learning methods to estimate physical quantities can result in overfitting the noise, or converging on solutions that lie outside the physical regime of parameter space.We use Gaussian Process regression trained on a sample of SEDs corresponding to galaxies from a Semi-Analytic model (Somerville+15a) to estimate their stellar masses, and compare its performance to a variety of different methods, including simple linear regression, Random Forests, and k-Nearest Neighbours. We find that the Gaussian Process method is robust to noise and predicts not only stellar masses but also their uncertainties. The method is also robust in the cases where the distribution of the training data is not identical to the target data, which can be extremely useful when generalized to more subtle galaxy properties.

  4. DIRT: Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  5. Constraining the red shifts of TeV BL Lac objects

    NASA Astrophysics Data System (ADS)

    Qin, Longhua; Wang, Jiancheng; Yan, Dahai; Yang, Chuyuan; Yuan, Zunli; Zhou, Ming

    2018-01-01

    We present a model-dependent method to estimate the red shifts of three TeV BL Lac objects (BL Lacs) through fitting their (quasi-)simultaneous multi-waveband spectral energy distributions (SEDs) with a one-zone leptonic synchrotron self-Compton model. Considering the impact of electron energy distributions (EEDs) on the results, we use three types of EEDs to fit the SEDs: a power-law EED with exponential cut-off (PLC), a log-parabola (PLLP) EED and the broken power-law (BPL) EED. We also use a parameter α to describe the uncertainties of the extragalactic background light models, as in Abdo et al. We then use a Markov chain Monte Carlo method to explore the multi-dimensional parameter space and obtain the uncertainties of the model parameters based on the observational data. We apply our method to obtain the red shifts of three TeV BL Lac objects in the marginalized 68 per cent confidence, and find that the PLC EED does not fit the SEDs. For 3C66A, the red shift is 0.14-0.31 and 0.16-0.32 in the BPL and PLLP EEDs. For PKS1424+240, the red shift is 0.55-0.68 and 0.55-0.67 in the BPL and PLLP EEDs. For PG1553+113, the red shift is 0.22-0.48 and 0.22-0.39 in the BPL and PLLP EEDs. We also estimate the red shift of PKS1424+240 in the high stage to be 0.46-0.67 in the PLLP EED, roughly consistent with that in the low stage.

  6. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  7. Panchromatic SED modelling of spatially resolved galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  8. Pixel-by-Pixel SED Fitting of Intermediate Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cohen, Seth H.; Kim, Hwihyun; Petty, Sara M.; Farrah, Duncan

    2015-01-01

    We select intermediate redshift galaxies from the Hubble Space Telescope CANDELS and GOODS surveys to study their stellar populations on sub-kilo-parsec scales by fitting SED models on a pixel-by-pixel basis. Galaxies are chosen to have measured spectroscopic redshifts (z<1.5), to be bright (H_AB<21 mag), to be relatively face-on (b/a > 0.6), and have a minimum of ten individual resolution elements across the face of the galaxy, as defined by the broadest PSF (F160W-band) in the data. The sample contains ~200 galaxies with BViz(Y)JH band HST photometry. The main goal of the study is to better understand the effects of population blending when using a pixel-by-pixel SED fitting (pSED) approach. We outline our pSED fitting method which gives maps of stellar mass, age, star-formation rate, etc. Several examples of individual pSED-fit maps are presented in detail, as well as some preliminary results on the full sample. The pSED method is necessarily biased by the brightest population in a given pixel outshining the rest of the stars, and, therefore, we intend to study this apparent population blending in a set of artificially redshifted images of nearby galaxies, for which we have star-by-star measurements of their stellar populations. This local sample will be used to better interpret the measurements for the higher redshift galaxies.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This archival research is associated with program #13241.

  9. Learning the Relationship between Galaxy Spectra and Star Formation Histories

    NASA Astrophysics Data System (ADS)

    Lovell, Christopher; Acquaviva, Viviana; Iyer, Kartheik; Gawiser, Eric

    2018-01-01

    We explore novel approaches to the problem of predicting a galaxy’s star formation history (SFH) from its Spectral Energy Distribution (SED). Traditional approaches to SED template fitting use constant or exponentially declining SFHs, and are known to incur significant bias in the inferred SFHs, which are typically skewed toward younger stellar populations. Machine learning approaches, including tree ensemble methods and convolutional neural networks, would not be affected by the same bias, and may work well in recovering unbiased and multi-episodic star formation histories. We use a supervised approach whereby models are trained using synthetic spectra, generated from three state of the art hydrodynamical simulations, including nebular emission. We explore how SED feature maps can be used to highlight areas of the spectrum with the highest predictive power and discuss the limitations of the approach when applied to real data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Peiyuan; Urry, C. Megan

    We investigate a sample of 622 blazars with measured fluxes at 12 wavebands across the radio-to-gamma-ray spectrum but without spectroscopic or photometric redshifts. This sample includes hundreds of sources with newly analyzed X-ray spectra reported here. From the synchrotron peak frequencies, estimated by fitting the broadband spectral energy distributions (SEDs), we find that the fraction of high-synchrotron-peaked blazars in these 622 sources is roughly the same as in larger samples of blazars that do have redshifts. We characterize the no-redshift blazars using their infrared colors, which lie in the distinct locus called the WISE blazar strip, then estimate their redshiftsmore » using a KNN regression based on the redshifts of the closest blazars in the WISE color–color plot. Finally, using randomly drawn values from plausible redshift distributions, we simulate the SEDs of these blazars and compare them to known blazar SEDs. Based on all these considerations, we conclude that blazars without redshift estimates are unlikely to be high-luminosity, high-synchrotron-peaked objects, which had been suggested in order to explain the “blazar sequence”—an observed trend of SED shape with luminosity—as a selection effect. Instead, the observed properties of no-redshift blazars are compatible with a causal connection between jet power and electron cooling, i.e., a true blazar sequence.« less

  11. Multiwavelength Imaging Of YSOs With Disk In South Pillars Of Eta Carina

    NASA Astrophysics Data System (ADS)

    Reyes, J. A.; Porras, B. A.

    2013-04-01

    We present multiwavelength imaginery and spectral energy distributions (SEDs) of 15 Young Stellar Objects (YSOs) with disk components lying on the South Pillars region close to Eta Carina (η Car). The SEDs include IR fluxes from 2MASS, IRAC, MSX, AKARI, and MIPS-24 μm, and 1.1 mm flux from AzTEC camera at the ASTE antenna. Millimeter fluxes help to constrain the number of fitted models, which provide the list of physical parameters for the star, the disk and the envelope. We then compare the parameters of the YSOs and their spatial location within the star forming region.

  12. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.

  13. Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Myers, Adam D.; Greene, Jenny E.; Hainline, Kevin N.; Zakamska, Nadia L.; DiPompeo, Michael A.

    2017-11-01

    We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful quasars are obscured by dust and are difficult to detect in optical photometric or spectroscopic surveys. However, these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 and 2 matched in redshift and [O III] luminosity, we produce composite rest-frame 0.2-15 μm SEDs based on SDSS, UKIDSS, and Wide-field Infrared Survey Explorer photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the active galactic nucleus (AGN) relative to the host galaxy increases with AGN luminosity ({L}[{{O}{{III}}]}) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously ({{W}}1{--}{{W}}2> 0.7; Vega), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u{--}{{W}}3 [{AB}])> 1.4({{W}}1{--}{{W}}2 [{Vega}])+3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of MIR and optical photometry.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leistedt, Boris; Hogg, David W., E-mail: boris.leistedt@nyu.edu, E-mail: david.hogg@nyu.edu

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training datamore » or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.« less

  15. A Systematic Study of SED Fitting Techniques for Exploring Galaxy Growth at z ~ 2 - 4 Over a Colossal Comoving Volume

    NASA Astrophysics Data System (ADS)

    Sherman, Sydney; Jogee, Shardha; Florez, Jonathan; Stevans, Matthew L.; Kawinwanichakij, Lalitwadee; Finkelstein, Steven L.; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl

    2017-06-01

    We are currently conducting an unprecedented study of how nearly 0.6 million massive galaxies (Mstar > 1010 M⊙) grow their stars and dark matter halos over an enormous comoving volume (0.45 Gpc3) of the 1.9 < z < 3.5 universe, when cosmic star formation and black hole activity peak, and proto-clusters begin to collapse. This 24 deg2 study of the SDSS Stripe 82 field utilizes the powerful combination of five photometric surveys (DECam ugriz, NEWFIRM K-band, Spitzer-IRAC, Herschel-SPIRE, and Stripe 82X X-ray), along with future blind optical spectroscopy from the HETDEX project. Central to this study, and other large-area surveys like it, is the dependence on photometric redshifts and spectral energy distribution (SED) fitting to constrain the lookback time and properties of observed galaxies. Unfortunately, these methods are primarily based on galaxies in the local universe and often introduce large uncertainties when applied to high redshift systems. In this poster, we perform systematic tests of the photometric redshift code EAZY (Brammer et al. 2008), and SED fitting codes FAST (Kriek et al. 2009) and MAGPHYS (Da Cunha et al. 2008). We fine-tune input model choices to SED fitting codes (such as SSP, magnitude prior, SFH, IMF, and dust law) using 2 < z < 4 galaxies from theoretical cosmological simulations, with the goal of better constraining the uncertainty based on model choices. The results of this test are then used to inform the choice of input models used when constraining the properties of galaxies observed in our multi-wavelength study. In the era of large-area photometric surveys with little to no spectroscopic coverage, this work has broad implications for the characterization of galaxies at early cosmic times. We gratefully acknowledge support from NSF grants AST-1614798 and AST-1413652.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; Andrews, S.; Qi, C.

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We findmore » that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.« less

  17. Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie; van Dokkum, Pieter

    2018-02-01

    Forward modeling of the full galaxy SED is a powerful technique, providing self-consistent constraints on stellar ages, dust properties, and metallicities. However, the accuracy of these results is contingent on the accuracy of the model. One significant source of uncertainty is the contribution of obscured AGN, as they are relatively common and can produce substantial mid-IR (MIR) emission. Here we include emission from dusty AGN torii in the Prospector SED-fitting framework, and fit the UV–IR broadband photometry of 129 nearby galaxies. We find that 10% of the fitted galaxies host an AGN contributing >10% of the observed galaxy MIR luminosity. We demonstrate the necessity of this AGN component in the following ways. First, we compare observed spectral features to spectral features predicted from our model fit to the photometry. We find that the AGN component greatly improves predictions for observed Hα and Hβ luminosities, as well as mid-infrared Akari and Spitzer/IRS spectra. Second, we show that inclusion of the AGN component changes stellar ages and SFRs by up to a factor of 10, and dust attenuations by up to a factor of 2.5. Finally, we show that the strength of our model AGN component correlates with independent AGN indicators, suggesting that these galaxies truly host AGN. Notably, only 46% of the SED-detected AGN would be detected with a simple MIR color selection. Based on these results, we conclude that SED models which fit MIR data without AGN components are vulnerable to substantial bias in their derived parameters.

  18. Insights on star-formation histories and physical properties of 1.2 ≤z ≲ 4 Herschel-detected galaxies

    NASA Astrophysics Data System (ADS)

    Sklias, P.; Schaerer, D.; Elbaz, D.; Pannella, M.; Schreiber, C.; Cava, A.

    2017-09-01

    Aims: We aim to test the impact of using variable star-forming histories (SFHs) and the IR luminosity as a constrain on the physical parameters of high redshift dusty star-forming galaxies. We explore in particular the properties (SFHs, ages, timescales) of galaxies depending on their belonging to the "main sequence" of star-forming galaxies (MS). Methods: We performed spectral energy distribution (SED) fitting of the UV-to-NIR and FIR emissions of a moderately large sample of GOODS-Herschel galaxies, for which rich multi-wavelength, optical to IR observations are available. We tested different SFHs and the impact of imposing energy conservation in the SED fitting process, to help with issues like the age-extinction degeneracy and produce SEDs consistent with observations. Results: Our simple models produce well constrained SEDs for the broad majority of the sample (84%), with the notable exception of the very high LIR end, for which we have indications that the energy conservation hypothesis cannot hold true for a single component population approach. We observe trends in the preferences in SFHs among our sources depending on stellar mass M⋆ and z. Trends also emerge in the characteristic timescales of the SED models depending on the location on the SFR - M⋆ diagram. We show that whilst using the same available observational data, we can produce galaxies less star-forming than classically inferred, if we allow rapidly declining SFHs, while properly reproducing their observables. These sources, representing 7% of the sample, can be post-starbursts undergoing quenching, and their SFRs are potentially overestimated if inferred from their LIR. Based on the trends observed in the rising SFH fits we explore a simple evolution model for stellar mass build-up over the considered time period. Conclusions: Our approach successfully breaks the age-extinction degeneracy, and enables to evaluate properly the SFRs of the sources in the SED fitting process. Fitting without the IR constrain leads to a strong preference for declining SFHs, while its inclusion increases the preference of rising SFHs, more so at high z, in tentative agreement with the cosmic star-formation history (CSFH), although this result suffers from poor statistics. Keeping in mind that the sample is biased toward high luminosities and intense star formation, the evolution shaped by our model appears as both bursty (in its early stages) and steady-lasting (later on). The SFH of the sample considered as a whole follows the CSFH with a surprisingly small scatter, and is compatible with other studies supporting that the more massive galaxies have built most of their mass earlier than lower mass galaxies.

  19. LEPTONIC AND LEPTO-HADRONIC MODELING OF THE 2010 NOVEMBER FLARE FROM 3C 454.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diltz, C.; Böttcher, M.

    In this study, we use a one-zone leptonic and a lepto-hadronic model to investigate the multi-wavelength emission and prominent flare of the flat spectrum radio quasar 3C 454.3 in 2010 November. We perform a parameter study with both models to obtain broadband fits to the spectral energy distribution (SED) of 3C 454.3. Starting with the baseline parameters obtained from the fits, we then investigate different flaring scenarios for both models to explain an extreme outburst and spectral hardening of 3C 454.3 that occurred in 2010 November. We find that the one-zone lepto-hadronic model can successfully explain both the broadband multi-wavelengthmore » SED and light curves in the optical R, Swift X-Ray Telescope, and Fermi γ -ray band passes for 3C 454.3 during quiescence and the peak of the 2010 November flare. We also find that the one-zone leptonic model produces poor fits to the broadband spectra in the X-ray and high-energy γ -ray band passes for the 2010 November flare.« less

  20. Galaxy And Mass Assembly: the evolution of the cosmic spectral energy distribution from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    Andrews, S. K.; Driver, S. P.; Davies, L. J. M.; Kafle, P. R.; Robotham, A. S. G.; Vinsen, K.; Wright, A. H.; Bland-Hawthorn, J.; Bourne, N.; Bremer, M.; da Cunha, E.; Drinkwater, M.; Holwerda, B.; Hopkins, A. M.; Kelvin, L. S.; Loveday, J.; Phillipps, S.; Wilkins, S.

    2017-09-01

    We present the evolution of the cosmic spectral energy distribution (CSED) from z = 1 to 0. Our CSEDs originate from stacking individual spectral energy distribution (SED) fits based on panchromatic photometry from the Galaxy And Mass Assembly (GAMA) and COSMOS data sets in 10 redshift intervals with completeness corrections applied. Below z = 0.45, we have credible SED fits from 100 nm to 1 mm. Due to the relatively low sensitivity of the far-infrared data, our far-infrared CSEDs contain a mix of predicted and measured fluxes above z = 0.45. Our results include appropriate errors to highlight the impact of these corrections. We show that the bolometric energy output of the Universe has declined by a factor of roughly 4 - from 5.1 ± 1.0 at z ˜ 1 to 1.3 ± 0.3 × 1035 h70 W Mpc-3 at the current epoch. We show that this decrease is robust to cosmic sample variance, the SED modelling and other various types of error. Our CSEDs are also consistent with an increase in the mean age of stellar populations. We also show that dust attenuation has decreased over the same period, with the photon escape fraction at 150 nm increasing from 16 ± 3 at z ˜ 1 to 24 ± 5 per cent at the current epoch, equivalent to a decrease in AFUV of 0.4 mag. Our CSEDs account for 68 ± 12 and 61 ± 13 per cent of the cosmic optical and infrared backgrounds, respectively, as defined from integrated galaxy counts and are consistent with previous estimates of the cosmic infrared background with redshift.

  1. Modeling IR SED of AGN with Spitzer and Herschel data

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2012-12-01

    One of the remaining open issues in the context of the analysis of Active Galactic Nuclei (AGN) is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst (SB) activity. What is, in this picture, the role played by the obscur- ing dust around the nucleus and what do the state of the art AGN torus models have to say? Can the IR data provided by Spitzer and Herschel help us in extensively investigate both phenomena and, if so, how and with what limitations? In this paper we present our contribution to the efforts of answering these questions. We show some of the main results coming from a comparative study of various AGN SED modeling approaches, focusing mostly on the much-debated issue about the morphology of the dust distribution in the toroidal structure surrounding the AGN. We found that the properties of dust in AGN as measured by matching observations (be it broad band IR photometry or IR spectra) with models, strongly depend on the choice of the dust distribution. Then, we present the spec- tral energy distribution (SED) fitting procedure we developed, making make the best use of Spitzer and Herschel SPIRE mid- and far-IR observations, to dig into the role played by the possible presence of an AGN on the host galaxy's properties.

  2. Characterizing the UV-to-NIR shape of the dust attenuation curve of IR luminous galaxies up to z ˜ 2

    NASA Astrophysics Data System (ADS)

    Lo Faro, B.; Buat, V.; Roehlly, Y.; Alvarez-Marquez, J.; Burgarella, D.; Silva, L.; Efstathiou, A.

    2017-12-01

    In this work, we investigate the far-ultraviolet (UV) to near-infrared (NIR) shape of the dust attenuation curve of a sample of IR-selected dust obscured (ultra)luminous IR galaxies at z ∼ 2. The spectral energy distributions (SEDs) are fitted with Code Investigating GALaxy Emission, a physically motivated spectral-synthesis model based on energy balance. Its flexibility allows us to test a wide range of different analytical prescriptions for the dust attenuation curve, including the well-known Calzetti and Charlot & Fall curves, and modified versions of them. The attenuation curves computed under the assumption of our reference double power-law model are in very good agreement with those derived, in previous works, with radiative transfer (RT) SED fitting. We investigate the position of our galaxies in the IRX-β diagram and find this to be consistent with greyer slopes, on average, in the UV. We also find evidence for a flattening of the attenuation curve in the NIR with respect to more classical Calzetti-like recipes. This larger NIR attenuation yields larger derived stellar masses from SED fitting, by a median factor of ∼1.4 and up to a factor ∼10 for the most extreme cases. The star formation rate appears instead to be more dependent on the total amount of attenuation in the galaxy. Our analysis highlights the need for a flexible attenuation curve when reproducing the physical properties of a large variety of objects.

  3. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-03-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux-redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the I-magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  4. VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)

    NASA Astrophysics Data System (ADS)

    Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.

    2014-01-01

    We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).

  5. Probabilistic HR Diagrams: A New Infrared and X-ray Chronometer for Very Young, Massive Stellar Clusters and Associations

    NASA Astrophysics Data System (ADS)

    Maldonado, Jessica; Povich, Matthew S.

    2016-01-01

    We present a novel method for constraining the duration of star formation in very young, massive star-forming regions. Constraints on stellar population ages are derived from probabilistic HR diagrams (pHRDs) generated by fitting stellar model spectra to the infrared (IR) spectral energy distributions (SEDs) of Herbig Ae/Be stars and their less-evolved, pre-main sequence progenitors. Stellar samples for the pHRDs are selected based on the detection of X-ray emission associated with the IR source, and the lack of detectible IR excess emission at wavelengths ≤4.5 µm. The SED model fits were used to create two-dimensional probability distributions of the stellar parameters, specifically bolometric luminosity versus temperature and mass versus evolutionary age. We present first results from the pHRD analysis of the relatively evolved Carina Nebula and the unevolved M17 SWex infrared dark cloud, which reveal the expected, strikingly different star formation durations between these two regions. In the future, we will apply this method to analyze available X-ray and IR data from the MYStIX project on other Galactic massive star forming regions within 3 kpc of the Sun.

  6. Detailed modelling of a large sample of Herschel sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDs★

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael; Wang, Lingyu; Wardlow, Julie; Farrah, Duncan; Oliver, Seb; Bock, Jamie; Clarke, Charlotte; Clements, David; Ibar, Edo; Gonzalez-Solares, Eduardo; Marchetti, Lucia; Scott, Douglas; Smith, Anthony; Vaccari, Mattia; Valtchanov, Ivan

    2014-12-01

    We have studied in detail a sample of 967 SPIRE sources with 5σ detections at 350 and 500 μm and associations with Spitzer-SWIRE 24 μm galaxies in the HerMES-Lockman survey area, fitting their mid- and far-infrared, and submillimetre, spectral energy distributions (SEDs) in an automatic search with a set of six infrared templates. For almost 300 galaxies, we have modelled their SEDs individually to ensure the physicality of the fits. We confirm the need for the new cool and cold cirrus templates, and also of the young starburst template, introduced in earlier work. We also identify 109 lensing candidates via their anomalous SEDs and provide a set of colour-redshift constraints which allow lensing candidates to be identified from combined Herschel and Spitzer data. The picture that emerges of the submillimetre galaxy population is complex, comprising ultraluminous and hyperluminous starbursts, lower luminosity galaxies dominated by interstellar dust emission, lensed galaxies and galaxies with surprisingly cold (10-13 K) dust. 11 per cent of 500 μm selected sources are lensing candidates. 70 per cent of the unlensed sources are ultraluminous infrared galaxies and 26 per cent are hyperluminous. 34 per cent are dominated by optically thin interstellar dust (`cirrus') emission, but most of these are due to cooler dust than is characteristic of our Galaxy. At the highest infrared luminosities we see SEDs dominated by M82, Arp 220 and young starburst types, in roughly equal proportions.

  7. Spectral Classification of Galaxies at 0.5 <= z <= 1 in the CDFS: The Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Teimoorinia, H.

    2012-12-01

    The aim of this work is to combine spectral energy distribution (SED) fitting with artificial neural network techniques to assign spectral characteristics to a sample of galaxies at 0.5 < z < 1. The sample is selected from the spectroscopic campaign of the ESO/GOODS-South field, with 142 sources having photometric data from the GOODS-MUSIC catalog covering bands between ~0.4 and 24 μm in 10-13 filters. We use the CIGALE code to fit photometric data to Maraston's synthesis spectra to derive mass, specific star formation rate, and age, as well as the best SED of the galaxies. We use the spectral models presented by Kinney et al. as targets in the wavelength interval ~1200-7500 Å. Then a series of neural networks are trained, with average performance ~90%, to classify the best SED in a supervised manner. We consider the effects of the prominent features of the best SED on the performance of the trained networks and also test networks on the galaxy spectra of Coleman et al., which have a lower resolution than the target models. In this way, we conclude that the trained networks take into account all the features of the spectra simultaneously. Using the method, 105 out of 142 galaxies of the sample are classified with high significance. The locus of the classified galaxies in the three graphs of the physical parameters of mass, age, and specific star formation rate appears consistent with the morphological characteristics of the galaxies.

  8. SPECTRAL CLASSIFICATION OF GALAXIES AT 0.5 {<=} z {<=} 1 IN THE CDFS: THE ARTIFICIAL NEURAL NETWORK APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teimoorinia, H., E-mail: hteimoo@uvic.ca

    2012-12-01

    The aim of this work is to combine spectral energy distribution (SED) fitting with artificial neural network techniques to assign spectral characteristics to a sample of galaxies at 0.5 < z < 1. The sample is selected from the spectroscopic campaign of the ESO/GOODS-South field, with 142 sources having photometric data from the GOODS-MUSIC catalog covering bands between {approx}0.4 and 24 {mu}m in 10-13 filters. We use the CIGALE code to fit photometric data to Maraston's synthesis spectra to derive mass, specific star formation rate, and age, as well as the best SED of the galaxies. We use the spectralmore » models presented by Kinney et al. as targets in the wavelength interval {approx}1200-7500 A. Then a series of neural networks are trained, with average performance {approx}90%, to classify the best SED in a supervised manner. We consider the effects of the prominent features of the best SED on the performance of the trained networks and also test networks on the galaxy spectra of Coleman et al., which have a lower resolution than the target models. In this way, we conclude that the trained networks take into account all the features of the spectra simultaneously. Using the method, 105 out of 142 galaxies of the sample are classified with high significance. The locus of the classified galaxies in the three graphs of the physical parameters of mass, age, and specific star formation rate appears consistent with the morphological characteristics of the galaxies.« less

  9. X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey

    NASA Astrophysics Data System (ADS)

    Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji

    2018-01-01

    We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.

  10. Experimental and environmental factors affect spurious detection of ecological thresholds

    USGS Publications Warehouse

    Daily, Jonathan P.; Hitt, Nathaniel P.; Smith, David; Snyder, Craig D.

    2012-01-01

    Threshold detection methods are increasingly popular for assessing nonlinear responses to environmental change, but their statistical performance remains poorly understood. We simulated linear change in stream benthic macroinvertebrate communities and evaluated the performance of commonly used threshold detection methods based on model fitting (piecewise quantile regression [PQR]), data partitioning (nonparametric change point analysis [NCPA]), and a hybrid approach (significant zero crossings [SiZer]). We demonstrated that false detection of ecological thresholds (type I errors) and inferences on threshold locations are influenced by sample size, rate of linear change, and frequency of observations across the environmental gradient (i.e., sample-environment distribution, SED). However, the relative importance of these factors varied among statistical methods and between inference types. False detection rates were influenced primarily by user-selected parameters for PQR (τ) and SiZer (bandwidth) and secondarily by sample size (for PQR) and SED (for SiZer). In contrast, the location of reported thresholds was influenced primarily by SED. Bootstrapped confidence intervals for NCPA threshold locations revealed strong correspondence to SED. We conclude that the choice of statistical methods for threshold detection should be matched to experimental and environmental constraints to minimize false detection rates and avoid spurious inferences regarding threshold location.

  11. SPITZER IRAC OBSERVATIONS OF IR EXCESS IN HOLMBERG IX X-1: A CIRCUMBINARY DISK OR A VARIABLE JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudik, R. P.; Berghea, C. T.; Roberts, T. P.

    2016-11-01

    We present Spitzer Infrared Array Camera photometric observations of the ultraluminous X-ray source (ULX, X-1) in Holmberg IX. We construct a spectral energy distribution (SED) for Holmberg IX X-1 based on published optical, UV, and X-ray data combined with the IR data from this analysis. We modeled the X-ray and optical data with disk and stellar models; however, we find a clear IR excess in the ULX SED that cannot be explained by fits or extrapolations of any of these models. Instead, further analysis suggests that the IR excess results from dust emission, possibly a circumbinary disk, or a variablemore » jet.« less

  12. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  13. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, S. L.; McMahon, R. G.; Martini, P.

    Here, we present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, i, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Lymore » α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg ii and CO-based redshift estimators. We find two z ~6.2 quasars with H ii near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 10 6-10 7 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224–4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.« less

  14. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    DOE PAGES

    Reed, S. L.; McMahon, R. G.; Martini, P.; ...

    2017-03-24

    Here, we present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, i, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Lymore » α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg ii and CO-based redshift estimators. We find two z ~6.2 quasars with H ii near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 10 6-10 7 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224–4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.« less

  15. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    NASA Astrophysics Data System (ADS)

    Reed, S. L.; McMahon, R. G.; Martini, P.; Banerji, M.; Auger, M.; Hewett, P. C.; Koposov, S. E.; Gibbons, S. L. J.; Gonzalez-Solares, E.; Ostrovski, F.; Tie, S. S.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2017-07-01

    We present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, I, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Ly α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg II and CO-based redshift estimators. We find two z ˜ 6.2 quasars with H II near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 106-107 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224-4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.

  16. A Peculiar Class of Debris Disks from Herschel/DUNES: A Steep Fall Off in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J. C.; Krivov, A. V.; Lohne, T.; Absil, O.; Ardila, D.; Arevalo, M.; hide

    2012-01-01

    Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 100350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open TIme Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 30 sigma sensitivity of a few mJy at l00 micron and 160 micron. In addition, we obtained Herschel/PACS photometric data at 70 micron for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated therma1 annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths >= 70 micron. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal. emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented.

  17. SED-dependent galactic extinction prescription for Euclid and future cosmological surveys

    NASA Astrophysics Data System (ADS)

    Galametz, Audrey; Saglia, Roberto; Paltani, Stéphane; Apostolakos, Nikolaos; Dubath, Pierre

    2017-02-01

    The outcome of upcoming cosmological surveys will depend on the accurate estimates of photometric redshifts. In the framework of the implementation of the photometric redshift algorithm for the ESA Euclid mission, we are exploring new avenues to improve current template-fitting methods. This paper focusses in particular on the prescription of the extinction of a source light by dust in the Milky Way. Since Galactic extinction strongly correlates with wavelength and photometry is commonly obtained through broad-band filters, the amount of absorption depends on the source intrinsic spectral energy distribution (SED), a point however neglected as the source SED is not known a-priori. A consequence of this dependence is that the observed EB-V (=AB-AV) will in general be different from the EB-V used to normalise the Galactic absorption law kλ (=Aλ/EB-V). Band-pass corrections are thus required to adequately renormalise the law for a given SED. In this work, we assess the band-pass corrections of a range of SEDs and find they vary by up to 20%. We have investigated how neglecting these corrections biases the calibration of dust into reddening map and how the scaling of the map depends of the sources used for its calibration. We derive dust-to-reddening scaling factors from the colour excesses of z< 0.4 SDSS red galaxies and show that band-pass corrections predict the observed differences. Extinction corrections are then estimated for a range of SEDs and a set of optical to near-infrared filters relevant to Euclid and upcoming cosmological ground-based surveys. For high extinction line-of-sights (EB-V> 0.1, 8% of the Euclid Wide survey), the variations in corrections can be up to 0.1 mag in the "bluer" optical filters (ugr) and up to 0.04 mag in the near-infrared filters. We find that an inaccurate correction of Galactic extinction critically affects photometric redshift estimates. In particular, for high extinction lines of sights and z < 0.5, the bias (I.e. the mean Δz = zphot-zreal) exceeds 0.2%(1 + z), the precision required for weak-lensing analyses. Additional uncertainty on the parametrisation of the Milky Way extinction curve itself further reduces the photometric redshift precision. We propose a new prescription of Galactic absorption for template-fitting algorithms which takes into consideration the dependence of extinction with SED.

  18. AGN contamination in total infrared determined star formation rates in dusty galaxies at z~2-3

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Sharon, Chelsea E.; Riechers, Dominik

    2017-01-01

    Along with theoretical work that suggests feedback from active galactic nuclei (AGN) may quench star formation in massive galaxies, the temporal coincidence between the peak of cosmic star formation rates and black hole accretion rates suggests that AGN are common in star forming galaxies at z~2-3. Since star forming galaxies at these epochs are also very dusty, it is important that we correct galaxies’ long-wavelength properties for the presence of dust-obscured AGN in order to accurately capture their star formation rates and gas characteristics. We present a spectral energy distribution (SED) analysis of several un-lensed z~2-3 dusty star-forming galaxies from Pope et al. (2008) and Coppin et al. (2010), which we compare to several other high-z starbursts with well sampled SEDs. We constructed dust SEDs from existing Spitzer, Herschel, and SCUBA-2 photometry catalogues with data between 3.6 and 850 μm. For the SED fits, we used the Code Investigating GALaxy Emission (CIGALE), since it self-consistently determines the dust attenuation of stars and dust emission in the infrared in addition to determining the dust emission from obscured AGN (Noll et al. 2009; Serra et al. 2011). Our best-fit SEDs have typical reduced χ2 values between 0.2 and ~3. We use the output from CIGALE to determine the fraction of the total infrared luminosity (LTIR 8-1000 um) from star formation and from any potential obscured AGN. In order to examine the effects of buried AGN on the integrated Schmidt-Kennicutt relation (log(LTIR) vs. log(L'CO)), we compare our new LTIR to recently obtained CO(1-0) line luminosities from the Karl G. Jansky Very Large Array. Unaccounted for dust emission from AGN can artificially inflate the star formation rate inferred from LTIR, and may therefore offset starburst galaxies from the local Schmidt-Kennicutt relation and increase the slope of the relation, which can affect the inferred drivers of star formation.

  19. sedFlow - a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2015-01-01

    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015).

  20. Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.; Blain, Andrew W.; Stern, Daniel; Assef, Roberto J.; Bridge, Carrie R.; Eisenhardt, Peter; Petty, Sara; Wu, Jingwen; Tsai, Chao-Wei; Cutri, Roc; Wright, Edward L.; Yan, Lin

    2014-09-01

    We present SCUBA-2 (Submillimetre Common-User Bolometer Array) 850 μm submillimetre (submm) observations of the fields of 10 dusty, luminous galaxies at z ˜ 1.7-4.6, detected at 12 and/or 22 μm by the Wide-field Infrared Survey Explorer (WISE) all-sky survey, but faint or undetected at 3.4 and 4.6 μm; dubbed hot, dust-obscured galaxies (Hot DOGs). The six detected targets all have total infrared luminosities greater than 1013 L⊙, with one greater than 1014 L⊙. Their spectral energy distributions (SEDs) are very blue from mid-infrared to submm wavelengths and not well fitted by standard active galactic nuclei (AGN) SED templates, without adding extra dust extinction to fit the WISE 3.4 and 4.6 μm data. The SCUBA-2 850 μm observations confirm that the Hot DOGs have less cold and/or more warm dust emission than standard AGN templates, and limit an underlying extended spiral or ULIRG-type galaxy to contribute less than about 2 or 55 per cent of the typical total Hot DOG IR luminosity, respectively. The two most distant and luminous targets have similar observed submm to mid-infrared ratios to the rest, and thus appear to have even hotter SEDs. The number of serendipitous submm galaxies detected in the 1.5-arcmin-radius SCUBA-2 850 μm maps indicates there is a significant overdensity of serendipitous sources around Hot DOGs. These submm observations confirm that the WISE-selected ultraluminous galaxies have very blue mid-infrared to submm SEDs, suggesting that they contain very powerful AGN, and are apparently located in unusual arcmin-scale overdensities of very luminous dusty galaxies.

  1. SN 1986J VLBI. IV. The Nature of the Central Component

    NASA Astrophysics Data System (ADS)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We report on Very Large Array measurements between 1 and 45 GHz of the evolving radio spectral energy distribution (SED) of SN 1986J, made in conjunction with very long baseline interferometry (VLBI) imaging. The SED of SN 1986J is unique among supernovae, and shows an inversion point and a high-frequency turnover. Both are due to the central component seen in the VLBI images, and both are progressing downward in frequency with time. The optically thin spectral index of the central component is almost the same as that of the shell. We fit a simple model to the evolving SED consisting of an optically thin shell and a partly absorbed central component. The evolution of the SED is consistent with that of a homologously expanding system. Both components are fading, but the shell is fading more rapidly. We conclude that the central component is physically inside the expanding shell, and not a surface hotspot central only in projection. Our observations are consistent with the central component being due to interaction of the shock with the dense and highly structured circumstellar medium that resulted from a period of common-envelope evolution of the progenitor. However, a young pulsar-wind nebula or emission from an accreting black hole can also not be ruled out at this point.

  2. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  3. Herschel-ATLAS: Dust Temperature and Redshift Distribution of SPIRE and PACS Detected Sources Using Submillimetre Colours

    NASA Technical Reports Server (NTRS)

    Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; hide

    2010-01-01

    We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.

  4. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org

  5. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  6. MODELING THE NEAR-UV BAND OF GK STARS. II. NON-LTE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Short, C.; Campbell, Eamonn A.; Pickup, Heather

    We present a grid of atmospheric models and synthetic spectral energy distributions (SEDs) for late-type dwarfs and giants of solar and 1/3 solar metallicity with many opacity sources computed in self-consistent non-local thermodynamic equilibrium (NLTE), and compare them to the LTE grid of Short and Hauschildt (Paper I). We describe, for the first time, how the NLTE treatment affects the thermal equilibrium of the atmospheric structure (T({tau}) relation) and the SED as a finely sampled function of T{sub eff}, log g, and [A/H] among solar metallicity and mildly metal-poor red giants. We compare the computed SEDs to the library ofmore » observed spectrophotometry described in Paper I across the entire visible band, and in the blue and red regions of the spectrum separately. We find that for the giants of both metallicities, the NLTE models yield best-fit T{sub eff} values that are 30-90 K lower than those provided by LTE models, while providing greater consistency between log g values, and, for Arcturus, T{sub eff} values, fitted separately to the blue and red spectral regions. There is marginal evidence that NLTE models give more consistent best-fit T{sub eff} values between the red and blue bands for earlier spectral classes among the solar metallicity GK giants than they do for the later classes, but no model fits the blue-band spectrum well for any class. For the two dwarf spectral classes that we are able to study, the effect of NLTE on derived parameters is less significant. We compare our derived T{sub eff} values to several other spectroscopic and photometric T{sub eff} calibrations for red giants, including one that is less model dependent based on the infrared flux method (IRFM). We find that the NLTE models provide slightly better agreement to the IRFM calibration among the warmer stars in our sample, while giving approximately the same level of agreement for the cooler stars.« less

  7. A peculiar class of debris disks from Herschel/DUNES. A steep fall off in the far infrared

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Absil, O.; Ardila, D.; Arévalo, M.; Bayo, A.; Bryden, G.; del Burgo, C.; Greaves, J.; Kennedy, G.; Lebreton, J.; Liseau, R.; Maldonado, J.; Montesinos, B.; Mora, A.; Pilbratt, G. L.; Sanz-Forcada, J.; Stapelfeldt, K.; White, G. J.

    2012-05-01

    Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims: We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD 206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel open time key program DUNES (DUst around NEarby Stars). Methods: We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3σ sensitivity of a few mJy at 100 μm and 160 μm. In addition, we obtained Herschel/PACS photometric data at 70 μm for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated thermal annealing as well as a classical grid search method. Results: The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths ≥70 μm. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions: A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bot, C.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Madden, S.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Onishi, T.; Osborne, S.; Pajot, F.; Paladini, R.; Paradis, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS-IRIS data at 100 μm are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (β). The average spectral index is found to be consistent with β = 1.5 and β = 1.2 below 500μm for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent with β = 1.5. The spatial distribution of the millimetre dustexcess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy. Corresponding author: J.-P. Bernard, e-mail: jean-philippe.bernard@cesr.fr

  9. High-resolution speckle masking interferometry and radiative transfer modeling of the oxygen-rich AGB star AFGL 2290

    NASA Astrophysics Data System (ADS)

    Gauger, A.; Balega, Y. Y.; Irrgang, P.; Osterbart, R.; Weigelt, G.

    1999-06-01

    We present the first diffraction-limited speckle masking observations of the oxygen-rich AGB star AFGL 2290. The speckle interferograms were recorded with the Russian 6 m SAO telescope. At the wavelength 2.11 microns a resolution of 75 milli-arcsec (mas) was obtained. The reconstructed diffraction-limited image reveals that the circumstellar dust shell (CDS) of AFGL 2290 is at least slightly non-spherical. The visibility function shows that the stellar contribution to the total 2.11 microns flux is less than ~ 40%, indicating a rather large optical depth of the circumstellar dust shell. The 2-dimensional Gaussian visibility fit yields a diameter of AFGL 2290 at 2.11 microns of 43 masx51 mas, which corresponds to a diameter of 42 AUx50 AU for an adopted distance of 0.98 kpc. Our new observational results provide additional constraints on the CDS of AFGL 2290, which supplement the information from the spectral energy distribution (SED). To determine the structure and the properties of the CDS we have performed radiative transfer calculations for spherically symmetric dust shell models. The observed SED approximately at phase 0.2 can be well reproduced at all wavelengths by a model with T_eff=2000 K, a dust temperature of 800 K at the inner boundary r1, an optical depth tau_ {V}=100 and a radius for the single-sized grains of a_gr=0.1 microns . However, the 2.11 microns visibility of the model does not match the observation. Exploring the parameter space, we found that grain size is the key parameter in achieving a fit of the observed visibility while retaining the match of the SED, at least partially. Both the slope and the curvature of the visibility strongly constrain the possible grain radii. On the other hand, the SED at longer wavelengths, the silicate feature in particular, determines the dust mass loss rate and, thereby, restricts the possible optical depths of the model. With a larger grain size of 0.16 microns and a higher tau_ {V}=150, the observed visibility can be reproduced preserving the match of the SED at longer wavelengths. Nevertheless, the model shows a deficiency of flux at short wavelengths, which is attributed to the model assumption of a spherically symmetric dust distribution, whereas the actual structure of the CDS around AFGL 2290 is in fact non-spherical. Our study demonstrates the possible limitations of dust shell models which are constrained solely by the spectral energy distribution, and emphasizes the importance of high spatial resolution observations for the determination of the structure and the properties of circumstellar dust shells around evolved stars. Based on data collected at the 6~m telescope of the Special Astrophysical Observatory in Russia

  10. Dust models compatible with Planck intensity and polarization data in translucent lines of sight

    NASA Astrophysics Data System (ADS)

    Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.

    2018-02-01

    Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 < AV < 2.5). Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.

  11. Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Abdurro'uf; Akiyama, Masayuki

    2017-08-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.

  12. SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvis, M.; Hao, H.; Civano, F.

    2012-11-01

    The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and showmore » examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.« less

  13. De-blending deep Herschel surveys: A multi-wavelength approach

    NASA Astrophysics Data System (ADS)

    Pearson, W. J.; Wang, L.; van der Tak, F. F. S.; Hurley, P. D.; Burgarella, D.; Oliver, S. J.

    2017-07-01

    Aims: Cosmological surveys in the far-infrared are known to suffer from confusion. The Bayesian de-blending tool, XID+, currently provides one of the best ways to de-confuse deep Herschel SPIRE images, using a flat flux density prior. This work is to demonstrate that existing multi-wavelength data sets can be exploited to improve XID+ by providing an informed prior, resulting in more accurate and precise extracted flux densities. Methods: Photometric data for galaxies in the COSMOS field were used to constrain spectral energy distributions (SEDs) using the fitting tool CIGALE. These SEDs were used to create Gaussian prior estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the extracted SPIRE flux densities were run through CIGALE again to allow us to compare the performance of the two priors. Inferred ALMA flux densities (FinferALMA), at 870 μm and 1250 μm, from the best fitting SEDs from the second CIGALE run were compared with measured ALMA flux densities (FmeasALMA) as an independent performance validation. Similar validations were conducted with the SED modelling and fitting tool MAGPHYS and modified black-body functions to test for model dependency. Results: We demonstrate a clear improvement in agreement between the flux densities extracted with XID+ and existing data at other wavelengths when using the new informed Gaussian prior over the original uninformed prior. The residuals between FmeasALMA and FinferALMA were calculated. For the Gaussian priors these residuals, expressed as a multiple of the ALMA error (σ), have a smaller standard deviation, 7.95σ for the Gaussian prior compared to 12.21σ for the flat prior; reduced mean, 1.83σ compared to 3.44σ; and have reduced skew to positive values, 7.97 compared to 11.50. These results were determined to not be significantly model dependent. This results in statistically more reliable SPIRE flux densities and hence statistically more reliable infrared luminosity estimates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Reconstructing The Star Formation Histories Of Galaxies Through Sed Fitting Using The Dense Basis Method

    NASA Astrophysics Data System (ADS)

    Iyer, Kartheik; Gawiser, Eric

    2017-06-01

    The Dense Basis SED fitting method reveals previously inaccessible information about the number and duration of star formation episodes and the timing of stellar mass assembly as well as uncertainties in these quantities, in addition to accurately recovering traditional SED parameters including M*, SFR and dust attenuation. This is done using basis Star Formation Histories (SFHs) chosen by comparing the goodness-of-fit of mock galaxy SEDs to the goodness-of-reconstruction of their SFHs, trained and validated using three independent datasets of mock galaxies at z=1 from SAMs, Hydrodynamic simulations and stochastic realizations. Of the six parametrizations of SFHs considered, we reject the traditional parametrizations of constant and exponential SFHs and suggest four novel improvements, quantifying the bias and scatter of each parametrization. We then apply the method to a sample of 1100 CANDELS GOODS-S galaxies at 110^9 M_sun, in contrast to current simulations. About 40% of the CANDEL galaxies have SFHs whose maximum occurs at or near the epoch of observation. These results are presented in Iyer and Gawiser (2017, ApJ 838 127), available at https://arxiv.org/abs/1702.04371

  15. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    NASA Astrophysics Data System (ADS)

    Lyu, Jianwei; Rieke, G. H.; Shi, Yong

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ˜60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3-500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Jianwei; Rieke, G. H.; Shi, Yong, E-mail: jianwei@email.arizona.edu

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars butmore » are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.« less

  17. The broad-band SEDs of four `hypervariable' AGN

    NASA Astrophysics Data System (ADS)

    Collinson, James S.; Ward, Martin J.; Lawrence, Andy; Bruce, Alastair; MacLeod, Chelsea L.; Elvis, Martin; Gezari, Suvi; Marshall, Philip J.; Done, Chris

    2018-03-01

    We present an optical-to-X-ray spectral analysis of four `hypervariable' AGN (HVAs) discovered by comparing Pan-STARRS data to that from the Sloan Digital Sky Survey over a 10 yr baseline (Lawrence et al.). There is some evidence that these objects are X-ray loud for their corresponding UV luminosities, but given that we measured them in a historic high state, it is not clear whether to take the high state or low state as typical of the properties of these HVAs. We estimate black hole masses based on Mg II and H α emission line profiles, and either the high- or low-state luminosities, finding mass ranges log (MBH/M⊙) = 8.2-8.8 and log (MBH/M⊙) = 7.9-8.3, respectively. We then fit energy-conserving models to the spectral energy distributions (SEDs), obtaining strong constraints on the bolometric luminosity and αOX. We compare the SED properties with a larger, X-ray selected AGN sample for both of these scenarios, and observe distinct groupings in spectral shape versus luminosity parameter space. In general, the SED properties are closer to normal if we assume that the low state is representative. This supports the idea that the large slow outbursts may be due to extrinsic effects (for example microlensing) as opposed to accretion rate changes, but a larger sample of HVAs is needed to be confident of this conclusion.

  18. Submillimeter Observations of the Low-Metallicity Galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Kiuchi, Gaku; Ohta, Kouji; Sawicki, Marcin; Allen, Michael

    2004-12-01

    Results of submillimeter (450 and 850 μm) observations of a nearby dwarf irregular galaxy NGC 4214 with SCUBA on JCMT are presented. We aimed at examining the far-infrared-to-submillimeter spectral energy distribution (SED) and properties of dust thermal emission in a low-metallicity environment by choosing NGC 4214, in which the gas metallicity (logO/H+12) is 8.34. We found that the SED is quite similar to those of the IRAS Bright Galaxies Sample (IBGS), which are local bright star-forming galaxies with metallicities comparable to the solar abundance. The dust temperature and emissivity index for NGC 4214 obtained by a fitting to the single temperature graybody model are Td=35+/-0.8 K and β=1.4+/-0.1, respectively, which are typical values for IBGS galaxies. Compiling the previous studies on similar nearby dwarf irregular galaxies, we found that NGC 1569 shows similar results to those of NGC 4214, while NGC 4449 and IC 10 SE show different SEDs and low emissivity indices. There seems to be a variety of SEDs among metal-poor dwarf irregular galaxies. We examined the dependence on the intensity of interstellar radiation field, as well as a two-temperature model, but the origin of the difference is not clear. Some mechanism(s) other than metallicity and the interstellar radiation field must be responsible for controlling dust emission properties.

  19. Chasing passive galaxies in the early Universe: a critical analysis in CANDELS GOODS-South

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Fontana, A.; Castellano, M.; Santini, P.; Torelli, M.; Boutsia, K.; Wang, T.; Grazian, A.; Pentericci, L.; Schreiber, C.; Ciesla, L.; McLure, R.; Derriere, S.; Dunlop, J. S.; Elbaz, D.

    2018-01-01

    We search for passive galaxies at z > 3 in the GOODS-South field, using different techniques based on photometric data, and paying attention to develop methods that are sensitive to objects that have become passive shortly before the epoch of observation. We use CANDELS HST catalogues, ultra-deep Ks data and new IRAC photometry, performing spectral energy distribution fitting using models with abruptly quenched star formation histories. We then single out galaxies which are best fitted by a passively evolving model, and having only low probability (<5 per cent) star-forming solutions. We verify the effects of including nebular lines emission, and we consider possible solutions at different redshifts. The number of selected sources dramatically depends on the models used in the spectral energy distribution (SED) fitting. Without including emission lines and with photometric redshifts fixed at the CANDELS estimate, we single out 30 candidates; the inclusion of nebular lines emission reduces the sample to 10 objects; allowing for solutions at different redshifts, only two galaxies survive as robust candidates. Most of the candidates are not far-infrared emitters, corroborating their association with passive galaxies. Our results translate into an upper limit in the number density of ∼0.173 arcmin2 above the detection limit. However, we conclude that the selection of passive galaxies at z > 3 is still subject to significant uncertainties, being sensitive to assumptions in the SED modelling adopted and to the relatively low S/N of the objects. By means of dedicated simulations, we show that JWST will greatly enhance the accuracy, allowing for a much more robust classification.

  20. A Complete Library of Infrared Spectral Energy Distributions for z=0 Galaxies

    NASA Astrophysics Data System (ADS)

    Sandstrom, Karin

    CONTEXT: Half of the light emitted by galaxies is starlight absorbed and reprocessed into the infrared by dust. The spectral energy distribution (SED) of this IR emission encodes information on the mass and properties of the dust, the radiation field heating it, and the bolometric luminosity of the region. This makes IR emission a main tool to estimate star formation rates (SFRs) and to trace the distribution of the interstellar medium (ISM) in galaxies. The dust itself also plays key roles in the physics of star formation, and thereby galaxy evolution. This critical information on dust and its dependence on environment can only be reliably measured when we have observations with full wavelength coverage of the IR SED that resolve galaxies. With no new IR imaging missions on the horizon, the remarkably thorough census conducted by Herschel, Spitzer, and WISE of the nearby (D < 50 Mpc) galaxy population is the definitive resource on dust at z=0 for the foreseeable future. Such observations allow us to understand the behavior of the IR SED and so inform observations from the major new facilities ALMA and JWST, which have amazing sensitivity and resolution but limited wavelength coverage. OBJECTIVES: We will create a library of matched resolution, uniformly processed IR SEDs for all 532 local galaxies with resolved mapping in the Herschel, Spitzer, and WISE archives. We will associate the SED measurements with rich "value added" data, including fits of physical models to the IR SED (yielding small grain fractions, temperature, and dust masses), host galaxy properties (e.g., stellar mass, SFR, morphology, inclination), and local conditions in the galaxy (SFR and stellar surface density, ISM gas mass and metallicity where available). The library will be created for a range of spatial and angular scales and served through IRSA/MAST, providing a major high level legacy resource that will be useful to a wide community. We will exploit this database to address three major questions: (1) What powers the dust emission from galaxies and how does dust emission relate to the star formation rate? (2) How are dust and gas related across the galaxy population and how can dust emission best be used to trace gas? and (3) How does the dust grain population vary in response to local environment across galaxies? METHODS: We will use established techniques to uniformly process the archival data, fit models to the spectral energy distributions, match the data in resolution. These have been successfully deployed on similar data by individual teams (including us), but we will apply them to an order of magnitude larger sample. PERCEIVED SIGNIFICANCE: Dust is a main mediator of cloud and star formation, and thus galaxy evolution. Therefore, the properties and evolution of dust in galaxies is directly relevant to key NASA science goals to "Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars." These are also essential tools to understand "How did we get here?" In practical terms, the database that we propose to create would be a major resource for many scientists: a tool to understand the physics of dust and the ISM for those studying local galaxies and a major aid to interpret monochromatic observations of high-z galaxies and galaxy surveys. This should have a large impact in the ALMA and (soon) JWST communities.

  1. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formationmore » rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.« less

  2. Milky Way Tomography IV: Dissecting Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Michael; /Washington U., Seattle, Astron. Dept. /Rutgers U., Piscataway; Ivezic, Zeljko

    2011-11-01

    We use SDSS photometry of 73 million stars to simultaneously obtain best-fit main-sequence stellar energy distribution (SED) and amount of dust extinction along the line of sight towards each star. Using a subsample of 23 million stars with 2MASS photometry, whose addition enables more robust results, we show that SDSS photometry alone is sufficient to break degeneracies between intrinsic stellar color and dust amount when the shape of extinction curve is fixed. When using both SDSS and 2MASS photometry, the ratio of the total to selective absorption, R{sub V}, can be determined with an uncertainty of about 0.1 for mostmore » stars in high-extinction regions. These fits enable detailed studies of the dust properties and its spatial distribution, and of the stellar spatial distribution at low Galactic latitudes (|b| < 30{sup o}). Our results are in good agreement with the extinction normalization given by the Schlegel et al. (1998, SFD) dust maps at high northern Galactic latitudes, but indicate that the SFD extinction map appears to be consistently overestimated by about 20% in the southern sky, in agreement with recent study by Schlafly et al. (2010). The constraints on the shape of the dust extinction curve across the SDSS and 2MASS bandpasses disfavor the reddening law of O'Donnell (1994), but support the models by Fitzpatrick (1999) and Cardelli et al. (1989). For the latter, we find a ratio of the total to selective absorption to be R{sub V} = 3.0 {+-} 0.1(random) {+-} 0.1 (systematic) over most of the high-latitude sky. At low Galactic latitudes (|b| < 5{sup o}), we demonstrate that the SFD map cannot be reliably used to correct for extinction because most stars are embedded in dust, rather than behind it, as is the case at high Galactic latitudes. We analyze three-dimensional maps of the best-fit R{sub V} and find that R{sub V} = 3.1 cannot be ruled out in any of the ten SEGUE stripes at a precision level of {approx} 0.1 - 0.2. Our best estimate for the intrinsic scatter of R{sub V} in the regions probed by SEGUE stripes is {approx} 0.2. We introduce a method for efficient selection of candidate red giant stars in the disk, dubbed 'dusty parallax relation', which utilizes a correlation between distance and the extinction along the line of sight. We make these best-fit parameters, as well as all the input SDSS and 2MASS data, publicly available in a user-friendly format. These data can be used for studies of stellar number density distribution, the distribution of dust properties, for selecting sources whose SED differs from SEDs for high-latitude main sequence stars, and for estimating distances to dust clouds and, in turn, to molecular gas clouds.« less

  3. THE MILKY WAY TOMOGRAPHY WITH SLOAN DIGITAL SKY SURVEY. IV. DISSECTING DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Michael; Ivezic, Zeljko; Brooks, Keira J.

    2012-10-01

    We use Sloan Digital Sky Survey (SDSS) photometry of 73 million stars to simultaneously constrain best-fit main-sequence stellar spectral energy distribution (SED) and amount of dust extinction along the line of sight toward each star. Using a subsample of 23 million stars with Two Micron All Sky Survey (2MASS) photometry, whose addition enables more robust results, we show that SDSS photometry alone is sufficient to break degeneracies between intrinsic stellar color and dust amount when the shape of extinction curve is fixed. When using both SDSS and 2MASS photometry, the ratio of the total to selective absorption, R{sub V} ,more » can be determined with an uncertainty of about 0.1 for most stars in high-extinction regions. These fits enable detailed studies of the dust properties and its spatial distribution, and of the stellar spatial distribution at low Galactic latitudes (|b| < 30 Degree-Sign ). Our results are in good agreement with the extinction normalization given by the Schlegel et al. (SFD) dust maps at high northern Galactic latitudes, but indicate that the SFD extinction map appears to be consistently overestimated by about 20% in the southern sky, in agreement with recent study by Schlafly et al. The constraints on the shape of the dust extinction curve across the SDSS and 2MASS bandpasses disfavor the reddening law of O'Donnell, but support the models by Fitzpatrick and Cardelli et al. For the latter, we find a ratio of the total to selective absorption to be R{sub V} = 3.0 {+-} 0.1(random){+-}0.1 (systematic) over most of the high-latitude sky. At low Galactic latitudes (|b| < 5 Degree-Sign ), we demonstrate that the SFD map cannot be reliably used to correct for extinction because most stars are embedded in dust, rather than behind it, as is the case at high Galactic latitudes. We analyze three-dimensional maps of the best-fit R{sub V} and find that R{sub V} = 3.1 cannot be ruled out in any of the 10 SEGUE stripes at a precision level of {approx}0.1-0.2. Our best estimate for the intrinsic scatter of R{sub V} in the regions probed by SEGUE stripes is {approx}0.2. We introduce a method for efficient selection of candidate red giant stars in the disk, dubbed 'dusty parallax relation', which utilizes a correlation between distance and the extinction along the line of sight. We make these best-fit parameters, as well as all the input SDSS and 2MASS data, publicly available in a user-friendly format. These data can be used for studies of stellar number density distribution, the distribution of dust properties, for selecting sources whose SED differs from SEDs for high-latitude main-sequence stars, and for estimating distances to dust clouds and, in turn, to molecular gas clouds.« less

  4. A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2015-08-01

    Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janowiecki, Steven; Salzer, John J.; Zee, Liese van

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar massesmore » and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.« less

  6. OPTICAL SPECTROSCOPY OF SDSS J004054.65-0915268: THREE POSSIBLE SCENARIOS FOR THE CLASSIFICATION. A z ∼ 5 BL LACERTAE, A BLUE FSRQ, OR A WEAK EMISSION LINE QUASAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landoni, M.; Zanutta, A.; Bianco, A.

    2016-02-15

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ∼ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C iv broad emission line. Therefore, the nature of the object is then discussed,more » building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk.« less

  7. Optical Spectroscopy of SDSS J004054.65-0915268: Three Possible Scenarios for the Classification. A z ˜ 5 BL Lacertae, a Blue FSRQ, or a Weak Emission Line Quasar

    NASA Astrophysics Data System (ADS)

    Landoni, M.; Zanutta, A.; Bianco, A.; Tavecchio, F.; Bonnoli, G.; Ghisellini, G.

    2016-02-01

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ˜ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C IV broad emission line. Therefore, the nature of the object is then discussed, building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk.

  8. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Hovatta, T.; Giroletti, M.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.

    2016-12-01

    After a long low-activity period, a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) was detected by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1-300 GeV band, of (93 ± 19) × 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71) × 10-8 ph cm-2 s-1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August-2016 March by Fermi-LAT, Swift, XMM-Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. This suggests that the γ-ray-emitting region is located beyond the broad-line region. We compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. The fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ammando, F.; Orienti, M.; Finke, J.

    After a long low-activity period, we detected a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1–300 GeV band, of (93 ± 19) × 10 -8 ph cm -2 s -1, attaining a flux of (237 ± 71) × 10 -8 ph cm -2 s -1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 10 47 erg s -1. The γ-ray flare was not accompanied bymore » significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August–2016 March by Fermi-LAT, Swift, XMM–Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. Furthermore, this suggests that the γ-ray-emitting region is located beyond the broad-line region. We also compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. Furthermore, the fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.« less

  10. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2016-09-14

    After a long low-activity period, we detected a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1–300 GeV band, of (93 ± 19) × 10 -8 ph cm -2 s -1, attaining a flux of (237 ± 71) × 10 -8 ph cm -2 s -1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 10 47 erg s -1. The γ-ray flare was not accompanied bymore » significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August–2016 March by Fermi-LAT, Swift, XMM–Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. Furthermore, this suggests that the γ-ray-emitting region is located beyond the broad-line region. We also compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. Furthermore, the fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.« less

  11. Demographics of Star-forming Galaxies since z ∼ 2.5. I. The UVJ Diagram in CANDELS

    NASA Astrophysics Data System (ADS)

    Fang, Jerome J.; Faber, S. M.; Koo, David C.; Rodríguez-Puebla, Aldo; Guo, Yicheng; Barro, Guillermo; Behroozi, Peter; Brammer, Gabriel; Chen, Zhu; Dekel, Avishai; Ferguson, Henry C.; Gawiser, Eric; Giavalisco, Mauro; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; McGrath, Elizabeth J.; McIntosh, Daniel; Newman, Jeffrey A.; Pacifici, Camilla; Pandya, Viraj; Pérez-González, Pablo G.; Primack, Joel R.; Salmon, Brett; Trump, Jonathan R.; Weiner, Benjamin; Willner, S. P.; Acquaviva, Viviana; Dahlen, Tomas; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Gruetzbauch, Ruth; Johnson, Seth; Mobasher, Bahram; Papovich, Casey J.; Pforr, Janine; Salvato, Mara; Santini, P.; van der Wel, Arjen; Wiklind, Tommy; Wuyts, Stijn

    2018-05-01

    This is the first in a series of papers examining the demographics of star-forming (SF) galaxies at 0.2 < z < 2.5 in CANDELS. We study 9100 galaxies from GOODS-S and UDS, having published values of redshifts, masses, star formation rates (SFRs), and dust attenuation (A V ) derived from UV–optical spectral energy distribution fitting. In agreement with previous works, we find that the UVJ colors of a galaxy are closely correlated with its specific star formation rate (SSFR) and A V . We define rotated UVJ coordinate axes, termed S SED and C SED, that are parallel and perpendicular to the SF sequence and derive a quantitative calibration that predicts SSFR from C SED with an accuracy of ∼0.2 dex. SFRs from UV–optical fitting and from UV+IR values based on Spitzer/MIPS 24 μm agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star formation decline and quenching, exhibit “mass-accelerated evolution” (“downsizing”). A population of transition galaxies below the SF main sequence is identified. These objects are located between SF and quiescent galaxies in UVJ space, and have lower A V and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and SF galaxies are given as a function of mass and redshift.

  12. HERUS: the far-IR/submm spectral energy distributions of local ULIRGs and photometric atlas

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Pearson, C.; Farrah, D.; Greenslade, J.; Bernard-Salas, Jeronimo; González-Alfonso, E.; Afonso, J.; Efstathiou, A.; Rigopoulou, D.; Lebouteiller, V.; Hurley, P. D.; Spoon, H.

    2018-04-01

    We present the Herschel-SPIRE photometric atlas for a complete flux limited sample of 43 local ultraluminous infrared galaxies (ULIRGs), selected at 60 μm by IRAS, as part of the HERschel ULIRG Survey (HERUS). Photometry observations were obtained using the SPIRE instrument at 250, 350, and 500 μm. We describe these observations, present the results, and combine the new observations with data from IRAS to examine the far-infrared spectral energy distributions (SEDs) of these sources. We fit the observed SEDs of HERUS objects with a simple parametrized modified blackbody model, where temperature and emissivity β are free parameters. We compare the fitted values to those of non-ULIRG local galaxies, and find, in agreement with earlier results, that HERUS ULIRGs have warmer dust (median temperature T = 37.9 ± 4.7 K compared to 21.3 ± 3.4 K) but a similar β distribution (median β = 1.7 compared to 1.8) to the Herschel reference sample (HRS, Cortese et al. 2014) galaxies. Dust masses are found to be in the range of 107.5-109 M⊙, significantly higher than that of HRS sources. We compare our results for local ULIRGs with higher redshift samples selected at 250 and 850 μm. These latter sources generally have cooler dust and/or redder 100-to-250 μm colours than our 60 μm-selected ULIRGs. We show that this difference may in part be the result of the sources being selected at different wavelengths rather than being a simple indication of rapid evolution in the properties of the population.

  13. Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    NASA Astrophysics Data System (ADS)

    Patel, S. R.; Shukla, A.; Chitnis, V. R.; Dorner, D.; Mannheim, K.; Acharya, B. S.; Nagare, B. J.

    2018-03-01

    Aims: The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June-July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530-57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare. Methods: The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results: A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1-3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission. Conclusions: Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.

  14. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  15. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DOE PAGES

    Aatrokoski, J.

    2011-12-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less

  16. STAR-FORMING ACTIVITY IN THE H ii REGIONS ASSOCIATED WITH THE IRAS 17160–3707 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandakumar, G.; Veena, V. S.; Vig, S.

    2016-11-01

    We present a multiwavelength investigation of star formation activity toward the southern H ii regions associated with IRAS 17160–3707, located at a distance of 6.2 kpc with a bolometric luminosity of 8.3 × 10{sup 5} L {sub ⊙}. The ionized gas distribution and dust clumps in the parental molecular cloud are examined in detail using measurements at infrared, submillimeter and radio wavelengths. The radio continuum images at 1280 and 610 MHz obtained using the Giant Metrewave Radio Telescope reveal the presence of multiple compact sources as well as nebulous emission. At submillimeter wavelengths, we identify seven dust clumps and estimate their physical properties suchmore » as temperature: 24–30 K, mass: 300–4800 M {sub ⊙} and luminosity: 9–317 × 10{sup 2} L {sub ⊙} using modified blackbody fits to the spectral energy distributions (SEDs) between 70 and 870 μ m. We find 24 young stellar objects (YSOs) in the mid-infrared, with a few of them coincident with the compact radio sources. The SEDs of the YSOs have been fitted by the Robitaille models and the results indicate that those having radio compact sources as counterparts host massive objects in early evolutionary stages with best fit age ≤0.2 Myr. We compare the relative evolutionary stages of clumps using various signposts such as masers, ionized gas, presence of YSOs and infrared nebulosity, and find six massive star-forming clumps and one quiescent clump. Of the former, five are in a relatively advanced stage and one in an earlier stage.« less

  17. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stackmore » the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.« less

  18. The Impact of Star Formation Histories on Stellar Mass Estimation: Implications from the Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Puzia, Thomas H.; Weisz, Daniel R.

    2017-11-01

    Building on the relatively accurate star formation histories (SFHs) and metallicity evolution of 40 Local Group (LG) dwarf galaxies derived from resolved color-magnitude diagram modeling, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-near-IR color-mass-to-light ratio (color-{log}{{{\\Upsilon }}}\\star (λ)) distributions and M ⋆ estimation of local universe galaxies. We find that (1) the LG galaxies follow color-{log}{{{\\Upsilon }}}\\star (λ) relations that fall in between the ones calibrated by previous studies; (2) optical color-{log}{{{\\Upsilon }}}\\star (λ) relations at higher [M/H] are generally broader and steeper; (3) the SFH “concentration” does not significantly affect the color-{log}{{{\\Upsilon }}}\\star (λ) relations; (4) light-weighted ages < {age}{> }λ and metallicities < [{{M}}/{{H}}]{> }λ together constrain {log}{{{\\Upsilon }}}\\star (λ) with uncertainties ranging from ≲0.1 dex for the near-IR up to 0.2 dex for the optical passbands; (5) metallicity evolution induces significant uncertainties to the optical but not near-IR {{{\\Upsilon }}}\\star (λ) at a given < {age}{> }λ and < [{{M}}/{{H}}]{> }λ ; (6) the V band is the ideal luminance passband for estimating {{{\\Upsilon }}}\\star (λ) from single colors, because the combinations of {{{\\Upsilon }}}\\star (V) and optical colors such as B - V and g - r exhibit the weakest systematic dependences on SFHs, metallicities, and dust extinction; and (7) without any prior assumption on SFHs, M ⋆ is constrained with biases ≲0.3 dex by the optical-to-near-IR SED fitting. Optical passbands alone constrain M ⋆ with biases ≲0.4 dex (or ≲0.6 dex) when dust extinction is fixed (or variable) in SED fitting. SED fitting with monometallic SFH models tends to underestimate M ⋆ of real galaxies. M ⋆ tends to be overestimated (or underestimated) at the youngest (or oldest) < {age}{> }{mass}.

  19. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert; Ali, Babar; Megeath, Thomas; Pipher, Judith; Myers, Philip; Fischer, William; Henning, Thomas; Wolk, Scott; Allen, Lori; Tobin, John

    2015-08-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We used dendrograms as a technique to study the hierarchical structures in the GMC.

  20. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert A.; Ali, Babar; Megeath, S. Thomas; Pipher, Judith; Myers, Philip C.; Fischer, William J.; Henning, Thomas; Wolk, Scott J.; Allen, Lori; Tobin, John J.

    2014-06-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We isolated the filaments and studied radial column density profile in this cloud.

  1. Tracing the energetics and evolution of dust with Spitzer: a chapter in the history of the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Boulanger, F.; Noriega-Crespo, A.; Paladini, R.; Montmerle, T.; Carey, S. J.; Gagné, M.; Shenoy, S.

    2011-07-01

    Context. The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details about the Galactic plane in the infrared (IR) with orders of magnitude higher sensitivity, higher resolution, and wider coverage than previous IR observations. The structure of the interstellar medium (ISM) is tightly connected to the countless star-forming regions. We use these surveys to study the energetics and dust properties of the Eagle Nebula (M 16), one of the best known star-forming regions. Aims: We present MIPSGAL observations of M 16 at 24 and 70 μm and combine them with previous IR data. The mid-IR image shows a shell inside the well-known molecular borders of the nebula, as in the ISO and MSX observations from 15 to 21 μm. The morphologies at 24 and 70 μm are quite different, and its color ratio is unusually warm. The far-IR image resembles the one at 8 μm that enhances the structure of the molecular cloud and the "pillars of creation". We use this set of IR data to analyze the dust energetics and properties within this template for Galactic star-forming regions. Methods: We measure IR spectral energy distributions (SEDs) across the entire nebula, both within the inner shell and the photodissociation regions (PDRs). We use the DUSTEM model to fit these SEDs and constrain the dust temperature, the dust-size distribution, and the radiation field intensity relative to that provided by the star cluster NGC 6611 (χ/χ0). Results: Within the PDRs, the inferred dust temperature (~35 K), the dust-size distribution, and the radiation field intensity (χ/χ0 < 1) are consistent with expectations. Within the inner shell, the dust is hotter (~70 K). Moreover, the radiation field required to fit the SED is larger than that provided by NGC 6611 (χ/χ0 > 1). We quantify two solutions to this problem: (1) The size distribution of the dust in the shell is not that of interstellar dust. There is a significant enhancement of the carbon dust-mass in stochastically heated very small grains. (2) The dust emission arises from a hot (~106 K) plasma where both UV and collisions with electrons contribute to the heating. Within this hypothesis, the shell SED may be fit for a plasma pressure p/k ~ 5 × 107 K cm-3. Conclusions: We suggest two interpretations for the M 16 inner shell: (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed out by the pressure from stellar winds. Within this scenario, we conclude that massive-star forming regions such as M 16 have a major impact on the carbon dust-size distribution. The grinding of the carbon dust could result from shattering in grain-grain collisions within shocks driven by the dynamical interaction between the stellar winds and the shell. (2) We also consider a more speculative scenario where the shell is a supernova remnant. In this case, we would be witnessing a specific time in the evolution of the remnant where the plasma pressure and temperature would enable the remnant to cool through dust emission.

  2. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix

    2018-05-01

    The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

  3. Non-local thermodynamic equilibrium 1.5D modeling of red giant stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Mitchell E.; Short, C. Ian, E-mail: myoung@ap.smu.ca

    Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Fivemore » different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.« less

  4. VizieR Online Data Catalog: Calibrator stars catalog for interferometers (Swihart+, 2017)

    NASA Astrophysics Data System (ADS)

    Swihart, S. J.; Garcia, E. V.; Stassun, K. G.; van Belle, G.; Mutterspaugh, M. W.; Elias, N.

    2017-04-01

    In order to obtain accurate stellar angular sizes, each star was fit with a model SED using the fitting routine sedFit, written by A. Boden (van Belle & von Braun, 2009, Cat. J/ApJ/694/1085; van Belle et al. 2016, Cat. J/AJ/152/16). We compiled a list of positions, spectral types and visual magnitudes for ~3000 bright (Vmag<6) stars in the northern hemisphere with declinations -15°<δ<82° using the SIMBAD database (Wenger et al., 2000A&AS..143....9W). We chose a brightness limit (Vmag<6) given that most visible light interferometers can obtain scientifically useful data on bright stars. We also removed any stars which appear in the JMMC bad calibrator list. (4 data files).

  5. VizieR Online Data Catalog: Young clumps embedded in IRDC (Traficante+, 2015)

    NASA Astrophysics Data System (ADS)

    Traficante, A.; Fuller, G. A.; Peretto, N.; Pineda, J. E.; Molinari, S.

    2015-06-01

    Photometric parameters for 667 starless clumps (sources identified at 160um with a counterpart at 250 and 350um) and 1056 protostellar clumps (sources identified at 160um with a counterpart at 70, 250 and 350um). Photometric parameters obtained with Hyper photometry code (2015A&A...574A.119T). The photometry is corrected for aperture and colour corrections. The parameter list is the standard Hyper output (see description below). SED fit parameters for 650 starless clumps and 1034 protostellar clumps (all clumps with good SED fitting: Chi2<10, Temperature<40K. See the paper for details) (4 data files).

  6. Confronting Standard Models of Proto-planetary Disks with New Mid-infrared Sizes from the Keck Interferometer

    NASA Astrophysics Data System (ADS)

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien

    2016-08-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.

  7. A Thorough View of the Nuclear Region of NGC 253: Combined Herschel, SOFIA, and APEX Data Set

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, J. P.; Güsten, R.; Harris, A.; Requena-Torres, M. A.; Menten, K. M.; Weiß, A.; Polehampton, E.; van der Wiel, M. H. D.

    2018-06-01

    We present a large set of spectral lines detected in the 40″ central region of the starburst galaxy NGC 253. Observations were obtained with the three instruments SPIRE, PACS, and HIFI on board the Herschel Space Observatory, upGREAT on board the SOFIA airborne observatory, and the ground-based Atacama Pathfinder EXperiment telescope. Combining the spectral and photometry products of SPIRE and PACS, we model the dust continuum spectral energy distribution (SED) and the most complete 12CO line SED reported so far toward the nuclear region of NGC 253. The properties and excitation of the molecular gas were derived from a three-component non-LTE radiative transfer model, using the SPIRE 13CO lines and ground-based observations of the lower-J 13CO and HCN lines, to constrain the model parameters. Three dust temperatures were identified from the continuum emission, and three components are needed to fit the full CO line SED. Only the third CO component (fitting mostly the HCN and PACS 12CO lines) is consistent with a shock-/mechanical-heating scenario. A hot core chemistry is also argued as a plausible scenario to explain the high-J 12CO lines detected with PACS. The effect of enhanced cosmic-ray ionization rates, however, cannot be ruled out and is expected to play a significant role in the diffuse and dense gas chemistry. This is supported by the detection of ionic species like OH+ and H2O+, as well as the enhanced fluxes of the OH lines with respect to those of H2O lines detected in both PACS and SPIRE spectra.

  8. CONFRONTING STANDARD MODELS OF PROTO-PLANETARY DISKS WITH NEW MID-INFRARED SIZES FROM THE KECK INTERFEROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the innermore » rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.« less

  9. Observation vs. theory: testing the synthetic IR colours of young very low mass stars/brown dwarfs using the evolutionary tracks

    NASA Astrophysics Data System (ADS)

    Tottle, Jonathan; Mohanty, Subhanjoy

    2013-07-01

    Our ability to accurately derive stellar properties from spectral energy distributions (SEDs) depends on how well they can be fit with atmospheric models. The AMES-Dusty synthetic spectra (Allard et al., 2001), which incorporate dust grains suspended in the stellar atmosphere, are commonly used to fit SEDs of very low mass stars (VLMS) and brown dwarfs (BDs). Recently, the same group has produced an updated model named BT-Settl (Allard et al., 2012) that allow these grains to gradually settle out of the atmosphere at cooler temperatures. Using these models it is now possible to produce the NIR colours across the main sequence from spectral types M to T. However, one significant area in which these Dusty and Settl models have not been thoroughly tested is in PMS VLMS/BDs. We use empirical IR colours of PMS M-dwarfs to show that both of these models show significant discrepancies with observations. We find that the synthetic spectra imply a temperature up to 500K cooler than expected for these objects from the theoretical evolutionary tracks for their estimated ages. We postulate that the problem lies mainly with the spectra; and if so, we conjecture that an incorrect H2O opacity may be to blame, aided by additional dust effects.

  10. Effect of the star formation histories on the SFR-M∗ relation at z ≥ 2

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Maccagni, D.; Garilli, B.; Scodeggio, M.; Thomas, R.; Le Fèvre, O.; Zamorani, G.; Schaerer, D.; Lemaux, B. C.; Cassata, P.; Le Brun, V.; Pentericci, L.; Tasca, L. A. M.; Vanzella, E.; Zucca, E.; Amorín, R.; Bardelli, S.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-08-01

    We investigate the effect of different star formation histories (SFHs) on the relation between stellar mass (M∗) and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift zspec> 2 drawn from the VIMOS Ultra-Deep Survey (VUDS). We produce an extensive database of dusty model galaxies, calculated starting from a new library of single stellar population (SSPs) models, weighted by a set of 28 different star formation histories based on the Schmidt function, and characterized by different ratios of the gas infall timescale τinfall to the star formation efficiency ν. Dust extinction and re-emission were treated by means of the radiative transfer calculation. The spectral energy distribution (SED) fitting technique was performed by using GOSSIP+, a tool able to combine both photometric and spectroscopic information to extract the best value of the physical quantities of interest, and to consider the intergalactic medium (IGM) attenuation as a free parameter. We find that the main contribution to the scatter observed in the SFR-M∗ plane is the possibility of choosing between different families of SFHs in the SED fitting procedure, while the redshift range plays a minor role. The majority of the galaxies, at all cosmic times, are best fit by models with SFHs characterized by a high τinfall/ν ratio. We discuss the reliability of a low percentage of dusty and highly star-forming galaxies in the context of their detection in the far infrared (FIR).

  11. Modeling Planet-Building Stellar Disks with Radiative Transfer Code

    NASA Astrophysics Data System (ADS)

    Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.

    2015-01-01

    Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.

  12. Investigation on Consumers’ Behaviour towards Energy Saving through Utilisation of Virtual SED (Smart Energy Displays) in Residential Building

    NASA Astrophysics Data System (ADS)

    Adlisia Puspa Harani, Sandhika

    2018-05-01

    The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.

  13. Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1-2403

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Streblyanska, A.; Kim, S.; Pelló, R.; Bauer, F. E.; Bina, D.; Brammer, G.; De Leo, M. A.; Infante, L.; Pérez-Fournon, I.

    2015-03-01

    Context. The Hubble Space Telescope (HST) Frontier Fields (HFFs) project started at the end of 2013 with the aim of providing extremely deep images of six massive galaxy clusters. One of the main goals of this program is to push several telescopes to their limits to provide the best current view of the earliest stages of the Universe. The analysis of the initial data has already demonstrated the huge capabilities of the program. Aims: We present a detailed analysis of z ~ 8 objects behind the HFFs lensing cluster, MACSJ0416.1-2403, combining 0.3-1.6 μm imaging from HST, ground-based Ks imaging from VLT HAWK-I, and 3.6 μm and 4.5 μm Spitzer Space Telescope. The images probe to 5σ depths of ≈29 AB for HST, 25.6 AB for HAWK-I, and ≈0.310 and 0.391 μJy at 3.6 and 4.5 μm, respectively. With these datasets, we assess the photometric properties of z ~ 8 galaxies in this field, as well as their distribution in luminosity, to unprecedented sensitivity. Methods: We applied the classical Lyman break (LB) technique, which combines non detection criteria in bands blueward of the Lyman break at z ~ 8 and color-selection in bands redward of the break. To avoid contamination by mid-z interlopers, we required a strong break between optical and near-infrared data. We determined the photometric properties of z ~ 8 selected candidates using spectral energy distribution (SED)-fitting with standard library templates. The luminosity function at z ~ 8 is computed using a Monte-Carlo method taking advantage of the SED-fitting results. A piece of cautionary information is gleaned from new deep optical photometry of a previously identified z ~ 8 galaxy in this cluster, which is now firmly detected as a mid-z interloper with a strong ≈1.5 mag Balmer break (between F606W and F125W). Using the SED of this interloper, we estimated the contamination rate of our MACSJ0416.1-2403 sample, and that of previous samples in Abell 2744 that were based on HFF data, we highlight the dangers of pushing the LB technique too close to the photometry limits. Results: Our selection reliably recovers four objects with mF160W ranging from 26.0 to 27.9 AB that are located in modest-amplification regions (μ < 2.4). Two of the objects display a secondary break between the IRAC 3.6 μm and 4.5 μm bands, which could be associated to the Balmer break or emission lines at z ~ 8. The SED-fitting analysis suggests that all of these objects favor high-z solutions with no reliable secondary solutions. The candidates generally have star formation rates around ~10 M⊙/yr and sizes ranging from 0.2 to 0.5 kpc, which agrees well with previous observations and expectations for objects in the early Universe. The sample size and luminosity distribution are consistent with previous findings.

  14. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combinationmore » of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.« less

  15. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    NASA Technical Reports Server (NTRS)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  16. iSEDfit: Bayesian spectral energy distribution modeling of galaxies

    NASA Astrophysics Data System (ADS)

    Moustakas, John

    2017-08-01

    iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

  17. Self-consistent two-phase AGN torus models⋆. SED library for observers

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED library of the AGN models is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A120, and at http://www.eso.org/~rsiebenm/agn_models/

  18. PROBING THE TRANSITION BETWEEN THE SYNCHROTRON AND INVERSE-COMPTON SPECTRAL COMPONENTS OF 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottacini, E.; Schady, P.; Rau, A.

    1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV {gamma}-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral componentmore » at X-ray energies is most likely due to synchrotron emission, while at soft {gamma}-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft {gamma}-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q {approx} 1.85, possibly indicating the relevance of second-order Fermi acceleration.« less

  19. Stellar Populations of Lyα Emitters at z ~ 6-7: Constraints on the Escape Fraction of Ionizing Photons from Galaxy Building Blocks

    NASA Astrophysics Data System (ADS)

    Ono, Yoshiaki; Ouchi, Masami; Shimasaku, Kazuhiro; Dunlop, James; Farrah, Duncan; McLure, Ross; Okamura, Sadanori

    2010-12-01

    We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ~ 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M UV, with a spectral slope β ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10) × 107 M sun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ~ 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f ion esc ~ 0.6 at z = 5.7 and ~0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  20. Eight New Luminous z > 6 Quasars Selected via SED Model Fitting of VISTA, WISE and Dark Energy Survey Year 1 Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, S.L.; et al.

    We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with zmore » $$_{AB}$$ < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria from 1533 deg$$^{2}$$ using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{\\alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based $$\\chi^{2}$$-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z $$\\sim$$ 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 10$^6$ - 10$^7$ years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has J$$_{AB}$$ = 19.75 is the second most luminous quasar known with z > 6.5.« less

  1. Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.

    2016-06-01

    We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).

  2. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less

  3. The Discovery of γ-Ray Emission from the Blazar RGB J0710+591

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lamerato, A.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Mukherjee, R.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Petry, D.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Roustazadeh, P.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Smith, A. W.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.; Ackermann, M.; Ajello, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dermer, C. D.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ripken, J.; Rodriguez, A. Y.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-05-01

    The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5σ) above the background, corresponding to an integral flux of (3.9 ± 0.8) × 10-12 cm-2 s-1 (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 ± 0.26stat ± 0.20sys. These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields a good statistical fit to the data. The addition of an external-Compton component to the model does not improve the fit nor brings the system closer to equipartition. The combined Fermi and VERITAS data constrain the properties of the high-energy emission component of the source over 4 orders of magnitude and give measurements of the rising and falling sections of the SED.

  4. AzTEC 1.1 mm OBSERVATIONS OF THE MBM12 MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M. J.; Kim, S.; Youn, S.

    2012-02-10

    We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed 6.34 deg{sup 2} centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. Themore » distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 {mu}m emission and the {sup 12}CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkH{alpha}262 and LkH{alpha}264. Observations of spectral energy distributions (SEDs) indicate that LkH{alpha}262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.« less

  5. The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Schinnerer, E.; Krause, M.; Dumas, G.; Meidt, S.; Damas-Segovia, A.; Beck, R.; Murphy, E. J.; Mulcahy, D. D.; Groves, B.; Bolatto, A.; Dale, D.; Galametz, M.; Sandstrom, K.; Boquien, M.; Calzetti, D.; Kennicutt, R. C.; Hunt, L. K.; De Looze, I.; Pellegrini, E. W.

    2017-02-01

    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ({S}ν ˜ {ν }-{α {nt}}) and the thermal fraction ({f}{th}) with mean values of {α }{nt}=0.97 +/- 0.16(0.79 +/- 0.15 for the total spectral index) and {f}{th} = (10 ± 9)% at 1.4 GHz. The MRC luminosity changes over ˜3 orders of magnitude in the sample, 4.3× {10}2 {L}⊙ < MRC < 3.9× {10}5 {L}⊙ . The thermal emission is responsible for ˜23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.

  6. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem

    NASA Astrophysics Data System (ADS)

    Sorba, Robert; Sawicki, Marcin

    2018-05-01

    We perform spatially resolved, pixel-by-pixel Spectral Energy Distribution (SED) fitting on galaxies up to z ˜ 2.5 in the Hubble eXtreme Deep Field (XDF). Comparing stellar mass estimates from spatially resolved and spatially unresolved photometry we find that unresolved masses can be systematically underestimated by factors of up to 5. The ratio of the unresolved to resolved mass measurement depends on the galaxy's specific star formation rate (sSFR): at low sSFRs the bias is small, but above sSFR ˜ 10-9.5 yr-1 the discrepancy increases rapidly such that galaxies with sSFRs ˜ 10-8 yr-1 have unresolved mass estimates of only one-half to one-fifth of the resolved value. This result indicates that stellar masses estimated from spatially unresolved data sets need to be systematically corrected, in some cases by large amounts, and we provide an analytic prescription for applying this correction. We show that correcting stellar mass measurements for this bias changes the normalization and slope of the star-forming main sequence and reduces its intrinsic width; most dramatically, correcting for the mass bias increases the stellar mass density of the Universe at high redshift and can resolve the long-standing discrepancy between the directly measured cosmic SFR density at z ≳ 1 and that inferred from stellar mass densities (`the missing mass problem').

  7. The adventure of carbon stars. Observations and modeling of a set of C-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Rau, G.; Hron, J.; Paladini, C.; Aringer, B.; Eriksson, K.; Marigo, P.; Nowotny, W.; Grellmann, R.

    2017-04-01

    Context. Modeling stellar atmospheres is a complex and intriguing task in modern astronomy. A systematic comparison of models with multi-technique observations is the only efficient way to constrain the models. Aims: We intend to perform self-consistent modeling of the atmospheres of six carbon-rich AGB stars (R Lep, R Vol, Y Pav, AQ Sgr, U Hya, and X TrA) with the aim of enlarging the knowledge of the dynamic processes occurring in their atmospheres. Methods: We used VLTI/MIDI interferometric observations, in combination with spectro-photometric data, and compared them with self-consistent, dynamic model atmospheres. Results: We found that the models can reproduce spectral energy distribution (SED) data well at wavelengths longer than 1 μm, and the interferometric observations between 8 μm and 10 μm. Discrepancies observed at wavelengths shorter than 1 μm in the SED, and longer than 10 μm in the visibilities, could be due to a combination of data- and model-related effects. The models best fitting the Miras are significantly extended, and have a prominent shell-like structure. On the contrary, the models best fitting the non-Miras are more compact, showing lower average mass loss. The mass loss is of episodic or multi-periodic nature but causes the visual amplitudes to be notably larger than the observed ones. A number of stellar parameters were derived from the model fitting: TRoss, LRoss, M, C/O, and Ṁ. Our findings agree well with literature values within the uncertainties. TRoss, and LRoss are also in good agreement with the temperature derived from the angular diameter T(θ(V-K)) and the bolometric luminosity from the SED fitting Lbol, except for AQ Sgr. The possible reasons are discussed in the text. Finally, θRoss and θ(V-K) agree with one another better for the Miras than for the non-Miras targets, which is probably connected to the episodic nature of the latter models. We also located the stars in the H-R diagram, comparing them with evolutionary tracks. We found that the main derived properties (L, Teff, C/O ratios and stellar masses) from the model fitting are in good agreement with TP-AGB evolutionary calculations for carbon stars carried out with the COLIBRI code. Based on observations made with ESO telescopes at La Silla Paranal Observatory under program IDs: 090.D-0410, 086.D-899, 187.D-0924, 081.D-0021, 086.D-0899.

  8. Resolving the inner disk of UX Orionis

    NASA Astrophysics Data System (ADS)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  9. Extending Supernova Spectral Templates for Next Generation Space Telescope Observations

    NASA Astrophysics Data System (ADS)

    Roberts-Pierel, Justin; Rodney, Steven A.; Steven Rodney

    2018-01-01

    Widely used empirical supernova (SN) Spectral Energy Distributions (SEDs) have not historically extended meaningfully into the ultraviolet (UV), or the infrared (IR). However, both are critical for current and future aspects of SN research including UV spectra as probes of poorly understood SN Ia physical properties, and expanding our view of the universe with high-redshift James Webb Space Telescope (JWST) IR observations. We therefore present a comprehensive set of SN SED templates that have been extended into the UV and IR, as well as an open-source software package written in Python that enables a user to generate their own extrapolated SEDs. We have taken a sampling of core-collapse (CC) and Type Ia SNe to get a time-dependent distribution of UV and IR colors (U-B,r’-[JHK]), and then generated color curves are used to extrapolate SEDs into the UV and IR. The SED extrapolation process is now easily duplicated using a user’s own data and parameters via our open-source Python package: SNSEDextend. This work develops the tools necessary to explore the JWST’s ability to discriminate between CC and Type Ia SNe, as well as provides a repository of SN SEDs that will be invaluable to future JWST and WFIRST SN studies.

  10. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of clustered regions of star formation with JWST and other high resolution facilities.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, F. Y.; Bryden, G.; Werner, M. W.

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observedmore » with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.« less

  12. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  13. Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs

    NASA Technical Reports Server (NTRS)

    Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael

    2012-01-01

    Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.

  14. Observational constraints for C-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Rau, G.; Hron, J.; Paladini, C.; Aringer, B.; Marigo, P.; Eriksson, K.

    We modeled the atmospheres of six carbon-rich Asymptotic Giant Branch stars (R Lep, R Vol, Y Pav, AQ Sgr, U Hya, and X TrA) using VLTI/MIDI interferometric observations, together with spectro-photometric data, we compared them with self-consistent, dynamic model atmospheres. The results show that the models can reproduce the Spectral Energy Distribution (SED) data well at wavelengths longer than 1 mu m, and the interferometric observations between 8 mu m and 10 mu m. We found differences at wavelengths shorter than 1 mu m in the SED, and longer than 10 mu m in the visibilities. The discrepancies observed can be explained in terms of a combination of data- and model-related reasons. We derived some stellar parameters, and our findings agree well with literature values within the uncertainties. Also, when comparing the location of the stars in the H-R diagram, with evolutionary tracks, the results show that the main derived properties (L, Teff, C/O ratios and stellar masses) from the model fitting are in good agreement with TP-AGB evolutionary calculations.

  15. VizieR Online Data Catalog: SSP in NIR. II. Synthesis models (Meneses-Goytia+, 2015)

    NASA Astrophysics Data System (ADS)

    Meneses-Goytia, S.; Peletier, R. F.; Trager, S. C.; Vazdekis, A.

    2015-08-01

    The present Single Stellar Populations (SSP) models are derived from my Ph.D.'s thesis and this paper. The following nomenclature is used throughout the paper and the website (http://smg.astro-research.net/ssp-models/the-models/) to describe the models, e.g. MarS models use the M08 isochrones (Mar) and the Salpeter (S) IMF. General information about the models is given in table1. For further information, please refer to the paper. Each set of models and their corresponding predictions are available in the website and VIZIER. The spectral energy distributions (SEDs) can be downloaded in a zip-file from those pages in ascii format . The spectral energy distributions (SEDs) can be downloaded in a zip-file from t hose pages in ascii format . The nomenclature of each SED is as follows: isochroneIMFsedXXXXHZX.XXXXXXXXXTgXX.XXXXXXXe+XX - where XXXX tells whether those models contain C-stars or no (COMBO or NOCS respectively) H is the spectral band in which normalization occurred Z_X.XXXXXXXXX is the metallicity in terms of Z Tg_XX.XXXXXXXe+XX is the age in years. Each set of models contains MarS - 96 SEDs GirS - 96 SEDs BaSS - 116 SEDs We have also included in the websites the Integrated colours and line-strength indices from all our models (MarS, GirS and BaSS). The SEDs were convolved to a velocity dispersion of 350km/s before calculating indices. (5 data files).

  16. Influence of screw length and diameter on tibial strain energy density distribution after anterior cruciate ligament reconstruction

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Kuang, Guan-Ming; Wong, Duo Wai-Chi; Niu, Wen-Xin; Zhang, Ming; Fan, Yu-Bo

    2014-04-01

    Postoperative tunnel enlargement has been frequently reported after anterior cruciate ligament (ACL) reconstruction. Interference screw, as a surgical implant in ACL reconstruction, may influence natural loading transmission and contribute to tunnel enlargement. The aims of this study are (1) to quantify the alteration of strain energy den sity (SED) distribution after the anatomic single-bundle ACL reconstruction; and (2) to characterize the influence of screw length and diameter on the degree of the SED alteration. A validated finite element model of human knee joint was used. The screw length ranging from 20 to 30mm with screw diameter ranging from 7 to 9 mm were investigated. In the post-operative knee, the SED increased steeply at the extra-articular tunnel aperture under compressive and complex loadings, whereas the SED decreased beneath the screw shaft and nearby the intra-articular tunnel aperture. Increasing the screw length could lower the SED deprivation in the proximal part of the bone tunnel; whereas increasing either screw length or diameter could aggravate the SED deprivation in the distal part of the bone tunnel. Decreasing the elastic modulus of the screw could lower the bone SED deprivation around the screw. In consideration of both graft stability and SED alteration, a biodegradable interference screw with a long length is recommended, which could provide a beneficial mechanical environment at the distal part of the tunnel, and meanwhile decrease the bone-graft motion and synovial fluid propagation at the proximal part of the tunnel. These findings together with the clinical and histological factors could help to improve surgical outcome, and serve as a preliminary knowledge for the following study of biodegradable interference screw. [Figure not available: see fulltext.

  17. On the Redshift Distribution and Physical Properties of ACT-Selected DSFGs

    NASA Technical Reports Server (NTRS)

    Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dunner, R.; Farrah, D.; Frayer, D. T.; hide

    2016-01-01

    We present multi-wavelength detections of nine candidate gravitationally-lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of 4.1 (+ 1.1, -10) (68 percent confidence interval), as expected for 218 GHz selection and an apparent total infrared luminosity of log 10(uL(sub IR)/solar luminosity) = 13.86(+0.33, -0.30), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is square root of mu d = 4.2 (+ 1.7, -1.0) kpc, further evidence of strong lensing of multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of opticaly thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = (4.2+, -1.9) of dust around the peak in the modified blackbody spectrum (lambda obs is less than 500 micrometers), a result that is robust to model choice.

  18. On the redshift distribution and physical properties of ACT-selected DSFGs

    NASA Astrophysics Data System (ADS)

    Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dünner, R.; Farrah, D.; Frayer, D. T.; Gralla, M. B.; Hall, K.; Halpern, M.; Harris, A. I.; Hilton, M.; Hincks, A. D.; Hughes, J. P.; Niemack, M. D.; Page, L. A.; Partridge, B.; Rivera, J.; Scott, D.; Sievers, J. L.; Thornton, R. J.; Viero, M. P.; Wang, L.; Wollack, E. J.; Zemcov, M.

    2017-01-01

    We present multi-wavelength detections of nine candidate gravitationally lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z=4.1^{+1.1}_{-1.0} (68 per cent confidence interval), as expected for 218 GHz selection, and an apparent total infrared luminosity of log _{10}(μ L_IR/L_{odot }) = 13.86^{+0.33}_{-0.30}, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is sqrt{μ }d= 4.2^{+1.7}_{-1.0} kpc, further evidence of strong lensing or multiplicity, since the typical diameter of DSFGs is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2^{+3.7}_{-1.9}) to dust around the peak in the modified blackbody spectrum (λobs ≤ 500 μm), a result that is robust to model choice.

  19. Panchromatic spectral energy distributions of Herschel sources

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 μm detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in the stellar mass (M∗) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the "main sequence". The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the "off-sequence" region of the M∗ - SFR - z space. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.orgGalaxy SED templates are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A100

  20. Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay; Lopez-Rodriguez, Enrique; Packham, Christopher C.; Ramos-Almeida, Cristina; Alonso-Herrero, Almudena; Levenson, Nancy; Radomski, James; Ichikawa, Kohei; Garcia-Bernete, Ismael; Gonzalez-Martin, Omaira; Diaz Santos, Tanio; Martinez-Paredes, Mariela

    2017-06-01

    We present 31.5 μm imaging photometry of 11 nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We tentatively detect extended 31 μm emission for the first time in our sample. In combination with this new data set, subarcsecond resolution 1-18 μm imaging and 7.5-13 μm spectroscopic observations were used to compute the nuclear spectral energy distribution (SED) of each galaxy. We found that the turnover of the torus emission does not occur at wavelengths ≤31.5 μm, which we interpret as a lower-limit for the wavelength of peak emission. We used Clumpy torus models to fit the nuclear infrared (IR) SED and infer trends in the physical parameters of the AGN torus for the galaxies in the sample. Including the 31.5 μm nuclear flux in the SED 1) reduces the number of clumpy torus models compatible with the data, and 2) modifies the model output for the outer radial extent of the torus for 10 of the 11 objects. Specifically, six (60%) objects show a decrease in radial extent while four (40%) show an increase. We find torus outer radii ranging from <1pc to 8.4 pc. We also present new 37.1 μm imaging data for 4 of the 11 Seyfert galaxies, as well as 3 additional Seyferts.

  1. VizieR Online Data Catalog: Panchromatic SED of Herschel sources (Berta+, 2013)

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2016-06-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S and COSMOS fields, it is possible to sample the 8-500 micron spectral energy distributions of galaxies with at least 7-10 bands. Extending to the UV, optical, and near- infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected 10 restframe color space, based on this rich data-set, using a superposition of multi-variate Gaussian modes. We use this model to classify galaxies and build median spectral energy distributions (SEDs) of each class, which are then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an Active Galactic Nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-IR luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Lyα-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in M*-SFR along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the "main sequence". The incidence of warmer star-forming sources grows for objects with higher specific star formation rates, and they tend to populate the "off-sequence" region of the M*-SFR-z space. (4 data files).

  2. How Dead are Dead Galaxies? Mid-Infrared Fluxes of Quiescent Galaxies at Redshift 0.3< Z< 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Technical Reports Server (NTRS)

    Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; hide

    2013-01-01

    We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.

  3. Membership and Dynamical Parameters of the Open Cluster NGC 1039

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxin; Ma, Jun; Wu, Zhenyu; Zhou, Xu

    2017-11-01

    In this paper, we analyze the open cluster NGC 1039. This young open cluster is observed as a part of Beijing-Arizona-Taiwan-Connecticut Multicolor Sky Survey. Combining our observations with the Sloan Digital Sky Survey photometric data, we employ the Padova stellar model and the zero-age main-sequence curve to the data to derive a reddening, E(B-V)=0.10+/- 0.02, and a distance modulus, {(m-M)}0=8.4+/- 0.2, for NGC 1039. The photometric membership probabilities of stars in the region of NGC 1039 are derived using the spectral energy distribution-fitting method. According to the membership probabilities ({P}{SED}) obtained here, 582 stars are cluster members with {P}{SED} larger than 60%. In addition, we determine the structural parameters of NGC 1039 by fitting its radial density profile with the King model. These parameters are a core radius, {R}{{c}}=4.44+/- 1.31 {pc}; a tidal radius, {R}{{t}}=13.57+/- 4.85 {pc}; and a concentration parameter of {C}0={log}({R}{{t}}/{R}{{c}})=0.49+/- 0.20. We also fit the observed mass function of NGC 1039 with masses from 0.3 {M}⊙ to 1.65 {M}⊙ with a power-law function {{Φ }}(m)\\propto {m}α to derive its slopes of mass functions of different spatial regions. The results obtained here show that the slope of the mass function of NGC 1039 is flatter in the central regions (α = 0.117), becomes steeper at larger radii (α = -2.878), and breaks at {m}{break}≈ 0.80 {M}⊙ . In particular, for the first time, our results show that the mass segregation appears in NGC 1039.

  4. Fermi observations of the very hard gamma-ray blazar PG 1553+113

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-22

    Here, we report the observations of PG 1553+113 during the first ~ 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical,more » X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.« less

  5. X-ray detections of submillimetre galaxies: active galactic nuclei versus starburst contribution

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wilson, G. W.; Wang, Q. D.; Williams, C. C.; Scott, K. S.; Yun, M. S.; Pope, A.; Lowenthal, J.; Aretxaga, I.; Hughes, D.; Kim, M. J.; Kim, S.; Tamura, Y.; Kohno, K.; Ezawa, H.; Kawabe, R.; Oshima, T.

    2013-05-01

    We present a large-scale study of the X-ray properties and near-IR-to-radio spectral energy distributions (SEDs) of submillimetre galaxies (SMGs) detected at 1.1 mm with the AzTEC instrument across a ˜1.2 square degree area of the sky. Combining deep 2-4 Ms Chandra data with Spitzer IRAC/MIPS and Very Large Array data within the Great Observatories Origins Deep Survey North (GOODS-N), GOODS-S and COSMOS fields, we find evidence for active galactic nucleus (AGN) activity in ˜14 per cent of 271 AzTEC SMGs, ˜28 per cent considering only the two GOODS fields. Through X-ray spectral modelling and multiwavelength SED fitting using Monte Carlo Markov chain techniques to Siebenmorgen et al. (AGN) and Efstathiou, Rowan-Robinson & Siebenmorgen (starburst) templates, we find that while star formation dominates the IR emission, with star formation rates (SFRs) ˜100-1000 M⊙ yr-1, the X-ray emission for most sources is almost exclusively from obscured AGNs, with column densities in excess of 1023 cm-2. Only for ˜6 per cent of our sources do we find an X-ray-derived SFR consistent with NIR-to-radio SED derived SFRs. Inclusion of the X-ray luminosities as a prior to the NIR-to-radio SED effectively sets the AGN luminosity and SFR, preventing significant contribution from the AGN template. Our SED modelling further shows that the AGN and starburst templates typically lack the required 1.1 mm emission necessary to match observations, arguing for an extended, cool dust component. The cross-correlation function between the full samples of X-ray sources and SMGs in these fields does not indicate a strong correlation between the two populations at large scales, suggesting that SMGs and AGNs do not necessarily trace the same underlying large-scale structure. Combined with the remaining X-ray-dim SMGs, this suggests that sub-mm-bright sources may evolve along multiple tracks, with X-ray-detected SMGs representing transitionary objects between periods of high star formation and AGN activity, while X-ray-faint SMGs represent a brief starburst phase of more normal galaxies.

  6. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects

    NASA Astrophysics Data System (ADS)

    Joseph, R.; Courbin, F.; Starck, J.-L.

    2016-05-01

    We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html

  7. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1

  8. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${<}5$~Myr) massive star forming regions. IMPS have masses between 2 and 8 $M_{\\odot}$ and are getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  9. sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2014-07-01

    Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).

  10. The spectral energy distributions of the entire Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, Laure

    2012-08-01

    We present the spectral energy distributions (SED) of the 323 galaxies of the Herschel Reference Survey. In order to provide templates for nearby galaxies calibrated on physical parameters, we computed mean SEDs per bin of morphological types and stellar masses. They will be very useful to study more distant galaxies and their evolution with redshift. This preliminary work aims to study how the most commonly used libraries (Chary & Elbaz 2001, Dale & Helou 2002 and Draine & Li 2007) reproduce the far-infrared emission of galaxies. First results show that they reproduce well the far-infrared part of mean SEDs. For single galaxies the Draine & Li (2007) models seem to reproduce very well the far-infrared emission, as does the Dale & Helou (2002).

  11. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  12. THE PROPERTIES OF THE 2175 A EXTINCTION FEATURE DISCOVERED IN GRB AFTERGLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zafar, Tayyaba; Watson, Darach; Eliasdottir, Ardis

    The unequivocal, spectroscopic detection of the 2175 A bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two gamma-ray burst (GRB) afterglows (GRB 070802 and GRB 080607). In this work, we analyze in detail the detections of the 2175 Angstrom-Sign extinction bump in the optical spectra of two further GRB afterglows: GRB 080605 and 080805. We gather all available optical/near-infrared photometric, spectroscopic, and X-ray data to construct multi-epoch spectral energy distributions (SEDs) for both GRB afterglows. We fit the SEDs with the Fitzpatrick and Massa model withmore » a single or broken power law. We also fit a sample of 38 GRB afterglows, known to prefer a Small Magellanic Cloud (SMC)-type extinction curve, with the same model. We find that the SEDs of GRB 080605 and GRB 080805 at two epochs are fit well with a single power law with a derived extinction of A{sub V} = 0.52{sup +0.13}{sub -0.16} and 0.50{sup +0.13}{sub -0.10}, and 2.1{sup +0.7}{sub -0.6} and 1.5 {+-} 0.2, respectively. While the slope of the extinction curve of GRB 080805 is not well constrained, the extinction curve of GRB 080605 has an unusual very steep far-UV rise together with the 2175 A bump. Such an extinction curve has previously been found in only a small handful of sightlines in the Milky Way. One possible explanation of such an extinction curve may be dust arising from two different regions with two separate grain populations, however we cannot distinguish the origin of the curve. We finally compare the four 2175 A bump sightlines to the larger GRB afterglow sample and to Local Group sightlines. We find that while the width and central positions of the bumps are consistent with what is observed in the Local Group, the relative strength of the detected bump (A{sub bump}) for GRB afterglows is weaker for a given A{sub V} than for almost any Local Group sightline. Such dilution of the bump strength may offer tentative support to a dual dust-population scenario.« less

  13. Quenching of the star formation activity in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Roehlly, Y.; Fossati, M.; Buat, V.; Boissier, S.; Boquien, M.; Burgarella, D.; Ciesla, L.; Gavazzi, G.; Serra, P.

    2016-11-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the spectral energy distribution (SED) of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SEDs of the target galaxies were fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies was parametrised using a specific star formation history with two free parameters, the quenching age QA and the quenching factor QF. These two parameters are crucial for the identification of the quenching mechanism, which acts on long timescales when starvation processes are at work, but is rapid and efficient when ram pressure occurs. To be sensitive to an abrupt and recent variation of the star formation activity, we combined twenty photometric bands in the UV to far-infrared in a new way with three age-sensitive Balmer line absorption indices extracted from available medium-resolution (R 1000) integrated spectroscopy and with Hα narrow-band imaging data. The use of a truncated star formation history significantly increases the quality of the fit in HI-deficient galaxies of the sample, that is to say, in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical quenching age of the perturbed late-type galaxies is QA ≲ 300 Myr whenever the activity of star formation is reduced by 50% < QF ≤ 80% and QA ≲ 500 Myr for QF > 80%, while that of the quiescent early-type objects is QA ≃ 1-3 Gyr. The fraction of late-type galaxies with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of 5 from the inner half virial radius of the Virgo cluster (R/Rvir < 0.5), where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions (R/Rvir > 4). The efficient quenching of the star formation activity observed in Virgo suggests that the dominant stripping process is ram pressure. We discuss the implication of this result in the cosmological context of galaxy evolution.

  14. Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men.

    PubMed

    Knowles, Ann-Marie; Herbert, Peter; Easton, Chris; Sculthorpe, Nicholas; Grace, Fergal M

    2015-01-01

    There is a demand for effective training methods that encourage exercise adherence during advancing age, particularly in sedentary populations. This study examined the effects of high-intensity interval training (HIIT) exercise on health-related quality of life (HRQL), aerobic fitness and motivation to exercise in ageing men. Participants consisted of males who were either lifelong sedentary (SED; N = 25; age 63 ± 5 years) or lifelong exercisers (LEX; N = 19; aged 61 ± 5 years). [Formula: see text] and HRQL were measured at three phases: baseline (Phase A), week seven (Phase B) and week 13 (Phase C). Motivation to exercise was measured at baseline and week 13. [Formula: see text] was significantly higher in LEX (39.2 ± 5.6 ml kg min(-1)) compared to SED (27.2 ± 5.2 ml kg min(-1)) and increased in both groups from Phase A to C (SED 4.6 ± 3.2 ml kg min(-1), 95 % CI 3.1 - 6.0; LEX 4.9 ± 3.4 ml kg min(-1), 95 % CI 3.1-6.6) Physical functioning (97 ± 4 LEX; 93 ± 7 SED) and general health (70 ± 11 LEX; 78 ± 11 SED) were significantly higher in LEX but increased only in the SED group from Phase A to C (physical functioning 17 ± 18, 95 % CI 9-26, general health 14 ± 14, 95 % CI 8-21). Exercise motives related to social recognition (2.4 ± 1.2 LEX; 1.5 ± 1.0 SED), affiliation (2.7 ± 1.0 LEX; 1.6 ± 1.2 SED) and competition (3.3 ± 1.3 LEX; 2.2 ± 1.1) were significantly higher in LEX yet weight management motives were significantly higher in SED (2.9 ± 1.1 LEX; 4.3 ± 0.5 SED). The study provides preliminary evidence that low-volume HIIT increases perceptions of HRQL, exercise motives and aerobic capacity in older adults, to varying degrees, in both SED and LEX groups.

  15. MULTIBAND DIAGNOSTICS OF UNIDENTIFIED 1FGL SOURCES WITH SUZAKU AND SWIFT X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Y.; Kataoka, J.; Maeda, K.

    2013-10-01

    We have analyzed all the archival X-ray data of 134 unidentified (unID) gamma-ray sources listed in the first Fermi/LAT (1FGL) catalog and subsequently followed up by the Swift/XRT. We constructed the spectral energy distributions (SEDs) from radio to gamma-rays for each X-ray source detected, and tried to pick up unique objects that display anomalous spectral signatures. In these analyses, we target all the 1FGL unID sources, using updated data from the second Fermi/LAT (2FGL) catalog on the Large Area Telescope (LAT) position and spectra. We found several potentially interesting objects, particularly three sources, 1FGL J0022.2–1850, 1FGL J0038.0+1236, and 1FGL J0157.0–5259,more » which were then more deeply observed with Suzaku as a part of an AO-7 program in 2012. We successfully detected an X-ray counterpart for each source whose X-ray spectra were well fitted by a single power-law function. The positional coincidence with a bright radio counterpart (currently identified as an active galactic nucleus, AGN) in the 2FGL error circles suggests these sources are definitely the X-ray emission from the same AGN, but their SEDs show a wide variety of behavior. In particular, the SED of 1FGL J0038.0+1236 is not easily explained by conventional emission models of blazars. The source 1FGL J0022.2–1850 may be in a transition state between a low-frequency peaked and a high-frequency peaked BL Lac object, and 1FGL J0157.0–5259 could be a rare kind of extreme blazar. We discuss the possible nature of these three sources observed with Suzaku, together with the X-ray identification results and SEDs of all 134 sources observed with the Swift/XRT.« less

  16. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heymann, Frank; Siebenmorgen, Ralf, E-mail: fheymann@pa.uky.edu

    2012-05-20

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting proceduremore » and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.« less

  17. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindle, R.; Gal, R. R.; La Barbera, F.

    2011-10-15

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less

  18. On the intrinsic spectrum of PKS 2155-304 from H.E.S.S. 2003 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costamante, L.; Benbow, W.; Horns, D.

    2005-02-21

    In 2003, PKS 2155-304 has been significantly detected by H.E.S.S. at Very High Energies (VHE), with an average spectrum of {gamma} = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum ismore » steeper than {gamma} = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors {delta} = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on {delta} given by transparency to 2 TeV photons is {delta} > 19 (for historical SED fluxes and 2 hours variability timescale)« less

  19. Analytical treatment for the development of electromagnetic cascades in intense magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Jie-Shuang; Liu, Ruo-Yu; Aharonian, Felix; Dai, Zi-Gao

    2018-05-01

    In a strong magnetic field, a high-energy photon can be absorbed and then produce an electron-positron pair. The produced electron/positron will in turn radiate a high-energy photon via synchrotron radiation, which then initiates a cascade. We built a one-dimensional Monte Carlo code to study the development of the cascade especially after it reaches the saturated status, when almost all the energy of the primary particles transfers to the photons. The photon spectrum in this status has a cutoff due to the absorption by magnetic fields, which is much sharper than the exponential one. Below the cutoff, the spectral energy distribution (SED) manifest itself as a broken power-law with a spectral index of 0.5 and 0.125, respectively, below and above the broken energy. The SED can be fitted by a simple analytical function, which is solely determined by the product of the cascade scale R and the magnetic field perpendicular to the motion of the particle B⊥ , with an accuracy better than 96%. The similarity of the spectrum to that from the cascade in an isotropic black-body photon field is also studied.

  20. On the intrinsic spectrum of PKS 2155-304 from H.E.S.S. 2003 data

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Benbow, W.; Horns, D.; Reimer, A.; H.E.S.S. Collaboration

    2005-02-01

    In 2003, PKS 2155-304 has been significantly detected by H.E.S.S. at Very High Energies (VHE), with an average spectrum of Γ = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than Γ = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors δ = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on δ given by transparency to 2 TeV photons is δ > 19 (for historical SED fluxes and 2 hours variability timescale).

  1. WL 17: A Young Embedded Transition Disk

    NASA Astrophysics Data System (ADS)

    Sheehan, Patrick D.; Eisner, Josh A.

    2017-05-01

    We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the ρ Ophiuchus L1688 molecular cloud complex, which show that it has a 12 au hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband spectral energy distribution (SED) and also require such high extinction that it would presumably arise from dense material close to the source, such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole was produced by the formation of planets it could place constraints on the timescale for the growth of planets in protoplanetary disks.

  2. An interferometric study of the post-AGB binary 89 Herculis. II. Radiative transfer models of the circumbinary disk

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Menu, J.; Van Winckel, H.; Min, M.; Gielen, C.; Wevers, T.; Mulders, G. D.; Regibo, S.; Verhoelst, T.

    2014-08-01

    Context. The presence of stable disks around post-asymptotic giant branch (post-AGB) binaries is a widespread phenomenon. Also, the presence of (molecular) outflows is now commonly inferred in these systems. Aims: In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB binary system. The data showed that this flux arises from close to the central binary. Scattering off the inner rim of the circumbinary disk, or scattering in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the circumbinary disk, we aim to discriminate between the two proposed configurations. Methods: By including Herschel/SPIRE photometry, we extend the spectral energy distribution (SED) such that it now fully covers UV to sub-mm wavelengths. The MCMax Monte Carlo radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with archival mid-IR (MIDI) visibilities, and the optical and near-IR visibilities of Paper I. In this way we constrain the structure of the disk, with a focus on its inner rim. Results: The near-IR visibility data require a smooth inner rim, here obtained with a double power-law parameterization of the radial surface density distribution. A model can be found that fits all of the IR photometric and interferometric data well, with either of the two continuum opacity sources. Our best-fit passive models are characterized by a significant amount of ~mm-sized grains, which are settled to the midplane of the disk. Not a single disk model fits our data at optical wavelengths because of the opposing constraints imposed by the optical and near-IR interferometric data. Conclusions: A geometry in which a passive, dusty, and puffed-up circumbinary disk is present, can reproduce all of the IR, but not the optical observations of 89 Her. Another dusty component (an outflow or halo) therefore needs to be added to the system. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 077.D-0071.

  3. UV-to-IR spectral energy distributions of galaxies at z>1: the impact of Herschel data on dust attenuation and star formation determinations

    NASA Astrophysics Data System (ADS)

    Buat, V.; Heinis, S.; Boquien, M.

    2013-11-01

    We report on our recent works on the UV-to-IR SED fitting of a sample of distant (z>1) galaxies observed by Herschel in the CDFS as part of the GOODS-Herschel project. Combining stellar and dust emission in galaxies is found powerful to constrain their dust attenuation as well as their star formation activity. We focus on the caracterisation of dust attenuation and on the uncertainties on the derivation of the star formation rates and stellar masses, as a function of the range of wavelengths sampled by the data data and of the assumptions made on the star formation histories

  4. Probing The Stellar, Gaseous, And Dust Properties Of Galaxies Through Analysis Of Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.

    The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also found that a significant fraction of the 22 micron flux, usually considered a complementary measure of the UV-optically determined star formation rate (SFR), is not associated with the recent (last 100 Myr) star formation activity. A fraction of the 22 micron flux represents the energy reradiated by dust heated by intermediate age, long-lived stars. For the Fireworks galaxy, data coverage from the UV to radio allowed us to measure the full radiative budget from the stellar emission (bolometric luminosities) and the fraction coming from reprocessing by dust and gas in the IR. We present a self-consistent, physically-motivated model to describe SEDs of subgalactic regions across the galaxy, which simultaneously fits the stellar attenuated SED from UV to mid-infrared emission, the reradiated infrared emission from the dust, the radio continuum emission from the gas, as well as the intensity of select recombination lines from the ionized gas. We present a framework capable of determine the IR fraction not associated with the recent SFR. This work provides a novel and crucial step towards understanding the physical processes responsible for various empirical laws to determine SFR in galaxies, the correlation between the IR and stellar emission, and the physical conditions of the ISM. It provides essential inputs for more detailed modeling of the spatially-resolved photometric and chemical (dust and gas) evolution of galaxies.

  5. Dusty Star-forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Su, Ting

    2017-02-01

    Star-forming galaxies, which convert large amounts of gas into stars at moderate or excessive rates, are a critical population for our understanding of galaxy evolution throughout the cosmic time. A small portion of the star-forming galaxies are defined as starburst galaxies because they have much greater star formation rates (a few hundred to a few thousand of solar masses per year), which are associate with high infrared luminosity. My thesis focuses on starburst galaxies in the intermediate/high redshift universe. In this study, I present various modeling methods of the infrared spectral energy distribution (SED) of starburst galaxies, including modified black-body models and empirical templates based on nearby galaxies. Then, I fit these models to two samples of sources to study galaxy properties and provide a comparison among different SED models. I present galaxy properties derived by the best-fit model -- a modified blackbody model with power-law temperature distribution. The first sample is nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey, with multi-wavelength detections. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. We find the sample has a higher redshift distribution (z=4.1+1.1-1.0) than "classical" starburst galaxies, as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(uL_IR/L_sun) = 13.86+0.33-0.30, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is ud = 4.2+1.7-1.0 kpc, further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2 +3.7-1.9) around the peak in the modified blackbody spectrum (lambda_obs <= 500 micron), which supports the choice of the optical thick model. The other sample is 30 starburst galaxies with spectroscopically confirmed redshift selected by sub-millimeter surveys in the redshifts range of z 4-6.5. We find that the power-law temperature of optically thick gray-body model is the best fitting method for high-z starburst galaxies. The optically thin model fitting would underestimate the dust temperature and overestimate the dust mass, while nearby starburst templates would overestimate the dust mass by an order of magnitude. For this very high redshift sample, we find a median dust mass of M_d = 2.7e8 Msun and a median infrared luminosity of L_IR = 1.1e13 Lsun which corresponds to a star formation rate of 1180 Msun/yr. The median cold dust component temperature is Tc = 41.7 K, while the median emission region diameter is d=2.4 kpc. We also present the gas mass M_G 2.6e10 Msun and dust-to-gas ratio Zd = 9.1e-3, which are consistent with the local analogues. Additionally, the FIR/radio correlation of the sample is q_IR=2.58, which is consistent with the local galaxies but slightly higher than the intermediate-z starburst galaxies.

  6. On the properties of dust and gas in the environs of V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Exter, K. M.; Cox, N. L. J.; Swinyard, B. M.; Matsuura, M.; Mayer, A.; De Beck, E.; Decin, L.

    2016-12-01

    Aims: We aim to probe the close and distant circumstellar environments of the stellar outburst object V838 Mon. Methods: Herschel far-infrared imaging and spectroscopy were taken at several epochs to probe the central point source and the extended environment of V838 Mon. PACS and SPIRE maps were used to obtain photometry of the dust immediately around V838 Mon, and in the surrounding infrared-bright region. These maps were fitted in 1d and 2d to measure the temperature, mass, and β of the two dust sources. PACS and SPIRE spectra were used to detect emission lines from the extended atmosphere of the star, which were then modelled to study the physical conditions in the emitting material. HIFI spectra were taken to measure the kinematics of the extended atmosphere but unfortunately yielded no detections. Results: Fitting of the far-infrared imaging of V838 Mon reveals 0.5-0.6 M⊙ of ≈19 K dust in the environs (≈2.7 pc) surrounding V838 Mon. The surface-integrated infrared flux (signifying the thermal light echo), and derived dust properties do not vary significantly between the different epochs. We measured the photometry of the point source. As the peak of the SED (Spectral Energy Distribution) lies outside the Herschel spectral range, it is only by incorporating data from other observatories and previous epochs that we can usefully fit the SED; with this we explicitly assume no evolution of the point source between the epochs. We find that warm dust with a temperature 300 K distributed over a radius of 150-200 AU. We fit the far-infrared lines of CO arising from the point source, from an extended environment around V838 Mon. Assuming a model of a spherical shell for this gas, we find that the CO appears to arise from two temperature zones: a cold zone (Tkin ≈ 18 K) that could be associated with the ISM or possibly with a cold layer in the outermost part of the shell, and a warm (Tkin ≈ 400 K) zone that is associated with the extended environment of V838 Mon within a region of radius of ≈210 AU. The SiO lines arise from a warm/hot zone. We did not fit the lines of H2O as they are far more dependent on the model assumed. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. The Study on the Physical Properties of Blazar Jets

    NASA Astrophysics Data System (ADS)

    Kang, S. J.

    2017-09-01

    Active galactic nuclei (AGNs) belong to a special class of active galaxies, and have violent active phenomena and intense physical processes in the nuclei. Blazar is a subclass of AGNs, and has a relativistic jet with a small jet viewing angle. Therefore, the boosting effect is very important, and almost all the observed radiation is dominated by the jet. The relativistic jet physics is not very clear yet, such as the jet formation, collimation, and matter content etc. The multi-waveband radiation of blazar is dominated by jet, which provides an ideal laboratory for studying the jet physics. The first chapter of this thesis introduces the recent progress of AGNs and blazars. We further introduce the jet model that commonly used in blazars in the second chapter. In the third chapter, we fit simultaneously (or quasi-simultaneously) the multi-waveband spectral energy distributions (SEDs) for a sample of low-synchrotron-peaked (LSP) blazars with the jet model and χ2 procedure, which takes into account different soft photon fields (broad line region or a molecular torus). We find that the SED fitting with an external soft photon from IR torus is systematically better than that from the broad line region (BLR) based on a χ2 test, which suggests that the γ-ray emitting region most possibly stays outside the BLR. The minimum electron Lorentz factor, γmin, is constrained from the modeling of these LSP blazars with good soft X-ray data, and in a range from 5 to 160 (with a median value of 55), which plays a key role in jet power estimation. Assuming one-to-one ratio of proton and electron, we find that the jet power for LSP blazars is systematically higher than that of Fanaroff-Riley type II (FR II) radio galaxies. A possible reason for this is that there are some positrons in the jets of these blazars. If this is the case, the jet power will be reduced. Therefore, we propose a mixed composition of e±-p in the jets of these LSP blazars. If we assume that the jet power of LSP blazars is the same as that of FR IIs, we find that it is an electron-positron pair dominated leptonic jet in these blazars, and the number density of electron-positron pairs is several times higher than that of electron-proton pairs, but the jet power is still dominated by protons. For the high-synchrotron-peaked (HSP) BL Lac PKS 1424+240, the SED fitting with the synchrotron self-Compton (SSC) model gave unreasonable fitting parameters (e.g., a very large Doppler factor δ). In this work, we take into account the possible external soft photon field, and then fit the multi-waveband SEDs of blazar PKS 1424+240 with one-zone leptonic jet models in both states. We find the SSC+external-Compton (EC) model can give a better fitting result if the EC process is included. However, the needed energy density of external soft photon field (U_{ext}) is much lower than the typical value. This result is consistent with the results of some other BL Lacs, where the BLR or torus is very weak or disappearing. It means that there is evolution of the energy density of external soft photon field with decreasing of the luminosity of blazars (the flat spectrum radio quasars (FSRQs)-BL Lac: low energy peaked BL Lac (LBL)-intermediate energy peaked BL Lac (IBL)-high energy peaked BL Lac (HBL)). And on this basis, in the chapter 5, we further explore the possible evolution of the external soft photon field of blazars based on the EC process. We employ the one-zone homogeneous leptonic jet model and χ2 procedure to fit simultaneously or quasi-simultaneously multi-waveband SEDs for a sample of blazars with a wide distribution of luminosities. In our model, we set Uext as a free parameter. Studying the energy density of the external photon field in different subclasses of blazars, we find: (1) the Uext of the high luminosity blazar (FSRQs and LBLs) keeps roughly as a constant, which is, however, smaller than that constrained from BLR observations. Assuming IR as the source of soft photons, the Uext is roughly consistent with the torus observational result. This further supports the result that the external soft photon field may originate from torus, and the γ-ray emitting region of these LSP blazars locates outside the BLR. (2) For some IBLs, the EC process may be still needed, but the photon energy density is less than the typical values of the photon energy density of BLR (or dust torus), where the Uext decreases with decreasing of the luminosity. This evolution is consistent with the BLR or torus as directly constrained from the radio-quiet AGN. The final part summarizes the study on the subject, and makes some suggestions for further researches.

  8. The Non-Stellar Infrared Continuum of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.

    2000-01-01

    JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests that the near-infrared emission in Seyfert galaxies is produced in an extended component illuminated by the central source, that is more visible from all viewing angles, providing a good explanation for the differing N(sub H)/A(sub V) ratios found in some Seyfert 2s. We discuss possible implications of mid-infrared surveys for the search of counterparts of highly obscured hard X-ray sources.

  9. A Correction for IUE UV Flux Distributions from Comparisons with CALSPEC

    NASA Astrophysics Data System (ADS)

    Bohlin, Ralph C.; Bianchi, Luciana

    2018-04-01

    A collection of spectral energy distributions (SEDs) is available in the Hubble Space Telescope (HST) CALSPEC database that is based on calculated model atmospheres for pure hydrogen white dwarfs (WDs). A much larger set (∼100,000) of UV SEDs covering the range (1150–3350 Å) with somewhat lower quality are available in the IUE database. IUE low-dispersion flux distributions are compared with CALSPEC to provide a correction that places IUE fluxes on the CALSPEC scale. While IUE observations are repeatable to only 4%–10% in regions of good sensitivity, the average flux corrections have a precision of 2%–3%. Our re-calibration places the IUE flux scale on the current UV reference standard and is relevant for any project based on IUE archival data, including our planned comparison of GALEX to the corrected IUE fluxes. IUE SEDs may be used to plan observations and cross-calibrate data from future missions, so the IUE flux calibration must be consistent with HST instrumental calibrations to the best possible precision.

  10. Multiwavelength Observations of the AGN 1ES 0414+009 with VERITAS, Fermi-LAT, Swift-XRT, and MDM

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Bouvier, A.; Bugaev, V.; Cannon, A.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Dumm, J.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Huan, H.; Hughes, G.; Hui, C. M.; Imran, A.; Jameil, O.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kerr, J.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lee, K.; Madhavan, A. S.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nelson, T.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Ruppel, J.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Smith, A. W.; Staszak, D.; Stroh, M.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Varlotta, A.; Vassiliev, V. V.; Vivier, M.; Wakely, S. P.; Ward, J. E.; Weinstein, A.; Welsing, R.; Williams, D. A.; Zitzer, B.

    2012-08-01

    We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between 2008 January and 2011 February, resulting in 56.2 hr of good quality pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4σ) above the background. The source flux, showing no evidence for variability, is measured as (5.2 ± 1.1stat ± 2.6sys) × 10-12 photons cm-2 s-1 above 200 GeV, equivalent to approximately 2% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with a photon index of Γ = 3.4 ± 0.5stat ± 0.3sys and a flux normalization of (1.6 ± 0.3stat ± 0.8sys) × 10-11 photons cm-2 s-1 at 300 GeV. We also present multiwavelength results taken in the optical (MDM), x-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.

  11. Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS

    NASA Astrophysics Data System (ADS)

    Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.

  12. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  13. THE STELLAR POPULATION AND STAR FORMATION RATES OF z Almost-Equal-To 1.5-1.6 [O II]-EMITTING GALAXIES SELECTED FROM NARROWBAND EMISSION-LINE SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ly, Chun; Malkan, Matthew A.; Ross, Nathaniel R.

    We present the first detailed study of the stellar populations of star-forming galaxies at z {approx} 1.5, which are selected by their [O II] emission line, detected in narrowband surveys. We identified {approx}1300 [O II] emitters at z = 1.47 and z = 1.62 in the Subaru Deep Field with rest-frame equivalent widths (EWs) above 13 A. Optical and near-infrared spectroscopic observations for Almost-Equal-To 10% of our samples show that our separation of [O II] from [O III] emission-line galaxies in two-color space is 99% successful. We analyze the multi-wavelength properties of a subset of {approx}1200 galaxies with the bestmore » photometry. They have average rest-frame EW of 45 A, stellar mass of 3 Multiplication-Sign 10{sup 9} M{sub Sun }, and stellar age of 100 Myr. In addition, our spectral energy distribution (SED) fitting and broadband colors indicate that [O II] emitters span the full range of galaxy populations at z {approx} 1.5. We also find that 80% of [O II] emitters are also photometrically classified as 'BX/BM' (UV) galaxies and/or the star-forming 'BzK' (near-IR) galaxies. Our [O II] emission line survey produces a far more complete and somewhat deeper sample of z {approx} 1.5 galaxies than either the BX/BM or sBzK selection alone. We constructed average SEDs and find that higher [O II] EW galaxies have somewhat bluer continua. SED model-fitting shows that they have on average half the stellar mass of galaxies with lower [O II] EW. The observed [O II] luminosity is well correlated with the far-UV continuum with a logarithmic slope of 0.89 {+-} 0.22. The scatter of the [O II] luminosity against the far-UV continuum suggests that [O II] can be used as a star formation rate indicator with a reliability of 0.23 dex.« less

  14. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; onlymore » 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.« less

  15. Scientific Staff | ast.noao.edu

    Science.gov Websites

    Emeritus Double stars; stellar rotation; stellar characteristics; publication practices in astronomy Thai formation; infrared astronomy and instrumentation NOAO Associate Director for Kitt Peak National Observatory clumpy media, software development, modeling & SED fitting, big data, HPC in astronomy, visualization

  16. Transition disks: four candidates for ongoing giant planet formation in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Orellana, M.; Cieza, L. A.; Schreiber, M. R.; Merín, B.; Brown, J. M.; Pellizza, L. J.; Romero, G. A.

    2012-03-01

    Among the large set of Spitzer-selected transitional disks that we have examined in the Ophiuchus molecular, four disks have been identified as (giant) planet-forming candidates based on the morphology of their spectral energy distributions (SEDs), their apparent lack of stellar companions, and evidence of accretion. Here we characterize the structures of these disks modeling their optical, infrared, and (sub)millimeter SEDs. We use the Monte Carlo radiative transfer package RADMC to construct a parametric model of the dust distribution in a flared disk with an inner cavity and calculate the temperature structure that is consistent with the density profile, when the disk is in thermal equilibrium with the irradiating star. For each object, we conducted a Bayesian exploration of the parameter space generating Monte Carlo Markov chains (MCMC) that allow the identification of the best-fit model parameters and to constrain their range of statistical confidence. Our calculations imply that evacuated cavities with radii ~2-8 AU are present that appear to have been carved by embedded giant planets. We found parameter values that are consistent with those previously given in the literature, indicating that there has been a mild degree of grain growth and dust settling, which deserves to be investigated with further modeling and follow-up observations. Resolved images with (sub)millimeter interferometers would be required to break some of the degeneracies of the models and more tightly constrain the physical properties of these fascinating disks.

  17. The Spectral Energy Distribution of the Hyperluminous, Hot Dust-obscured Galaxy W2246–0526

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Gao, Ying; Knudsen, Kirsten K.; Shu, Xinwen

    2018-02-01

    Hot dust-obscured galaxies (Hot DOGs) are a luminous, dust-obscured population recently discovered in the WISE All-Sky survey. Multiwavelength follow-up observations suggest that they are mainly powered by accreting supermassive black holes (SMBHs), lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars. Therefore, they are good candidates for studying the interplay between SMBHs, star formation, and environment. W2246‑0526 (hereafter, W2246), a Hot DOG at z ∼ 4.6, has been taken as the most luminous galaxy known in the universe. Revealed by the multiwavelength images, the previous Herschel SPIRE photometry of W2246 is contaminated by a foreground galaxy (W2246f), resulting in an overestimation of its total IR luminosity by a factor of about two. We perform the rest-frame UV/optical-to-far-IR spectral energy distribution (SED) analysis with SED3FIT and re-estimate its physical properties. The derived stellar mass {M}\\star =4.3× {10}11 {M}ȯ makes it among the most massive galaxies with spectroscopic redshift z > 4.5. Its structure is extremely compact and requires an effective mechanism to puff-up. Most of (>95%) its IR luminosity is from AGN torus emission, revealing the rapid growth of the central SMBH. We also predict that W2246 may have a significant molecular gas reservoir based on the dust mass estimation.

  18. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; hide

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and radio flares could be established. Conclusions. If the gamma-ray flux is a mixture of synchrotron self-Compton (SSC) and external Compton (EC) emission, the observed GeV spectral variability may result from varying relative contributions of these two emission components. This explanation fits the observed changes in the overall IR to gamma-ray SED.

  19. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  20. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline.

    PubMed

    Niemeyer, Bastian; Epp, Laura S; Stoof-Leichsenring, Kathleen R; Pestryakova, Luidmila A; Herzschuh, Ulrike

    2017-11-01

    Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north-south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single-tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition. © 2017 John Wiley & Sons Ltd.

  1. Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs

    NASA Astrophysics Data System (ADS)

    Salim, Samir; Boquien, Médéric; Lee, Janice C.

    2018-05-01

    We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that {A}λ /{A}V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).

  2. A Synthesis Of Cosmic X-ray And Infrared Background

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Helou, G.; Armus, L.; Stierwalt, S.

    2012-01-01

    We present a synthesis model of cosmic IR and X-ray background, with the goal to derive a complete census of cosmic evolution of star formation (SF) and black-hole (BH) growth by complementing advantages of X-ray and IR surveys to each other. By assuming that individual galaxies are experiencing both SF and BH accretion, our model decomposes the total IR LF into SF and BH components while taking into account the luminosity-dependent SED and its dispersion of the SF component, and the extinction-dependent SED of the BH component. The best-fit parameters are derived by fitting to the number counts and redshift distributions at X-ray including both hard and soft bands, and mid-IR to submm bands including IRAS, Spitzer, Herschel, SCUBA, Aztec and MAMBO. Based on the fit result, our models provide a series of predictions on galaxy evolution and black-hole growth. For evolution of infrared galaxies, the model predicts that the total infrared luminosity function is best described through evolution in both luminosity and density. For evolution of AGN populations, the model predicts that the evolution of X-ray LF also shows luminosity and density dependent, that the type-1/type-2 AGN fraction is a function of both luminosity and redshift, and that the Compton-thick AGN number density evolves strongly with redshift, contributing about 20% to the total cosmic BH growth. For BH growth in IR galaxies, the model predicts that the majority of BH growth at z>1 occurs in infrared luminous galaxies and the AGN fraction as a function of IR survey is a strong function of the survey depth, ranging from >50% at bright end to below 10% at faint end. We also evaluates various AGN selection techniques at X-ray and IR wavelengths and offer predictions for future missions at X-ray and IR.

  3. Determining Empirical Stellar Masses and Radii from Transits and Gaia Parallaxes as Illustrated by Spitzer Observations of KELT-11b

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas G.; Stevens, Daniel J.; Collins, Karen A.; Colón, Knicole D.; James, David J.; Kreidberg, Laura; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Kielkopf, John F.

    2017-07-01

    Using the Spitzer Space Telescope, we observed a transit at 3.6 μm of KELT-11b. We also observed three partial planetary transits from the ground. We simultaneously fit these observations, ground-based photometry from Pepper et al., radial velocity data from Pepper et al., and a spectral energy distribution (SED) model using catalog magnitudes and the Hipparcos parallax to the system. The only significant difference between our results and those of Pepper et al. is that we find the orbital period to be shorter by 37 s, 4.73610 ± 0.00003 versus 4.73653 ± 0.00006 days, and we measure a transit center time of {{BJD}}{TDB} 2457483.4310 ± 0.0007, which is 42 minutes earlier than predicted. Using our new photometry, we precisely measure the density of the star KELT-11 to 4%. By combining the parallax and catalog magnitudes of the system, we are able to measure the radius of KELT-11b essentially empirically. Coupled with the stellar density, this gives a parallactic mass and radius of 1.8 {M}⊙ and 2.9 {R}⊙ , which are each approximately 1σ higher than the adopted model-estimated mass and radius. If we conduct the same fit using the expected parallax uncertainty from the final Gaia data release, this difference increases to 4σ. The differences between the model and parallactic masses and radii for KELT-11 demonstrate the role that precise Gaia parallaxes, coupled with simultaneous photometric, radial velocity, and SED fitting, can play in determining stellar and planetary parameters. With high-precision photometry of transiting planets and high-precision Gaia parallaxes, the parallactic mass and radius uncertainties of stars become 1% and 3%, respectively. TESS is expected to discover 60-80 systems where these measurements will be possible. These parallactic mass and radius measurements have uncertainties small enough that they may provide observational input into the stellar models themselves.

  4. Submillimeter Follow-up of WISE-selected Hyperluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; Bussmann, Shane; Comerford, Julia M.; Cutri, Roc; Evans, Neal J., II; Griffith, Roger; Jarrett, Thomas; Lake, Sean; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam; Weiner, Benjamin; Wright, Edward L.; Yan, Lin

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (~1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 1013 L ⊙. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  5. Unveiling slim accretion disc in AGN through X-ray and Infrared observations

    NASA Astrophysics Data System (ADS)

    Castelló-Mor, Núria; Kaspi, Shai; Netzer, Hagai; Du, Pu; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Wang, Jian-Min

    2017-05-01

    In this work, which is a continuation of Castelló-Mor et al., we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we rigorously explore the dependence of the optical-to-X-ray spectral index αOX and the IR-to-optical spectral index on the dimensionless accretion rate, \\dot{M} = \\dot{m}/η, where \\dot{m} = LAGN/LEdd and η is the mass-to-radiation conversion efficiency, in low- and high-accretion rate sources. We find that the spectral energy distribution (SED) of the faster accreting sources is surprisingly similar to those from the comparison sample of sources with lower accretion rate. In particular: (I) The optical-to-UV AGN SED of slow and fast accreting AGN can be fitted with thin accretion disc (AD) models. (II) The value of αOX is very similar in slow and fast accreting systems up to a dimensionless accretion rate \\dot{M}c ˜ 10. We only find a correlation between αOX and \\dot{M} for sources with \\dot{M} > \\dot{M}c. In such cases, the faster accreting sources appear to have systematically larger αOX values. (III) We also find that the torus in the faster accreting systems seems to be less efficient in reprocessing the primary AGN radiation having lower IR-to-optical spectral slopes. These findings, failing to recover the predicted differences between the SEDs of slim and thin ADs within the observed spectral window, suggest that additional physical processes or very special geometry act to reduce the extreme-UV radiation in fast accreting AGN. This may be related to photon trapping, strong winds and perhaps other yet unknown physical processes.

  6. Discovery of a suspected giant radio galaxy with the KAT-7 array

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Mhlahlo, N.; Jarrett, T.; Oozeer, N.; Marchegiani, P.

    2016-02-01

    We detect a new suspected giant radio galaxy (GRG) discovered by KAT-7. The GRG core is identified with the Wide-field Infrared Survey Explorer source J013313.50-130330.5, an extragalactic source based on its infrared colours and consistent with a misaligned active galactic nuclei-type spectrum at z ≈ 0.3. The multi-ν spectral energy distribution (SED) of the object associated with the GRG core shows a synchrotron peak at ν ≈ 1014 Hz consistent with the SED of a radio galaxy blazar-like core. The angular size of the lobes are ˜4 arcmin for the NW lobe and ˜1.2 arcmin for the SE lobe, corresponding to projected linear distances of ˜1078 kpc and ˜324 kpc, respectively. The best-fitting parameters for the SED of the GRG core and the value of jet boosting parameter δ = 2, indicate that the GRG jet has maximum inclination θ ≈ 30 deg with respect to the line of sight, a value obtained for δ = Γ, while the minimum value of θ is not constrained due to the degeneracy existing with the value of Lorentz factor Γ. Given the photometric redshift z ≈ 0.3, this GRG shows a core luminosity of P1.4 GHz ≈ 5.52 × 1024 W Hz-1, and a luminosity P1.4 GHz ≈ 1.29 × 1025 W Hz-1 for the NW lobe and P1.4 GHz ≈ 0.46 × 1025 W Hz-1 for the SE lobe, consistent with the typical GRG luminosities. The radio lobes show a fractional linear polarization ≈9 per cent consistent with typical values found in other GRG lobes.

  7. Examining the High-energy Radiation Mechanisms of Knots and Hotspots in Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Du, Shen-shi; Guo, Sheng-Chu; Zhang, Hai-Ming; Chen, Liang; Liang, En-Wei; Zhang, Shuang-Nan

    2018-05-01

    We compile the radio–optical–X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high-energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, except for the hotspot of Pictor A and six knots of 3C 273. The X-ray emission of 1 hotspot and 22 knots is well explained as synchrotron radiation under the equipartition condition; they usually have lower X-ray and radio luminosities than the others, which may be due to a lower beaming factor. An inverse Compton (IC) process is involved for explaining the X-ray emission of the other SEDs. Without considering the equipartition condition, their X-ray emission can be attributed to the synchrotron-self-Compton process, but the derived jet powers (P jet) are not correlated with L k and most of them are larger than L k, with more than three orders of magnitude, where L k is the jet kinetic power estimated with their radio emission. Under the equipartition condition, the X-ray emission is well interpreted with the IC process for the cosmic microwave background photons (IC/CMB). In this scenario, the derived P jet of knots and hotspots are correlated with and comparable to L k. These results suggest that the IC/CMB model may be a promising interpretation of the X-ray emission. In addition, a tentative knot–hotspot sequence in the synchrotron peak-energy–peak-luminosity plane is observed, similar to the blazar sequence, which may be attributed to the different cooling mechanisms of electrons.

  8. Submillimeter Follow-Up of WISE-Selected Hyperluminous Galaxies

    NASA Technical Reports Server (NTRS)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approx.1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 microns, yet are clearly detected at 12 and 22 microns. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 microns, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 microns, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60 C120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) Stellar Luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  9. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    NASA Technical Reports Server (NTRS)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  10. Multiwavelength Variations of 3C 454.3 during the 2010 November to 2011 January Outburst

    NASA Astrophysics Data System (ADS)

    Wehrle, Ann E.; Marscher, Alan P.; Jorstad, Svetlana G.; Gurwell, Mark A.; Joshi, Manasvita; MacDonald, Nicholas R.; Williamson, Karen E.; Agudo, Iván; Grupe, Dirk

    2012-10-01

    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from 2010 November through 2011 January. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at γ-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this data set, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation analysis of the millimeter, far-infrared, and γ-ray light curves show that the variations were essentially simultaneous, indicative of cospatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomogeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale "core," whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70% during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.

  11. BLAZAR ANTI-SEQUENCE OF SPECTRAL VARIATION WITHIN INDIVIDUAL BLAZARS: CASES FOR MRK 501 AND 3C 279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei, E-mail: zhang.jin@hotmail.com

    2013-04-10

    The jet properties of Mrk 501 and 3C 279 are derived by fitting broadband spectral energy distributions (SEDs) with lepton models. The derived {gamma}{sub b} (the break Lorenz factor of the electron distribution) is 10{sup 4}-10{sup 6} for Mrk 501 and 200 {approx} 600 for 3C 279. The magnetic field strength (B) of Mrk 501 is usually one order of magnitude lower than that of 3C 279, but their Doppler factors ({delta}) are comparable. A spectral variation feature where the peak luminosity is correlated with the peak frequency, which is opposite from the blazar sequence, is observed in the twomore » sources. We find that (1) the peak luminosities of the two bumps in the SEDs for Mrk 501 depend on {gamma}{sub b} in both the observer and co-moving frames, but they are not correlated with B and {delta} and (2) the luminosity variation of 3C 279 is dominated by the external Compton (EC) peak and its peak luminosity is correlated with {gamma}{sub b} and {delta}, but anti-correlated with B. These results suggest that {gamma}{sub b} may govern the spectral variation of Mrk 501 and {delta} and B would be responsible for the spectral variation of 3C 279. The narrow distribution of {gamma}{sub b} and the correlation of {gamma}{sub b} and B in 3C 279 would be due to the cooling from the EC process and the strong magnetic field. Based on our brief discussion, we propose that this spectral variation feature may originate from the instability of the corona but not from the variation of the accretion rate as does the blazar sequence.« less

  12. Preparation of Poly-(Methyl vinyl ether-co-maleic Anhydride) Nanoparticles by Solution-Enhanced Dispersion by Supercritical CO2

    PubMed Central

    Chen, Ai-Zheng; Wang, Guang-Ya; Wang, Shi-Bin; Feng, Jian-Gang; Liu, Yuan-Gang; Kang, Yong-Qiang

    2012-01-01

    The supercritical CO2-based technologies have been widely used in the formation of drug and/or polymer particles for biomedical applications. In this study, nanoparticles of poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) were successfully fabricated by a process of solution-enhanced dispersion by supercritical CO2 (SEDS). A 23 factorial experiment was designed to investigate and identify the significance of the processing parameters (concentration, flow and solvent/nonsolvent) for the surface morphology, particle size, and particle size distribution of the products. The effect of the concentration of PVM/MA was found to be dominant in the results regarding particle size. Decreasing the initial solution concentration of PVM/MA decreased the particle size significantly. After optimization, the resulting PVM/MA nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution. Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that the chemical composition of PVM/MA was not altered during the SEDS process and that the SEDS process was therefore a typical physical process. The absolute value of zeta potential of the obtained PVM/MA nanoparticles was larger than 40 mV, indicating the samples’ stability in aqueous suspension. Analysis of thermogravimetry-differential scanning calorimetry (TG-DSC) revealed that the effect of the SEDS process on the thermostability of PVM/MA was negligible. The results of gas chromatography (GC) analysis confirmed that the SEDS process could efficiently remove the organic residue.

  13. FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2010-08-20

    We present {gamma}-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the {gamma}-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum ({Gamma} = 2.67 {+-}more » 0.10{sub stat} {+-} 0.08{sub sys} where the photon flux is {Phi} {proportional_to} E {sup -{Gamma}}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the {gamma}-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.« less

  14. Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Cominsky, L. R.; Conrad, J.; Costamante, L.; Davis, D. S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Falcone, A.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hase, Hayo; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kishishita, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Müller, C.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Pagani, C.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Plötz, C.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stawarz, L.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-08-01

    We present γ-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the γ-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Γ = 2.67 ± 0.10stat ± 0.08sys where the photon flux is Φ vprop E -Γ). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the γ-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.

  15. FERMI Large Area Telescope View of the 1 Core of the Radio Galaxy Centaurus A

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-07-29

    We present γ-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the γ-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Γ = 2.67 ±more » 0.10 stat ± 0.08 sys where the photon flux is Φ ∝ E –Γ). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). Here, we fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the γ-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.« less

  16. Implications of a wavelength-dependent PSF for weak lensing measurements

    NASA Astrophysics Data System (ADS)

    Eriksen, Martin; Hoekstra, Henk

    2018-07-01

    The convolution of galaxy images by the point spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimized for this purpose. Using a machine learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model, and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.

  17. Sharpless-76E: astrometry and outflows in a protostellar cluster

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Hamabata, Hideo; Nagayama, Takumi; Omodaka, Toshihiro; Handa, Toshihiro; Sunada, Kazuyoshi; Nakano, Makoto; Ueno, Yuji

    2017-04-01

    Using VLBI Exploration of Radio Astrometry, we have conducted multi-epoch observations of the H2O masers associated with Sharpless 76E. The measured annual parallax is 0.521 ± 0.024 mas corresponding to the distance of 1.92^{+0.09}_{-0.08} kpc. From the parallax measurement, we obtained the peculiar motion of Sh2-76EMM1 (UMM1, VMM1, WMM1) to be (-9 ± 3, 10 ± 4, 6 ± 4) km s-1and Sh2-76EMM2 (UMM2, VMM2, WMM2) to be (-5 ± 12, 3 ± 14, -21 ± 22) km s-1, where U, V and W are directed towards the Galactic Centre, in the direction of Galactic rotation and towards the Galactic north pole, respectively. The internal motion of the H2O masers trace two separate bipolar outflows, one associated with Sh2-76EMM1 and the other with Sh2-76EMM2. The spectral energy distribution (SED) of Sh2-76EMM1 suggests it to be a class I YSO. We have only limited data points for the SED fit of Sh2-76EMM2, therefore can only speculate it to be probably a class II based on its comparative K-band and H-band magnitudes.

  18. Investigating FP Tau’s protoplanetary disk structure through modeling

    NASA Astrophysics Data System (ADS)

    Brinjikji, Marah; Espaillat, Catherine

    2017-01-01

    This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.

  19. Implications of a wavelength dependent PSF for weak lensing measurements.

    NASA Astrophysics Data System (ADS)

    Eriksen, Martin; Hoekstra, Henk

    2018-05-01

    The convolution of galaxy images by the point-spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimised for this purpose. Using a machine-learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.

  20. Long Term Observations of B2 1215+30 with VERITAS

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cesarini, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gérard, L.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Kaaret, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Saxon, D. B.; Sembroski, G. H.; Skole, C.; Smith, A. W.; Soares-Furtado, M.; Staszak, D.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Welsing, R.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Böttcher, M.; Fumagalli, M.; Jadhav, J.

    2013-12-01

    We report on VERITAS observations of the BL Lac object B2 1215+30 between 2008 and 2012. During this period, the source was detected at very high energies (VHEs; E > 100 GeV) by VERITAS with a significance of 8.9σ and showed clear variability on timescales larger than months. In 2011, the source was found to be in a relatively bright state and a power-law fit to the differential photon spectrum yields a spectral index of 3.6 ± 0.4stat ± 0.3syst with an integral flux above 200 GeV of (8.0 ± 0.9stat ± 3.2syst) × 10-12 cm-2 s-1. No short term variability could be detected during the bright state in 2011. Multi-wavelength data were obtained contemporaneously with the VERITAS observations in 2011 and cover optical (Super-LOTIS, MDM, Swift/UVOT), X-ray (Swift/XRT), and gamma-ray (Fermi-LAT) frequencies. These were used to construct the spectral energy distribution (SED) of B2 1215+30. A one-zone leptonic model is used to model the blazar emission and the results are compared to those of MAGIC from early 2011 and other VERITAS-detected blazars. The SED can be reproduced well with model parameters typical for VHE-detected BL Lac objects.

  1. Sage Studies Of The Mass Return From AGB And RSG Stars In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.

    2011-01-01

    The Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy project aims to further our understanding of the life cycle of matter in galaxies by studying this life cycle in our neighboring galaxy, the Large Magellanic Cloud (LMC). Combining SAGE mid-infrared photometry with that at shorter wavelengths from other catalogs, the spectral energy distribution (SED) for each of >25000 Asymptotic Giant Branch (AGB) and Red Supergiant (RSG) stars in the LMC has been assembled. To model mass loss from these stars, my colleagues and I have constructed the grid of RSG and AGB models (GRAMS) using the radiative transfer code 2Dust. I will discuss how GRAMS was constructed, and how we use it to determine the mass-loss rate for each evolved star studied, which gives the total mass-loss return to the LMC from AGB and RSG stars. In my talk, I show how this total mass-loss return is divided into oxygen-rich (O-rich) and carbon-rich (C-rich) dust using SED-fitting to identify O-rich versus C-rich AGB stars. Applications of this work to determining the mass return from evolved stars in other galaxies, including the Milky Way, will also be discussed.

  2. Properties of Dust Obscured Galaxies in the Nep-Deep Field

    NASA Astrophysics Data System (ADS)

    Oi, Nagisa; Matsuhara, Hideo; Pearson, Chris; Buat, Veronique; Burgarella, Denis; Malkan, Matt; Miyaji, Takamitsu; AKARI-NEP Team

    2017-03-01

    We selected 47 DOGs at z∼1.5 using optical R (or r^{'}), AKARI 18 μm, and 24 μm color in the AKARI North Ecliptic Pole (NEP) Deep survey field. Using the colors among 3, 4, 7, and 9μm, we classified them into 3 groups; bump DOGs (23 sources), power-law DOGs (16 sources), and unknown DOGs (8 sources). We built spectral energy distributions (SEDs) with optical to far-infrared photometric data and investigated their properties using SED fitting method. We found that AGN activity such as a AGN contribution to the infrared luminosity and a Chandra detection rate for bump and power-law DOGs are significantly different, while stellar component properties like a stellar mass and a star-formation rate are similar to each other. A specific star-formation rate range of power-law DOGs is slightly higher than that of bump DOGs with wide overlap. Herschel/PACS detection rates are almost the same between bump and power-law DOGs. On the other hand SPIRE detection rates show large differences between bump and power-law DOGs. These results might be explained by differences in dust temperatures. Both groups of DOGs host hot and/or warm dust (∼ 50 Kelvin), and many bump DOGs contain cooler dust (≤ 30 Kelvin)

  3. The virtual observatory service TheoSSA: Establishing a database of synthetic stellar flux standards. I. NLTE spectral analysis of the DA-type white dwarf G191-B2B

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.

    2013-12-01

    Context. Hydrogen-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to compare with observations. Aims: We will establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. Methods: In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. Results: TheoSSA is in operation and contains presently a variety of SEDs for DA-type white dwarfs. It will be extended in the near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G191-B2B has shown that our hydrostatic models reproduce the observations best at and log g = 7.60 ± 0.05. We newly identified Fe vi, Ni vi, and Zn iv lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of -4.89 (7.5 × solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance limits of about 10% solar were derived for Ti, Cr, Mn, and Co. Conclusions: The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronomical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different model-atmosphere codes and are easy to compare. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.Figures 1, 6, 10-12, 23, A.1, A.2 and Tables 2-4 are available in electronic form at http://www.aanda.orgTable 5 and Figs. A.1 and A.2 (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A106

  4. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    NASA Technical Reports Server (NTRS)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; hide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  5. The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Romanowsky, Aaron J.; Laine, Seppo; Brodie, Jean P.; Johnson, Benjamin D.; Glaccum, William; Villaume, Alexa; Cuillandre, Jean-Charles; Gwyn, Stephen; Krick, Jessica; Lasker, Ronald; Martín-Navarro, Ignacio; Martinez-Delgado, David; van Dokkum, Pieter

    2018-05-01

    We present observational constraints on the stellar populations of two ultra-diffuse galaxies (UDGs) using optical through near-infrared (NIR) spectral energy distribution (SED) fitting. Our analysis is enabled by new Spitzer-IRAC 3.6 and 4.5 μm imaging, archival optical imaging, and the prospector fully Bayesian SED fitting framework. Our sample contains one field UDG (DGSAT I), one Virgo cluster UDG (VCC 1287), and one Virgo cluster dwarf elliptical for comparison (VCC 1122). We find that the optical–NIR colors of the three galaxies are significantly different from each other. We infer that VCC 1287 has an old (≳7.7 Gyr) and surprisingly metal-poor ([Z/Z ⊙] ≲ ‑1.0) stellar population, even after marginalizing over uncertainties on diffuse interstellar dust. In contrast, the field UDG DGSAT I shows evidence of being younger than the Virgo UDG, with an extended star formation history and an age posterior extending down to ∼3 Gyr. The stellar metallicity of DGSAT I is sub-solar but higher than that of the Virgo UDG, with [Z/{Z}ȯ ]=-{0.63}-0.62+0.35; in the case of exactly zero diffuse interstellar dust, DGSAT I may even have solar metallicity. With VCC 1287 and several Coma UDGs, a general picture is emerging where cluster UDGs may be “failed” galaxies, but the field UDG DGSAT I seems more consistent with a stellar feedback-induced expansion scenario. In the future, our approach can be applied to a large and diverse sample of UDGs down to faint surface brightness limits, with the goal of constraining their stellar ages, stellar metallicities, and circumstellar and diffuse interstellar dust content.

  6. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  7. Multiwavelength Observations of the AGN 1ES 0414+009 with Veritas, Fermi-LAT, Swift-XRT, and MDM

    NASA Technical Reports Server (NTRS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boettcher, M.; Bouvier, A.; Bugaev, V.; Cannon, A.; hide

    2012-01-01

    We present observations of the BL Lac object 1ES 0414+009 in the greater than 200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between January 2008 and February 2011, resulting in 56.2 hours of good quality pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as (5.2 plus or minus 1.1(sub stat) plus or minus 2.6(sub sys) x 10(exp 12) photons per square centimeter per second above 200 GeV, equivalent to approximately 2% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with an photon index of TAU = 3.4 plus or minus 0.5(sub stat) plus or minus 0.3(sub sys) and a flux normalization of (1.6 plus or minus 0.3(sub stat) plus or minus 0.8(sub sys) x 10(exp -11) photons per square centimeter per second at 300 GeV. We also present multiwavelength results taken in the optical (MDM), X-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.

  8. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}⊙ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ˜ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ˜ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}˜ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed properties in Hot DOGs by employing a physical model of galaxy evolution. This result suggests that Hot DOGs may lie at or close to peaks of both star formation and black hole growth histories, and represent a transit phase during the evolutions of massive galaxies, transforming them from the dusty starburst-dominated phase to the optically bright QSO phase.

  9. Impact of an AGN featureless continuum on estimation of stellar population properties

    NASA Astrophysics Data System (ADS)

    Cardoso, Leandro S. M.; Gomes, Jean Michel; Papaderos, Polychronis

    2017-08-01

    The effect of the featureless power-law (PL) continuum of an active galactic nucleus (AGN) on the estimation of physical properties of galaxies with optical population spectral synthesis (PSS) remains largely unknown. With the goal of a quantitative examination of this issue, we fit synthetic galaxy spectra representing a wide range of galaxy star formation histories (SFHs) and including distinct PL contributions of the form Fν ∝ ν- α with the PSS code Starlight to study to which extent various inferred quantities (e.g. stellar mass, mean age, and mean metallicity) match the input. The synthetic spectral energy distributions (SEDs) computed with our evolutionary spectral synthesis code include an AGN PL component with 0.5 ≤ α ≤ 2 and a fractional contribution 0.2 ≤ xAGN ≤ 0.8 to the monochromatic flux at 4020 Å. At the empirical AGN detection threshold xAGN ≃ 0.26 that we previously inferred in a pilot study on this subject, our results show that the neglect of a PL component in spectral fitting can lead to an overestimation by 2 dex in stellar mass and by up to 1 and 4 dex in the light- and mass-weighted mean stellar age, respectively, whereas the light- and mass-weighted mean stellar metallicity are underestimated by up to 0.3 and 0.6 dex, respectively. These biases, which become more severe with increasing xAGN, are essentially independent of the adopted SFH and show a complex behaviour with evolutionary time and α. Other fitting set-ups including either a single PL or multiple PLs in the base reveal, on average, much lower unsystematic uncertainties of the order of those typically found when fitting purely stellar SEDs with stellar templates, however, reaching locally up to 1, 3 and 0.4 dex in mass, age and metallicity, respectively. Our results underscore the importance of an accurate modelling of the AGN spectral contribution in PSS fits as a minimum requirement for the recovery of the physical and evolutionary properties of stellar populations in active galaxies. In particular, this study draws attention to the fact that the neglect of a PL in spectral modelling of these systems may lead to substantial overestimates in stellar mass and age, thereby leading to potentially significant biases in our understanding of the co-evolution of AGN with their galaxy hosts.

  10. MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froning, Cynthia S.; France, Kevin; Khargharia, Juthika

    2011-12-10

    We present contemporaneous X-ray, ultraviolet, optical, near-infrared, and radio observations of the black hole binary system, A0620-00, acquired in 2010 March. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00 as well as NUV observations with the Space Telescope Imaging Spectrograph. The observed spectrum is flat in the FUV and very faint (with continuum fluxes {approx_equal} 1e - 17 erg cm{sup -2} s{sup -1} A{sup -1}). The UV spectra also show strong, broad (FWHM {approx} 2000 km s{sup -1}) emission lines of Si IV, C IV, He II, Fe II,more » and Mg II. The C IV doublet is anomalously weak compared to the other lines, which is consistent with the low carbon abundance seen in NIR spectra of the source. Comparison of these observations with previous NUV spectra of A0620-00 shows that the UV flux has varied by factors of 2-8 over several years. We compiled the dereddened, broadband spectral energy distribution (SED) of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at {approx_equal}3000 A. The peak can be fit with a T = 10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that {approx}90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10{sup 5} the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion. We compared our broadband SED to two models of A0620-00 in quiescence: the advection-dominated accretion flow model and the maximally jet-dominated model. The comparison suggests that strong outflows may be present in the system, indicated by the discrepancies in accretion rates and the FUV upturn in flux in the SED.« less

  11. Impact of Long-Term Voluntary Exercise on Body Composition and Pulmonary Function in Female Sprague-Dawley Rats

    EPA Science Inventory

    A sedentary (SED) lifestyle may contribute to increased susceptibility to air pollutants. Active (ACT), leaner individuals with improved cardiopulmonary fitness are thought to be less susceptible. It is important to develop animal models to study relationships between level of e...

  12. Multi-wavelength observations of PKS 2142-75 during active and quiescent gamma-ray states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutka, Michael S.; Ojha, Roopesh; Pottschmidt, Katja

    2013-12-04

    Here, PKS 2142–75 (a.k.a. 2FGL J2147.4–7534) is a flat-spectrum radio quasar that was observed quasi-simultaneously by a suite of instruments across the electromagnetic spectrum during two flaring states in 2010 April and 2011 August as well as a quiescent state from 2011 December through 2012 January. The results of these campaigns and model spectral energy distributions (SEDs) from the active and quiescent states are presented. The SED model parameters of PKS 2142–75 indicate that the two flares of the source are created by unique physical conditions. SED studies of flat-spectrum radio quasars are beginning to indicate that there might bemore » two types of flares, those that can be described purely by changes in the electron distribution and those that require changes in other parameters, such as the magnetic field strength or the size of the emitting region.« less

  13. Size characterization of inclusion bodies by sedimentation field-flow fractionation

    PubMed Central

    Margreiter, Gerd; Messner, Paul; Caldwell, Karin D.; Bayer, Karl

    2015-01-01

    Sedimentation field-flow fractionation (sedFFF) was evaluated to characterize the size of Δ(4–23)TEM-β-lactamase inclusion bodies (IBs) overexpressed in fed-batch cultivations of Escherichia coli. Heterologous Δ(4–23)TEM-β-lactamase protein formed different sizes of IBs, depending upon the induction conditions. In the early phases of recombinant protein expression, induced with low concentrations of IPTG (isopropyl-β-d-thiogalactoside), IB masses were larger than expected and showed heterogeneous size distributions. During cultivation, IB sizes showed a Gaussian distribution and reached a broad range by the end of the fed-batch cultivations. The obtained result proved the aptitude of sedFFF to rapidly assess the size distribution of IBs in a culture. PMID:18760314

  14. The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.

    2017-08-01

    Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6 based on SDSS, 2MASS, WISE and Herschel/SPIRE data. Through an accurate SED-fitting procedure, we separate the different emission components by deriving physical parameters of both the nuclear component (I.e. bolometric and monochromatic luminosities) and the host galaxy (I.e. star formation rate, mass, and temperature of the cold dust). We also use a radiative transfer code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be crucial to measure the molecular gas content in these systems, probe the effect between quasar-driven outflows and on-going star formation, and reveal merger signatures in their host galaxies.

  15. Two active states of the narrow-line gamma-ray-loud AGN GB 1310+487

    DOE PAGES

    Sokolovsky, K. V.

    2014-04-28

    Context. Previously unremarkable, the extragalactic radio source GB1310+487 showed a γ-ray flare on 2009 November 18, reaching a daily flux of ~ 10 -6 photons cm -2 s -1 at energies E > 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object’s radio-to-GeV spectral energy distribution (SED) during and after the prominent γ-ray flare with the aim of determining the naturemore » of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at γ-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH andWISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The γ-ray/radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and γ-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during γ-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the γ-ray flux and spectral index, with the hardest spectrum observed during the brightest γ-ray state. The γ-ray flares occurred before and during a slow rising trend in the radio, but no direct association between γ-ray and radio flares could be established. Conclusions. If the γ-ray flux is a mixture of synchrotron self-Compton (SSC) and external Compton (EC) emission, the observed GeV spectral variability may result from varying relative contributions of these two emission components. This explanation fits the observed changes in the overall IR to γ-ray SED.« less

  16. Estimating Spectra from Photometry

    NASA Astrophysics Data System (ADS)

    Kalmbach, J. Bryce; Connolly, Andrew J.

    2017-12-01

    Measuring the physical properties of galaxies such as redshift frequently requires the use of spectral energy distributions (SEDs). SED template sets are, however, often small in number and cover limited portions of photometric color space. Here we present a new method to estimate SEDs as a function of color from a small training set of template SEDs. We first cover the mathematical background behind the technique before demonstrating our ability to reconstruct spectra based upon colors and then compare our results to other common interpolation and extrapolation methods. When the photometric filters and spectra overlap, we show that the error in the estimated spectra is reduced by more than 65% compared to the more commonly used techniques. We also show an expansion of the method to wavelengths beyond the range of the photometric filters. Finally, we demonstrate the usefulness of our technique by generating 50 additional SED templates from an original set of 10 and by applying the new set to photometric redshift estimation. We are able to reduce the photometric redshifts standard deviation by at least 22.0% and the outlier rejected bias by over 86.2% compared to original set for z ≤ 3.

  17. White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas

    2013-01-01

    The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.

  18. IS THE LINE-LIKE OPTICAL AFTERGLOW SED OF GRB 050709 DUE TO A FLARE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Jin, Zhi-Ping; Wei, Da-Ming, E-mail: jin@pmo.ac.cn

    Recently, Jin et al. reanalyzed the optical observation data of GRB 050709 and reported a line-like spectral energy distribution (SED) component observed by the Very Large Telescope at t  ∼ 2.5 days after the trigger of the burst, which had been interpreted as a broadened line signal arising from a macronova dominated by an iron group. In this work, we show that an optical flare origin of such a peculiar optical SED is still possible. Interestingly, even in such a model, an “unusual” origin of the late-time long-lasting Hubble Space Telescope F 814 W -band emission is still needed and a macronova/kilonovamore » is the natural interpretation.« less

  19. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  20. Longitudinal effects of parental child and neighborhood factors on moderate vigorous physical activity and sedentary time in Latino children

    USDA-ARS?s Scientific Manuscript database

    Moderate-vigorous physical activity (%MVPA) confers beneficial effects on child musculoskeletal health, cardiovascular fitness, and psychosocial well-being; in contrast, sedentary time (%SED) is emerging as a risk factor for health. This study aimed to identify parental, child and neighborhood facto...

  1. The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641

    NASA Astrophysics Data System (ADS)

    Barnett, R.; Warren, S. J.; Banerji, M.; McMahon, R. G.; Hewett, P. C.; Mortlock, D. J.; Simpson, C.; Venemans, B. P.; Ota, K.; Shibuya, T.

    2015-03-01

    We present new observations of the highest-redshift quasar known, ULAS J1120+0641, redshift z = 7.084, obtained in the optical, at near-, mid-, and far-infrared wavelengths, and in the sub-mm. We combine these results with published X-ray and radio observations to create the multiwavelength spectral energy distribution (SED), with the goals of measuring the bolometric luminosity Lbol, and quantifying the respective contributions from the AGN and star formation. We find three components are needed to fit the data over the wavelength range 0.12-1000 μm: the unobscured quasar accretion disk and broad-line region, a dusty clumpy AGN torus, and a cool 47K modified black body to characterise star formation. Despite the low signal-to-noise ratio of the new long-wavelength data, the normalisation of any dusty torus model is constrained within ±40%. We measure a bolometric luminosity Lbol = 2.6 ± 0.6 × 1047 erg s-1 = 6.7 ± 1.6 × 1013 L⊙, to which the three components contribute 31%,32%,3%, respectively, with the remainder provided by the extreme UV < 0.12 μm. We tabulate the best-fit model SED. We use local scaling relations to estimate a star formation rate (SFR) in the range 60-270 M⊙/yr from the [C ii] line luminosity and the 158 μm continuum luminosity. An analysis of the equivalent widths of the [C ii] line in a sample of z> 5.7 quasars suggests that these indicators are promising tools for estimating the SFR in high-redshift quasars in general. At the time observed the black hole was growing in mass more than 100 times faster than the stellar bulge, relative to the mass ratio measured in the local universe, i.e. compared to MBH/Mbulge ≃ 1.4 × 10-3, for ULAS J1120+0641 we measure ṀBH/Ṁbulge ≃ 0.2. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A31

  2. Multifrequency studies of the peculiar quasar 4C+21.35 during the 2010 flaring activity

    DOE PAGES

    None, None

    2014-04-25

    The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar. Here, we present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHEmore » was observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. Furthermore, an increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We also model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of« less

  3. Multifrequency studies of the peculiar quasar 4C +21.35 during the 2010 flaring activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar. We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE wasmore » observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of« less

  4. Multifrequency studies of the peculiar quasar 4C+21.35 during the 2010 flaring activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar. Here, we present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHEmore » was observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. Furthermore, an increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We also model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of« less

  5. SOFIA/FORCAST Observations of the Luminous Blue Variables in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, T. L.; Morris, M.; Adams, J. D.

    2014-01-01

    Three Luminous Blue Variables (LBVs) are located in the vicinity of the Quintuplet Cluster in the Galactic Center: the Pistol star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs obtained with SOFIA using FORCAST. We study the similarities and differences between the three LBVs and address the influence of the hot, massive stars in the adjacent Quintuplet Cluster and the local ambient medium in affecting the morphology, composition, and energetics of dust in the nebulae produced from their outflows. We observe the thermal emission from the Pistol nebula, the asymmetric, compressed shell of hot dust surrounding the Pistol star and provide the first detection of thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, we do not detect any emission from hot dust surrounding qF362. The Pistol and G0.120-0.048 nebulae share an identical size scale of ˜ 0.7 pc which suggests that they have similar dynamical timescales (˜ 8000 yrs) assuming similar expansion velocities of ˜ 90 km/s. The Pistol nebula exhibits a temperature gradient decreasing from north to south with values ranging from 140 - 150 K. The G0.120-0.048 nebula, which is spherically symmetric about the star, exhibits an average dust temperature of ˜ 100 K. Fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEm Radiative Transfer code indicate that the nebula is composed of separate distributions of large grains (≥ 500 Å) and small grains (˜ 10 Å). DustEm model fits to the G0.120-0.048 nebula SED indicate that it contains grains smaller than 500 Å which suggests it may also contain a population of small grains. The models predict that both nebulae have a total gas mass of ˜ 2.5 M⊙ (assuming Mg/Md = 100), and a total IR luminosity of ˜ 8 × 10^5 L⊙ for the Pistol and ˜ 10^5 L⊙ for G0.120-0.048.

  6. Emission Features and Source Counts of Galaxies in Mid-Infrared

    NASA Technical Reports Server (NTRS)

    Xu, C.; Hacking, P. B.; Fang, F.; Shupe, D. L.; Lonsdale, C. J.; Lu, N. Y.; Helou, G.; Stacey, G. J.; Ashby, M. L. N.

    1998-01-01

    In this work we incorporate the newest ISO results on the mid-infrared spectral-energy-distributions (MIR SEDs) of galaxies into models for the number counts and redshift distributions of MIR surveys.

  7. Dusty galaxies in the Epoch of Reionization: simulations

    NASA Astrophysics Data System (ADS)

    Behrens, C.; Pallottini, A.; Ferrara, A.; Gallerani, S.; Vallini, L.

    2018-06-01

    The recent discovery of dusty galaxies well into the Epoch of Reionization (redshift z > 6) poses challenging questions about the properties of the interstellar medium in these pristine systems. By combining state-of-the-art hydrodynamic and dust radiative transfer simulations, we address these questions focusing on the recently discovered dusty galaxy A2744_YD4 (z = 8.38, Laporte et al.). We show that we can reproduce the observed spectral energy distribution (SED) only using different physical values with respect to the inferred ones by Laporte et al., i.e. a star formation rate of SFR = 78 M_{⊙} yr^{-1}, a factor ≈4 higher than deduced from simple SED fitting. In this case, we find: (i) dust attenuation (corresponding to τV = 1.4) is consistent with a Milky Way (MW) extinction curve; (ii) the dust-to-metal ratio is low, fd ˜ 0.08, implying that early dust formation is rather inefficient; (iii) the luminosity-weighted dust temperature is high, T_d=91± 23 K, as a result of the intense (≈100 × MW) interstellar radiation field; and (iv) due to the high Td, the Atacama Large Millimeter/submillimeter Array Band 7 detection can be explained by a limited dust mass, Md = 1.6 × 106 M⊙. Finally, the high dust temperatures might solve the puzzling low infrared excess (IRX) recently deduced for high-z galaxies from the IRX-β relation.

  8. Voluntary Running Attenuates Metabolic Dysfunction in Ovariectomized Low-Fit Rats

    PubMed Central

    Park, Young-Min; Padilla, Jaume; Kanaley, Jill A.; Zidon, Terese; Welly, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Thyfault, John P.; Booth, Frank W.; Vieira-Potter, Victoria J.

    2016-01-01

    INTRODUCTION Ovariectomy and high fat diet (HFD) worsen obesity and metabolic dysfunction associated with low aerobic fitness. Exercise training mitigates metabolic abnormalities induced by low aerobic fitness, but whether the protective effect is maintained following ovariectomy and HFD is unknown. PURPOSE This study determined whether, following ovariectomy and HFD, exercise training improves metabolic function in rats bred for low intrinsic aerobic capacity. METHODS Female rats selectively bred for low (LCR) and high (HCR) intrinsic aerobic capacity (n=30) were ovariectomized, fed HFD, and randomized to either a sedentary (SED) or voluntary wheel running (EX) group. Resting energy expenditure, glucose tolerance, and spontaneous physical activity were determined midway through the experiment, while body weight, wheel running volume, and food intake were assessed throughout the study. Body composition, circulating metabolic markers, and skeletal muscle gene and protein expression was measured at sacrifice. RESULTS EX reduced body weight and adiposity in LCR rats (−10% and −50%, respectively; P<0.05) and, unexpectedly, increased these variables in HCR rats (+7% and +37%, respectively; P<0.05) compared to their respective SED controls, likely due to dietary overcompensation. Wheel running volume was ~5-fold greater in HCR than LCR rats, yet EX enhanced insulin sensitivity equally in LCR and HCR rats (P<0.05). This EX-mediated improvement in metabolic function was associated with gene up-regulation of skeletal muscle IL-6&-10. EX also increased resting energy expenditure, skeletal muscle mitochondrial content (oxidative phosphorylation complexes and citrate synthase activity), and AMPK activation similarly in both lines (all P <0.05). CONCLUSION Despite a 5-fold difference in running volume between rat lines, EX similarly improved systemic insulin sensitivity, resting energy expenditure, and skeletal muscle mitochondrial content and AMPK activation in ovariectomized LCR and HCR rats fed HFD compared to their respective SED controls. PMID:27669449

  9. Effects of Continuous and Accumulated Exercise on Endothelial Function in Rat Aorta.

    PubMed

    Martinez, Juliana Edwiges; Taipeiro, Elane de Fátima; Chies, Agnaldo Bruno

    2017-04-01

    The practice of exercise in short bouts repeated throughout the day may be an alternative strategy to lift people out of physical inactivity. to evaluate if accumulated exercise, as occurs in continuous exercise training, improve endothelial function in rat aorta. Wistar male rats were divided into three groups: continuous exercise (CEx, 1 hour on the treadmill) or accumulated exercise (AEx, 4 bouts of 15 minutes / day) for 5 days/week for 8 weeks, or sedentary (SED). During the training period, body weight gain and increase in exercise performance were recorded. On sacrifice day, aorta was dissected into rings (3-5 mm) and mounted on the organ bath. Fitness was significantly greater in CEx and AEx rats as compared with SED animals. In addition, compared with the SED group, CEx animals had a lower body mass gain, and the aorta obtained from these animals had reduced contractile response to norepinephrine and greater acetylcholine-induced relaxation. These results were not observed in ACEx animals. Both CEx and AEx improved fitness, but only CEx led to reduced body weight gain and improved endothelial function. A prática de exercícios em sessões curtas que se repetem ao longo do dia pode ser uma alternativa para tirar as pessoas da inatividade física. Verificar se o exercício acumulado, tal como ocorre com o treinamento com exercício contínuo, melhora a função endotelial na aorta de ratos. Ratos Wistar machos foram divididos em 3 grupos: treinamento com exercício contínuo (ExC; 1 hora em esteira) ou com exercício acumulado (ExA; 4 sessões de 15 minutos ao longo do dia) por 5 dias/semana, durante 8 semanas, ou grupo sedentário (SED). Durante o treinamento, foram registrados o ganho de peso corporal e desempenho na esteira. No dia do sacrifício, anéis (3-5 mm) da aorta foram obtidos e montados em banho de órgãos. Animais ExC e ExA mostraram aptidão física significativamente maior em comparação com os SED. Paralelamente, em comparação com SED, animais ExC tiveram menor ganho de massa corporal, e aortas retiradas desses animais mostraram respostas contrácteis à noradrenalina reduzidas e maior relaxamento induzido pela acetilcolina. Esses resultados não foram observados no grupo ExA. Tanto o ExC quanto o ExA melhoraram a aptidão física, mas somente o ExC foi capaz de reduzir o ganho de peso corporal dos animais e melhorar a função endotelial.

  10. The SFR-M∗ main sequence archetypal star-formation history and analytical models

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Elbaz, D.; Fensch, J.

    2017-12-01

    The star-formation history (SFH) of galaxies is a key assumption to derive their physical properties and can lead to strong biases. In this work, we derive the SFH of main sequence (MS) galaxies and show how the peak SFH of a galaxy depends on its seed mass at, for example, z = 5. This seed mass reflects the galaxy's underlying dark matter (DM) halo environment. We show that, following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundance matching, these masses correspond to hot and massive DM halos which state could result in less efficient gas inflows on the galaxies and thus could be the origin of limited stellar mass growth. As a result, we show that galaxies, still on the MS, can enter the passive region of the UVJ diagram while still forming stars. The best fit to the MS SFH is provided by a right skew peak function for which we provide parameters depending on the seed mass of the galaxy. The ability of the classical analytical SFHs to retrieve the star-formation rate (SFR) of galaxies from spectral energy distribution (SED) fitting is studied. Due to mathematical limitations, the exponentially declining and delayed SFH struggle to model high SFR, which starts to be problematic at z > 2. The exponentially rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but they are not able to model low values such as those expected at low redshift for massive galaxies. By simulating galaxies SED from the MS SFH, we show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS, with an error ranging from 5 to 40% depending on the SFH assumption and redshift; but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial gradient of age, parallel to the MS, which is not exhibited by the simulated sample. This gradient is also produced on real data as we show using a sample of real galaxies with redshifts between 1.5 and 2.5. Here, we propose an SFH composed of a delayed form to model the bulk of stellar population with the addition of a flexibility in the recent SFH. This SFH provides very good estimates of the SFR of MS, starbursts, and rapidly quenched galaxies at all redshift. Furthermore, when used on the real sample, the age gradient disappears which show its dependency on the SFH assumption made to perform the SED fitting.

  11. Do siblings always form and evolve simultaneously? Testing the coevality of multiple protostellar systems through SEDs

    NASA Astrophysics Data System (ADS)

    Murillo, N. M.; van Dishoeck, E. F.; Tobin, J. J.; Fedele, D.

    2016-07-01

    Context. Multiplicity is common in field stars and among protostellar systems. Models suggest two paths of formation: turbulent fragmentation and protostellar disk fragmentation. Aims: We attempt to find whether or not the coevality frequency of multiple protostellar systems can help to better understand their formation mechanism. The coevality frequency is determined by constraining the relative evolutionary stages of the components in a multiple system. Methods: Spectral energy distributions (SEDs) for known multiple protostars in Perseus were constructed from literature data. Herschel PACS photometric maps were used to sample the peak of the SED for systems with separations ≥7″, a crucial aspect in determining the evolutionary stage of a protostellar system. Inclination effects and the surrounding envelope and outflows were considered to decouple source geometry from evolution. This together with the shape and derived properties from the SED was used to determine each system's coevality as accurately as possible. SED models were used to examine the frequency of non-coevality that is due to geometry. Results: We find a non-coevality frequency of 33 ± 10% from the comparison of SED shapes of resolved multiple systems. Other source parameters suggest a somewhat lower frequency of non-coevality. The frequency of apparent non-coevality that is due to random inclination angle pairings of model SEDs is 17 ± 0.5%. Observations of the outflow of resolved multiple systems do not suggest significant misalignments within multiple systems. Effects of unresolved multiples on the SED shape are also investigated. Conclusions: We find that one-third of the multiple protostellar systems sampled here are non-coeval, which is more than expected from random geometric orientations. The other two-thirds are found to be coeval. Higher order multiples show a tendency to be non-coeval. The frequency of non-coevality found here is most likely due to formation and enhanced by dynamical evolution.

  12. A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field. I. Spectral Energy Distributions and Luminosities

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Salvato, M.; Scoville, N. Z.; Surace, J.; Yan, L.; Brusa, M.; Capak, P.; Caputi, K.; Carollo, C. M.; Civano, F.; Elvis, M.; Faure, C.; Hasinger, G.; Koekemoer, A. M.; Lee, N.; Lilly, S.; Liu, C. T.; McCracken, H. J.; Schinnerer, E.; Smolčić, V.; Taniguchi, Y.; Thompson, D. J.; Trump, J.

    2010-02-01

    We present a large robust sample of 1503 reliable and unconfused 70 μm selected sources from the multiwavelength data set of the Cosmic Evolution Survey. Using the Spitzer IRAC and MIPS photometry, we estimate the total infrared (IR) luminosity, L IR (8-1000 μm), by finding the best-fit template from several different template libraries. The long-wavelength 70 and 160 μm data allow us to obtain a reliable estimate of L IR, accurate to within 0.2 and 0.05 dex, respectively. The 70 μm data point enables a significant improvement over the luminosity estimates possible with only a 24 μm detection. The full sample spans a wide range in IR luminosity, L IR ≈ 108-1014 L sun, with a median luminosity of 1011.4 L sun. We identify a total of 687 luminous, 303 ultraluminous, and 31 hyperluminous infrared galaxies (LIRGs, ULIRGs, and HyLIRGs) over the redshift range 0.01 < z < 3.5 with a median redshift of 0.5. Presented here are the full spectral energy distributions (SEDs) for each of the sources compiled from the extensive multiwavelength data set from the ultraviolet (UV) to the far-infrared. A catalog of the general properties of the sample (including the photometry, redshifts, and L IR) is included with this paper. We find that the overall shape of the SED and trends with L IR (e.g., IR color temperatures and optical-IR ratios) are similar to what has been seen in studies of local objects; however, our large sample allows us to see the extreme spread in UV to near-infrared colors spanning nearly 3 orders of magnitude. In addition, using SED fits we find possible evidence for a subset of cooler ultraluminous objects than observed locally. However, until direct observations at longer wavelengths are obtained, the peak of emission and the dust temperature cannot be well constrained. We use these SEDs, along with the deep radio and X-ray coverage of the field, to identify a large sample of candidate active galactic nuclei (AGNs). We find that the fraction of AGNs increases strongly with L IR, as it does in the local universe, and that nearly 70% of ULIRGs and all HyLIRGs likely host a powerful AGN. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555; also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; the National Radio Astronomy Observatory which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the National Research Council of Canada, the Canadian Astronomy Data Centre, the Centre National de la Recherche Scientifique de France, TERAPIX, and the University of Hawaii.

  13. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan

    The spectral energy distributions of galaxies inform us about a galaxy's stellar populations and interstellar medium, revealing stories of galaxy formation and evolution. How we interpret this light depends in part on our proximity to the galaxy. For nearby galaxies, detailed star formation histories can be extracted from the resolved stellar populations, while more distant galaxies feature the contributions of entire stellar populations within their integrated spectral energy distribution (SED). This thesis aims to resolve whether the techniques used to investigate stellar populations in distant galaxies are consistent with those available for nearby galaxies. As the nearest spiral galaxy, the Andromeda Galaxy (M31) is the ideal testbed for the joint study of resolved stellar populations and panchromatic SEDs. We present the Andromeda Optical and Infrared Disk Survey (ANDROIDS), which adds new near-UV to near-IR (u*g'r'i'JKs) imaging using the MegaCam and WIRCam cameras at the Canada-France-Hawaii telescope to the available M31 panchromatic dataset. To accurately subtract photometric background from our extremely wide-field (14 square degree) mosaics, we present observing and data reduction techniques with sky-target nodding, optimization of image-to-image surface brightness, and a novel hierarchical Bayesian model to trace the background signal while modelling the astrophysical SED. We model the spectral energy distributions of M31 pixels with MAGPHYS (da Cunha et al. 2008) and compare those results to resolved stellar population models of the same pixels from the Panchromatic Hubble Andromeda Treasury (PHAT) survey (Williams et al. 2017). We find substantial (0.3 dex) differences in stellar mass estimates despite a common use of the Chabrier (2003) initial mass function. Stellar mass estimated from the resolved stellar population is larger than any mass estimate from SED models or colour-M/L relations (CMLRs). There is also considerable diversity among CMLR estimators, largely driven by differences in the star formation history prior distribution. We find broad consistency between the star formation history estimated by integrated spectral energy distributions and resolved stars. Generally, spectral energy distribution models yield a stronger inside-out radial metallicity gradient and bias towards younger mean ages than resolved stellar population models.

  14. DUST AROUND R CORONAE BOREALIS STARS. I. SPITZER/INFRARED SPECTROGRAPH OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anibal Garcia-Hernandez, D.; Kameswara Rao, N.; Lambert, David L., E-mail: agarcia@iac.es, E-mail: nkrao@iiap.res.in, E-mail: dll@astro.as.utexas.edu

    2011-09-20

    Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 {mu}m for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 {mu}mmore » and 25 {mu}m are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 {mu}m luminosity and [8.0]-[24.0] color index.« less

  15. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Diego, J. A.; De Leo, M. A.; Cepa, J.

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. Wemore » compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.« less

  16. Using the Markov chain Monte Carlo method to study the physical properties of GeV-TeV BL Lac objects

    NASA Astrophysics Data System (ADS)

    Qin, Longhua; Wang, Jiancheng; Yang, Chuyuan; Yuan, Zunli; Mao, Jirong; Kang, Shiju

    2018-01-01

    We fit the spectral energy distributions (SEDs) of 46 GeV-TeV BL Lac objects in the frame of leptonic one-zone synchrotron self-Compton (SSC) model and investigate the physical properties of these objects. We use the Markov chain Monte Carlo (MCMC) method to obtain the basic parameters, such as magnetic field (B), the break energy of the relativistic electron distribution (γ ^' }b), and the electron energy spectral index. Based on the modeling results, we support the following scenarios for GeV-TeV BL Lac objects. (1) Some sources have large Doppler factors, implying other radiation mechanism should be considered. (2) Compared with flat spectrum quasars (FSRQs), GeV-TeV BL Lac objects have weaker magnetic fields and larger Doppler factors, which cause the ineffective cooling and shift the SEDs to higher bands. Their jet powers are around 4.0 × 1045 erg s-1, compared with radiation power, 5.0 × 1042 erg s-1, indicating that only a small fraction of jet power is transformed into the emission power. (3) For some BL Lacs with large Doppler factors, their jet components could have two substructures, e.g., the fast core and the slow sheath. For most GeV-TeV BL Lacs, Kelvin-Helmholtz instabilities are suppressed by their higher magnetic fields, leading to micro-variability or intro-day variability in the optical bands. (4) Combined with a sample of FSRQs, an anti-correlation between the peak luminosity, Lpk, and the peak frequency, νpk, is obtained, favoring the blazar sequence scenario. In addition, an anti-correlation between the jet power, Pjet, and the break Lorentz factor, γb, also supports the blazar sequence.

  17. VLT/X-shooter GRBs: Individual extinction curves of star-forming regions★

    NASA Astrophysics Data System (ADS)

    Zafar, T.; Watson, D.; Møller, P.; Selsing, J.; Fynbo, J. PU; Schady, P.; Wiersema, K.; Levan, A. J.; Heintz, K. E.; Postigo, A. de Ugarte; D'Elia, V.; Jakobsson, P.; Bolmer, J.; Japelj, J.; Covino, S.; Gomboc, A.; Cano, Z.

    2018-05-01

    The extinction profiles in Gamma-Ray Burst (GRB) afterglow spectral energy distributions (SEDs) are usually described by the Small Magellanic Cloud (SMC)-type extinction curve. In different empirical extinction laws, the total-to-selective extinction, RV, is an important quantity because of its relation to dust grain sizes and compositions. We here analyse a sample of 17 GRBs (0.34

  18. EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, N.; Benson, A.; Fu, Hai

    2013-05-01

    Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between themore » mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.« less

  19. The SED Machine: a dedicated transient IFU spectrograph

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Sagi; Konidaris, Nick; Quimby, Robert; Davis, Jack T.; Ngeow, Chow Choong; Ritter, Andreas; Rudy, Alexander

    2012-09-01

    The Spectral Energy Distribution (SED) Machine is an Integral Field Unit (IFU) spectrograph designed specifically to classify transients. It is comprised of two subsystems. A lenselet based IFU, with a 26" × 26" Field of View (FoV) and ˜ 0.75" spaxels feeds a constant resolution (R˜100) triple-prism. The dispersed rays are than imaged onto an off-the-shelf CCD detector. The second subsystem, the Rainbow Camera (RC), is a 4-band seeing-limited imager with a 12.5' × 12.5' FoV around the IFU that will allow real time spectrophotometric calibrations with a ˜ 5% accuracy. Data from both subsystems will be processed in real time using a dedicated reduction pipeline. The SED Machine will be mounted on the Palomar 60-inch robotic telescope (P60), covers a wavelength range of 370 - 920nm at high throughput and will classify transients from on-going and future surveys at a high rate. This will provide good statistics for common types of transients, and a better ability to discover and study rare and exotic ones. We present the science cases, optical design, and data reduction strategy of the SED Machine. The SED machine is currently being constructed at the Calofornia Institute of Technology, and will be comissioned on the spring of 2013.

  20. Advance and application of the stratigraphic simulation model 2D- SedFlux: From tank experiment to geological scale simulation

    NASA Astrophysics Data System (ADS)

    Kubo, Yu'suke; Syvitski, James P. M.; Hutton, Eric W. H.; Paola, Chris

    2005-07-01

    The stratigraphic simulation model 2D- SedFlux is further developed and applied to a turbidite experiment in a subsiding minibasin. The new module dynamically simulates evolving hyperpycnal flows and their interaction with the basin bed. Comparison between the numerical results and the experimental results verifies the ability of 2D- SedFlux to predict the distribution of the sediments and the possible feedback from subsidence. The model was subsequently applied to geological-scale minibasins such as are located in the Gulf of Mexico. Distance from the sediment source is determined to be more influential than the sediment entrapment in upstream minibasin. The results suggest that efficiency of sediment entrapment by a basin was not influenced by the distance from the sediment source.

  1. Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G. J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M. W. L.; Baes, M.; Bianchi, S.; De Looze, I.; di Serego Alighieri, S.; Galliano, F.; Hughes, T. M.; Madden, S. C.; Pierini, D.; Rémy-Ruyer, A.; Spinoglio, L.; Vaccari, M.; Viaene, S.; Vlahakis, C.

    2014-05-01

    Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 μm to 500 μm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20-60 μm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 μm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infraredluminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are correlated, suggesting that the diffuse dust component is heated by both the young stars in star-forming regions and the diffuse evolved population. We use these results to provide a new set of infrared templates calibrated with Herschel observations on nearby galaxies and a mean SED template to provide the z = 0 reference for cosmological studies. For the same purpose, we place our sample on the SFR - M∗ diagram. The templates are compared to the most popular infrared SED libraries, enlightening a large discrepancy between all of them in the 20-100 μm range. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 4 and appendices are available in electronic form at http://www.aanda.org

  2. Early Science Planning of Protoplanetary Disks and Protostars in the Orion Nebula Cluster Using SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; Adams, J. D.; Herter, T. L.; Gull, G.; Henderson, C.; Schoenwald, J.; Keller, L.; Megeath, T. S.

    2011-01-01

    The Faint Object Camera for the SOFIA Telescope (FORCAST) is a mid-infrared facility instrument for the Stratospheric Observatory For Infrared Astronomy (SOFIA). In late May of this year, FORCAST achieved first light on SOFIA during a Telescope Assembly characterization flight, successfully taking photometry of Jupiter, its moons, and M82 from an altitude of 35,000 ft. Analysis of images of Jupiter and one of its moons, Ganymede, show the in-flight sensitivity to be comparable to that expected from preflight (lab) measurements and models. In preparation for SOFIA Short Science, we constructed Spectral Energy Distributions (SEDs) for known proplyds and protostars (Smith et al. 2005) in the core of the Orion molecular cloud using 2MASS (Skrutskie et al. 2006), IRAC on Spitzer, TReCS on Gemini South (Smith et al. 2005), and 880mm SCUBA data (Mann and Williams 2009). FORCAST will provide important wavelength coverage (20 - 40 microns) which when used in conjunction with previous data will constrain the physical properties of the proplyds and protostars. We fit the observed SEDs with those from radiative transfer models for circumstellar disks and protostars from Robitaille et al (2006, 2007). With these models, we can extrapolate into the 20 - 40 micron region of FORCAST and determine the range of models that FORCAST is capable of detecting. Using the FORCAST sensitivity model and the SEDs of known proplyds, we expect to detect 67% of the proplyds found by other investigations. However, detectability will be greatly influenced by the presence of structures in the diffuse dust emission associated with the HII region complex. Comparing FORCAST observations with the radiative transfer models will help to understand the physical properties of proplyds and protostars, and perhaps illuminate the impact of their environments, such as photoevaporation of disks and effects from crowding.

  3. APEX/SABOCA observations of small-scale structure of infrared-dark clouds . I. Early evolutionary stages of star-forming cores

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.; Henning, Thomas; Beuther, Henrik

    2013-11-01

    Infrared-dark clouds (IRDCs) harbor the early phases of cluster and high-mass star formation and are comprised of cold (~20 K), dense (n > 104 cm-3) gas. The spectral energy distribution (SED) of IRDCs is dominated by the far-infrared and millimeter wavelength regime, and our initial Herschel study examined IRDCs at the peak of the SED with high angular resolution. Here we present a follow-up study using the SABOCA instrument on APEX which delivers 7.8″ angular resolution at 350 μm, matching the resolution we achieved with Herschel/PACS, and allowing us to characterize substructure on ~0.1 pc scales. Our sample of 11 nearby IRDCs are a mix of filamentary and clumpy morphologies, and the filamentary clouds show significant hierarchical structure, while the clumpy IRDCs exhibit little hierarchical structure. All IRDCs, regardless of morphology, have about 14% of their total mass in small scale core-like structures which roughly follow a trend of constant volume density over all size scales. Out of the 89 protostellar cores we identified in this sample with Herschel, we recover 40 of the brightest and re-fit their SEDs and find their properties agree fairly well with our previous estimates (⟨ T ⟩ ~ 19 K). We detect a new population of "cold cores" which have no 70 μm counterpart, but are 100 and 160 μm-bright, with colder temperatures (⟨ T ⟩ ~ 16 K). This latter population, along with SABOCA-only detections, are predominantly low-mass objects, but their evolutionary diagnostics are consistent with the earliest starless or prestellar phase of cores in IRDCs. Based on observations carried out with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between Max Planck Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO).Appendices are available in electronic form at http://www.aanda.org

  4. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.

  5. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  6. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam atmore » 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.« less

  7. Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah

    2015-11-01

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.

  8. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    We report Herschel/SPIRE, Spitzer and Wide-field Infrared Survey Explorer observations of 44 z ≅ 4.8 optically selected active galactic nuclei (AGNs). This flux-limited sample contains the highest mass black holes (BHs) at this redshift. Ten of the objects were detected by Herschel and five show emission that is not clearly associated with the AGNs. The star formation (SF) luminosity (L{sub SF}) obtained by fitting the spectral energy distribution (SED) with standard SF templates, taking into account AGN contribution, is in the range 10{sup 46.62}-10{sup 47.21} erg s{sup –1} corresponding to SF rates of 1090-4240 M{sub ☉} yr{sup –1}. Fitting withmore » very luminous submillimeter galaxy SEDs gives SF rates that are smaller by 0.05 dex when using all bands and 0.1 dex when ignoring the 250 μm band. A 40 K graybody fits to only the 500 μm fluxes reduce L{sub SF} by about a factor of two. A stacking analysis of 29 undetected sources gives significant signals in all three bands. A SF template fit indicates L{sub SF} = 10{sup 46.19-46.23} erg s{sup –1} depending on the assumed AGN contribution. A 40 K fit to the stacked 500 μm flux gives L{sub SF} = 10{sup 45.95} erg s{sup –1}. The mean BH mass (M{sub BH}) and AGN luminosity (L{sub AGN}) of the detected sources are significantly higher than those of the undetected ones. The spectral differences are seen all the way from UV to far infrared wavelengths. The mean optical-UV spectra are similar to those predicted for thin accretion disks around BHs with similar masses and accretion rates. We suggest two alternative explanations to the correlation of L{sub SF}, L{sub AGN} and M{sub BH}, one involving no AGN feedback and the second involving moderate feedback that affects, but does not totally quench, SF in three-quarters of the sources. We compare our L{sub SF} and L{sub AGN} to lower redshift samples and show a new correlation between L{sub SF} and M{sub BH}. We also examine several rather speculative ideas about the host galaxy properties including the possibility that the detected sources are above the SF mass sequence (MS) at z ≅ 4.8, perhaps in mergers, and most of the undetected sources are on the MS.« less

  10. Time-Resolved SEDs of Blazars Flares

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Dorner, D.; Kadler, M.; Beuchert, T.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Mannheim, K.; Wilms, J.

    2017-10-01

    The origin of very-high-energy gamma rays in active galactic nuclei is still under debate. While snapshots of spectral energy distributions (SEDs) can usually be explained with simple competing models, the true emission mechanisms may be revealed from dynamic SED studies during exceptional source states. Based on the FACT monitoring program, we have set up a multiwavelength target-of-opportunity program which allows us to measure time-resolved SEDs during blazar flares. While the FACT and Fermi measurements cover the high energy peak continuously, X-ray observations with INTEGRAL and XMM-Newton are triggered in case of a bright flare. To distinguish orphan flares from time lags between the energy bands, this is combined with an X-ray monitoring with the Swift satellite. In December 2015, observations of the X-ray telescopes Swift and INTEGRAL were triggered during a moderately-high flux state of the TeV blazar Mrk 421. Pre- and post observations in X-rays are available from Swift-XRT. In this presentation, the results from the Mrk 421 ToO observations will be summarized.

  11. Panchromatic Calibration of Astronomical Observations with State-of-the-Art White Dwarf Model Atmospheres

    NASA Astrophysics Data System (ADS)

    Rauch, T.

    2016-05-01

    Theoretical spectral energy distributions (SEDs) of white dwarfs provide a powerful tool for cross-calibration and sensitivity control of instruments from the far infrared to the X-ray energy range. Such SEDs can be calculated from fully metal-line blanketed NLTE model-atmospheres that are e.g. computed by the Tübingen NLTE Model-Atmosphere Package (TMAP) that has arrived at a high level of sophistication. TMAP was successfully employed for the reliable spectral analysis of many hot, compact post-AGB stars. High-quality stellar spectra obtained over a wide energy range establish a data base with a large number of spectral lines of many successive ions of different species. Their analysis allows to determine effective temperatures, surface gravities, and element abundances of individual (pre-)white dwarfs with very small error ranges. We present applications of TMAP SEDs for spectral analyses of hot, compact stars in the parameter range from (pre-) white dwarfs to neutron stars and demonstrate the improvement of flux calibration using white-dwarf SEDs that are e.g. available via registered services in the Virtual Observatory.

  12. The spectral energy distribution of galaxies at z > 2.5: Implication from the Herschel/SPIRE color-color diagram

    NASA Astrophysics Data System (ADS)

    Yuan, Fangting; Buat, Veronique; Burgarella, Denis; Ciesla, Laure; Heinis, Sebastien; Shen, Shiyin; Shao, Zhengyi; Hou, Jinliang

    2015-08-01

    We use the Herschel SPIRE color-color diagram to study the spectral energy distribution (SED) and the redshift estimation of high-z galaxies. We collect a sample of 57 galaxies with spectroscopically confirmed redshifts and reliable flux measurements at redshift z=2.5-6.4, and compare their average SPIRE colors with SED templates from local and high-z libraries. We find that local SEDs are inconsistent with high-z observations. For the libraries of Chary & Elbaz (2001) and Dale & Helou (2002), the local calibrations of the parameters LIR and alpha need to be adjusted to around 1011Lsun and 1.5 to describe the average colors given by the observations. For high-z libraries, the templates of Magdis et al. (2012) can well describe the average colors of the observations at high redshift, justifying their assumption of an evolution of SED from z=0 to 3. Using the templates of Magdis et al. (2012), we defined color cuts to divide the SPIRE color-color diagram into different regions with different mean redshifts. We tested this method and two other color cut methods 500 micron risers and the method of Amblard et al. (2010) using a large sample of 786 Herschel-selected galaxies, and find that these color cut methods can separate the sample into populations with different mean redshifts, although the dispersion of redshifts in each population is quite large.

  13. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  14. Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 ≤ z < 3

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Faber, S. M.; Giavalisco, Mauro; Koekemoer, Anton M.; Koo, David C.; Lu, Yu; Mandelker, Nir; Primack, Joel R.; Ceverino, Daniel; de Mello, Duilia F.; Ferguson, Henry C.; Hathi, Nimish; Kocevski, Dale; Lucas, Ray A.; Pérez-González, Pablo G.; Ravindranath, Swara; Soto, Emmaris; Straughn, Amber; Wang, Weichen

    2018-02-01

    Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from 1270 galaxies at 0.5≤slant z< 3.0. The clumps are detected from rest-frame UV images, as described in our previous paper. Their physical properties (e.g., rest-frame color, stellar mass ({M}* ), star formation rate (SFR), age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U ‑ V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and {M}* of the host galaxies: at a fixed {M}* , the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with {M}* . Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B ‑ V) gradient, and a positive specific SFR gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.

  15. Physical Properties of UV-bright Clumps in Star-forming Galaxies at 0.5 ≤ z < 3

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Dekel, Avishai; Mandelker, Nir; Primack, Joel R.; CANDELS

    2018-06-01

    Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. As a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from the rest-frame images of 1270 galaxies at 0.5≤z<3.0. The physical properties of clumps (e.g., rest-frame color, stellar mass, star formation rate, age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U-V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and stellar mass of the host galaxies: at a fixed stellar mass, the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with stellar mass. Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B-V) gradient, and a positive specific star formation rate gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.

  16. VizieR Online Data Catalog: NLTE spectral analysis of white dwarf G191-B2B (Rauch+, 2013)

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.

    2013-08-01

    In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. (3 data files).

  17. Seasonal variation of the radial brightness contrast of Saturn's rings viewed in mid-infrared by Subaru/COMICS

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hideaki; Morishima, Ryuji; Fujiyoshi, Takuya; Yamashita, Takuya

    2017-03-01

    Aims: This paper investigates the mid-infrared (MIR) characteristics of Saturn's rings. Methods: We collected and analyzed MIR high spatial resolution images of Saturn's rings obtained in January 2008 and April 2005 with the COoled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the Subaru Telescope, and investigated the spatial variation in the surface brightness of the rings in multiple bands in the MIR. We also composed the spectral energy distributions (SEDs) of the C, B, and A rings and the Cassini Division, and estimated the temperatures of the rings from the SEDs assuming the optical depths. Results: We found that the C ring and the Cassini Division were warmer than the B and A rings in 2008, which could be accounted for by their lower albedos, lower optical depths, and smaller self-shadowing effect. We also fonud that the C ring and the Cassini Division were considerably brighter than the B and A rings in the MIR in 2008 and the radial contrast of the ring brightness is the inverse of that in 2005, which is interpreted as a result of a seasonal effect with changing elevations of the Sun and observer above the ring plane. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A29

  18. VOSED: a tool for the characterization of developing planetary systems

    NASA Astrophysics Data System (ADS)

    Solano, E.; Gutiérrez, R.; Delgado, A.; Sarro, L. M.; Merín, B.

    2007-08-01

    The transition phase from optically thick disks around young pre-main sequence stars to optically thin debris disks around Vega type stars is not well understood and plays an important role in the theory of planet formation. One of the most promising methods to characterize this process is the fitting of the observed SED with disk models. However, despite its potential, this technique is affected by two major problems if a non-VO methodology is used: on the one hand, SEDs building requires accessing to a variety of astronomical services which provide, in most of the cases, heterogeneous information. On the other hand, model fitting demands a tremendous amount of work and time which makes it very inefficient even for a modest dataset. This is an important issue considering the large volume of data that missions like Spitzer is producing. In the framework of the Spanish Virtual Observatory (SVO) we have developed VOSED an application that permits to characterize the protoplanetary disks around young stars taking advantage of the already existing VO standards and tools. The application allows the user to gather photometric and spectroscopic information from a number of VO services, trace the SED, and fit the photospheric contribution with a stellar model and the IR excess with a disk model. The Kurucz models described in Castelli et al. (1997, A&A, 318, 841) are used to reproduce the photospheric contribution whereas the grid of models of accretion disks irradiated by their central stars developed by D'Alessio et al. (2005, ) is used for the disk contribution. In both cases, the models are retrieved from the SVO Theoretical Model Web Server using the TSAP protocol. As pointed out before, model fitting constitutes a fundamental step in the analysis process. VOSED includes a tool to estimate the model parameters (both stellar and disk) based on bayesian inference. The main aim of the tool is to quantitatively analyse the data in terms of the evidence of models of different complexity, evaluate what other alternative models can compete with the most a posteriori probable one and what are the most discriminant observations to discard alternatives.

  19. Spatially resolving the dust properties and submillimetre excess in M 33

    NASA Astrophysics Data System (ADS)

    Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.

    2018-05-01

    Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported. We have produced a map of submillimetre excess in the 500 μm SPIRE band for the disc of M 33. The excess can be as high as 50% and increases at large galactocentric distances. We further studied the relation of the excess with other physical properties of the galaxy and find that the excess is prominent in zones of diffuse ISM outside the main star-forming regions, where the molecular gas and dust surface density are low.

  20. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 M⊙ yr-1. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  1. Multiple Magnetic Storm Study of the High-Altitude Redistribution of Equatorial Plasma

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Crowley, G.; Curtis, N.; Anderson, D.

    2008-12-01

    During geomagnetic storms, particularly when prompt penetration electric fields (PPE) occur, the equatorial plasma can be lifted to very high altitudes and then diffuse along magnetic field lines to higher than normal latitudes. During these cases very high plasma density (total electron content (TEC) greater than 200 TECU) can be found at these higher latitudes. Shortly after the PPE lifts the equatorial plasma to higher altitudes, at least in the US sector, phenomena known as storm-enhanced density (SED) can occur. SEDs occur in the post-noon time frame and consist of a very high density bulge that seems to occur in the southern USA and Caribbean region, followed by a narrow plume of high density plasma that flows into the high-latitude throat near local noon, and across the polar cap. An outstanding research question is: Exactly how is the high density SED plasma, particularly in the bulge related to the PPE and lifting of the equatorial plasma? Ionospheric imaging of electron density and TEC seem to show a gap in density between the poleward extent of the equatorial plasma and the equatorial extent of the SED plasma. Further, there are magnetic storm events where SEDs do not form (November 2004 as a good example). This paper will investigate the relationship between the equatorial high altitude plasma distribution during magnetic storms, and the initiation and evolution of the SED feature. We will examine eight separate storms from 2003-2006 using the ionospheric data assimilation algorithm IDA4D. In particular we will focus on time periods when LEO satellite GPS TEC data is available from CHAMP, SACC, GRACE and the COSMIC constellation (2006 and beyond). These data sets directly measure the TEC above the satellites, and therefore are good tracers of the high altitude plasma distribution. IDA4D ingests these data sets and uses them to get an improved image of the plasma density for the topside ionosphere and plasmasphere. The resulting 4D images of high altitude densities will be cross compared for the various storms and the similarities and differences will be studied and correlated with various geophysical parameters such as the interplanetary magnetic field (Bz), Dst, hemispheric power, cross cap potential, PPE, equatorial vertical drifts, and the interplanetary electric field. The overall objective is to elucidate the physical relationships that govern the redistribution of equatorial plasma during storms, and the generation and evolution of SEDs.

  2. The mass-loss return from evolved stars to the Large Magellanic Cloud. V. The GRAMS carbon-star model grid

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Meixner, M.

    2011-08-01

    Context. Outflows from asymptotic giant branch (AGB) and red supergiant (RSG) stars inject dust into the interstellar medium. The total rate of dust return provides an important constraint to galactic chemical evolution models. However, this requires detailed radiative transfer (RT) modeling of individual stars, which becomes impractical for large data sets. An alternative approach is to select the best-fit spectral energy distribution (SED) from a grid of dust shell models, allowing for a faster determination of the luminosities and mass-loss rates for entire samples. Aims: We have developed the Grid of RSG and AGB ModelS (GRAMS) to measure the mass-loss return from evolved stars. The models span the range of stellar, dust shell and grain properties relevant to evolved stars. The GRAMS model database will be made available to the scientific community. In this paper we present the carbon-rich AGB model grid and compare our results with photometry and spectra of Large Magellanic Cloud (LMC) carbon stars from the SAGE (Surveying the Agents of Galaxy Evolution) and SAGE-Spec programs. Methods: We generate models for spherically symmetric dust shells using the 2Dust code, with hydrostatic models for the central stars. The model photospheres have effective temperatures between 2600 and 4000 K and luminosities from ~2000 L⊙ to ~40 000 L⊙. Assuming a constant expansion velocity, we explore five values of the inner radius Rin of the dust shell (1.5, 3, 4.5, 7 and 12 Rstar). We fix the outer radius at 1000 Rin. Based on the results from our previous study, we use amorphous carbon dust mixed with 10% silicon carbide by mass. The grain size distribution follows a power-law and an exponential falloff at large sizes. The models span twenty-six values of 11.3 μm optical depth, ranging from 0.001 to 4. For each model, 2Dust calculates the output SED from 0.2 to 200 μm. Results: Over 12 000 models have dust temperatures below 1800 K. For these, we derive synthetic photometry in optical, near-infrared and mid-infrared filters for comparison with available data. We find good agreement with magnitudes and colors observed for LMC carbon-rich and extreme AGB star candidates from the SAGE survey, as well as spectroscopically confirmed carbon stars from the SAGE-Spec study. Our models reproduce the IRAC colors of most of the extreme AGB star candidates, consistent with the expectation that a majority of these enshrouded stars have carbon-rich dust. Finally, we fit the SEDs of some well-studied carbon stars and compare the resulting luminosities and mass-loss rates with those from previous studies. The model grid is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A54

  3. A Comparative Study of YSO Classification Techniques using WISE Observations of the KR 120 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Kang, Sung-Ju; Kerton, C. R.

    2014-01-01

    KR 120 (Sh2-187) is a small Galactic HII region located at a distance of 1.4 kpc that shows evidence for triggered star formation in the surrounding molecular cloud. We present an analysis of the young stellar object (YSO) population of the molecular cloud as determined using a variety of classification techniques. YSO candidates are selected from the WISE all sky catalog and classified as Class I, Class II and Flat based on 1) spectral index, 2) color-color or color-magnitude plots, and 3) spectral energy distribution (SED) fits to radiative transfer models. We examine the discrepancies in YSO classification between the various techniques and explore how these discrepancies lead to uncertainty in such scientifically interesting quantities such as the ratio of Class I/Class II sources and the surface density of YSOs at various stages of evolution.

  4. GRAMS: A Grid of RSG and AGB Models

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Meixner, M.

    2011-09-01

    We present a grid of oxygen- and carbon-rich circumstellar dust radiative transfer models for asymptotic giant branch (AGB) and red supergiant (RSG) stars. The grid samples a large region of the relevant parameter space, and it allows for a quick calculation of bolometric fluxes and dust mass-loss rates from multi-wavelength photometry. This method of fitting observed spectral energy distributions (SEDs) is preferred over detailed radiative transfer calculations, especially for large data sets such as the SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Magellanic Clouds. The mass-loss rates calculated for SAGE data will allow us to quantify the dust returned to the interstellar medium (ISM) by the entire AGB population. The total injection rate provides an important constraint for models of galactic chemical evolution. Here, we discuss our carbon star models and compare the results to SAGE observations in the Large Magellanic Cloud (LMC).

  5. Long-term monitoring of PKS 0537-441 with Fermi-LAT and multiwavelength observations

    DOE PAGES

    D'Ammando, F.; Antolini, E.; Tosti, G.; ...

    2013-03-20

    Here, we report on multiwavelength observations of the blazar PKS 0537-441 (z = 0.896) obtained from microwaves through γ-rays by Submillimeter Array, Rapid Eye Mounting, Automatic Telescope for Optical Monitoring (ATOM), Swift and Fermi mostly during 2008 August–2010 April. Strong variability has been observed in γ-rays, with two major flaring episodes (2009 July and 2010 March) and a harder-when-brighter behaviour, quite common for flat spectrum radio quasars and low-synchrotron-peaked BL Lacertae objects (BL Lacs), in 2010 March. In the same way, the spectral energy distribution (SED) of the source cannot be modelled by a simple synchrotron self-Compton model, as opposedmore » to many BL Lacs, but the addition of an external Compton component of seed photons from a dust torus is needed. The 230 GHz light curve showed an increase simultaneous with the γ-ray one, indicating co-spatiality of the mm and γ-ray emission region likely at large distance from the central engine. The low, average, and high activity SED of the source could be fit changing only the electron distribution parameters, but two breaks in the electron distribution are necessary. The ensuing extra spectral break, located at near-infrared (NIR)–optical frequencies, together with that in γ-rays seem to indicate a common origin, most likely due to an intrinsic feature in the underlying electron distribution. An overall correlation between the γ-ray band with the R band and K band has been observed with no significant time lag. On the other hand, when inspecting the light curves on short time-scales some differences are evident. In particular, flaring activity has been detected in NIR and optical bands with no evident γ-ray counterparts in 2009 September and November. Moderate variability has been observed in X-rays with no correlation between flux and photon index. Finally, an increase of the detected X-ray flux with no counterpart at the other wavelengths has been observed in 2008 October, suggesting once more a complex correlation between the emission at different energy bands.« less

  6. Be Stars in the Open Cluster NGC 6830

    NASA Astrophysics Data System (ADS)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Konidaris, Nick; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chen, Hui-Chen; Malkan, Matthew A.; Chang, Chan-Kao; Laher, Russ; Huang, Li-Ching; Cheng, Yu-Chi; Edelson, Rick; Ritter, Andreas; Quimby, Robert; Ben-Ami, Sagi; Ofek, Eran. O.; Surace, Jason; Kulkarni, Shrinivas R.

    2016-05-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven Hα emitters were discovered using the Hα imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three Hα emitters were confirmed as Be stars with Hα equivalent widths greater than -10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong Hα emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  7. HO-CHUNK: Radiation Transfer code

    NASA Astrophysics Data System (ADS)

    Whitney, Barbara A.; Wood, Kenneth; Bjorkman, J. E.; Cohen, Martin; Wolff, Michael J.

    2017-11-01

    HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

  8. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  9. On the Jet Properties of γ-Ray-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Liang

    2018-04-01

    Based on broadband spectral energy distributions (SEDs), we estimate the jet physical parameters of 1392 γ-ray-loud active galactic nuclei (AGNs), the largest sample so far. The (SED) jet power and magnetization parameter are derived for these AGNs. Out of these sources, the accretion disk luminosity of 232 sources and (extended) kinetic jet powers of 159 sources are compiled from archived papers. We find the following. (1) Flat-spectrum radio quasars (FSRQs) and BL Lacs are well separated by {{Γ }}=-0.127{log}{L}γ +8.18 in the γ-ray luminosity versus photon index plane with a success rate of 88.6%. (2) Most FSRQs present a (SED) jet power larger than the accretion power, which suggests that the relativistic jet-launching mechanism is dominated by the Blandford–Znajek process. This result confirms previous findings. (3) There is a significant anticorrelation between jet magnetization and a ratio of the (SED) jet power to the (extended) kinetic jet power, which, for the first time, provides supporting evidence for the jet energy transportation theory: a high-magnetization jet may more easily transport energy to a large scale than a low-magnetization jet.

  10. Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process.

    PubMed

    Chen, Ai-Zheng; Li, Yi; Chau, Foo-Tim; Lau, Tsui-Yan; Hu, Jun-Yan; Zhao, Zheng; Mok, Daniel Kam-Wah

    2009-10-01

    Puerarin nanoparticles were firstly prepared in the process of solution-enhanced dispersion by supercritical CO(2) (SEDS) and then successfully microencapsulated by poly(l-lactide) (PLLA) in a modified SEDS process. By adding an organic non-solvent, an initial puerarin solution with a higher degree of saturation and lower concentration was obtained and applied in the SEDS process. The resulting puerarin nanoparticles were then suspended in PLLA solution and microencapsulated by PLLA in a modified SEDS process, where an 'injector' was employed in the particle suspension delivery system. The puerarin nanoparticles exhibited a good spherical shape, a smooth surface and a narrow particle size distribution with a mean particle size of 188 nm. After microencapsulation the puerarin-PLLA microparticles had a mean size of 675 nm, a drug load of 23.6% and an encapsulation efficiency of 39.4%; after a burst release at the first stage, the drug was released in a sustained process. Compared with the parallel study of a co-precipitation process, this microencapsulation process is a much more promising technique to prepare a drug-polymer carrier for a drug delivery system, especially for protein drugs.

  11. Modelling the spectral energy distribution of galaxies. V. The dust and PAH emission SEDs of disk galaxies

    NASA Astrophysics Data System (ADS)

    Popescu, C. C.; Tuffs, R. J.; Dopita, M. A.; Fischera, J.; Kylafis, N. D.; Madore, B. F.

    2011-03-01

    We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ^f_B, a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their predicted effect on the colours of the dust/PAH emission. In most practical applications B/D will actually not be a free parameter but (together with the angular size θgal and inclination i of the disk) act as a constraint derived from morphological decomposition of higher resolution optical images. This also extends the range of applicability of the model along the Hubble sequence. We further show that the dependence of the dust emission SED on the colour of the stellar photon field depends primarily on the ratio between the luminosities of the young and old stellar populations (as specified by the parameters SFR and old) rather than on the detailed colour of the emissions from either of these populations. The model is thereby independent of a priori assumptions of the detailed mathematical form of the dependence of SFR on time, allowing UV/optical SEDs to be dereddened without recourse to population synthesis models. Utilising these findings, we show how the predictive power of radiative transfer calculations can be combined with measurements of θgal, i and B/D from optical images to self-consistently fit UV/optical-MIR/FIR/submm SEDs observed in large statistical surveys in a fast and flexible way, deriving physical parameters on an object-by-object basis. We also identify a non-parametric test of the fidelity of the model in practical applications through comparison of the model predictions for FIR colour and surface brightness with the corresponding observed quantities. This should be effective in identifying objects such as AGNs or star-forming galaxies with markedly different geometries to those of the calibrators of Xilouris et al. The results of the calculations are made available in the form of a large library of simulated dust emission SEDs spanning the whole parameter space of our model, together with the corresponding library of dust attenuation calculated using the same model. We dedicate this paper to the memory of Angelos Misiriotis, sorely missed as a friend, collaborator and exceptional scientist.Appendices are only available in electronic form at http://www.aanda.orgThe data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A109

  12. A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Błażejowski, M.; Blaylock, G.; Bond, I. H.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L.; Gammell, S.; Gibbs, K.; Gillanders, G. G.; Grube, J.; Gutierrez, K.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Humensky, B.; Kenny, G.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M.; LeBohec, S.; Linton, E.; Lloyd-Evans, J.; Maier, G.; Mendoza, D.; Milovanovic, A.; Moriarty, P.; Nagai, T. N.; Ong, R. A.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Reynolds, P. T.; Rebillot, P.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarel, L.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R.; Zweerink, J.; VERITAS Collaboration; Mochejska, B.; Smith, B.; Aller, M.; Aller, H.; Teräsranta, H.; Boltwood, P.; Sadun, A.; Stanek, K.; Adams, E.; Foster, J.; Hartman, J.; Lai, K.; Böttcher, M.; Reimer, A.; Jung, I.

    2005-09-01

    We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.

  13. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The forsterite crystal shapes (equant, b-platelets, c-platelets, b-columns - excluding a- and c-columns) derived from our modeling [17] of comet Hale- Bopp, compared to laboratory synthesis experiments [18], suggests that these crystals are high temperature condensates. By observing and modeling the crystalline features in comet ISON, we may constrain forsterite crystal shape(s) and link to their formation temperature(s) and environment(s).

  14. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  15. UV to IR Luminosities and Dust Attenuation Determined from ~4000 K-selected Galaxies at 1 < z < 3 in the ZFOURGE Survey

    NASA Astrophysics Data System (ADS)

    Forrest, Ben; Tran, Kim-Vy H.; Tomczak, Adam R.; Broussard, Adam; Labbé, Ivo; Papovich, Casey; Kriek, Mariska; Allen, Rebecca J.; Cowley, Michael; Dickinson, Mark; Glazebrook, Karl; van Houdt, Josha; Inami, Hanae; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel; McCarthy, Patrick J.; Monson, Andrew; Morrison, Glenn; Nanayakkara, Themiya; Persson, S. Eric; Quadri, Ryan F.; Spitler, Lee R.; Straatman, Caroline; Tilvi, Vithal

    2016-02-01

    We build a set of composite galaxy spectral energy distributions (SEDs) by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ˜4000 Ks-band selected galaxies, we define 38 composite galaxy SEDs that yield continuous low-resolution spectra (R ˜ 45) over the rest-frame range 0.1-4 μm. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope (β) in the IRX-β dust relation at 1 < z < 3. Blue star-forming composite SEDs show IRX and β values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U - V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    PubMed

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  17. Addressing the [O III] / Hβ offset in metal poor star forming galaxies found in the RESOLVE survey and ECO catalog

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Kannappan, Sheila; Moffett, Amanda J.; RESOLVE survey team

    2018-06-01

    Metal poor star forming galaxies sit on the far left wing of the BPT diagram just below traditional demarcation lines. The basic approach to reproducing their emission lines by coupling photoionization models to stellar population synthesis models underestimates the observed [O III] / Hβ ratio by a factor 0.3-0.5 dex. We classified galaxies as metal poor in the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey and the Environmental COntext (ECO) catalog by using the IZI code based off of Bayesian inference. We used a variety of stellar population synthesis codes to generate SEDs covering a range of starburst ages and metallicities including both secular and binary stellar evolution. Here, we show that multiple SPS codes can produce SEDs hard enough to reduce the offset assuming that simple, and perhaps unjustified, nebular conditions hold. Adopting more realistic nebular conditions shows that, despite the recent emphasis placed on binary evolution to fit high O III ratios, none of our SEDs can reduce the offset. We propose several new solutions including using ensembles of nebular clouds and improved microphysics to address this issue. This work is supported by National Science Foundation awards OCI-1053575, though XSEDE award TG-AST140040, and NSF awards AST-0955368 and CISE/ACI-1156614.

  18. SED-ED, a workflow editor for computational biology experiments written in SED-ML.

    PubMed

    Adams, Richard R

    2012-04-15

    The simulation experiment description markup language (SED-ML) is a new community data standard to encode computational biology experiments in a computer-readable XML format. Its widespread adoption will require the development of software support to work with SED-ML files. Here, we describe a software tool, SED-ED, to view, edit, validate and annotate SED-ML documents while shielding end-users from the underlying XML representation. SED-ED supports modellers who wish to create, understand and further develop a simulation description provided in SED-ML format. SED-ED is available as a standalone Java application, as an Eclipse plug-in and as an SBSI (www.sbsi.ed.ac.uk) plug-in, all under an MIT open-source license. Source code is at https://sed-ed-sedmleditor.googlecode.com/svn. The application itself is available from https://sourceforge.net/projects/jlibsedml/files/SED-ED/.

  19. [Ultra] luminous infrared galaxies selected at 90 μm in the AKARI deep field: a study of AGN types contributing to their infrared emission

    NASA Astrophysics Data System (ADS)

    Małek, K.; Bankowicz, M.; Pollo, A.; Buat, V.; Takeuchi, T. T.; Burgarella, D.; Goto, T.; Malkan, M.; Matsuhara, H.

    2017-02-01

    Aims: The aim of this work is to characterize physical properties of ultra luminous infrared galaxies (ULIRGs) and luminous infrared galaxies (LIRGs) detected in the far-infrared (FIR) 90 μm band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the active galactic nucleus (AGN) contribution to the LIRGs and ULIRGs' infrared emission and which types of AGNs are related to their activity. Methods: We examined 69 galaxies at redshift ≥0.05 detected at 90 μm by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) (we use the results from CIGALE as a reference) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of ULIRGs and LIRGs, and to estimate their properties. Results: Based on the CIGALE SED fitting, we have found that LIRGs and ULIRGs selected at the 90 μm AKARI band compose 56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Σ Md, the dust optical extinction A V, and the starlight intensity heatingmore » the bulk of the dust, parametrized by U min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A V for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 10 5 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL A V estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U min. The DL fitting parameter U min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A V, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A V estimate, dependent of U min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A V estimates towards QSOs, also brings into agreement the DL A V estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A V, parameterized by U min, which may be used to test and empirically calibrate dust models. Finally, the family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.« less

  1. Infrared to millimetre photometry of ultra-luminous IR galaxies: New evidence favouring a 3-stage dust model

    NASA Astrophysics Data System (ADS)

    Klaas, U.; Haas, M.; Müller, S. A. H.; Chini, R.; Schulz, B.; Coulson, I.; Hippelein, H.; Wilke, K.; Albrecht, M.; Lemke, D.

    2001-12-01

    Infrared to millimetre spectral energy distributions (SEDs) have been obtained for 41 bright ultra-luminous infrared galaxies (ULIRGs). The observations were carried out with ISOPHOT between 10 and 200 mu m and supplemented for 16 sources with JCMT/SCUBA at 450 and 850 mu m and with SEST at 1.3 mm. In addition, seven sources were observed at 1.2 and 2.2 mu m with the 2.2 m telescope on Calar Alto. These new SEDs represent the most complete set of infrared photometric templates obtained so far on ULIRGs in the local universe. The SEDs peak at 60-100 mu m and show often a quite shallow Rayleigh-Jeans tail. Fits with one single modified blackbody yield a high FIR opacity and small dust emissivity exponent beta < 2. However, this concept leads to conflicts with several other observational constraints, like the low PAH extinction or the extended filamentary optical morphology. A more consistent picture is obtained using several dust components with beta = 2, low to moderate FIR opacity and cool (50 K > T > 30 K) to cold (30 K > T > 10 K) temperatures. This provides evidence for two dust stages, the cool starburst dominated one and the cold cirrus-like one. The third stage with several hundred Kelvin warm dust is identified in the AGN dominated ULIRGs, showing up as a NIR-MIR power-law flux increase. While AGNs and SBs appear indistinguishable at FIR and submm wavelengths, they differ in the NIR-MIR. This suggests that the cool FIR emitting dust is not related to the AGN, and that the AGN only powers the warm and hot dust. In comparison with optical and MIR spectroscopy, a criterion based on the SED shapes and the NIR colours is established to reveal AGNs among ULIRGs. Also the possibility of recognising evolutionary trends among the ULIRGs via the relative amounts of cold, cool and warm dust components is investigated. Based on observations with the Infrared Space Observatory ISO, the James Clerk Maxwell Telescope JCMT, the Swedish ESO Submillimetre Telescope SEST and at the Calar Alto Observatory. ISO is an ESA project with instruments funded by ESA Member States (especially the PI countries France, Germany, The Netherlands and the UK) and with the participation of ISAS and NASA. Appendices A and B are only available in electronic form at http://www.edpsciences.com

  2. Herschel and SCUBA-2 observations of dust emission in a sample of Planck cold clumps

    NASA Astrophysics Data System (ADS)

    Juvela, Mika; He, Jinhua; Pattle, Katherine; Liu, Tie; Bendo, George; Eden, David J.; Fehér, Orsolya; Michel, Fich; Fuller, Gary; Hirano, Naomi; Kim, Kee-Tae; Li, Di; Liu, Sheng-Yuan; Malinen, Johanna; Marshall, Douglas J.; Paradis, Deborah; Parsons, Harriet; Pelkonen, Veli-Matti; Rawlings, Mark G.; Ristorcelli, Isabelle; Samal, Manash R.; Tatematsu, Ken'ichi; Thompson, Mark; Traficante, Alessio; Wang, Ke; Ward-Thompson, Derek; Wu, Yuefang; Yi, Hee-Weon; Yoo, Hyunju

    2018-04-01

    Context. Analysis of all-sky Planck submillimetre observations and the IRAS 100 μm data has led to the detection of a population of Galactic cold clumps. The clumps can be used to study star formation and dust properties in a wide range of Galactic environments. Aims: Our aim is to measure dust spectral energy distribution (SED) variations as a function of the spatial scale and the wavelength. Methods: We examined the SEDs at large scales using IRAS, Planck, and Herschel data. At smaller scales, we compared JCMT/SCUBA-2 850 μm maps with Herschel data that were filtered using the SCUBA-2 pipeline. Clumps were extracted using the Fellwalker method, and their spectra were modelled as modified blackbody functions. Results: According to IRAS and Planck data, most fields have dust colour temperatures TC 14-18 K and opacity spectral index values of β = 1.5-1.9. The clumps and cores identified in SCUBA-2 maps have T 13 K and similar β values. There are some indications of the dust emission spectrum becoming flatter at wavelengths longer than 500 μm. In fits involving Planck data, the significance is limited by the uncertainty of the corrections for CO line contamination. The fits to the SPIRE data give a median β value that is slightly above 1.8. In the joint SPIRE and SCUBA-2 850 μm fits, the value decreases to β 1.6. Most of the observed T-β anticorrelation can be explained by noise. Conclusions: The typical submillimetre opacity spectral index β of cold clumps is found to be 1.7. This is above the values of diffuse clouds, but lower than in some previous studies of dense clumps. There is only tentative evidence of a T-β anticorrelation and β decreasing at millimetre wavelengths. Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B)

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Schneider, G.; Sitko, M. L.; Williger, G. M.; Hamaguchi, K.; Brittain, S. D.; Ablordeppey, K.; Apai, D.; Beerman, L.; Carpenter, W. J.; Collins, K. A.; Fukagawa, M.; Hammel, H. B.; Henning, Th.; Hines, D.; Kimes, R.; Lynch, D. K.; Ménard, F.; Pearson, R.; Russell, R. W.; Silverstone, M.; Smith, P. S.; Troutman, M.; Wilner, D.; Woodgate, B.; Clampin, M.

    2009-07-01

    SAO 206462 (HD 135344B) has previously been identified as a Herbig F star with a circumstellar disk with a dip in its infrared excess near 10 μm. In combination with a low accretion rate estimated from Br γ, it may represent a gapped, but otherwise primordial or "pre-transitional" disk. We test this hypothesis with Hubble Space Telescope coronagraphic imagery, FUV spectroscopy and imagery and archival X-ray data, and spectral energy distribution (SED) modeling constrained by the observed system inclination, disk outer radius, and outer disk radial surface brightness (SB) profile using the Whitney Monte Carlo Radiative Transfer Code. The essentially face-on (i lsim 20°) disk is detected in scattered light from 0farcs4 to 1farcs15 (56-160 AU), with a steep (r -9.6) radial SB profile from 0farcs6 to 0farcs93. Fitting the SB data requires a concave upward or anti-flared outer disk, indicating substantial dust grain growth and settling by 8 ± 4 Myr. The warm dust component is significantly variable in near to mid-IR excess and in temperature. At its warmest, it appears confined to a narrow belt from 0.08 to 0.2 AU. The steep SED for this dust component is consistent with grains with a<= 2.5 μm. For cosmic carbon to silicate dust composition, conspicuous 10 μm silicate emission would be expected and is not observed. This may indicate an elevated carbon to silicate ratio for the warm dust, which is not required to fit the outer disk. At its coolest, the warm dust can be fit with a disk from 0.14 to 0.31 AU, but with a higher inclination than either the outer disk or the gaseous disk, providing confirmation of the high inclination inferred from mid-IR interferometry. In tandem, the compositional and inclination difference between the warm dust and the outer dust disk suggests that the warm dust may be of second-generation origin, rather than a remnant of a primordial disk component. With its near face-on inclination, SAO 206462's disk is a prime location for planet searches. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less

  5. THE ENVIRONMENT AND DISTRIBUTION OF EMITTING ELECTRONS AS A FUNCTION OF SOURCE ACTIVITY IN MARKARIAN 421

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo

    2011-05-20

    For the high-frequency-peaked BL Lac object Mrk 421, we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized {chi}{sup 2}-minimization procedure, instead of the 'eyeball' procedure more commonly used in the literature, to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broadband SEDs (spanning from optical to very high energy photon) have finally become available. Our results suggest that in Mrkmore » 421 the magnetic field (B) decreases with source activity, whereas the electron spectrum's break energy ({gamma}{sub br}) and the Doppler factor ({delta}) increase-the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework, these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of {gamma} {<=} {gamma}{sub br} electrons: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.« less

  6. Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai; Lutz, Dieter; Schweitzer, Mario; Contursi, Alessandra; Sturm, Eckhard; Tacconi, Linda J.; Veilleux, Sylvain; Kim, D.-C.; Rupke, David; Baker, Andrew J.; Dasyra, Kalliopi; Mazzarella, Joseph; Lord, Steven

    2007-09-01

    This is the second paper studying the QSOs in the Spitzer QUEST sample. Previously we presented new PAH measurements and argued that most of the observed far-infrared (FIR) radiation is due to star-forming activity. Here we present spectral energy distributions (SEDs) by supplementing our data with optical, NIR, and FIR observations. We define two subgroups, of ``weak FIR'' and ``strong FIR'' QSOs, and a third group of FIR nondetections. Assuming a starburst origin for the FIR, we obtain ``intrinsic'' active galactic nucleus (AGN) SEDs by subtracting a starburst template from the mean SEDs. The resulting SEDs are remarkably similar for all groups. They show three distinct peaks corresponding to two silicate emission features and a 3 μm bump, which we interpret as the signature of the hottest AGN dust. They also display drops beyond ~20 μm that we interpret as the signature of the minimum temperature (~200 K) dust. This component must be optically thin to explain the silicate emission and the slope of the long-wavelength continuum. We discuss the merits of an alternative model in which most of the FIR emission is due to AGN heating. Such models are unlikely to explain the properties of our QSOs, but they cannot be ruled out for more luminous objects. We also find correlations between the luminosity at 5100 Å and two infrared starburst indicators: L(60 μm) and L(PAH 7.7 μm). The correlation of L(5100 Å) with L(60 μm) can be used to measure the relative growth rates and lifetimes of the black hole and the new stars.

  7. Establishing a Network of faint DA white dwarfs as Spectrophotometric Standards

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Narayan, Gautham; Holberg, Jay; Matheson, Thomas; Olszewski, Edward; Stubbs, Christopher; Bohlin, Ralph; Sabbi, Elena; Deustua, Susana; Rest, Armin; Axelrod, Tim; MacKenty, John W.; Camarota, Larry; Gilliland, Ron

    2015-08-01

    Systematic uncertainties in photometric calibration are the dominant source of error in current type Ia supernova dark energy studies, as well as other forefront cosmology efforts, e.g. photo-redshift determinations for weak lensing mass tomography. Current and next-generation ground-based all-sky surveys require a network of calibration stars with 1) known SEDs (to properly and unambiguously take into account filter differences), and 2) that are on a common photometric zeropoint scale across the sky to sub-percent accuracy. We are using a combination of HST panchromatic photometry and ground based spectroscopy to establish such an essential network of faint primary photometric standards, exploiting the well-understood spectral energy distributions of DA white dwarf stars that are free from the complications of observing through the Earth's time-variable atmosphere. The Balmer features in the spectra are used to deduce the two parameters (temperature and log(g)) from which we model the spectral energy distribution (SED) from these stars which have pure hydrogen atmospheres. By comparing against panchromatic broadband HST photometry, and allowing for an achromatic zero-point adjustment and mild scaling of the interstellar reddening, we find that model prediction and observation agree to a few milli-mag. By combining the zero-point and reddening adjustments with the modeled SED, for each star we obtain the incident SED above the terrestrial atmosphere, thus establishing these objects as spectrophotometric standards. We are pursuing 23 objects between 16 and 19 mag spread over the sky uniformly around the equator and northern mid-latitudes, with plans to extend this to southern latitudes. This precision photometric heritage from HST will benefit essentially all existing and upcoming survey projects, and in prticular, directly addresses one of the current barriers to understanding the nature of dark energy.

  8. DETECTION OF STRONG MILLIMETER EMISSION FROM THE CIRCUMSTELLAR DUST DISK AROUND V1094 SCO: COLD AND MASSIVE DISK AROUND A T TAURI STAR IN A QUIESCENT ACCRETION PHASE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukagoshi, Takashi; Kohno, Kotaro; Saito, Masao

    2011-01-01

    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 mm continuum observations with AzTEC on ASTE. A compact (r{approx}< 320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy, which is the largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in {sup 12}CO J = 3-2 and {sup 13}CO J = 3-2. Since our {sup 12}CO and {sup 13}CO observations did not showmore » any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed spectral energy distribution (SED) of V1094 Sco shows no distinct turnover from near-infrared to millimeter wavelengths, can be well described by a flattened disk for the dust component, and no clear dip feature around 10 {mu}m suggestive of the absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The estimated disk mass ranges from 0.03 M{sub sun} to {approx}>0.12 M{sub sun}, which is one or two orders of magnitude larger than the median disk mass of T Tauri stars in Taurus. The resultant temperature is lower than that of a flared disk with well-mixed dust in hydrostatic equilibrium and is probably attributed to the flattened disk geometry for the dust which the central star cannot illuminate efficiently. From these results, together with the fact that there is no signature of an inner hole in the SED, we suggest that the dust grains in the disk around V1094 Sco sank into the midplane with grain growth by coalescence and are in the evolutional stage just prior to or at the formation of planetesimals.« less

  9. Modelling the carbon AGB star R Sculptoris. Constraining the dust properties in the detached shell based on far-infrared and sub-millimeter observations

    NASA Astrophysics Data System (ADS)

    Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.

    2018-06-01

    Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. High-resolution near-infrared speckle interferometry and radiative transfer modeling of the OH/IR star OH 104.9+2.4

    NASA Astrophysics Data System (ADS)

    Riechers, D.; Balega, Y.; Driebe, T.; Hofmann, K.-H.; Men'shchikov, A. B.; Weigelt, G.

    2004-09-01

    We present near-infrared speckle interferometry of the OH/IR star OH 104.9+2.4 in the K' band obtained with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of λ = 2.12 μm the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. The visibility function shows that the stellar contribution to the total flux at λ = 2.12 μm is less than ˜50%, indicating a rather large optical depth of the CDS. The azimuthally averaged 1-dimensional Gaussian visibility fit yields a diameter of 47 ± 3 mas (FHWM), which corresponds to 112 ± 13 AU for an adopted distance of D = 2.38 ± 0.24 kpc. To determine the structure and the properties of the CDS of OH 104.9+2.4, radiative transfer calculations using the code DUSTY were performed to simultaneously model its visibility and the spectral energy distribution (SED). We found that both the ISO spectrum and the visibility of OH 104.9+2.4 can be well reproduced by a radiative transfer model with an effective temperature Teff = 2500 ± 500 K of the central source, a dust temperature Tin = 1000 ± 200 K at the inner shell boundary Rin ≃ 9.1 R* = 25.4 AU, an optical depth τ2.2 μm = 6.5 ± 0.3, and dust g rain radii ranging from amin = 0.005 ± 0.003 μm to amax = 0.2 ± 0.02 μm with a power law n(a) ∝ a-3.5. It was found that even minor changes in amax have a major impact on both the slope and the curvature of the visibility function, while the SED shows only minor changes. Our detailed analysis demonstrates the potential of dust shell modeling constrained by both the SED and visibilities. Based on data collected at the 6 m BTA telescope of the Special Astrophysical Observatory in Russia.

  11. GRB 091127: The Cooling Break Race on Magnetic Fuel

    NASA Technical Reports Server (NTRS)

    Filgas, R.; Greiner, J.; Schady, P.; Kruhler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; hide

    2011-01-01

    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. Methods. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g' r' t' i' z' JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keY energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1 %, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NlR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +/- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +/- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions. The measured evolution of the cooling break (V(sub c) varies as t(sup -1.2) is not consistent with the predictions of the standard model, wherein V(sub c) varies as t(sup -05) is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon(sub Beta). This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves.

  12. The High AV Quasar Survey: Reddened Quasi-Stellar Objects Selected from Optical/Near-Infrared Photometry—II

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Geier, S.; Fynbo, J. P. U.; Venemans, B. P.; Ledoux, C.; Møller, P.; Noterdaeme, P.; Vestergaard, M.; Kangas, T.; Pursimo, T.; Saturni, F. G.; Smirnova, O.

    2015-03-01

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  13. The IRX-β dust attenuation relation in cosmological galaxy formation simulations

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Davé, Romeel; Johnson, Benjamin D.; Thompson, Robert; Conroy, Charlie; Geach, James

    2018-02-01

    We utilize a series of galaxy formation simulations to investigate the relationship between the ultraviolet (UV) slope, β, and the infrared excess (IRX) in the spectral energy distributions (SEDs) of galaxies. Our main goals are to understand the origin of and scatter in the IRX-β relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-β relation; and to understand systematic deviations from the canonical local IRX-β relations in particular populations of high-redshift galaxies. Our main results follow. Young galaxies with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-β relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star-forming galaxies drive galaxies towards blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downwards in the IRX-β plane due to lowered near-ultraviolet/far-ultraviolet extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back towards the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-β plane: z ˜ 2-4 dusty star-forming galaxies and z > 5 star-forming galaxies.

  14. Multiwavelength study of VHE emission from Markarian 501 using TACTIC observations during April-May, 2012

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Singh, K. K.; Rannot, R. C.; Yadav, K. K.; Bhatt, H.; Tickoo, A. K.; Ghosal, B.; Kothari, M.; Gaur, K. K.; Goyal, A.; Goyal, H. C.; Kumar, N.; Marandi, P.; Chouhan, N.; Sahayanathan, S.; Chanchalani, K.; Agarwal, N. K.; Dhar, V. K.; Kaul, S. R.; Koul, M. K.; Koul, R.; Venugopal, K.; Bhat, C. K.; Borwankar, C.; Bhagwan, J.; Gupta, A. C.

    2017-07-01

    We have observed Markarian 501 in Very High Energy (VHE) gamma-ray wavelength band for 70.6 h from 15 April to 30 May, 2012 using TACTIC telescope. Detailed analysis of ˜66.3 h of clean data revealed the presence of a TeV γ-ray signal (686± 77 γ-ray events) from the source direction with a statistical significance of 8.89σ above 850 GeV. Further, a total of 375 ± 47 γ-ray like events were detected in 25.2 h of observation from 22 - 27 May, 2012 with a statistical significance of 8.05σ indicating that the source has possibly switched over to a relatively high gamma-ray emission state. We have derived time-averaged differential energy spectrum of the state in the energy range 850 GeV - 17.24 TeV which fits well with a power law function of the form dF / dE =f0E-Γ with f0 =(2.27 ± 0.38) ×10-11 photons cm-2 s-1 TeV-1 and Γ = 2.57 ± 0.15 . In order to investigate the source state, we have also used almost simultaneous multiwavelength observations viz: high energy data collected by Fermi-LAT, X-ray data collected by Swift-XRT and MAXI, optical and UV data collected by Swift-UVOT, and radio data collected by OVRO, and reconstructed broad-band Spectral Energy Distribution (SED). The obtained SED supports leptonic model (homogeneous single zone) for VHE gamma-ray emission involving synchrotron and synchrotron self Compton (SSC) processes.

  15. Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, C. Jakob

    2015-12-01

    We study the sources of biases and systematics in the derivation of galaxy properties from observational studies, focusing on stellar masses, star formation rates, gas and stellar metallicities, stellar ages, magnitudes and colours. We use hydrodynamical cosmological simulations of galaxy formation, for which the real quantities are known, and apply observational techniques to derive the observables. We also analyse biases that are relevant for a proper comparison between simulations and observations. For our study, we post-process the simulation outputs to calculate the galaxies' spectral energy distributions (SEDs) using stellar population synthesis models and also generate the fully consistent far-UV-submillimetre wavelength SEDs with the radiative transfer code SUNRISE. We compared the direct results of simulations with the observationally derived quantities obtained in various ways, and found that systematic differences in all studied galaxy properties appear, which are caused by: (1) purely observational biases, (2) the use of mass-weighted and luminosity-weighted quantities, with preferential sampling of more massive and luminous regions, (3) the different ways of constructing the template of models when a fit to the spectra is performed, and (4) variations due to different calibrations, most notably for gas metallicities and star formation rates. Our results show that large differences can appear depending on the technique used to derive galaxy properties. Understanding these differences is of primary importance both for simulators, to allow a better judgement of similarities and differences with observations, and for observers, to allow a proper interpretation of the data.

  16. A gravitationally lensed quasar discovered in OGLE

    NASA Astrophysics Data System (ADS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ≈ -102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ≈ 20.0 mag and I ≈ 19.6 mag, respectively, and a lensing galaxy that becomes detectable as I ≈ 21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z = 2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  17. MAMBO observations at 240GHz of optically obscured Spitzer sources: source clumps and radio activity at high redshift

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Magliocchetti, M.; de Zotti, G.

    2010-01-01

    Optically very faint (R > 25.5) sources detected by the Spitzer Space Telescope at 24μm represent a very interesting population at redshift z ~ (1.5-3). They exhibit strong clustering properties, implying that they are hosted by very massive haloes, and their mid-infrared emission could be powered by either dust-enshrouded star formation and/or by an obscured active galactic nucleus (AGN). We report observations carried out with the Max Planck Millimetre Bolometer (MAMBO) array at the IRAM 30-m antenna on Pico Veleta of a candidate protocluster with five optically obscured sources selected from the 24-μm Spitzer sample of the First-Look Survey. Interestingly, these sources appear to lie on a high-density filament aligned with the two radio jets of an AGN. Four out of five of the observed sources were detected. We combine these measurements with optical, infrared and radio observations to probe the nature of the candidate protocluster members. Our preliminary conclusions can be summarized as follows: the spectral energy distributions (SEDs) of all sources include both AGN and starburst contributions; the AGN contribution to the bolometric luminosities ranges between 14 and 26 per cent of the total. Such a contribution is enough for the AGN to dominate the emission at 5.8, 8 and 24μm, while the stellar component, inferred from SED fitting, prevails at 1.25mm and at λ < 4.5μm. The present analysis suggests a coherent interplay at high z between extended radio activity and the development of filamentary large-scale structures.

  18. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.

    PubMed

    Li, Ying; Yang, Da-Jian; Chen, Shi-Lin; Chen, Si-Bao; Chan, Albert Sun-Chi

    2008-07-09

    The aim of the study was to develop and evaluate a new method for the production of puerarin phospholipids complex (PPC) microparticles. The advanced particle formation method, solution enhanced dispersion by supercritical fluids (SEDS), was used for the preparation of puerarin (Pur), phospholipids (PC) and their complex particles for the first time. Evaluation of the processing variables on PPC particle characteristics was also conducted. The processing variables included temperature, pressure, solution concentration, the flow rate of supercritical carbon dioxide (SC-CO2) and the relative flow rate of drug solution to CO2. The morphology, particle size and size distribution of the particles were determined. Meanwhile Pur and phospholipids were separately prepared by gas antisolvent precipitation (GAS) method and solid characterization of particles by the two supercritical methods was also compared. Pur formed by GAS was more orderly, purer crystal, whereas amorphous Pur particles between 0.5 and 1microm were formed by SEDS. The complex was successfully obtained by SEDS exhibiting amorphous, partially agglomerated spheres comprised of particles sized only about 1microm. SEDS method may be useful for the processing of other pharmaceutical preparations besides phospholipids complex particles. Furthermore adopting a GAS process to recrystallize pharmaceuticals will provide a highly versatile methodology to generate new polymorphs of drugs in addition to conventional techniques.

  19. Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Strauss, Michael A.; Aoki, Kentaro; Goto, Tomotsugu; Imanishi, Masatoshi; Kawaguchi, Toshihiro; Terashima, Yuichi; Ueda, Yoshihiro; Bosch, James; Bundy, Kevin; Doi, Yoshiyuki; Inami, Hanae; Komiyama, Yutaka; Lupton, Robert H.; Matsuhara, Hideo; Matsuoka, Yoshiki; Miyazaki, Satoshi; Morokuma, Tomoki; Nakata, Fumiaki; Oi, Nagisa; Onoue, Masafusa; Oyabu, Shinki; Price, Paul; Tait, Philip J.; Takata, Tadafumi; Tanaka, Manobu M.; Terai, Tsuyoshi; Turner, Edwin L.; Uchida, Tomohisa; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Wang, Shiang-Yu

    2015-10-01

    We present the photometric properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we discovered 48 DOGs with i - Ks > 1.2 and i - [22] > 7.0, where i, Ks, and [22] represent AB magnitude in the i-band, Ks-band, and 22 μm, respectively, in the GAMA 14 hr field (˜ 9 deg2). Among these objects, 31 (˜ 65%) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show an NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma z = 1.99 ± 0.45, we calculated their total IR luminosity using an empirical relation between 22 μm luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ± 1.1) × 1013 L⊙, which classifies them as hyper-luminous infrared galaxies. We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μm flux greater than 3.0 mJy and with i-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log φ = -6.59 ± 0.11 [Mpc-3]. The IR LF for DOGs including data obtained from the literature is fitted well by a double-power law. The derived lower limit for the IR LD for our sample is ρIR ˜ 3.8 × 107 [L⊙ Mpc-3] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies, and that of all DOGs are > 3%, > 9%, and > 15%, respectively.

  20. THE SPECTRAL ENERGY DISTRIBUTION OF THE COLDEST KNOWN BROWN DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhman, K. L.; Esplin, T. L., E-mail: kluhman@astro.psu.edu

    2016-09-01

    WISE J085510.83–071442.5 (hereafter WISE 0855–0714) is the coldest known brown dwarf (∼250 K) and the fourth-closest known system to the Sun (2.2 pc). It has been previously detected only in the J band and two mid-IR bands. To better measure its spectral energy distribution (SED), we have performed deep imaging of WISE 0855–0714 in six optical and near-IR bands with Gemini Observatory, the Very Large Telescope, and the Hubble Space Telescope . Five of the bands show detections, although one detection is marginal (S/N ∼ 3). We also have obtained two epochs of images with the Spitzer Space Telescope for use inmore » refining the parallax of the brown dwarf. By combining astrometry from this work and previous studies, we have derived a parallax of 0.449 ± 0.008″ (2.23 ± 0.04 pc). We have compared our photometry for WISE 0855–0714 to data for known Y dwarfs and to the predictions of three suites of models by Saumon et al. and Morley et al. that are defined by the presence or absence of clouds and nonequilibrium chemistry. Our estimates of Y − J and J − H for WISE 0855–0714 are redder than colors of other Y dwarfs, confirming a predicted reversal of near-IR colors to redder values at temperatures below 300–400 K. In color–magnitude diagrams, no single suite of models provides a clearly superior match to the sequence formed by WISE 0855–0714 and other Y dwarfs. Instead, the best-fitting model changes from one diagram to the next. Similarly, all of the models have substantial differences from the SED of WISE 0855–0714. As a result, we are currently unable to constrain the presence of clouds or nonequilibrium chemistry in its atmosphere.« less

  1. Lyman-break Galaxies at z ˜ 3 in the Subaru Deep Field: Luminosity Function, Clustering, and [O III] Emission

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew A.; Cohen, Daniel P.; Maruyama, Miyoko; Kashikawa, Nobunari; Ly, Chun; Ishikawa, Shogo; Shimasaku, Kazuhiro; Hayashi, Masao; Motohara, Kentaro

    2017-11-01

    We combined deep U-band and optical/near-infrared imaging, in order to select Lyman Break Galaxies (LBGs) at z˜ 3 using U - V and V-{R}c colors in the Subaru Deep Field. The resulting sample of 5161 LBGs gives a UV luminosity function (LF) down to {M}{UV}=-18, with a steep faint-end slope of α =-1.78+/- 0.05. We analyze UV-to-NIR energy distributions (SEDs) from optical photometry and photometry on IR median-stacked images. In the stacks, we find a systematic background depression centered on the LBGs. This results from the difficulty of finding faint galaxies in regions with higher-than-average surface densities of foreground galaxies, so we corrected for this deficit. Best-fit stellar population models for the LBG SEDs indicate stellar masses and star formation rates of {{log}}10({M}* /{M}⊙ )≃ 10 and ≃ 50 M ⊙ yr-1 at < {i}{AB}{\\prime }> =24, down to {{log}}10({M}* /{M}⊙ )≃ 8 and ≃ 3 {M}⊙ yr-1 at < {i}{AB}{\\prime }> =27. The faint LBGs show a ˜1 mag excess over the stellar continuum in K-band. We interpret this excess flux as redshifted [O III]λ λ {4959,5007} lines. The observed excesses imply equivalent widths that increase with decreasing mass, reaching {{EW}}0([{{O}} {{iii}}]4959,5007+{{H}}β )≳ 1500 Å (rest-frame). Such strong [O III] emission is seen only in a miniscule fraction of local emission-line galaxies, but is probably universal in the faint galaxies that reionized the universe. Our halo occupation distribution analysis of the angular correlation function gives a halo mass of {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.29+/- 0.12 for the full sample of LBGs, and {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.49+/- 0.1 for the brightest half of the sample.

  2. The Spectral Energy Distribution of the Earliest Phases of Massive Star Formation from the Spizter and Herschel Archives

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie; Henning, Thomas; Chakrabarti, Sukanya; Shenoy, Sachin

    2015-08-01

    Infrared Dark Clouds (IRDCs) are very good candidates for the earliest phases of massive star formation, but can only be found in regions with high infrared background. We have searched for early phases among cold and massive (M>100M⊙) cloud cores by selecting cores from millimeter continuum surveys (Faundez et al. 2004, Sridharan et al. 2005, Klein et al. 2005, Beltran et al. 2006) without associations at short wavelengths. We compared the millimeter continuum peak positions with IR and radio catalogs (2MASS, MSX, IRAS, and NVSS) and excluded cores that had sources associated with the cores' peaks. We compiled a list of 173 cores in over 117 regions that are candidates for very early phases of Massive Star Formation (MSF). Now with the Spitzer and Herschel archives, these cores can be characterized further. The GLIMPSE and MIPSGAL programs alone covered 86 of these regions. The Herschel Archive adds even longer wavelengths. We are compiling this data set to construct the complete spectral energy distribution (SED) in the mid- and far-infrared with good spatial resolution and broad spectral coverage. This allow us to disentangle the complex regions and model the SED of the deeply embedded protostars/clusters.We will be presenting the IR properties of all cores and their embedded source, attempt a characterization, and order the cores in an evolutionary sequence. The resulting properties can be compared to e.g. IRDCs, a class of objects suggested to be the earliest stages of MSF. With the relative large number of cores, we can try to answer questions like: How homogeneous or diverse are our regions in terms of their evolutionary stage? Where do our embedded sources fit in the evolutionary sequence of IRDCs, hot molecular cores, ultra-compact HII regions, etc? How is the MSF shaping the environment and vice versa? Can we extrapolate to the initial conditions of MSF using our evolutionary sequence?

  3. The simultaneous low state spectral energy distribution of 1ES 2344+514 from radio to very high energies

    DOE PAGES

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...

    2013-07-31

    Here, BL Lacertae objects are variable at all energy bands on time scales down to minutes. To construct and interpret their spectral energy distribution (SED), simultaneous broad-band observations are mandatory. Up to now, the number of objects studied during such campaigns is very limited and biased towards high flux states. Furthermore, we present the results of a dedicated multi-wavelength study of the high-frequency peaked BL Lacertae (HBL) object and known TeV emitter 1ES 2344+514 by means of a pre-organised campaign. The observations were conducted during simultaneous visibility windows of MAGIC and AGILE in late 2008. The measurements were complemented bymore » Metsähovi, RATAN-600, KVA+Tuorla, Swift and VLBA pointings. Additional coverage was provided by the ongoing long-term F-GAMMA and MOJAVE programs, the OVRO 40-m and CrAO telescopes as well as the Fermi satellite. The obtained SEDs are modelled using a one-zone as well as a self-consistent two-zone synchrotron self-Compton model. As a result, 1ES 2344+514 was found at very low flux states in both X-rays and very high energy gamma rays. Variability was detected in the low frequency radio and X-ray bands only, where for the latter a small flare was observed. The X-ray flare was possibly caused by shock acceleration characterised by similar cooling and acceleration time scales. MOJAVE VLBA monitoring reveals a static jet whose components are stable over time scales of eleven years, contrary to previous findings. There appears to be no significant correlation between the 15 GHz and R-band monitoring light curves. The observations presented here constitute the first multi-wavelength campaign on 1ES 2344+514 from radio to VHE energies and one of the few simultaneous SEDs during low activity states. The quasi-simultaneous Fermi-LAT data poses some challenges for SED modelling, but in general the SEDs are described well by both applied models. The resulting parameters are typical for TeV emitting HBLs. Consequently it remains unclear whether a so-called quiescent state was found in this campaign.« less

  4. VizieR Online Data Catalog: Intrinsic far-IR SED of luminous AGNs (Lyu+, 2017)

    NASA Astrophysics Data System (ADS)

    Lyu, J.; Rieke, G. H.

    2018-01-01

    The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR properties of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ~20μm and can be matched by an Elvis+ (1994, J/ApJS/95/1)-like template with a minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at λ~20-100μm, suggesting a similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsic AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kiloparsec scales in the far-IR. (3 data files).

  5. THE SWIFT BAT SURVEY DETECTS TWO OPTICAL BROAD LINE, X-RAY HEAVILY OBSCURED ACTIVE GALAXIES: NVSS 193013+341047 AND IRAS 05218-1212

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J. Drew; Winter, Lisa M.; Mushotzky, Richard F.

    2012-06-20

    The Swift Burst Alert Telescope (BAT) is discovering interesting new objects while monitoring the sky in the 14-195 keV band. Here we present the X-ray properties and spectral energy distributions (SEDs) for two unusual active galactic nucleus sources. Both NVSS 193013+341047 and IRAS 05218-1212 are absorbed, Compton-thin, but heavily obscured (N{sub H} {approx} 10{sup 23} cm{sup -2}), X-ray sources at redshifts <0.1. The SEDs reveal these galaxies to be very red, with high extinction in the optical and UV. A similar SED is seen for the extremely red objects (EROs) detected in the higher redshift universe. This suggests that thesemore » unusual BAT-detected sources are a low-redshift (z << 1) analog to EROs, which recent evidence suggests are a class of the elusive type II quasars. Studying the multi-wavelength properties of these sources may reveal the properties of their high-redshift counterparts.« less

  6. Effects of binary stellar populations on direct collapse black hole formation

    NASA Astrophysics Data System (ADS)

    Agarwal, Bhaskar; Cullen, Fergus; Khochfar, Sadegh; Klessen, Ralf S.; Glover, Simon C. O.; Johnson, Jarrett

    2017-06-01

    The critical Lyman-Werner (LW) flux required for direct collapse blackholes (DCBH) formation, or Jcrit, depends on the shape of the irradiating spectral energy distribution (SED). The SEDs employed thus far have been representative of realistic single stellar populations. We study the effect of binary stellar populations on the formation of DCBH, as a result of their contribution to the LW radiation field. Although binary populations with ages > 10 Myr yield a larger LW photon output, we find that the corresponding values of Jcrit can be up to 100 times higher than single stellar populations. We attribute this to the shape of the binary SEDs as they produce a sub-critical rate of H- photodetaching 0.76 eV photons as compared to single stellar populations, reaffirming the role that H- plays in DCBH formation. This further corroborates the idea that DCBH formation is better understood in terms of a critical region in the H2-H- photodestruction rate parameter space, rather than a single value of LW flux.

  7. Planck intermediate results. XLIII. Spectral energy distribution of dust in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at ν ≤ 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz ≤ ν ≤ 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.

  8. Planck intermediate results: XLIII. Spectral energy distribution of dust in clusters of galaxies

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-12-12

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide in this paper new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objectsmore » from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at ν ≤ 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz ≤ ν ≤ 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck’s resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. Finally, the recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.« less

  9. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less

  10. Far-Field Effects of Large Earthquakes on South Florida's Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Voss, N. K.; Wdowinski, S.

    2012-12-01

    The similarity between a seismometer and a well hydraulic head record during the passage of a seismic wave has long been documented. This is true even at large distances from earthquake epicenters. South Florida lacks a dense seismic array but does contain a comparably dense network of monitoring wells. The large spatial distribution of deep monitoring wells in South Florida provides an opportunity to study the variance of aquifer response to the passage of seismic waves. We conducted a preliminary study of hydraulic head data, provided by the South Florida Water Management District, from 9 deep wells in South Florida's confined Floridian Aquifer in response to 27 main shock events (January 2010- April 2012) with magnitude 6.9 or greater. Coseismic hydraulic head response was observed in 7 of the 27 events. In order to determine what governs aquifer response to seismic events, earthquake parameters were compared for the 7 positive events. Seismic energy density (SED), an empirical relationship between distance and magnitude, was also used to compare the relative energy between the events at each well site. SED is commonly used as a parameter for establishing thresholds for hydrologic events in the near and intermediate fields. Our analysis yielded a threshold SED for well response in South Florida as 8 x 10-3 J m-3, which is consistent with other studies. Deep earthquakes, with SED above this threshold, did not appear to trigger hydraulic head oscillations. The amplitude of hydraulic head oscillations had no discernable relationship to SED levels. Preliminary results indicate a need for a modification of the SED equation to better accommodate depth in order to be of use in the study of hydrologic response in the far field. We plan to conduct a more comprehensive study incorporating a larger subset (~60) of wells in South Florida in order to further examine the spatial variance of aquifers to the passing of seismic waves as well as better confine the relationship between earthquake depth and aquifer response.

  11. The Young Massive Stellar Cluster Sandage-96 after the Explosion of SN 2004DJ in NGC 2403

    NASA Technical Reports Server (NTRS)

    Vinko, J.; Sarneczky, K.; Balog, Z.; Immler, S.; Sugerman, B.; Brown, P. J.; Misselt, K.; Szabo, Gy. M.; Klagyivik, P.; Kun, M.; hide

    2008-01-01

    The bright supernova 2004dj occurred within the young massive stellar cluster Sandage-96 in a spiral arm of NGC 2403, close to other star-forming complexes. New multi-wavelength observations obtained with several ground-based- and space telescopes are combined to study the radiation from Sandage-96 after SN 2004dj faded away. The late-time light curves show that Sandage-96 started to dominate the flux in the optical bands after September, 2006 (+800 days after explosion). The optical fluxes are equal to the pre-explosion ones, suggesting that Sandage-96 has survived the explosion without significant changes in its stellar population. An optical Keck-spectrum obtained at +900 days after explosion shows the dominant blue continuum from the cluster stars shortward of 6000 A as well as strong SN nebular emission lines redward. The integrated SED of the cluster has been extended into the UV-region by archival XMM-Newton and new Swift observations, and compared with theoretical models. The outer parts of the cluster have been resolved by HST allowing the construction of a color-magnitude diagram. The fitting of the cluster SED with theoretical isochrones results in two possible solutions with ages being 9+/-1 Myr and 30+/-10 Myr, depending on the assumed metallicity and the theoretical model family. The isochrone fitting of the color-magnitude diagram indicates that the outer part of the cluster consists of stars having an age dispersion of 16 < t < 63 Myr, which is similar to that of nearby field stars. This age discrepancy may be resolved by the hypothesis that the outskirt of Sandage-96 is contaminated by stars captured from the field during cluster formation. The young age of Sandage-96 and the comparison of its pre- and post-explosion SEDs suggest a progenitor mass of 15 < or equal to M(sub prog) < 25 Stellar Mass.

  12. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation thatmore » define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust around these stars. HV 2671 and CPD -56{sup 0} 8032 require both a flared inner disk with warm dust and an extended diffuse envelope with cold dust to fit their SEDs. The SED of V348 Sgr can be fit with a much smaller disk and envelope. The cold dust in the extended diffuse envelopes inferred around HV 2671 and CPD -56{sup 0} 8032 may consist of interstellar medium swept up during mass-loss episodes.« less

  13. GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.

    2012-09-01

    Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve. Table of multi-colour photometry for the 751 galaxies is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A141

  14. Inferring the photometric and size evolution of galaxies from image simulations. I. Method

    NASA Astrophysics Data System (ADS)

    Carassou, Sébastien; de Lapparent, Valérie; Bertin, Emmanuel; Le Borgne, Damien

    2017-09-01

    Context. Current constraints on models of galaxy evolution rely on morphometric catalogs extracted from multi-band photometric surveys. However, these catalogs are altered by selection effects that are difficult to model, that correlate in non trivial ways, and that can lead to contradictory predictions if not taken into account carefully. Aims: To address this issue, we have developed a new approach combining parametric Bayesian indirect likelihood (pBIL) techniques and empirical modeling with realistic image simulations that reproduce a large fraction of these selection effects. This allows us to perform a direct comparison between observed and simulated images and to infer robust constraints on model parameters. Methods: We use a semi-empirical forward model to generate a distribution of mock galaxies from a set of physical parameters. These galaxies are passed through an image simulator reproducing the instrumental characteristics of any survey and are then extracted in the same way as the observed data. The discrepancy between the simulated and observed data is quantified, and minimized with a custom sampling process based on adaptive Markov chain Monte Carlo methods. Results: Using synthetic data matching most of the properties of a Canada-France-Hawaii Telescope Legacy Survey Deep field, we demonstrate the robustness and internal consistency of our approach by inferring the parameters governing the size and luminosity functions and their evolutions for different realistic populations of galaxies. We also compare the results of our approach with those obtained from the classical spectral energy distribution fitting and photometric redshift approach. Conclusions: Our pipeline infers efficiently the luminosity and size distribution and evolution parameters with a very limited number of observables (three photometric bands). When compared to SED fitting based on the same set of observables, our method yields results that are more accurate and free from systematic biases.

  15. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  16. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  17. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  18. SuperMassive Blackholes grow from stellar BHs of star formation history?

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    The origin of the supermassive black hole masses M SMBH discovered at the highest redshifts is still actively debated. Moreover the statistically significant relation of M SMBH with bulge luminosities L V , extended on several magnitude orders, confirms a common physical process linking small (<= 1pc) to large (kpcs) size scales. The Spectral Energy Distributions (SEDs) of two z=3.8 radio galaxies 4C41.17 and TN J2007-1316, best-fitted by evolved early type galaxy and starburst scenarios also imply masses of stellar remnants. Computed with the evolutionary code Pegase.3, the cumulated stellar black hole mass M sBH reach up to several 109M⊙, similar to M SMBH at same z. We propose the SMBH growth is due to the migration of the stellar dense residues (sBH) towards the galaxy core by dynamical friction. Discussed in terms of time-scales, this process which is linking AGN and star formation, also fully justifies the famous relation M SMBH -L V .

  19. AGE AND STRUCTURE PARAMETERS OF THE REMOTE M31 GLOBULAR CLUSTER B514 BASED ON HST, 2MASS, GALEX, AND BATC OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Jun; Wang Song; Wu Zhenyu

    2012-02-15

    B514 is a remote M31 globular cluster (GC) which is located at a projected distance of R{sub p} {approx_equal} 55 kpc. Deep observations with the Advanced Camera for Surveys on the Hubble Space Telescope are used to provide accurate integrated light and star counts of B514. By coupling the analysis of the distribution of the integrated light with star counts, we are able to reliably follow the profile of the cluster out to {approx}40''. Based on the combined profile, we study in detail its surface brightness distribution in the F606W and F814W filters and determine its structural parameters by fittingmore » a single-mass isotropic King model. The results showed that the surface brightness distribution departs from the best-fit King model for r > 10''. B514 is quite flat in the inner region and has a larger half-light radius than the majority of normal GCs of the same luminosity. It is interesting that, in the M{sub V} versus log R{sub h} plane, B514 lies nearly on the threshold for ordinary GCs as defined by Mackey and van den Bergh. In addition, B514 was observed as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey, using 13 intermediate-band filters covering a wavelength range of 3000-8500 A. Based on aperture photometry, we obtain its spectral energy distributions (SEDs) as defined by the 13 BATC filters. We determine the cluster's age and mass by comparing its SEDs (from 2267 to 20000 Angstrom-Sign , comprised of photometric data from the near-ultraviolet band of the Galaxy Evolution Explorer, 5 Sloan Digital Sky Survey bands, 13 BATC intermediate-band filters, and Two Micron All Sky Survey near-infrared JHK{sub s} filters) with theoretical stellar population synthesis models, resulting in an age of 11.5 {+-} 3.5 Gyr. This age confirms the previous suggestion that B514 is an old GC in M31. B514 has a mass of 0.96-1.08 Multiplication-Sign 10{sup 6} M{sub Sun} and is a medium-mass GC in M31.« less

  20. SEDS experiment design definition

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.; Oldson, John C.

    1990-01-01

    The Small Expendable-tether Deployment System (SEDS) was developed to design, build, integrate, fly, and safely deploy and release an expendable tether. A suitable concept for an on-orbit test of SEDS was developed. The following tasks were performed: (1) Define experiment objectives and requirements; (2) Define experiment concepts to reach those objectives; (3) Support NASA in experiment concept selection and definition; (4) Perform analyses and tests of SEDS hardware; (5) Refine the selected SEDS experiment concept; and (6) Support interactive SEDS system definition process. Results and conclusions are given.

  1. The Emission and Distribution of Dust of the Torus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, Enrique; Fuller, Lindsay; Alonso-Herrero, Almudena; Efstathiou, Andreas; Ichikawa, Kohei; Levenson, Nancy A.; Packham, Chris; Radomski, James; Ramos Almeida, Cristina; Benford, Dominic J.; Berthoud, Marc; Hamilton, Ryan; Harper, Doyal; Kovávcs, Attila; Santos, Fabio P.; Staguhn, J.; Herter, Terry

    2018-06-01

    We present observations of NGC 1068 covering the 19.7–53.0 μm wavelength range using FORCAST and HAWC+ on board SOFIA. Using these observations, high-angular-resolution infrared (IR) and submillimeter observations, we find an observational turnover of the torus emission in the 30–40 μm wavelength range with a characteristic temperature of 70–100 K. This component is clearly different from the diffuse extended emission in the narrow line and star formation regions at 10–100 μm within the central 700 pc. We compute 2.2–432 μm 2D images using the best inferred CLUMPY torus model based on several nuclear spectral energy distribution (SED) coverages. We find that when 1–20 μm SED is used, the inferred result gives a small torus size (<4 pc radius) and a steep radial dust distribution. The computed torus using the 1–432 μm SED provides comparable torus sizes, {5.1}-0.4+0.4 pc radius, and morphology to the recently resolved 432 μm Atacama Large Millimeter Array observations. This result indicates that the 1–20 μm wavelength range is not able to probe the full extent of the torus. The characterization of the turnover emission of the torus using the 30–60 μm wavelength range is sensitive to the detection of cold dust in the torus. The morphology of the dust emission in our 2D image at 432 μm is spatially coincident with the cloud distribution, while the morphology of the emission in the 1–20 μm wavelength range shows an elongated morphology perpendicular to the cloud distribution. We find that our 2D CLUMPY torus image at 12 μm can produce comparable results to those observed using IR interferometry.

  2. Transitional Disks Associated With Intermediate-mass Stars: Results of the SEEDS YSO survey

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, Michael W.; hide

    2014-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars at H-band using Polarimetric Differential Imaging+Angular differential imaging. Historically, Herbig stars have been sorted based on their IR SEDs into those with SEDS which can be fit by powerlaws over 1-200 µm (Meeus et al. 2001, group II), and those which can be interpreted as a powerlaw + a blackbody component (Meeus group I) or powerlaw+missing warm thermal emission, which is one of the criteria for identification of gapped or transitional disks. Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks.

  3. The MUSCLES Treasury Survey. III. X-Ray to Infrared Spectra of 11 M and K Stars Hosting Planets

    NASA Astrophysics Data System (ADS)

    Loyd, R. O. P.; France, Kevin; Youngblood, Allison; Schneider, Christian; Brown, Alexander; Hu, Renyu; Linsky, Jeffrey; Froning, Cynthia S.; Redfield, Seth; Rugheimer, Sarah; Tian, Feng

    2016-06-01

    We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å -5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5-˜50 Å, a plasma emission model from ˜50-100 Å, broadband empirical estimates from 100-1170 Å, Hubble Space Telescope data from 1170-5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700-55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star’s unattenuated flux (“unshielded” photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star ɛ Eri that shows an edge likely attributable to Si II recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.

  4. The Virtual Observatory Service TheoSSA: Establishing a Database of Synthetic Stellar Flux Standards II. NLTE Spectral Analysis of the OB-Type Subdwarf Feige 110

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Rudkowski, A.; Kampka, D.; Werner, K.; Kruk, J. W.; Moehler, S.

    2014-01-01

    Context. In the framework of the Virtual Observatory (VO), the German Astrophysical VO (GAVO) developed the registered service TheoSSA (Theoretical Stellar Spectra Access). It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code, generally for all effective temperatures, surface gravities, and elemental compositions. We will establish a database of SEDs of flux standards that are easily accessible via TheoSSA's web interface. Aims. The OB-type subdwarf Feige 110 is a standard star for flux calibration. State-of-the-art non-local thermodynamic equilibrium stellar-atmosphere models that consider opacities of species up to trans-iron elements will be used to provide a reliable synthetic spectrum to compare with observations. Methods. In case of Feige 110, we demonstrate that the model reproduces not only its overall continuum shape from the far-ultraviolet (FUV) to the optical wavelength range but also the numerous metal lines exhibited in its FUV spectrum. Results. We present a state-of-the-art spectral analysis of Feige 110. We determined Teff =47 250 +/- 2000 K, log g=6.00 +/- 0.20, and the abundances of He, N, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and Ge. Ti, V, Mn, Co, Zn, and Ge were identified for the first time in this star. Upper abundance limits were derived for C, O, Si, Ca, and Sc. Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of astronomical data and cross-calibration between different instruments can be based on models and SEDs calculated with state-of-the-art model atmosphere codes.

  5. Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne

    2012-01-01

    Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.

  6. Lyα emitters in the GOODS-S field. A powerful pure nebular SED with N IV] emission at z = 5.563

    NASA Astrophysics Data System (ADS)

    Raiter, A.; Fosbury, R. A. E.; Teimoorinia, H.

    2010-02-01

    Context. The Great Observatories Origins Deep Survey (GOODS) has provided us with one of the deepest multi-wavelength views of the distant universe. The combination of multi-band photometry and optical spectroscopy has resulted in the identification of sources whose redshifts extend to values in excess of six. Amongst these distant sources are Lyα emitters whose nature must be deduced by clearly identifying the different components that contribute to the measured SED. Aims: From a sample of Lyα emitters in the GOODS-S field with uncontaminated photometry and optical (red) spectroscopy, we select a spatially compact object at a redshift of 5.563 (Lyα) that shows a second emission line, identified as N IV] 1486 Å. The SED is modelled in a way that accounts for both the N IV] line emission and the photometry in a self-consistent way. Methods: The photoionization code CLOUDY is used to calculate a range of nebular models as a function of stellar ionizing source temperature, ionization parameter, density and nebular metallicity. We compare the theoretical and observed magnitudes and search for the model parameters that also reproduce the observed N IV] luminosity and equivalent width. Results: A nebular model with a hot blackbody ionizing source of around 100 kK and a nebular metallicity of ~5% of solar is able to fit the observed SED and, in particular, explain the large apparent Balmer break which is inferred from the pure stellar population model fitting conventionally applied to multi-band photometric observations. In our model, an apparent spectral break is produced by strong [O III] 4959, 5007 Å emission falling in one of the IR bands (IRAC1 in this case). A lower limit on the total baryonic mass of a model of this type is 3.2 ×10^8~M⊙. Conclusions: It is argued that objects with Lyα emission at high redshift that show an apparent Balmer break may have their SED dominated by nebular emission and so could possibly be identified with very young starbursting galaxies rather than massive evolved stellar populations. Detailed studies of these emission nebulæ with large telescopes will provide a unique insight into very early chemical evolution. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO programme 170.A-0788) The Great Observatories Origins Deep Survey: ESO Public Observations of the SIRTF Legacy/HST Treasury/Chandra Deep Field South.); on observations obtained with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc.; and on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  7. Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea).

    PubMed

    Zaghden, Hatem; Tedetti, Marc; Sayadi, Sami; Serbaji, Mohamed Moncef; Elleuch, Boubaker; Saliot, Alain

    2017-04-15

    We investigated the origin and distribution of aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs) and organic matter (OM) in surficial sediments of the Sfax-Kerkennah channel in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). TOC, AH and PAH concentrations ranged 2.3-11.7%, 8-174μgg -1 sed.dw and 175-10,769ngg -1 sed.dw, respectively. The lowest concentrations were recorded in the channel (medium sand sediment) and the highest ones in the Sfax harbor (very fine sand sediment). AHs, PAHs and TOC were not correlated for most of the stations. TOC/N and δ 13 C values revealed a mixed origin of OM with both marine and terrestrial sources. Hydrocarbon molecular composition highlighted the dominance of petrogenic AHs and the presence of both petrogenic and pyrogenic PAHs, associated with petroleum products and combustion processes. This work underscores the complex distribution patterns and the multiple sources of OM and hydrocarbons in this highly anthropogenized coastal environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SedMob: A mobile application for creating sedimentary logs in the field

    NASA Astrophysics Data System (ADS)

    Wolniewicz, Pawel

    2014-05-01

    SedMob is an open-source, mobile software package for creating sedimentary logs, targeted for use in tablets and smartphones. The user can create an unlimited number of logs, save data from each bed in the log as well as export and synchronize the data with a remote server. SedMob is designed as a mobile interface to SedLog: a free multiplatform package for drawing graphic logs that runs on PC computers. Data entered into SedMob are saved in the CSV file format, fully compatible with SedLog.

  9. MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2014-09-17

    Aims. We report amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510-089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviationsmore » (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies. Methods. We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results. We find that the VHE γ-ray emission detected from PKS 1510-089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE γ-ray emission, and the HE γ-ray flaring starts when the new component is ejected from the 43 GHz VLBA core and the studied SED models fit the data well. However, the fast HE γ-ray variability requires that within the modelled large emitting region, more compact regions must exist. Lastly, we suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.« less

  10. Planck intermediate results: XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-02-09

    In this paper, we present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Σ Md, the dust optical extinction A V, and the starlight intensity heatingmore » the bulk of the dust, parametrized by U min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A V for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 10 5 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL A V estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U min. The DL fitting parameter U min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A V, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A V estimate, dependent of U min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A V estimates towards QSOs, also brings into agreement the DL A V estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A V, parameterized by U min, which may be used to test and empirically calibrate dust models. Finally, the family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.« less

  11. GRB 120729A: External Shock Origin for Both the Prompt Gamma-Ray Emission and Afterglow

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ye; Wang, Xiang-Gao; Zheng, WeiKang; Liang, En-Wei; Lin, Da-bin; Zhong, Shu-Qing; Zhang, Hai-Ming; Huang, Xiao-Li; Filippenko, Alexei V.; Zhang, Bing

    2018-06-01

    Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth γ-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt γ-ray emission to the afterglow with a photon index from Γ γ = 1.36 to Γ ≈ 1.75. There is no obvious evolution of the SED during the afterglow. The multiwavelength light curves from γ-ray to optical can be well modeled with an external shock by considering energy injection, and a time-dependent microphysics model with {ε }B\\propto {t}{α B} for the emission at early times, T< {T}0+157 {{s}}. Therefore, we conclude that both the prompt γ-ray emission and afterglow of GRB 120729A have the same external shock physical origin. Our model indicates that the ɛ B evolution can be described as a broken power-law function with α B,1 = 0.18 ± 0.04 and α B,2 = 0.84 ± 0.04. We also systematically investigate single-pulse GRBs in the Swift era, finding that only a small fraction of GRBs (GRBs 120729A, 051111, and 070318) are likely to originate from an external shock for both the prompt γ-ray emission and afterglow.

  12. Unveiling the nature of the  $$\\gamma$$-ray emitting active galactic nucleus PKS 0521-36

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Tavecchio, F.; ...

    2015-05-19

    PKS 0521-36 is an active galactic nucleus (AGN) with uncertain classification. Here, we investigate the properties of this source from radio to γ-rays. The broad emission lines in the optical and ultraviolet bands and steep radio spectrum indicate a possible classification as an intermediate object between broad-line radio galaxies (BLRG) and steep spectrum radio quasars (SSRQ). On pc-scales PKS 0521-36 shows a knotty structure similar to misaligned AGN. The core dominance and the γ-ray properties are similar to those estimated for other SSRQ and BLRG detected in γ-rays, suggesting an intermediate viewing angle with respect to the observer. In thismore » context the flaring activity detected from this source by Fermi-Large Area Telescope between 2010 June and 2012 February is very intriguing. We discuss the γ-ray emission of this source in the framework of the structured jet scenario, comparing the spectral energy distribution (SED) of the flaring state in 2010 June with that of a low state. We present three alternative models corresponding to three different choices of the viewing angles θv = 6°, 15°, and 20°. We obtain a good fit for the first two cases, but the SED obtained with θv = 15° if observed at a small angle does not resemble that of a typical blazar since the synchrotron emission should dominate by a large factor (~100) the inverse Compton component. This suggests that a viewing angle between 6° and 15° is preferred, with the rapid variability observed during γ-ray flares favouring a smaller angle. However, we cannot rule out that PKS 0521-36 is the misaligned counterpart of a synchrotron-dominated blazar.« less

  13. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  14. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  15. THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot.more » We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jingzhe; Gonzalez, Anthony H.; Spilker, J. S.

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubblemore » Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.« less

  17. VERITAS Detection of γ-Ray Flaring Activity From the BL Lac Object 1ES 1727+502 During Bright Moonlight Observations

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Archer, A.; Beilicke, M.; Benbow, W.; Bird, R.; Biteau, J.; Bouvier, A.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Håkansson, N.; Hanna, D.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Prokoph, H.; Pueschel, E.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Vincent, S.; Wakely, S. P.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Veritas Collaboration; Hughes, Z. D.

    2015-08-01

    During moonlit nights, observations with ground-based Cherenkov telescopes at very high energies (VHEs, E\\gt 100 GeV) are constrained since the photomultiplier tubes (PMTs) in the telescope camera are extremely sensitive to the background moonlight. Observations with the VERITAS telescopes in the standard configuration are performed only with a moon illumination less than 35% of full moon. Since 2012, the VERITAS collaboration has implemented a new observing mode under bright moonlight, by either reducing the voltage applied to the PMTs (reduced-high-voltage; RHV configuration), or by utilizing UV-transparent filters. While these operating modes result in lower sensitivity and increased energy thresholds, the extension of the available observing time is useful for monitoring variable sources such as blazars and sources requiring spectral measurements at the highest energies. In this paper we report the detection of γ-ray flaring activity from the BL Lac object 1ES 1727+502 during RHV observations. This detection represents the first evidence of VHE variability from this blazar. The integral flux is (1.1+/- 0.2)× {10}-11 {{cm}}-2 {{{s}}}-1 above 250 GeV, which is about five times higher than the low-flux state. The detection triggered additional VERITAS observations during standard dark-time. Multiwavelength observations with the FLWO 48″ telescope, and the Swift and Fermi satellites are presented and used to produce the first spectral energy distribution (SED) of this object during γ-ray flaring activity. The SED is then fitted with a standard synchrotron-self-Compton model, placing constraints on the properties of the emitting region and of the acceleration mechanism at the origin of the relativistic particle population in the jet.

  18. Stellar Masses and Star Formation Rates of Lensed, Dusty, Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony. H.; Spilker, J. S.; Strandet, M.; Ashby, M. L. N.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; de Breuck, C.; Brodwin, M.; Chapman, S. C.; Fassnacht, C. D.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Malkan, M.; Marrone, D. P.; Saliwanchik, B. R.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2015-10-01

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ˜5 ×1010 M⊙. The intrinsic IR luminosities range from 4 × 1012 L⊙ to 4 × 1013 L⊙. They all have prodigious intrinsic SFRs of 510-4800 M⊙ yr-1. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  19. The MYStIX Infrared-Excess Source Catalog

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Kuhn, Michael A.; Getman, Konstantin V.; Busk, Heather A.; Feigelson, Eric D.; Broos, Patrick S.; Townsley, Leisa K.; King, Robert R.; Naylor, Tim

    2013-12-01

    The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d = 0.4-3.6 kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MIRES Catalog provides a foundation for follow-up studies of diverse phenomena related to massive star cluster formation, including protostellar outflows, circumstellar disks, and sequential star formation triggered by massive star feedback processes.

  20. A Small Fullerene (C{sub 24}) may be the Carrier of the 11.2 μ m Unidentified Infrared Band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L. S.; Shroll, R. M.; Lynch, D. K.

    2017-02-20

    We analyze the spectrum of the 11.2 μ m unidentified infrared band (UIR) from NGC 7027 and identify a small fullerene (C{sub 24}) as a plausible carrier. The blurring effects of lifetime and vibrational anharmonicity broadening obscure the narrower, intrinsic spectral profiles of the UIR band carriers. We use a spectral deconvolution algorithm to remove the blurring, in order to retrieve the intrinsic profile of the UIR band. The shape of the intrinsic profile—a sharp blue peak and an extended red tail—suggests that the UIR band originates from a molecular vibration–rotation band with a blue band head. The fractional areamore » of the band-head feature indicates a spheroidal molecule, implying a nonpolar molecule and precluding rotational emission. Its rotational temperature should be well approximated by that measured for nonpolar molecular hydrogen, ∼825 K for NGC 7027. Using this temperature, and the inferred spherical symmetry, we perform a spectral fit to the intrinsic profile, which results in a rotational constant implying C{sub 24} as the carrier. We show that the spectroscopic parameters derived for NGC 7027 are consistent with the 11.2 μ m UIR bands observed for other objects. We present density functional theory (DFT) calculations for the frequencies and infrared intensities of C{sub 24}. The DFT results are used to predict a spectral energy distribution (SED) originating from absorption of a 5 eV photon, and characterized by an effective vibrational temperature of 930 K. The C{sub 24} SED is consistent with the entire UIR spectrum and is the dominant contributor to the 11.2 and 12.7 μ m bands.« less

  1. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  2. The mean star formation rates of unobscured QSOs: searching for evidence of suppressed or enhanced star formation

    NASA Astrophysics Data System (ADS)

    Stanley, F.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; Wang, L.; Aird, J. A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Knudsen, K. K.; Michałowski, M. J.; Valiante, E.; De Zotti, G.; Furlanetto, C.; Ivison, R.; Maddox, S.; Smith, M. W. L.

    2017-12-01

    We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2-2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12-500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.

  3. The Hi-GAL compact source catalogue - I. The physical properties of the clumps in the inner Galaxy (-71.0° < ℓ < 67.0°)

    NASA Astrophysics Data System (ADS)

    Elia, Davide; Molinari, S.; Schisano, E.; Pestalozzi, M.; Pezzuto, S.; Merello, M.; Noriega-Crespo, A.; Moore, T. J. T.; Russeil, D.; Mottram, J. C.; Paladini, R.; Strafella, F.; Benedettini, M.; Bernard, J. P.; Di Giorgio, A.; Eden, D. J.; Fukui, Y.; Plume, R.; Bally, J.; Martin, P. G.; Ragan, S. E.; Jaffa, S. E.; Motte, F.; Olmi, L.; Schneider, N.; Testi, L.; Wyrowski, F.; Zavagno, A.; Calzoletti, L.; Faustini, F.; Natoli, P.; Palmeirim, P.; Piacentini, F.; Piazzo, L.; Pilbratt, G. L.; Polychroni, D.; Baldeschi, A.; Beltrán, M. T.; Billot, N.; Cambrésy, L.; Cesaroni, R.; García-Lario, P.; Hoare, M. G.; Huang, M.; Joncas, G.; Liu, S. J.; Maiolo, B. M. T.; Marsh, K. A.; Maruccia, Y.; Mège, P.; Peretto, N.; Rygl, K. L. J.; Schilke, P.; Thompson, M. A.; Traficante, A.; Umana, G.; Veneziani, M.; Ward-Thompson, D.; Whitworth, A. P.; Arab, H.; Bandieramonte, M.; Becciani, U.; Brescia, M.; Buemi, C.; Bufano, F.; Butora, R.; Cavuoti, S.; Costa, A.; Fiorellino, E.; Hajnal, A.; Hayakawa, T.; Kacsuk, P.; Leto, P.; Li Causi, G.; Marchili, N.; Martinavarro-Armengol, S.; Mercurio, A.; Molinaro, M.; Riccio, G.; Sano, H.; Sciacca, E.; Tachihara, K.; Torii, K.; Trigilio, C.; Vitello, F.; Yamamoto, H.

    2017-10-01

    Hi-GAL (Herschel InfraRed Galactic Plane Survey) is a large-scale survey of the Galactic plane, performed with Herschel in five infrared continuum bands between 70 and 500 μm. We present a band-merged catalogue of spatially matched sources and their properties derived from fits to the spectral energy distributions (SEDs) and heliocentric distances, based on the photometric catalogues presented in Molinari et al., covering the portion of Galactic plane -71.0° < ℓ < 67.0°. The band-merged catalogue contains 100 922 sources with a regular SED, 24 584 of which show a 70-μm counterpart and are thus considered protostellar, while the remainder are considered starless. Thanks to this huge number of sources, we are able to carry out a preliminary analysis of early stages of star formation, identifying the conditions that characterize different evolutionary phases on a statistically significant basis. We calculate surface densities to investigate the gravitational stability of clumps and their potential to form massive stars. We also explore evolutionary status metrics such as the dust temperature, luminosity and bolometric temperature, finding that these are higher in protostellar sources compared to pre-stellar ones. The surface density of sources follows an increasing trend as they evolve from pre-stellar to protostellar, but then it is found to decrease again in the majority of the most evolved clumps. Finally, we study the physical parameters of sources with respect to Galactic longitude and the association with spiral arms, finding only minor or no differences between the average evolutionary status of sources in the fourth and first Galactic quadrants, or between 'on-arm' and 'interarm' positions.

  4. Discovery of an Extremely Luminous Dust-obscured Galaxy Observed with SDSS, WISE, JCMT, and SMA

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Ueda, Junko; Lim, Chen-Fatt; Wang, Wei-Hao; Nagao, Tohru; Chang, Yu-Yen; Saito, Toshiki; Kawabe, Ryohei

    2018-04-01

    We present the discovery of an extremely luminous dust-obscured galaxy (DOG) at z spec = 3.703, WISE J101326.25+611220.1. This DOG is selected as a candidate of extremely luminous infrared (IR) galaxies based on the photometry from the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer. In order to derive its accurate IR luminosity, we perform follow-up observations at 450 and 850 μm using the Submillimetre Common User Bolometer Array 2 on the James Clerk Maxwell Telescope, and at 870 and 1300 μm using the Submillimeter Array, which enable us to pin down its IR Spectral Energy Distribution (SED). We perform SED fitting using 14 photometric data (0.4–1300 μm) and estimate its IR luminosity, L IR (8–1000 μm), to be {2.2}-1.0+1.5 ×1014 L ⊙, making it one of the most luminous IR galaxies in the universe. The energy contribution from an active galactic nucleus (AGN) to the IR luminosity is {94}-20+6%, which indicates that it is an AGN-dominated DOG. On the other hand, its stellar mass (M *) and star formation rate (SFR) are {log}({M}* /{M}ȯ ) = {11.2}-0.2+0.6 and {log}({SFR}/{M}ȯ {yr}}-1) = {3.1}-0.1+0.2, respectively, which means that this DOG can be considered a starburst galaxy in the M *–SFR plane. This extremely luminous DOG shows significant AGN and star-forming activity that provides us with an important laboratory to probe the maximum phase of the coevolution of galaxies and supermassive black holes.

  5. The first Fermi multifrequency campaign on BL Lacertae: Characterizing the low-activity state of the eponymous blazar

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2011-03-10

    Here, we report on observations of BL Lacertae during the first 18 months of Fermi LAT science operations and present results from a 48 day multifrequency coordinated campaign from 2008 August 19 to 2008 October 7. The radio to gamma-ray behavior of BL Lac is unveiled during a low-activity state thanks to the coordinated observations of radio-band (Metsähovi and VLBA), near-IR/optical (Tuorla, Steward, OAGH, and MDM), and X-ray ( RXTE and Swift) observatories. No variability was resolved in gamma rays during the campaign, and the brightness level was 15 times lower than the level of the 1997 EGRET outburst. Moderatemore » and uncorrelated variability has been detected in UV and X-rays. The X-ray spectrum is found to be concave, indicating the transition region between the low- and high-energy components of the spectral energy distribution (SED). VLBA observation detected a synchrotron spectrum self-absorption turnover in the innermost part of the radio jet appearing to be elongated and inhomogeneous, and constrained the average magnetic field there to be less than 3 G. Over the following months, BL Lac appeared variable in gamma rays, showing flares (in 2009 April and 2010 January). There is no evidence for the correlation of gamma rays with the optical flux monitored from the ground in 18 months. The SED may be described by a single-zone or a two-zone synchrotron self-Compton (SSC) model, but a hybrid SSC plus external radiation Compton model seems to be preferred based on the observed variability and the fact that it provides a fit closest to equipartition.« less

  6. Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products.

    PubMed

    Morandi, S; Brasca, M; Lodi, R; Cremonesi, P; Castiglioni, B

    2007-09-20

    Milk and dairy products are frequently contaminated with enterotoxigenic Staphylococcus aureus, which is often involved in staphylococcal food poisoning. The distribution of genes encoding staphylococcal enterotoxins (SE) in S. aureus isolated from bovine, goat, sheep and buffalo milk and dairy products was verified by the presence of the corresponding SE production. A total of 112 strains of S. aureus were tested for SE production by immuno-enzymatic (SEA-SEE) and reversed passive latex agglutination (SEA-SED) methods, while multiplex-PCR was applied for SE genes (sea, sec, sed, seg, seh, sei, sej and sel). Of the total strains studied, 67% were detected to have some SE genes (se), but only 52% produced a detectable amount of the classic antigenic SE types. The bovine isolates frequently had enterotoxin SEA, SED and sej, while SEC and sel predominated in the goat and sheep strains. The results demonstrated (i) marked enterotoxigenic S. aureus strain variations, in accordance with strain origin and (ii) the two methods resulted in different information but concurred on the risk of foodstuff infection by S. aureus.

  7. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano

    2016-08-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar spectral energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive Population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of `cosmic fossils' such as low-mass dwarf galaxies, the role of active galactic nuclei during reionization, the early formation of extended discs and angular-momentum catastrophe.

  8. Low-luminosity Blazars in Wise: A Mid-infrared View of Unification

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard M.; Anderson, S. F.; Brandt, W. N.; Markoff, S.; Shemmer, O.; Wu, J.

    2012-01-01

    We use the preliminary data release from the Wide-Field Infrared Survey Explorer (WISE) to perform the first statistical study on the mid-infrared (IR) properties of a large number ( 102) of BL Lac objects -- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions (SEDs), and the shape of their SEDs in the IR correlates well with SED peak frequency. In other BL Lac objects, the jet is not strong enough to completely dilute the rest of the AGN, and we do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. While at odds with simple unification, the missing torus is consistent with recent suggestions that BL Lac objects are fed by radiatively inefficient accretion flows. We discuss implications on the ``nature vs. nurture" debate for FR I and FR II galaxies, and also on the standard orientation-based AGN unification model.

  9. Social experiential deprivation in autism spectrum disorders: A possible prognostic factor?

    PubMed

    Kaku, Sowmyashree Mayur; Basheer, Salah; Venkatasubramanian, Ganesan; Bharath, Rose Dawn; Girimaji, Satish Chandra; Srinath, Shoba

    2017-04-01

    Autism spectrum disorders (ASD) are well known to be influenced by various environmental factors. Among these influencers, social experiential deprivation (SED) in infancy is one of them which is not well reported. We explored factors contributing to SED in 11 young children diagnosed to have ASD and compared them to 24 children without SED also having ASD. Intervention mainly addressing factors causing SED for 6 months demonstrated that children with SED had a better outcome at follow up. Could SED be a possible prognostic factor in children with ASD? Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The ISO View of Palomar-Green Quasars

    NASA Technical Reports Server (NTRS)

    Haas, M.; Klaas, U.; Mueller, S. A. H.; Bertoldi, F.; Camenzind, M.; Chini, R.; Krause, O.; Lemke, D.; Meisenheimer; Richards, P. J.

    2003-01-01

    Mining the ISO data archive we provide the complete ISO view of PG quasars containing 64 infrared spectral energy distributions between 5 and 200 mu m. About half of the sample was supplemented by MAMBO and SCUBA (sub-)millimeter data. Since the PG quasars were selected optically, the high infrared detection rate of more than 80% suggests that every quasar possesses luminous to hyper-luminous dust emission with dust masses comparable to Seyferts and ultra-luminous IR galaxies (ULIRGs). The gas to-dust mass ratio (of those sources where CO measurements are available in the literature) is consistent with the galactic value providing further evidence for the thermal nature of the IR emission of radio quiet quasars. The SEDs represent templates of unprecedented detail and sensitivity. We suggest that the diversity of the SEDs reflects largely the evolution of the dust distribution, and we propose a classification of the SED shapes as well as an evolutionary scheme in which this variety can be understood. During the evolution the surrounding dust redistributes, settling more and more into a torus/disk like configuration, while the SEDs show an initial FIR bump, then an increasing MIR emission and a steeper near- to mid-infrared slope, both of which finally also decrease. Regarding cosmic evolution, our hyper-luminous quasars in the "local" universe at z=l do not show the hyper-luminous (LFIR >? 10(exp 13) L(sub sun)) starburst activity inferred for z=4 quasars detected in several (sub-)millimeter surveys. In view of several caveats this difference should be established further, but it already suggests that in the early dense universe stronger merger events led to more powerful starbursts accompanying the quasar phenomenon, while at later cosmic epochs any coeval starbursts obviously do not reach that high power and are outshone by the AGN. Additional information is included in the original extended abstract.

  11. Panchromatic spectral energy distributions of simulated galaxies: results at redshift z = 0

    NASA Astrophysics Data System (ADS)

    Goz, David; Monaco, Pierluigi; Granato, Gian Luigi; Murante, Giuseppe; Domínguez-Tenreiro, Rosa; Obreja, Aura; Annunziatella, Marianna; Tescari, Edoardo

    2017-08-01

    We present predictions of spectral energy distributions (SEDs), from the UV to the FIR, of simulated galaxies at z = 0. These were obtained by post-processing the results of an N-body+hydro simulation of a cosmological box of side 25 Mpc, which uses the Multi-Phase Particle Integrator (MUPPI) for star formation and stellar feedback, with the grasil-3d radiative transfer code that includes reprocessing of UV light by dust. Physical properties of our sample of ˜500 galaxies resemble observed ones, though with some tension at small and large stellar masses. Comparing predicted SEDs of simulated galaxies with different samples of local galaxies, we find that these resemble observed ones, when normalized at 3.6 μm. A comparison with the Herschel Reference Survey shows that the average SEDs of galaxies, divided in bins of star formation rate (SFR), are reproduced in shape and absolute normalization to within a factor of ˜2, while average SEDs of galaxies divided in bins of stellar mass show tensions that are an effect of the difference of simulated and observed galaxies in the stellar mass-SFR plane. We use our sample to investigate the correlation of IR luminosity in Spitzer and Herschel bands with several galaxy properties. SFR is the quantity that best correlates with IR light up to 160 μm, while at longer wavelengths better correlations are found with molecular mass and, at 500 μm, with dust mass. However, using the position of the FIR peak as a proxy for cold dust temperature, we assess that heating of cold dust is mostly determined by SFR, with stellar mass giving only a minor contribution. We finally show how our sample of simulated galaxies can be used as a guide to understand the physical properties and selection biases of observed samples.

  12. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-05-27

    Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Here, the goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radiomore » to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. As a result, the activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2–10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE γ-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 × 104« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide in this paper new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objectsmore » from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at ν ≤ 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz ≤ ν ≤ 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck’s resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. Finally, the recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.« less

  14. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle.

    PubMed

    Chapinal, N; de Passillé, A M; Pastell, M; Hänninen, L; Munksgaard, L; Rushen, J

    2011-06-01

    The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥ 0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=-0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥ 0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22 m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72 g; SED=0.02) and rear (1.62 vs. 1.67 g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94 g; SED=0.03) were lower when cows walked on rubber compared with concrete. Despite the improvements in gait score that occurred when cows walked on rubber, the asymmetry of variance of acceleration of the front leg was higher (15.2 vs. 10.4%; SED=2.0). The difference in walking speed between concrete and rubber correlated with the difference in the mean acceleration and the difference in the variance of acceleration of the legs and back (r ≥ 0.6). Three-dimensional accelerometers seem to be a promising tool for lameness detection on farm and to study walking surfaces, especially when attached to a leg. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. The Virtual Observatory Service TheoSSA: Establishing a Database of Synthetic Stellar Flux Standards I. NLTE Spectral Analysis of the DA-Type White Dwarf G191-B2B *,**,***,****

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.

    2013-01-01

    Hydrogen-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to compare with observations. Aims. We will establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. Methods. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. Results. TheoSSA is in operation and contains presently a variety of SEDs for DA-type white dwarfs. It will be extended in the near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G191-B2B has shown that our hydrostatic models reproduce the observations best at Teff =60 000 +/- 2000K and log g=7.60 +/- 0.05.We newly identified Fe vi, Ni vi, and Zn iv lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of -4.89 (7.5 × solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance limits of about 10% solar were derived for Ti, Cr, Mn, and Co. Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronomical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different model-atmosphere codes and are easy to compare.

  16. Constraints and System Primitives in Achieving Multilevel Security in Real Time Distributed System Environment

    DTIC Science & Technology

    1994-04-18

    because they represent a microkernel and monolithic kernel approach to MLS operating system issues. TMACH is I based on MACH, a distributed operating...the operating system is [L.sed on a microkernel design or a monolithic kernel design. This distinction requires some caution since monolithic operating...are provided by 3 user-level processes, in contrast to standard UNIX, which has a large monolithic kernel that pro- I - 22 - Distributed O)perating

  17. Ground-based Submm/mm Follow-up Observations For Wise Selected Hyper-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Tsai, C.; Benford, D.; Bridge, C.; Eisenhardt, P.; Blain, A.; Sayers, J.; Petty, S.; WISE Team

    2012-01-01

    One of the major objectives of NASA's Wide-field Infrared Survey Explorer (WISE) mission is to search for the most luminous galaxies in the universe. The most productive method so far to select hyper luminous galaxies from WISE is to select targets that undetectable by WISE at 3.4 and 4.6 microns, while clearly detected at 12 and 22 microns, the so called W12 dropout galaxies. We have used the Caltech Submillimeter Observatory to follow-up these high-z (z=1.6-4.6) galaxies with SHARC-II at 350 to 850 microns, and BOLOCAM at 1.1 mm. Based on Spitzer 3.3 and 4.7 microns follow-ups, WISE W3, W4, and CSO observations, we constructed the SEDs and estimate the infrared luminosity and dust temperature for these W12 dropout galaxies. The inferred infrared luminosities are at least 10^13 to 10^14 solar luminosities, making them one of the most luminous population. The typical SEDs of these galaxies are flat from mid-IR to submillimeter, peaking at shorter wavelengths than other infrared luminous galaxies, indicating hotter dust temperature than known populations. Their SEDs can not be well fitted with existing templates, suggesting they may be a distinct new population. They may be extreme cases of Dust-Obsecured Galaxies (DOGs) with very high luminosities and dust temperature, and tracing a short transiting phase with booming luminosity at the peak epoch of AGN/starburst galaxy evolution.

  18. The Effect of Changes in Physical Activity on Sedentary Behavior: Results From a Randomized Lifestyle Intervention Trial.

    PubMed

    Siddique, Juned; de Chavez, Peter John; Craft, Lynette L; Freedson, Patty; Spring, Bonnie

    2017-07-01

    To investigate whether changes in physical activity (PA) have an impact on sedentary behavior (SB) during a lifestyle intervention. Study design was a randomized trial. Participants (n = 204) were individuals with low PA and high sedentary leisure screen time from the Chicago area. Participants were randomized to either increase PA (iPA) or decrease sedentary leisure (dSED). The intervention consisted of decision support, coaching, and financial incentives. For iPA participants, the goal was at least 60 min/d of self-reported moderate-tovigorous-intensity PA (MVPA). For dSED participants the goal was less than 90 min/d of sedentary leisure screen time. Daily accelerometer-based measures of SB and bout-corrected MVPA were obtained. Linear mixed-effects models were fit to estimate the effect of the intervention on MVPA and total SB and to estimate the effect of daily changes in MVPA on daily SB. The iPA participants increased their bout-corrected MVPA by 14 min/d (p < .001) and decreased their total SB by 18 min/d (p < .001). The dSED participants did not significantly change their PA or their total SB. On days when participants exercised, each 10-minute bout of MVPA was associated with a 6-minute decrease in SB on the same day (p < .001). In an intervention study designed to increase MVPA, participants who increase their time spent exercising will obtain much of this time by reducing their SB.

  19. An objective assessment of children's physical activity during the Keep It Moving! after-school program.

    PubMed

    Schuna, John M; Lauersdorf, Rebekah L; Behrens, Timothy K; Liguori, Gary; Liebert, Mina L

    2013-02-01

    After-school programs may provide valuable opportunities for children to accumulate healthful physical activity (PA). This study assessed the PA of third-, fourth-, and fifth-grade children in the Keep It Moving! (KIM) after-school PA program, which was implemented in an ethnically diverse and low socioeconomic status school district in Colorado Springs, Colorado. The PA of KIM participating children (N = 116) at 4 elementary schools was objectively assessed using ActiGraph accelerometers and the System for Observing Fitness Instruction Time (SOFIT). Linear mixed-effects models or generalized linear mixed-effects models were used to compare time spent in sedentary (SED) behaviors, light PA (LPA), moderate PA (MPA), vigorous PA (VPA), and moderate-to-vigorous PA (MVPA) between genders and weight status classifications during KIM sessions. Children accumulated 7.6 minutes of SED time, 26.9 minutes of LPA, and 22.2 minutes of MVPA during KIM sessions. Boys accumulated less SED time (p < .05) and LPA (p = .04) than girls, but accumulated more MPA (p = .04), VPA (p = .03), and MVPA (p = .03). Overweight/obese children accumulated more LPA (p = .04) and less VPA (p < .05) than nonoverweight children. SOFIT data indicated that children spent a considerable proportion of KIM sessions being very active (12.4%), walking (36.0%), or standing (40.3%). The KIM program provides opportunities for disadvantaged children to accumulate substantial amounts of MVPA (>20 minutes per session) in an effort to meet current PA guidelines. © 2013, American School Health Association.

  20. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Yan; Liu, Chunying; Lu, Wenwen

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysismore » revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.« less

  1. Can dust emission mechanisms be determined from field measurements?

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  2. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; hide

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  3. Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; de Wilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-10-01

    Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.

  4. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent estimate of the redshift, s(D z /(1 + z )) = 0.07. The median redshift of the secure submm counterparts is 2.0. Using X-ray and mid-IR imaging data, only 5% of the secure counterparts show strong evidence for an active galactic nucleus (AGN) dominating the IR luminosity. This thesis also presents deep Spitzer mid-IR spectroscopy of 13 of these SMGs in order to determine the contribution from AGN and starburst emission to the IR luminosity. I find strong polycyclic aromatic hydrocarbon (PAH) emission features in all of the targets, while only 2/13 SMGs have a significant mid-IR rising power-law component which would indicate an AGN. In the high signal-to- noise ratio composite spectrum of the SMGs I find that the AGN component contributes at most 30% of the mid-IR luminosity, implying that the total LIR in SMGs is dominated by star formation and not AGN emission. I also find that the SMGs lie on the relation between the luminosity of the main PAH features and L IR established for local starburst galaxies, confirming that the PAH luminosity can be used as a proxy for the star formation rate. Interestingly, local ULIRGs, which are often thought to be the low redshift analogues of SMGs, lie off these relations, as they appear deficient in PAH luminosity for a given L IR . In terms of an evolutionary scenario for IR luminous galaxies, SMGs are consistent with being an earlier phase in the massive merger (compared with other local or high redshift ULIRGs) in which the AGN has not yet become strong enough to heat the dust and dilute the PAH emission. I further investigate the overlap between high redshift infrared and submm populations using a statistical stacking analysis to measure the contribution of near- and mid-IR galaxy populations to the 850 mm submm background. For the first time, it is found that the 850 mm background can be completely resolved into individual galaxies and the bulk of these galaxies lie at z [Special characters omitted.] 3. Additionally I present a detailed study of the most distant SMG discovered to date, which I call GN20. This unusually bright source led to the discovery of a high redshift galaxy cluster, which is likely to be lensing the SMG. I discuss the potential for using bright SMGs in future submm surveys to identify high redshift clusters. Finally, for this complete sample of SMGs, I present the cumulative flux distribution at X-ray, optical, IR and radio wavelengths and I determine the depths at which one can expect to detect the majority of submm galaxies in future mm/submm surveys, such as with SCUBA-2, the successor to SCUBA.

  5. The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density

    PubMed Central

    Rubin, Clinton T.; Seeherman, Howard; Qin, Yi-Xian; Gross, Ted S.

    2013-01-01

    Distributions of normal strain, shear strain, and strain energy density (SED) were determined across the midshaft of the third metacarpal (MCIII, or cannon bone) of 3 adult thoroughbred horses as a function of speed and gait. A complete characterization of the mechanical demands of the bone made through the stride and from mild through the extremes of locomotion was possible by using three 3-element rosette strain gauges bonded at the diaphyseal midshaft of the MCIII and evaluating the strain output with beam theory and finite element analysis. Mean ± sd values of normal strain, shear strain, and SED increased with speed and peaked during a canter (−3560±380 microstrain, 1760±470 microstrain, and 119±23 kPa, respectively). While the location of these peaks was similar across animals and gaits, the resulting strain distributions across the cortex were consistently nonuniform, establishing between a 73-fold (slow trot) to a 330-fold (canter) disparity between the sites of maximum and minimum SED for each gait cycle. Using strain power density as an estimate of strain history across the bone revealed a 154-fold disparity between peak and minimum at the walk but fell to ∼32-fold at the canter. The nonuniform, minimally varying, strain environment suggests either that bone homeostasis is mediated by magnitude-independent mechanical signals or that the duration of stimuli necessary to establish and maintain tissue integrity is relatively brief, and thus the vast majority of strain information is disregarded.—Rubin, C. T., Seeherman, H., Qin, Y.-X., Gross, T. S., The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density. PMID:23355269

  6. Do safety engineered devices reduce needle-stick injuries?

    PubMed

    Schuurmans, J; Lutgens, S P; Groen, L; Schneeberger, P M

    2018-05-05

    Needle stick injuries (NSIs) are one of the most common health hazards facing health care workers (HCWs) across the globe. Needles with safety engineered devices (SEDs) have been developed to minimize the risk of exposure to blood-borne infections such as Hepatitis B virus (HBV), Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) associated with NSIs. To assess the effect of the introduction of SEDs in preventing NSIs among HCWs in the Jeroen Bosch Hospital (JBH), the Netherlands. We compared the incidence of reported NSIs before and after the introduction of SEDs. All HCWs who reported a NSI with a SED were interviewed in order to understand the underlying causes of the NSIs. Despite the introduction of SEDs the incidence of NSIs increased from 1.9/100 HCWs before the introduction of SEDs to 2.2/100 HCWs after the introduction of SEDs. The registration of reported SED related NSIs showed a significant decrease in the number of NSIs related to injection needles and blood sugar needles, while an unexpected significant increase in NSIs with nadroparin calcium needles and infusion needles was found. The most common causes reported for NSIs were unsafe disposal of the needles and problems with the safety feature. The application of SEDs has not led to a reduction of NSIs. The majority of NSIs caused by a needle with a SED can be prevented by stimulation of safe needle disposal, proper use of SEDs and provision of feedback to manufacturers to keep improving product design. Copyright © 2018. Published by Elsevier Ltd.

  7. Role of the putative structural protein Sed1p in mitochondrial genome maintenance.

    PubMed

    Phadnis, Naina; Ayres Sia, Elaine

    2004-09-24

    The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.

  8. Modelling galaxy spectra in presence of interstellar dust - III. From nearby galaxies to the distant Universe

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Chiosi, C.

    2015-07-01

    Improving upon the standard evolutionary population synthesis technique, we present spectrophotometric models of galaxies with morphology going from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). The models contain three main physical components: the diffuse ISM made of gas and dust, the complexes of molecular clouds where active star formation occurs, and stars of any age and chemical composition. These models are based on robust evolutionary chemical description providing the total amount of gas and stars present at any age, and matching the properties of galaxies of different morphological types. We have considered the results obtained by Piovan et al. for the properties of the ISM, and those by Cassarà et al. for the spectral energy distribution (SED) of single stellar populations, both in presence of dust, to model the integral SEDs of galaxies of different morphological types, going from pure bulges to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the SED of three prototype galaxies are highlighted. The theoretical SEDs nicely match the observational ones both for nearby galaxies and those at high redshift.

  9. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    NASA Astrophysics Data System (ADS)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  10. GRB 091127: The cooling break race on magnetic fuel

    NASA Astrophysics Data System (ADS)

    Filgas, R.; Greiner, J.; Schady, P.; Krühler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Nicuesa Guelbenzu, A.; Olivares E., F.; Rau, A.

    2011-11-01

    Aims: Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts (GRBs), and infer physical parameters of the ultra-relativistic outflow. Methods: We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g'r'i'z'JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keV energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1%, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results: Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NIR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 ± 0.2, and evolves towards lower frequencies as a power-law with index - 1.23 ± 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions: The measured evolution of the cooling break (νc ∝ t~-1.2) is not consistent with the predictions of the standard model, wherein νc ∝ t~-0.5 is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field ɛB. This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves. Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A57

  11. Ultraviolet to Infrared SED (Spectral Energy Distribution) Analysis of Nearby Late-Stage Mergers

    NASA Astrophysics Data System (ADS)

    Weiner, Aaron S.; Smith, Howard A.; Ashby, Matthew; Martínez-Galarza, Juan Rafael; Ramos Padilla, Andres; Hung, Chao-Ling; Dietrich, Jeremy; Lanz, Lauranne; Hayward, Christopher; Rosenthal, Lee; Willner, Steven; Zezas, Andreas

    2018-01-01

    We present an analysis of the fundamental properties of nearby merging galaxies based on an in-depth analysis of their spectral energy distributions. The Late-Stage Interacting Galaxy Sample (LSIGS) cross-correlates the Revised IRAS-FSC Redshift Catalogue (Wang et al. 2014) with Galaxy Zoo (Lintott et al. 2008, 2011). LSIGS builds on and extends SIGS (Spitzer Interacting Galaxy Sample; Lanz et al. 2013, Brassington et al. 2015) in two ways. First it enlarges the sample considerably to 453 systems, increasing the statistical power of the analysis significantly. Second, it includes galaxies in the most advanced merger stage, during coalescence, filling a gap in the SIGS sample. We present full ultraviolet (UV) to far-infrared (FIR) aperture photometry for 50 galaxies in this sample, 40 of which are late-stage mergers, selecting based on availability of both UV and SPIRE observations. These have subsequently been fit and analyzed by CIGALE (Code Investigating Galaxy Emission; Burgarella 2005) in order to retrieve key physical properties of the galaxies including star-formation rate (SFR), AGN fraction, dust luminosity, bolometric luminosity, and stellar and gas mass. We use this same analysis on hydrodynamical simulations created with GADGET-3 and using SUNRISE for the radiative transfer. Using the observations in conjunction with the simulations, CIGALE fits the simulated values accurately for fAGN>0.3. Additionally galaxies in the midst of coalescence have significantly increased sSFR compared to both early and late-stage mergers, while finding that the gas mass and alpha significantly increase from early stage mergers to those in coalescence. Furthermore, we find a linear anti-correlation between alpha and both the log(60/100μm) flux, and, more interestingly, the compactness. Lastly we bring forth the idea of using the best fit age of the oldest stars and the folding time of the stellar population, τmain, in conjunction to predict the likelihood of a galaxy being in a late-stage merger or in the midst of coalescence.

  12. chroma: Chromatic effects for LSST weak lensing

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua E.; Burchat, Patricia R.

    2018-04-01

    Chroma investigates biases originating from two chromatic effects in the atmosphere: differential chromatic refraction (DCR), and wavelength dependence of seeing. These biases arise when using the point spread function (PSF) measured with stars to estimate the shapes of galaxies with different spectral energy distributions (SEDs) than the stars.

  13. 15 CFR 752.15 - Export clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... System (AES) record. The SED or AES record covering an export made under an SCL must be prepared in... EAR. (1) Item descriptions. Item descriptions on the SED or AES record must indicate specifically the... each shipment on the respective SED or AES record. (3) SCL number. The SED or AES record must include...

  14. Probabilistic Selection of High-redshfit Quasars with Subaru / Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    2015-08-01

    High-redshift quasrs are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. We are now starting a new ground-breaking survey of high-redsfhit quasars (z>6) using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. With the extremely wide-area coverage and high sensitivity thorugh five optical bands (1,400 deg2 to the depth of r~26 in Wide layer), it is one of the most powerful contemporary surveys that makes it possible for the HSC-AGN collaboration to increase the number of z>6 quasars by almost an order of magnitude, i.e., 300 at z~6 and 50 at z~7 based on the current estimate of the QLF at z>6 (Willott et al. 2010).One of the biggest challenges in the candidate selection is the significant contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to z>6 quasars. To overcome this issue, we have developed template SED fitting method optimized to high-redshift quasars selection for constructing the largest z>6 quasar sample with the HSC survey. Since 500 deg2 of the footprints of the HSC survey overlaps with the VISTA/VIKING survey, it is expected that z>6 quasars, with characteristic large Lyman break and flat red-continuum in its SED, can be separated out from contaminating sources by applying SED fitting with multi-wavelength photometric data. In practice, its application with 27 photometric bands to the COSMOS quasars at 36 quasar search with the first-year data products of the HSC survey, which results in extracting several promising candidates including one possible highest-redshift quasar at zphoto=7.3.

  15. Socioeconomic Disadvantage Moderates the Association between Peripheral Biomarkers and Childhood Psychopathology

    PubMed Central

    Mansur, Rodrigo B.; Cunha, Graccielle R.; Asevedo, Elson; Zugman, André; Zeni-Graiff, Maiara; Rios, Adiel C.; Sethi, Sumit; Maurya, Pawan K.; Levandowski, Mateus L.; Gadelha, Ary; Pan, Pedro M.; Stertz, Laura; Belangero, Síntia I.; Kauer-Sant' Anna, Márcia; Teixeira, Antônio L.; Mari, Jair J.; Rohde, Luis A.; Miguel, Euripedes C.; McIntyre, Roger S.; Grassi-Oliveira, Rodrigo; Bressan, Rodrigo A.; Brietzke, Elisa

    2016-01-01

    Background Socioeconomic disadvantage (SED) has been consistently associated with early life mental health problems. SED has been shown to impact multiple biological systems, including the regulation of neurotrophic proteins, immune-inflammatory and oxidative stress markers, which, conversely, have been reported to be relevant to physiological and pathological neurodevelopment This study investigated the relationship between SED, different domains of psychopathology, serum levels of interleukin-6 (IL6), thiobarbituric acid-reactive substance (TBARS) and brain-derived neurotrophic factor (BDNF). We hypothesized that a composite of socioeconomic risk would be associated with psychopathology and altered levels of peripheral biomarkers. In addition, we hypothesized that SED would moderate the associations between mental health problems, IL6, TBARS and BDNF. Methods and Findings Using a cross-sectional design, we measured the serum levels of IL6, TBARS and BDNF in 495 children aged 6 to 12. We also investigated socio-demographic characteristics and mental health problems using the Child Behaviour Checklist (CBCL) DSM-oriented scales. SED was evaluated using a cumulative risk model. Generalized linear models were used to assess associations between SED, biomarkers levels and psychopathology. SED was significantly associated with serum levels of IL6 (RR = 1.026, 95% CI 1.004; 1.049, p = 0.020) and TBARS (RR = 1.077, 95% CI 1.028; 1.127, p = 0.002). The association between SED and BDNF was not statistically significant (RR = 1.031, 95% CI 0.997; 1.066, p = 0.077). SED was also significantly associated with all CBCL DSM-oriented scales (all p < 0.05), whereas serum biomarkers (i.e. IL6, TBARS, BDNF) were associated with specific subscales. Moreover, the associations between serum biomarkers and domains of psychopathology were moderated by SED, with stronger correlations between mental health problems, IL6, TBARS, and BDNF being observed in children with high SED. Conclusions In children, SED is highly associated with mental health problems. Our findings suggest that this association may be moderated via effects on multiple interacting neurobiological systems. PMID:27489945

  16. Combined Effects of Rosuvastatin and Exercise on Gene Expression of Key Molecules Involved in Cholesterol Metabolism in Ovariectomized Rats

    PubMed Central

    Ngo Sock, Emilienne Tudor; Mayer, Gaétan; Lavoie, Jean-Marc

    2016-01-01

    The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment. PMID:27442011

  17. SEDS1 mission software verification using a signal simulator

    NASA Technical Reports Server (NTRS)

    Pierson, William E.

    1992-01-01

    The first flight of the Small Expendable Deployer System (SEDS1) is schedule to fly as the secondary payload of a Delta 2 in March, 1993. The objective of the SEDS1 mission is to collect data to validate the concept of tethered satellite systems and to verify computer simulations used to predict their behavior. SEDS1 will deploy a 50 lb. instrumented satellite as an end mass using a 20 km tether. Langley Research Center is providing the end mass instrumentation, while the Marshall Space Flight Center is designing and building the deployer. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on the application of a brake, and cut the tether at the proper time after it swings to the local vertical. Also, SEDS1 will collect data which will be used to test the accuracy of tether dynamics models used to stimulate this type of deployment. The experiment will last about 1.5 hours and complete approximately 1.5 orbits. Radar tracking of the Delta II and end mass is planned. In addition, the SEDS1 on-board computer will continuously record, store, and transmit mission data over the Delta II S-band telemetry system. The Data System will count tether windings as the tether unwinds, log the times of each turn and other mission events, monitor tether tension, and record the temperature of system components. A summary of the measurements taken during the SEDS1 are shown. The Data System will also control the tether brake and cutter mechanisms. Preliminary versions of two major sections of the flight software, the data telemetry modules and the data collection modules, were developed and tested under the 1990 NASA/ASEE Summer Faculty Fellowship Program. To facilitate the debugging of these software modules, a prototype SEDS Data System was programmed to simulate turn count signals. During the 1991 summer program, the concept of simulating signals produced by the SEDS electronics systems and circuits was expanded and more precisely defined. During the 1992 summer program, the SEDS signal simulator was programmed to test the requirements of the SEDS Mission software, and this simulator will be used in the formal verification of the SEDS Mission Software. The formal test procedures specification was written which incorporates the use of the signal simulator to test the SEDS Mission Software and which incorporates procedures for testing the other major component of the SEDS software, the Monitor Software.

  18. The X-ray Spectrum and Spectral Energy Distribution of FIRST J155633.8+351758: A Beamed Radio-Quiet Quasar with a Polar Outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, M. S.; Gallagher, S. C.; Ganguly, R.; Shang, Z.; Lacy, M.; Gregg, M. D.; Hall, P. B.; Laurent-Muehleisen, S. A.

    2007-12-01

    We report the results of a 60 ks Chandra X-ray Observatory ACIS-S observation of the reddened, radio-selected, highly polarized "FeLoBAL" quasar FIRST J155633.8+351758. Our analyses of the 531 photon spectrum indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter). No iron K-α line is detected, and the X-rays appear to be down by only an order of magnitude below their intrinsic unabsorbed levels. Absorption is present with both partially ionized models and neutral hydrogen models with partial covering providing good fits. The level of partial covering in the latter model is consistent with the rest-frame ultraviolet maximum polarization of 13%, in the sense that light scattered by electrons around the X-ray absorber could account for both results. We present the spectral energy distribution (SED) of FIRST J155633.8+351758 from radio through X-ray energies, and make corrections for Doppler beaming for the pole-on radio-quiet jet, optical dust reddening, and X-ray absorption. The corrected SED appears to be that of a luminous radio-quiet quasar deficient in the mid and far-infrared, suggesting that the dust covering fraction of the quasar is not large and that star formation is not excessive. FIRST J155633.8+351758 seems to be an intrinsically normal radio-quiet quasar with an X-ray absorber not dissimilar from that of other broad absorption line quasars studied in detail at X-ray wavelengths. We acknowledge support from Chandra Award No. GO6-7105X, from the US NSF (grant AST 05-07781), from NASA under the grant NNG05GD03G, and from the National Natural Science Foundation of China (grant 10643001). This work was performed under the auspices of the US DOE by the University of California, LLNL (Contract No. W-7405-Eng-48).

  19. An archive study of 18 old novae. I. The UV spectra

    NASA Astrophysics Data System (ADS)

    Selvelli, P.; Gilmozzi, R.

    2013-12-01

    Aims: We present an overview of the UV spectral properties of old novae as a class. The data and results of this paper, together with data from the outburst phases, will be utilized in a follow-up study to determine statistical properties and to investigate correlations among the physical parameters of the quiescent and eruptive phases. Methods: All the available IUE, HST, and FUSE archive data for 18 old novae were used to derive accurate and homogeneous estimates of the reddening from the 2175 Å extinction bump and to determine the intrinsic spectral energy distribution corresponding to the utilization of both existing extinction curves. We also measured all the emission and absorption lines. Results: We have found good agreement between spectra taken at different epochs and by different instruments, a clear indication of the near constancy of the SED on timescales of several years. With the possible exception of GK Per, the dereddened UV continua are represented well by a single-curve power-law distribution Fλ ∝ λ- α, with α in the range 0.32-2.55 for one curve and 0.35-2.88 for the other one. The extrapolation of the various UV power laws to the optical range yields values that are in good agreement with the V magnitudes. We interpret this result as evidence that the SED is dominated by the accretion disk in the UV and optical spectral regions. A detailed study of the emission spectrum has led to measuring and identifying more than one hundred features and to detecting several lines that are rather uncommon in other CVs and whose identification is uncertain. Based on INES data from the IUE satellite. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). Tables 2-7 and 10-14 are available in electronic form at http://www.aanda.orgThe final reduced spectra (FITS files) and full Table 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A49

  20. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    NASA Technical Reports Server (NTRS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  1. Multifrequency studies of the narrow-line Seyfert 1 galaxy SBS 0846+513

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2013-09-16

    Here, the narrow-line Seyfert 1 galaxy SBS 0846+513 was first detected by the Large Area Telescope on board Fermi in 2011 June–July when it underwent a period of flaring activity. Since then, as Fermi continues to accumulate data on this source, its flux has been monitored on a daily basis. Two further γ-ray flaring episodes from SBS 0846+513 were observed in 2012 May and August, reaching a daily peak flux integrated above 100 MeV of (50 ± 12) × 10 –8 ph cm –2 s –1, and (73 ± 14) × 10 –8 ph cm –2 s –1 on Maymore » 24 and August 7, respectively. Three outbursts were detected at 15 GHz by the Owens Valley Radio Observatory 40 m telescope in 2012 May, 2012 October and 2013 January, suggesting a complex connection with the γ-ray activity. The most likely scenario suggests that the 2012 May γ-ray flare may not be directly related to the radio activity observed over the same period, while the two γ-ray flaring episodes may be related to the radio activity observed at 15 GHz in 2012 October and 2013 January. The γ-ray flare in 2012 May triggered Swift observations that confirmed that SBS 0846+513 was also exhibiting high activity in the optical, UV and X-ray bands, thus providing a firm identification between the γ-ray source and the lower energy counterpart. We compared the spectral energy distribution (SED) of the flaring state in 2012 May with that of a quiescent state. The two SEDs, modelled as an external Compton component of seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. No significant evidence of thermal emission from the accretion disc has been observed. Interestingly, in the 5 GHz radio luminosity versus synchrotron peak frequency plot SBS 0846+513 seems to lie in the flat spectrum radio quasar part of the so-called ‘blazar sequence’.« less

  2. HST/WFC3 near-infrared spectroscopy of quenched galaxies at z ∼ 1.5 from the WISP survey: Stellar population properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedregal, A. G.; Scarlata, C.; Rutkowski, M. J.

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M {sub star}/M {sub ☉}) ∼ 11.0) and quenched (specific star formation rate <0.01 Gyr{sup –1}) galaxies at z ∼ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ∼ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are wellmore » fitted with exponentially decreasing star formation histories and short star formation timescales (τ ≤ 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u – r){sub 0}-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ∼ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ∼ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ∼ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ∼ 1.5 RS is of the order of ∼1 Gyr.« less

  3. Modeling catchment nutrients and sediment loads to inform regional management of water quality in coastal-marine ecosystems: a comparison of two approaches.

    PubMed

    Álvarez-Romero, Jorge G; Wilkinson, Scott N; Pressey, Robert L; Ban, Natalie C; Kool, Johnathan; Brodie, Jon

    2014-12-15

    Human-induced changes in flows of water, nutrients, and sediments have impacts on marine ecosystems. Quantifying these changes to systematically allocate management actions is a priority for many areas worldwide. Modeling nutrient and sediment loads and contributions from subcatchments can inform prioritization of management interventions to mitigate the impacts of land-based pollution on marine ecosystems. Among the catchment models appropriate for large-scale applications, N-SPECT and SedNet have been used to prioritize areas for management of water quality in coastal-marine ecosystems. However, an assessment of their relative performance, parameterization, and utility for regional-scale planning is needed. We examined how these considerations can influence the choice between the two models and the areas identified as priorities for management actions. We assessed their application in selected catchments of the Gulf of California, where managing land-based threats to marine ecosystems is a priority. We found important differences in performance between models. SedNet consistently estimated spatial variations in runoff with higher accuracy than N-SPECT and modeled suspended sediment (TSS) loads mostly within the range of variation in observed loads. N-SPECT overestimated TSS loads by orders of magnitude when using the spatially-distributed sediment delivery ratio (SDR), but outperformed SedNet when using a calibrated SDR. Differences in subcatchments' contribution to pollutant loads were principally due to explicit representation of sediment sinks and particulate nutrients by SedNet. Improving the floodplain extent model, and constraining erosion estimates by local data including gully erosion in SedNet, would improve results of this model and help identify effective management responses. Differences between models in the patterns of modeled pollutant supply were modest, but significantly influenced the prioritization of subcatchments for management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The First GeV Outburst of the Radio-loud Narrow-line Seyfert 1 Galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.

    2016-03-01

    The γ-ray-loud narrow-line Seyfert 1 (γ-NLSy1) galaxy PKS 1502+036 (z = 0.409) exhibited its first γ-ray outburst on 2015 December 20. In the energy range of 0.1-300 GeV, the highest flux measured by the Fermi-Large Area Telescope is (3.90 ± 1.52) × 10-6 {ph} {{cm}}-2 {{{s}}}-1, which is the highest γ-ray flux ever detected from this object. The associated spectral shape is soft (Γ0.1-300 GeV = 2.57 ± 0.17) and this corresponds to an isotropic γ-ray luminosity of (1.2 ± 0.6) × 1048 erg s-1. We generate the broadband spectral energy distribution (SED) during the GeV flare and reproduce it using a one-zone leptonic emission model. The optical-UV spectrum can be explained by a combination of synchrotron and accretion disk emission, whereas the X-ray-to-γ-ray SED can be satisfactorily reproduced by inverse-Compton scattering of thermal photons that originated from the torus. The derived SED parameters hint that the increase in the bulk Lorentz factor is a major cause of the flare and the location of the emission region is estimated as being outside the broad-line region but still inside the torus. A comparison of the GeV-flaring SED of PKS 1502+036 with that of two other γ-NLSy1 galaxies, namely, 1H 0323+342 (z = 0.061) and PMN J0948+0022 (z = 0.585), and also with flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536), has led to the conclusion that the GeV-flaring SEDs of γ-NLSy1 galaxies resemble FSRQs and a major fraction of their bolometric luminosities are emitted at γ-ray energies.

  5. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Boller, A.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sun, S.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Steinke, B.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Zanin, R.; MAGIC Collaboration; Archambault, S.; Archer, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Biteau, J.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Gyuk, G.; Håkansson, N.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Lang, M. J.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Prokoph, H.; Pueschel, E.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Wakely, S. P.; Welsing, R.; Wilhelm, A.; Williams, D. A.; VERITAS Collaboration; Buson, S.; Finke, J.; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Cesarini, A.; Chen, W. P.; Gurwell, M. A.; Jorstad, S. G.; Kimeridze, G. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Lähteenmäki, A.; Larionov, V. M.; Larionova, E. G.; Lin, H. C.; McBreen, B.; Moody, J. W.; Morozova, D. A.; Marscher, A. P.; Max-Moerbeck, W.; Nikolashvili, M. G.; Perri, M.; Readhead, A. C. S.; Richards, J. L.; Ros, J. A.; Sadun, A. C.; Sakamoto, T.; Sigua, L. A.; Smith, P. S.; Tornikoski, M.; Troitsky, I. S.; Wehrle, A. E.; Jordan, B.

    2015-06-01

    Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims: The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods: A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results: The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2-10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE γ-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 × 104<γ< 6 × 105, where γ is the Lorentz factor of the electrons. Such a two-zone scenario would naturally lead to the correlated variability at the X-ray and VHE bands without variability at the optical/UV band, as well as to shorter timescales for the variability at the X-ray and VHE bands with respect to the variability at the other bands. Conclusions: Both the one-zone and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly with the underlying particle population. This shows that the particle acceleration and cooling mechanism that produces the radiating particles might be the main mechanism responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement with the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by varying the parameters related to the emitting region itself (δ, B and R), in addition to the parameters related to the particle population. Appendices are available in electronic form at http://www.aanda.orgMulti-wavelength light curves (data in Fig. 1) and broadband spectral energy distributions (the data in Figs. 7, 8a-9f, 12a-13f) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A22

  6. Analysis of Specular Reflections Off Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  7. Serious emotional disturbance among youths exposed to Hurricane Katrina 2 years postdisaster.

    PubMed

    McLaughlin, Katie A; Fairbank, John A; Gruber, Michael J; Jones, Russell T; Lakoma, Matthew D; Pfefferbaum, Betty; Sampson, Nancy A; Kessler, Ronald C

    2009-11-01

    To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, sociodemographics, and family factors 18 to 27 months after the hurricane. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey. Respondents provided information on up to two of their children (n = 797) aged 4 to 17 years. The survey assessed hurricane-related stressors and lifetime history of psychopathology in respondents, screened for 12-month SED in respondents' children using the Strengths and Difficulties Questionnaire, and determined whether children's emotional and behavioral problems were attributable to Hurricane Katrina. The estimated prevalence of SED was 14.9%, and 9.3% of the youths were estimated to have SED that is directly attributable to Hurricane Katrina. Stress exposure was associated strongly with SED, and 20.3% of the youths with high stress exposure had hurricane-attributable SED. Death of a loved one had the strongest association with SED among prehurricane residents of New Orleans, whereas exposure to physical adversity had the strongest association in the remainder of the sample. Among children with stress exposure, parental psychopathology and poverty were associated with SED. The prevalence of SED among youths exposed to Hurricane Katrina remains high 18 to 27 months after the storm, suggesting a substantial need for mental health treatment resources in the hurricane-affected areas. The youths who were exposed to hurricane-related stressors, have a family history of psychopathology, and have lower family incomes are at greatest risk for long-term psychiatric impairment.

  8. Solar energy demand (SED) of commodity life cycles.

    PubMed

    Rugani, Benedetto; Huijbregts, Mark A J; Mutel, Christopher; Bastianoni, Simone; Hellweg, Stefanie

    2011-06-15

    The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators.

  9. Nature versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Herter, T. L.; Morris, M. R.; Adams, J. D.

    2014-04-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical "twins" that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s-1) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ~ 35 Å) having a total dust mass of 0.03 M ⊙, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 105 L ⊙. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ⊙. The total IR luminosity of the G0.120-0.048 nebula is ~105 L ⊙. From Paschen-α and 6 cm observations we determine a total gas mass of 9.3 M ⊙ and 6.2 M ⊙ for the Pistol and G0.120-0.048 nebulae, respectively. Given the independent dust and gas mass estimates we find that the Pistol and G0.120-0.048 nebulae exhibit similar gas-to-dust mass ratios of 310^{+77}_{-52} and 293^{+73}_{-101}, respectively. Both nebulae share identical size scales (~0.7 pc) which suggests that they have similar dynamical timescales of ~104 yr, assuming a shell expansion velocity of v exp = 60 km s-1.

  10. The fraction of quiescent massive galaxies in the early Universe

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Santini, P.; Grazian, A.; Pentericci, L.; Fiore, F.; Castellano, M.; Giallongo, E.; Menci, N.; Salimbeni, S.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2009-07-01

    Aims: We attempt to compile a complete, mass-selected sample of galaxies with low specific star-formation rates, and compare their properties with theoretical model predictions. Methods: We use the f(24 μ m})/f(K) flux ratio and the SED fitting to the 0.35-8.0 μm spectral distribution, to select quiescent galaxies from z≃ 0.4 to z≃ 4 in the GOODS-MUSIC sample. Our observational selection can be translated into thresholds in specific star-formation rate dot{M}/M_*, which can be compared with theoretical predictions. Results: In the framework of the well-known global decline in quiescent galaxy fraction with redshift, we find that a non-negligible fraction {≃ 15-20% of massive galaxies with low specific star-formation rate exists up to z≃ 4, including a tail of “red and dead” galaxies with dot{M}/M_*<10-11 yr-1. Theoretical models vary to a large extent in their predictions for the fraction of galaxies with low specific star-formation rates, but are unable to provide a global match to our data.

  11. EZ and GOSSIP, two new VO compliant tools for spectral analysis

    NASA Astrophysics Data System (ADS)

    Franzetti, P.; Garill, B.; Fumana, M.; Paioro, L.; Scodeggio, M.; Paltani, S.; Scaramella, R.

    2008-10-01

    We present EZ and GOSSIP, two new VO compliant tools dedicated to spectral analysis. EZ is a tool to perform automatic redshift measurement; GOSSIP is a tool created to perform the SED fitting procedure in a simple, user friendly and efficient way. These two tools have been developed by the PANDORA Group at INAF-IASF (Milano); EZ has been developed in collaboration with Osservatorio Monte Porzio (Roma) and Integral Science Data Center (Geneve). EZ is released to the astronomical community; GOSSIP is currently in beta-testing.

  12. Correlates of objectively measured sedentary time and self-reported screen time in Canadian children.

    PubMed

    LeBlanc, Allana G; Broyles, Stephanie T; Chaput, Jean-Philippe; Leduc, Geneviève; Boyer, Charles; Borghese, Michael M; Tremblay, Mark S

    2015-03-18

    Demographic, family, and home characteristics play an important role in determining childhood sedentary behaviour. The objective of this paper was to identify correlates of total sedentary time (SED) and correlates of self-reported screen time (ST) in Canadian children. Child- and parent-reported household, socio-demographic, behavioural, and diet related data were collected; directly measured anthropometric and accelerometer data were also collected for each child. Participants with complete demographic, anthropometric, and either SED (n=524, 41% boys) or ST (n=567, 42% boys) data from the Canadian site of the International Study of Childhood Obesity Lifestyle and the Environment (ISCOLE) were included in analysis. Sixteen potential correlates of SED and ST were examined using multilevel general linear models, adjusting for sex, ethnicity, number of siblings, and socio-economic status. All explanatory variables moderately associated (p<0.10) with SED and/or ST in univariate analyses were included in the final, fully-adjusted models. Variables that remained significant in the final models (p<0.05) were considered correlates of SED and/or ST. Children averaged 8.5 hours of daily SED; no differences in total SED, or total ST were seen between girls and boys, but boys reported significantly more video game/computer usage than girls. Boys also had higher waist circumference and BMI z-scores than girls. In the final models, waist circumference and number of TVs in the home were the only common correlates of both SED and ST. SED was also negatively associated with sleep duration. ST was also positively associated with mother's weight status, father's education, and unhealthy eating pattern score and negatively associated with healthy eating pattern score, and weekend breakfast consumption. Few common correlates existed between boys and girls. Several factors were identified as correlates of SED and/or of ST in Canadian children; however, few correlates were common for both SED and ST, and for both boys and girls. This suggests that a single strategy to reduce SED and ST is unlikely to be effective. Future work should examine a variety of other, non-screen based sedentary behaviours and their potential correlates in the hopes of creating tailored public health messages to reduce SED and ST in both boys, and girls.

  13. γ-Ray And Parsec-Scale Jet Properties Of A Complete Sample Of Blazars From The Mojave Program

    DOE PAGES

    Lister, M. L.

    2011-11-02

    We investigate the Fermi LAT -ray and 15 GHz VLBA radio properties of a joint -ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30° during this period, and thus probes the full range of -ray loudness ( -ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders ofmagnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. Themore » BL Lac objects, however, display a linear correlation of increasing -ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the -ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - -ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.« less

  14. The Intrinsic Far-infrared Continua of Type-1 Quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Jianwei; Rieke, George H., E-mail: jianwei@email.arizona.edu

    2017-06-01

    The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR propertiesmore » of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ∼20 μ m and can be matched by an Elvis et al.-like template with a minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at λ ∼ 20–100 μ m, suggesting a similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsic AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kiloparsec scales in the far-IR.« less

  15. Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars from the MOJAVE Program

    NASA Technical Reports Server (NTRS)

    Lister, M.L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; Ackermann, M.; hide

    2011-01-01

    We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -300 during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.

  16. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane

    2016-10-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modelling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ˜ 10^4 galaxies at redshifts 0.1 ≲ z ≲ 8. We find that the constraints derived on photometric redshifts using this multipurpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

  17. Determining Mass-Loss Rates of Evolved Stars in the Galactic Bulge from Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2018-06-01

    To investigate the relationship between mass loss from evolved stars and host galaxy metallicity, we are computing the dust mass loss budget due to red supergiant (RSG) and asymptotic giant branch (AGB) stars in the Galactic Bulge and comparing this result to that previously obtained for the Magellanic Clouds. We construct spectral energy distributions (SEDs) for our candidate RSG and AGB stars using observations from various infrared surveys, including the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Because Robitaille et al (2008, AJ, 136, 2413) have already identified Intrinsically Red Objects from the GLIMPSE I and II surveys, we use their method as a starting point and expand the study by using the GLIMPSE 3D survey. Because AGB stars can be variable, we also match the GLIMPSE I, II, and 3D sources to other surveys, such as DEEP GLIMPSE, WISE, VVV, and DENIS, in order to characterize the variability across the spectral energy distribution (SED) of each source. This allows us to determine the source’s average SED over multiple epochs. We use extinction curves derived from Spitzer studies of extinction in the Galaxy to determine the extinction corrections for our sample. To establish mass-loss rates of evolved stars in the Bulge, we use the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS) of dust-enshrouded evolved stars (2011, A&A, 532, A54; 2011, ApJ, 728, 93). This allows us to determine the total mass return to the Bulge from these stars. This work has been supported by NASA ADAP grant 80NSSC17K0057.

  18. Serious Emotion Disturbance among Youth Exposed to Hurricane Katrina Two Years Post-Disaster

    PubMed Central

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Lakoma, Matthew D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2014-01-01

    Objective To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, socio-demographics, and family factors 18–27 months following the hurricane. Method A probability sample of pre-hurricane residents of areas affected by Hurricane Katrina was administered a telephone survey. Respondents provided information on up to two of their children (n=797) aged 4–17. The survey assessed hurricane-related stressors and lifetime history of psychopathology in respondents, screened for 12-month SED in respondents’ children using the Strengths and Difficulties Questionnaire (SDQ), and determined whether children’s emotional and behavioral problems were attributable to Hurricane Katrina. Results The estimated prevalence of SED was 14.9%, and 9.3% of youth were estimated to have SED that is directly attributable to Hurricane Katrina. Stress exposure was associated strongly with SED, and 20.3% of youth with high stress exposure had hurricane-attributable SED. Death of a loved one had the strongest association with SED among pre-hurricane residents of New Orleans, whereas exposure to physical adversity had the strongest association in the remainder of the sample. Among children with stress exposure, parental psychopathology and poverty were associated with SED. Conclusions The prevalence of SED among youth exposed to Hurricane Katrina remains high 18–27 months after the storm, suggesting a substantial need for mental health treatment resources in the hurricane-affected areas. Youth who were exposed to hurricane-related stressors, have a family history of psychopathology, and have lower family incomes are at greatest risk for long-term psychiatric impairment. PMID:19797983

  19. Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain.

    PubMed

    Bamba, Takahiro; Inokuma, Kentaro; Hasunuma, Tomohisa; Kondo, Akihiko

    2018-03-01

    Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MS E ). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. A concordant scenario to explain FU Orionis from deep centimeter and millimeter interferometric observations

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Vorobyov, Eduard I.; Dong, Ruobing; Dunham, Michael M.; Takami, Michihiro; Galván-Madrid, Roberto; Hashimoto, Jun; Kóspál, Ágnes; Henning, Thomas; Tamura, Motohide; Rodríguez, Luis F.; Hirano, Naomi; Hasegawa, Yasuhiro; Fukagawa, Misato; Carrasco-Gonzalez, Carlos; Tazzari, Marco

    2017-06-01

    Aims: The aim of this work is to constrain properties of the disk around the archetype FU Orionis object, FU Ori, with as good as 25 au resolution. Methods: We resolved FU Ori at 29-37 GHz using the Karl G. Jansky Very Large Array (JVLA) in the A-array configuration, which provided the highest possible angular resolution to date at this frequency band ( 0.07 arcsec). We also performed complementary JVLA 8-10 GHz observations, Submillimeter Array (SMA) 224 GHz and 272 GHz observations, and compared these with archival Atacama Large Millimeter Array (ALMA) 346 GHz observations to obtain the spectral energy distributions (SEDs). Results: Our 8-10 GHz observations do not find evidence for the presence of thermal radio jets, and constrain the radio jet/wind flux to at least 90 times lower than the expected value from the previously reported bolometric luminosity-radio luminosity correlation. The emission at frequencies higher than 29 GHz may be dominated by the two spatially unresolved sources, which are located immediately around FU Ori and its companion FU Ori S, respectively. Their deconvolved radii at 33 GHz are only a few au, which is two orders of magnitude smaller in linear scale than the gaseous disk revealed by the previous Subaru-HiCIAO 1.6 μm coronagraphic polarization imaging observations. We are struck by the fact that these two spatially compact sources contribute to over 50% of the observed fluxes at 224 GHz, 272 GHz, and 346 GHz. The 8-346 GHz SEDs of FU Ori and FU Ori S cannot be fit by constant spectral indices (over frequency), although we cannot rule out that it is due to the time variability of their (sub)millimeter fluxes. Conclusions: The more sophisticated models for SEDs considering the details of the observed spectral indices in the millimeter bands suggest that the >29 GHz emission is contributed by a combination of free-free emission from ionized gas and thermal emission from optically thick and optically thin dust components. We hypothesize that dust in the innermost parts of the disks (≲0.1 au) has been sublimated, and thus the disks are no longer well shielded against the ionizing photons. The estimated overall gas and dust mass based on SED modeling, can be as high as a fraction of a solar mass, which is adequate for developing disk gravitational instability. Our present explanation for the observational data is that the massive inflow of gas and dust due to disk gravitational instability or interaction with a companion/intruder, was piled up at the few-au scale due to the development of a deadzone with negligible ionization. The piled up material subsequently triggered the thermal instability and the magnetorotational instability when the ionization fraction in the inner sub-au scale region exceeded a threshold value, leading to the high protostellar accretion rate.

  1. Spread of the dust temperature distribution in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Heese, S.; Wolf, S.; Dutrey, A.; Guilloteau, S.

    2017-07-01

    Context. Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. Aims: We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). Methods: The temperature distribution, the relative grain surface below a certain temperature, the freeze-out radius, and the SED were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Results: Within the considered parameter range, I.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: in optically thin disk regions, the temperature spread can be as large as 63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below 20 K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius (snowline) is a function of grain radius, spanning a radial range between the coldest and warmest grain species of 30 AU.

  2. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.

  3. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    PubMed

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  4. Lake sedimentary DNA accurately records 20th Century introductions of exotic conifers in Scotland.

    PubMed

    Sjögren, Per; Edwards, Mary E; Gielly, Ludovic; Langdon, Catherine T; Croudace, Ian W; Merkel, Marie Kristine Føreid; Fonville, Thierry; Alsos, Inger Greve

    2017-01-01

    Sedimentary DNA (sedDNA) has recently emerged as a new proxy for reconstructing past vegetation, but its taphonomy, source area and representation biases need better assessment. We investigated how sedDNA in recent sediments of two small Scottish lakes reflects a major vegetation change, using well-documented 20 th Century plantations of exotic conifers as an experimental system. We used next-generation sequencing to barcode sedDNA retrieved from subrecent lake sediments. For comparison, pollen was analysed from the same samples. The sedDNA record contains 73 taxa (mainly genus or species), all but one of which are present in the study area. Pollen and sedDNA shared 35% of taxa, which partly reflects a difference in source area. More aquatic taxa were recorded in sedDNA, whereas taxa assumed to be of regional rather than local origin were recorded only as pollen. The chronology of the sediments and planting records are well aligned, and sedDNA of exotic conifers appears in high quantities with the establishment of plantations around the lakes. SedDNA recorded other changes in local vegetation that accompanied afforestation. There were no signs of DNA leaching in the sediments or DNA originating from pollen. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Clinical laboratory urine analysis: comparison of the UriSed automated microscopic analyzer and the manual microscopy.

    PubMed

    Ma, Junlong; Wang, Chengbin; Yue, Jiaxin; Li, Mianyang; Zhang, Hongrui; Ma, Xiaojing; Li, Xincui; Xue, Dandan; Qing, Xiaoyan; Wang, Shengjiang; Xiang, Daijun; Cong, Yulong

    2013-01-01

    Several automated urine sediment analyzers have been introduced to clinical laboratories. Automated microscopic pattern recognition is a new technique for urine particle analysis. We evaluated the analytical and diagnostic performance of the UriSed automated microscopic analyzer and compared with manual microscopy for urine sediment analysis. Precision, linearity, carry-over, and method comparison were carried out. A total of 600 urine samples sent for urinalysis were assessed using the UriSed automated microscopic analyzer and manual microscopy. Within-run and between-run precision of the UriSed for red blood cells (RBC) and white blood cells (WBC) were acceptable at all levels (CV < 20%). Within-run and between-run imprecision of the UriSed testing for cast, squamous epithelial cells (EPI), and bacteria (BAC) were good at middle level and high level (CV < 20%). The linearity analysis revealed substantial agreement between the measured value and the theoretical value of the UriSed for RBC, WBC, cast, EPI, and BAC (r > 0.95). There was no carry-over. RBC, WBC, and squamous epithelial cells with sensitivities and specificities were more than 80% in this study. There is substantial agreement between the UriSed automated microscopic analyzer and the manual microscopy methods. The UriSed provides for a rapid turnaround time.

  6. The stellar masses of ˜ 40 000 UV selected Galaxies from the WiggleZ survey at 0.3

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Glazebrook, Karl; Blake, Chris; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croton, Darren J.; Croom, Scott; Davis, Tamara M.; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Jelliffe, Ben; Jurek, Russell J.; Li, I.-hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Poole, Gregory B.; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2013-05-01

    We characterize the stellar masses and star formation rates in a sample of ˜40 000 spectroscopically confirmed UV-luminous galaxies at 0.3 < z < 1.0 selected from within the WiggleZ Dark Energy Survey. In particular, we match this UV bright population to wide-field infrared surveys such as the near-infrared (NIR) UKIDSS Large Area Survey (LAS) and the mid-infrared Wide-Field Infrared Survey Explorer (WISE) All-Sky Survey. We find that ˜30 per cent of the UV-luminous WiggleZ galaxies, corresponding to the brightest and reddest subset, are detected at >5σ in the UKIDSS-LAS at all redshifts. An even more luminous subset of 15 per cent are also detected in the WISE 3.4 and 4.6 μm bands. In addition, 22 of the WiggleZ galaxies are extremely luminous at 12 and 22 μm and have colours consistent with being star formation dominated. We compute stellar masses for this very large sample of extremely blue galaxies and quantify the sensitivity of the stellar mass estimates to various assumptions made during the spectral energy distribution (SED) fitting. The median stellar masses are log10(M*/M⊙) = 9.6 ± 0.7, 10.2 ± 0.5 and 10.4 ± 0.4 for the IR undetected, UKIDSS detected and UKIDSS+WISE detected galaxies, respectively. We demonstrate that the inclusion of NIR photometry can lead to tighter constraints on the stellar masses by bringing down the upper bound on the stellar mass estimate. The mass estimates are found to be most sensitive to the inclusion of secondary bursts of star formation as well as changes in the stellar population synthesis models, both of which can lead to median discrepancies of the order of 0.3 dex in the stellar masses. We conclude that even for these extremely blue galaxies, different SED fitting codes therefore produce extremely robust stellar mass estimates. We find, however, that the best-fitting M/LK is significantly lower than that predicted by simple optical colour-based estimators for many of the WiggleZ galaxies. The simple colour-based estimator overpredicts M/LK by ˜0.4 dex on average. The effect is more pronounced for bluer galaxies with younger best-fitting ages. The WiggleZ galaxies have star formation rates of 3-10 M⊙ yr-1 and mostly lie at the upper end of the main sequence of star-forming galaxies at these redshifts. Their rest-frame UV luminosities and stellar masses are comparable to both local compact UV-luminous galaxies as well as Lyman break galaxies at z ˜ 2-3. The stellar masses from this paper will be made publicly available with the next WiggleZ data release.

  7. Screwworm Eradication Data System (SEDS) operational manual, part 3

    NASA Technical Reports Server (NTRS)

    1976-01-01

    All phases of SEDS operation as well as utility routines, error messages, and system disk maintenance procedures are described. Display layouts and examples of runs are included as additional explanation to SEDS program procedures.

  8. A New Similarity theory for Strongly Unstable Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Ji, Yong; She, Zhen-Su

    2017-11-01

    We apply the structural ensemble dynamics (SED) theory to analyze mean velocity and streamwise turbulence intensity distribution in unstable atmospheric surface layer (ASL). The turbulent kinetic energy balance equation in ASL asserts that above a critical height zL, the buoyancy production cannot be neglected. The SED theory predicts that a stress length function displays a generalized scaling law from z to z 4 / 3. The zL derived from observational data show a two-regime form with Obukhov length L , including a linear dependence for moderate heat flux and a constant regime for large heat flux, extending the Monin-Obukhov similarity theory which is only valid for large | L | . This two-regime description is further extended to model turbulent intensity, with a new similarity coordinate Lz such that the observational data collapse for all L. Finally, we propose a phase diagram for characterizing different ASL flow regimes, and the corresponding flow structures are discussed. In summary, a new similarity theory for unstable atmosphere is constructed, and validated by observational data of the mean velocity and streamwise turbulence intensity distribution for all heat flux regimes.

  9. Resolving the circumstellar environment of the B[e] star V921 Scorpii in the near-infrared with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Kreplin, A.; Kraus, S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Driebe, T.

    2012-01-01

    Aims: We study the AU-scale circumstellar environment of the unclassified B[e] star V921 Sco in the near-infrared. For interpreting the observations, we employ temperature-gradient disk models. Methods: Using the near-infrared beam combiner instrument AMBER, we recorded spectrally dispersed (spectral resolution R = 35) interferograms in the H and K bands. To obtain an improved calibration of the visibilities, we developed a method that is able to equalize the histograms of the optical path difference of target and calibrator. We fit temperature-gradient disk models to the visibilities and spectral energy distribution (SED) to analyze the circumstellar dust geometry. Results: We derived a geometric ring-fit radius of 2.10 ± 0.16 mas in the K band. If we adopt the distance of 1150 ± 150 pc reported elsewhere, we obtain a ring-fit radius of 2.4 AU, which is slightly smaller than the 3.5 AU dust sublimation radius predicted by the size-luminosity relation. The fitted H-band radius of 1.61 ± 0.23 mas (1.85 AU) is found to be more compact than the K-band radius. The best-fit temperature-gradient disk model has an inner disk radius of ~1.45 AU, an inner-edge disk temperature T0 = 1533 K, and a temperature-gradient exponent q = 0.46 suggesting a flared disk geometry. Conclusions: The distance and luminosity of V921 Sco are not well known. If we assume a distance of 1150 ± 150 pc, we derive a ring-fit radius of ~2.4 AU, which is approximately consistent with the computed temperature-gradient disk model with inner and outer ring radii of 1.45 and 8.5 AU, respectively. If the inner radius of V921 Sco is more compact than the sublimation radius, this compact observed size can be explained by emitting material (e.g., a gaseous disk) inside the dust sublimation radius, as suggested for several other B[e] stars. Based on observations made with ESO telescopes at Paranal Observatory under program ID (MPG-VISA GTO): 079.C-0212(A).

  10. Propierties of dust in circumstellar gas around Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Jiménez-Hernández, P.; Arthur, S. J.; Toalá, J. A.

    2017-11-01

    Using archive photometric observations from Herschel (70μm, 100μm, 160μm and 250μm), Spitzer (24μm) and WISE (22μm and 12μm) we obtained infrared SED's of nebulae around the Wolf-Rayet stars WR 124, WR 16 and WR 7. We used the photoionization code Cloudy to construct models of the nebulae, taking into account the spectrum of the central star and varying the density and distance of the photoionized shell as well as the size distribution and chemical composition of the dust grains mixed with the gas, and we compared the resulting SEDs with the observations in order to study the properties of the dust in these objects. We discuss whether the dust properties depend on the spectral type of the central star and the age of the nebulae.

  11. Sprint training shortens prolonged action potential duration in postinfarction rat myocyte: mechanisms.

    PubMed

    Zhang, X Q; Zhang, L Q; Palmer, B M; Ng, Y C; Musch, T I; Moore, R L; Cheung, J Y

    2001-05-01

    Two electrophysiological manifestations of myocardial infarction (MI)-induced myocyte hypertrophy are prolongation of action potential duration (APD) and reduction of transient outward current (I(to)) density. Because high-intensity sprint training (HIST) ameliorated myocyte hypertrophy and improved myocyte Ca(2+) homeostasis and contractility after MI, the present study evaluated whether 6-8 wk of HIST would shorten the prolonged APD and improve the depressed I(to) in post-MI myocytes. There were no differences in resting membrane potential and action potential amplitude (APA) measured in myocytes isolated from sham-sedentary (Sed), MI-Sed, and MI-HIST groups. Times required for repolarization to 50 and 90% APA were significantly (P < 0.001) prolonged in MI-Sed myocytes. HIST reduced times required for repolarization to 50 and 90% APA to values observed in Sham-Sed myocytes. The fast and slow components of I(to) were significantly (P < 0.0001) reduced in MI-Sed myocytes. HIST significantly (P < 0.001) enhanced the fast and slow components of I(to) in MI myocytes, although not to levels observed in Sham-Sed myocytes. There were no significant differences in steady-state I(to) inactivation and activation parameters among Sham-Sed, MI-Sed, and MI-HIST myocytes. Likewise, recovery from time-dependent inactivation was also similar among the three groups. We suggest that normalization of APD after MI by HIST may be mediated by restoration of I(to) toward normal levels.

  12. Determination of enterotoxigenic and methicillin resistant Staphylococcus aureus in ice cream.

    PubMed

    Gücükoğlu, Ali; Çadirci, Özgür; Terzi, Göknur; Kevenk, T Onur; Alişarli, Mustafa

    2013-05-01

    The aim of this study was to determine the prevalence of enterotoxigenic and methicillin-resistant Staphylococcus aureus in ice creams. After culture-based identification of isolates, the presence of 16S rRNA and nuc was confirmed by mPCR. S. aureus was identified in 18 of 56 fruity (32.1%), 4 of 32 vanilla (12.5%), and 1 of 12 chocolate (8.3%) ice creams. S. aureus was identified as 38 isolates in 23 ice cream samples by culture-based techniques, but only 35 isolates were confirmed by PCR as S. aureus. To determine the enterotoxigenic properties of PCR-confirmed S. aureus isolates, a toxin detection kit was used (SET RPLA®). Of the 12 enterotoxigenic S. aureus isolates, 9 SEB (75%), 1 SED (8.3%), 1 SEB+SED (8.3%), and 1 SEA+SEB+SED (8.3%) expressing isolates were found. The presence of enterotoxin genes (sea, seb, sed) was identified in 13 (37.1%) out of 35 isolates by the mPCR technique. In the ice cream isolates, the sea, seb, and sed genes were detected: 1 sea (7.6%), 9 seb (69.2%), 1 sed (7.6%), 1 seb+sed (7.6%), and 1 sea+seb+sed (7.6%), respectively. The sec gene was not detected in any of these isolates. One of the 35 (2.8%) S. aureus strain was mecA positive. © 2013 Institute of Food Technologists®

  13. 3C 279 IN OUTBURST IN 2015 JUNE: A BROADBAND SED STUDY BASED ON THE INTEGRAL DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottacini, Eugenio; Böttcher, Markus; Pian, Elena

    2016-11-20

    Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies that targeted an outburst of 3C 279 in 2015 June. The campaign pivots around the detection in only 50 ks by INTEGRAL , whose IBIS/ISGRI data pin down the high-energy component of the spectral energy distribution (SED) between Swift -XRT data and Fermi -LAT data. The overallmore » SED from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. In contrast, equipartition may be achieved with the lepto-hadronic model, although this implies an extreme total jet power close to the Eddington luminosity.« less

  14. Computational network model prediction of hemodynamic alterations due to arteriolar remodeling in interval sprint trained skeletal muscle.

    PubMed

    Binder, Kyle W; Murfee, Walter L; Song, Ji; Laughlin, M Harold; Price, Richard J

    2007-01-01

    Exercise training is known to enhance skeletal muscle blood flow capacity, with high-intensity interval sprint training (IST) primarily affecting muscles with a high proportion of fast twitch glycolytic fibers. The objective of this study was to determine the relative contributions of new arteriole formation and lumenal arteriolar remodeling to enhanced flow capacity and the impact of these adaptations on local microvascular hemodynamics deep within the muscle. The authors studied arteriolar adaptation in the white/mixed-fiber portion of gastrocnemius muscles of IST (6 bouts of running/day; 2.5 min/bout; 60 m/min speed; 15% grade; 4.5 min rest between bouts; 5 training days/wk; 10 wks total) and sedentary (SED) control rats using whole-muscle Microfil casts. Dimensional and topological data were then used to construct a series of computational hemodynamic network models that incorporated physiological red blood cell distributions and hematocrit and diameter dependent apparent viscosities. In comparison to SED controls, IST elicited a significant increase in arterioles/order in the 3A through 6A generations. Predicted IST and SED flows through the 2A generation agreed closely with in vivo measurements made in a previous study, illustrating the accuracy of the model. IST shifted the bulk of the pressure drop across the network from the 3As to the 4As and 5As, and flow capacity increased from 0.7 mL/min in SED to 1.5 mL/min in IST when a driving pressure of 80 mmHg was applied. The primary adaptation to IST is an increase in arterioles in the 3A through 6A generations, which, in turn, creates an approximate doubling of flow capacity and a deeper penetration of high pressure into the arteriolar network.

  15. γ-Ray and Parsec-scale Jet Properties of a Complete Sample of Blazars From the MOJAVE Program

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; MOJAVE Collaboration; Ackermann, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Boeck, M.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Chang, C. S.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kadler, M.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ozaki, M.; Paneque, D.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Ritz, S.; Sadrozinski, H. F.-W.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Zimmer, S.; Fermi LAT Collaboration

    2011-11-01

    We investigate the Fermi Large Area Telescope γ-ray and 15 GHz Very Long Baseline Array radio properties of a joint γ-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30° during this period, and thus probes the full range of γ-ray loudness (γ-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing γ-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the γ-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-γ-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.

  16. Multiwavelength variability properties of Fermi blazar S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, N. H.; Bai, J. M.; Liu, H. T.

    S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long-term simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which is similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows thatmore » the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero lag, and so are the V band and γ-ray variations, which are consistent with the leptonic models. Coincidences of γ-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same natural explanation for these observations as the leptonic models. A strong optical flare correlating a γ-ray flare whose peak flux is lower than the average flux is detected. The leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out because of the extreme input parameters. Scattering of external seed photons, such as the hot-dust or broad-line region emission, and the SSC process are probably both needed to explain the γ-ray emission of S5 0716+714.« less

  17. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.

    2016-06-01

    We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.

  18. {gamma}-RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, M. L.; Hovatta, T.; Aller, M.

    We investigate the Fermi Large Area Telescope {gamma}-ray and 15 GHz Very Long Baseline Array radio properties of a joint {gamma}-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 Degree-Sign during this period, and thus probes the full range of {gamma}-ray loudness ({gamma}-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED)more » parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing {gamma}-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the {gamma}-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-{gamma}-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.« less

  19. Trends in serious emotional disturbance among youths exposed to Hurricane Katrina.

    PubMed

    McLaughlin, Katie A; Fairbank, John A; Gruber, Michael J; Jones, Russell T; Osofsky, Joy D; Pfefferbaum, Betty; Sampson, Nancy A; Kessler, Ronald C

    2010-10-01

    To examine patterns and predictors of trends in DSM-IV serious emotional disturbance (SED) among youths exposed to Hurricane Katrina. A probability sample of adult pre-hurricane residents of the areas affected by Katrina completed baseline and follow-up telephone surveys 18 to 27 months post-hurricane and 12 to 18 months later. Baseline adult respondents residing with children and adolescents (4-17 years of age) provided informant reports about the emotional functioning of these youths (n = 576) with the Strengths and Difficulties Questionnaire (SDQ). The surveys also assessed hurricane-related stressors and ongoing stressors experienced by respondent families. SED prevalence decreased significantly across survey waves from 15.1% to 11.5%, although even the latter prevalence was considerably higher than the pre-hurricane prevalence of 4.2% estimated in the US National Health Interview Survey. Trends in hurricane-related SED were predicted by both stressors experienced in the hurricane and ongoing stressors, with SED prevalence decreasing significantly only among youths with moderate stress exposure (16.8% versus 6.5%). SED prevalence did not change significantly between waves among youths with either high stress exposure (30.0% versus 41.9%) or low stress exposure (3.5% versus 3.4%). Pre-hurricane functioning did not predict SED persistence among youths with high stress exposure, but did predict SED persistence among youth with low-moderate stress exposure. The prevalence of SED among youths exposed to Hurricane Katrina remains significantly elevated several years after the storm despite meaningful decrease since baseline. Youths with high stress exposure have the highest risk of long-term hurricane-related SED and consequently represent an important target for mental health intervention. Copyright © 2010 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Trends in Serious Emotional Disturbance among Youths Exposed to Hurricane Katrina

    PubMed Central

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Osofsky, Joy D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2011-01-01

    Objective To examine patterns and predictors of trends in DSM-IV serious emotional disturbance (SED) among youths exposed to Hurricane Katrina. Method A probability sample of adult pre-hurricane residents of the areas affected by Katrina completed baseline and follow-up telephone surveys 18-27 months post-hurricane and 12-18 months later. Baseline adult respondents residing with children (ages 4-17) provided informant reports about the emotional functioning of these youths (n = 576) with the Strengths and Difficulties Questionnaire (SDQ). The surveys also assessed hurricane-related stressors and ongoing stressors experienced by respondent families. Results SED prevalence decreased significantly across survey waves from 15.1% to 11.5%, although even the latter prevalence was considerably higher than the pre-hurricane prevalence of 4.2% estimated in the US National Health Interview Survey. Trends in hurricane-related SED were predicted by both stressors experienced in the hurricane and ongoing stressors, with SED prevalence decreasing significantly only among youths with moderate stress exposure (16.8% vs. 6.5%). SED prevalence did not change significantly between waves among youths with either high stress exposure (30.0% vs. 41.9%) or low stress exposure (3.5% vs. 3.4%). Pre-hurricane functioning did not predict SED persistence among youths with high stress exposure, but did predict SED persistence among youth with low-moderate stress exposure. Conclusions The prevalence of SED among youths exposed to Hurricane Katrina remains significantly elevated several years after the storm despite meaningful decrease since baseline. Youths with high stress exposure have the highest risk of long-term hurricane-related SED and consequently represent an important target for mental health intervention. PMID:20855044

  1. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  2. Individual, social and environmental factors influencing physical activity levels and behaviours of multiethnic socio-economically disadvantaged urban mothers in Canada: A mixed methods approach

    PubMed Central

    2012-01-01

    Background Existing data provide little insight into the physical activity context of multiethnic socio-economically disadvantaged mothers in Canada. Our primary objectives were: (1) to use focus group methodology to develop tools to identify the individual, social, and environmental factors influencing utilitarian and leisure time physical activities (LTPA) of multiethnic SED mothers; and (2) to use a women specific physical activity survey tool to assess psychosocial barriers and supports and to quantify individual physical activity (PA) levels of multi-ethnic SED mothers in Canada. Methods Qualitative focus group sessions were conducted in West, Central and Eastern Canada with multiethnic SED mothers (n = 6 focus groups; n = 42 SED mothers) and with health and recreation professionals (HRPs) (n = 5 focus groups; n = 25 HRPs) involved in community PA programming for multiethnic SED mothers. Administration of the women specific Kaiser Physical Activity Survey (KPAS) tool was completed by consenting SED mothers (n = 59). Results More than half of SED mothers were employed and had higher total PA scores with occupation included than unemployed mothers. However, nearly 60% of both groups were overweight or obese. Barriers to LTPA included the lack of available, affordable and accessible LTPA programs that responded to cultural and social needs. Concerns for safety, nonsupportive cultural and social norms and the winter climate were identified as key barriers to both utilitarian and LTPA. Conclusions Findings show that multiethnic SED mothers experience many barriers to utilitarian and LTPA opportunities within their communities. The varying LTPA levels among these multi-ethnic SED mothers and the occurrence of overweight and obesity suggests that current LTPA programs are likely insufficient to maintain healthy body weights. PMID:22500882

  3. Are BMI and Sedentariness Correlated? A Multilevel Study in Children

    PubMed Central

    Gomes, Thayse Natacha; Katzmarzyk, Peter T.; dos Santos, Fernanda Karina; de Chaves, Raquel Nichele; Santos, Daniel; Pereira, Sara; Champagne, Catherine M.; Hedeker, Donald; Maia, José

    2015-01-01

    The purpose of this research was to investigate the relationship between body mass index (BMI) and sedentariness (Sed) in children and to examine the influence of child and school correlates on their variation. The sample comprises 580 children (337 girls, 9–11 years). Sedentariness was assessed with an accelerometer, and BMI was computed. Child- and school-level covariates were analyzed using multilevel models. No significant correlation between Sed and BMI was found. School context explains 5% and 1.5% of the total variance in Sed and BMI, respectively. At the child level, only moderate-to-vigorous physical activity was associated with both Sed (β = −0.02 ± 0.002) and BMI (β = −0.005 ± 0.002). Sleep time is related to Sed (β = −0.42 ± 0.04), while sex (β = 1.97 ± 0.13), biological maturity (β = 1.25 ± 0.07), media in the bedroom (β = 0.26 ± 0.08) and healthy (β = −0.09 ± 0.03) and unhealthy (β = −0.07 ± 0.04) diet scores were associated with BMI. None of the school-level covariates were related to BMI, but access to cafeteria (β = −0.97 ± 0.25), playground equipment (β = −0.67 ± 0.20) and restaurants (β = 0.16 ± 0.08) were related to Sed. In conclusion, Sed and BMI were not correlated. Further, they have different correlates, while children’s traits seem to play more relevant roles in their differences in Sed and BMI than the school milieu. This information should be taken into account when strategies to reduce Sed and BMI are implemented. PMID:26193311

  4. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    PubMed

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined.

  5. [Swim training attenuates myocardial remodeling and the pulmonary congestion in wistar rats with secondary heart failure to myocardial infarction].

    PubMed

    Portes, Leslie Andrews; Tucci, Paulo José Ferreira

    2006-07-01

    To evaluate the effects of swimming on pulmonary water content in animals with heart failure (HF) after myocardial infarction (MI). After coronary occlusion, MI size 20% 40% of the LV large. The animals swam for 60 min/day, 5 days/week for 8 weeks. The wet weight of lung, liver, atriums, LV and right ventricle (RV) as well as the dry weight of the liver and lung were determined. ANOVA and Tukey test were used for statistical analysis. An increase in the atrium/body weight ratio was noted in the sedentary animals with moderate (MImod-SED: n=8) and large (MIlg-SED: n=10) infarctions in comparison to the sedentary control (C-SED: n=14) and trained (C-TR: n=16) rats. An increase in the RV/body weight and LV/body weight ratios was noted in the MIlg-SED. The heart/body weight ratio was higher in MIlg-SED when compared to the other groups. The infarcted trained animals presented diminished hypertrophy. The pulmonary water content was higher in MIlg-SED animals (81+/-0.4%) than in C-SED animals (79+/-0.4%). No differences were found for the other comparisons (C-TR: 79+/-0.4%; MImod-SED: 80+/-0.3%; MImod-TR: 80+/-0.6%; MIlg-TR: 79+/-0.7%). The increase of cardiac mass and pulmonary water content presented by MIlg-SED was diminished in the trained animals. The results suggest that the practice of physical exercise can diminish HF and contribute to favorable cardiac remodeling.

  6. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  7. The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars

    DOE PAGES

    Krauß, F.; Wilms, J.; Kadler, M.; ...

    2016-06-28

    Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. Aims. Here, we study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multiepoch, quasi-simultaneous broadband spectra. For many of these sources these are the first broadband studies. We also use a Bayesian block analysis of Fermi/LAT light curves to determine time ranges of constant flux for constructing quasi-simultaneous spectral energy distributions (SEDs). The shapes of the resulting 81 SEDs are described by two logarithmic parabolas and a blackbody spectrum where needed. The peak frequencies andmore » luminosities agree well with the blazar sequence for low states with higher luminosity implying lower peak frequencies. This is not true for sources in high states. The γ-ray photon index in Fermi/LAT correlates with the synchrotron peak frequency in low and intermediate states. No correlation is present in high states. The black hole mass cannot be determined from the SEDs. Surprisingly, the thermal excess often found in FSRQs at optical/UV wavelengths can be described by blackbody emission and not an accretion disk spectrum. The so-called harder-when-brighter trend, typically seen in X-ray spectra of flaring blazars, is visible in the blazar sequence. Furthermore, our results for low and intermediate states, as well as the Compton dominance, are in agreement with previous results. Black hole mass estimates using recently published parameters are in agreement with some of the more direct measurements. For two sources, estimates disagree by more than four orders of magnitude, possibly owing to boosting effects. The shapes of the thermal excess seen predominantly in flat spectrum radio quasars are inconsistent with a direct accretion disk origin.« less

  8. Exploring Structures and Variability in the Pre-transitional Disk in HD 169142

    NASA Astrophysics Data System (ADS)

    Wagner, Kevin Robert; Sitko, Michael L.; Grady, Carol A.; Whitney, Barbara; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Schneider, Glenn; Momose, Muntake; Muto, Takayuki; Inoue, Akio K.; Lauroesch, James Thomas; Hornbeck, Jeremy; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M.; Wisniewski, John P.; Woodgate, Bruce E.

    2015-01-01

    We present a theoretical modelling analysis of of the structures in the pre-transisitonal disk in HD 169142 using 3D Monte-Carlo radiative transfer simulation. The multi-epoch broadband spectral energy distribution (SED) exhibits clear evidence of changes to the inner (sub-AU) regions of the disk over a maximum timescale of 10 years with the additional constraint that the shadowing of the outer (>25 AU) disk is non-time-dependent. We find that changes to the inner dust rim (0.2 AU) cannot account for this behavior. Instead, we find that if the inner disk posses an optically thin body of small grains then changes to the outer edge of these structures may successfully reproduce the two states in the SED (analogous to what may be occurring due to accretion onto the central star or dynamical clearing by planets). Furthermore, we explore the density distributions of the outer disk structures as they are constrained by the SED and imaged surface brightness profiles, with the conclusion that a mid-plane density power law profile of r^{-2} and r^{-1} for the 35-70 AU and 70-250 AU regions, respectively, may reproduce the observations to the limit of our available complexity of structures within our modelling software. Finally, we find that a 0.3x density scaling of the 35-70 AU region reproduces the second gap imaged in the near-infrared and at 7 mm, strengthening the link to this structure being cleared by one or more planetary mass bodies.This work was supported by NASA ADAP grant NNX09AC73G, Hubble Space Telescope grant HST-GO-13032, the IR&D program at The Aerospace Corporation, and the University of Cincinnati Honors Program.

  9. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    NASA Astrophysics Data System (ADS)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z < 2, we aim to uncover the dominant physical mechanism(s) guiding the stellar mass buildup of this special class of galaxies, the most massive in the Universe and uniquely residing at the centres of galaxy clusters. Through a comparison of their stacked, broad-band, infrared spectral energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 < z < 1.8. We derive estimates of various BCG physical parameters from the stacked νLν SEDs, from which we infer a star-forming, as opposed to a 'red and dead' population of galaxies, producing tens to hundreds of solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  10. MAGIC detection of very high energy γ-ray emission from the low-luminosity blazar 1ES 1741+196

    DOE PAGES

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...

    2017-02-23

    Here, we present the first detection of the nearby (z = 0.084) low-luminosity BL Lac object 1ES 1741+196 in the very high energy (E > 100 GeV) band. This object lies in a triplet of interacting galaxies. Early predictions had suggested 1ES 1741+196 to be, along with several other high-frequency BL Lac sources, within the reach of MAGIC detectability. Its detection by MAGIC, later confirmed by VERITAS, helps to expand the small population of known TeV BL Lacs. The source was observed with the MAGIC telescopes between 2010 April and 2011 May, collecting 46 h of good quality data. Thesemore » observations led to the detection of the source at 6.0 σ confidence level, with a steady flux F(>100 GeV) = (6.4 ± 1.7stat ± 2.6syst) × 10–12 ph cm–2s–1 and a differential spectral photon index Γ = 2.4 ± 0.2stat ± 0.2syst in the range of ~80 GeV–3 TeV. To study the broad-band spectral energy distribution (SED) simultaneous with MAGIC observations, we use KVA, Swift/UVOT and XRT and Fermi/LAT data. One-zone synchrotron-self-Compton (SSC) modelling of the SED of 1ES 1741+196 suggests values for the SSC parameters that are quite common among known TeV BL Lacs except for a relatively low Doppler factor and slope of electron energy distribution. A thermal feature seen in the SED is well matched by a giant elliptical's template. As a result, this appears to be the signature of thermal emission from the host galaxy, which is clearly resolved in optical observations.« less

  11. Neighborhood Sociodemographic Predictors of Serious Emotional Disturbance (SED) in Schools: Demonstrating a Small Area Estimation Method in the National Comorbidity Survey (NCS-A) Adolescent Supplement

    PubMed Central

    Alegría, Margarita; Kessler, Ronald C.; McLaughlin, Katie A.; Gruber, Michael J.; Sampson, Nancy A.; Zaslavsky, Alan M.

    2014-01-01

    We evaluate the precision of a model estimating school prevalence of SED using a small area estimation method based on readily-available predictors from area-level census block data and school principal questionnaires. Adolescents at 314 schools participated in the National Comorbidity Supplement, a national survey of DSM-IV disorders among adolescents. A multilevel model indicated that predictors accounted for under half of the variance in school-level SED and even less when considering block-group predictors or principal report alone. While Census measures and principal questionnaires are significant predictors of individual-level SED, associations are too weak to generate precise school-level predictions of SED prevalence. PMID:24740174

  12. Automated Weather Observing System (AWOS) Demonstration Program.

    DTIC Science & Technology

    1984-09-01

    month "bur:-in" r "debugging" period and a 10-month ’usefu I life " period. Fhe butrn- in pr i ,J was i sed to establish the Data Acquisition System...Histograms. Histograms provide a graphical means of showing how well the probability distribution of residu : , approaches a normal or Gaussian distribution...Organization Report No. 7- Author’s) Paul .J. O t Brien et al. DOT/FAA/CT-84/20 9. Performing Organlzation Name and Address 10. Work Unit No. (TRAIS

  13. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay.

    PubMed

    Kubo, Atsushi; Kanda, Jota

    2017-01-30

    Total organic carbon (TOC), total nitrogen (TN) contents, their stable C and N isotope ratio (δ 13 C and δ 15 N), and chlorophyll a ([Chl a] sed ) of surface sediments were investigated monthly to identify the seasonal variations and sources of organic matter in Tokyo Bay. The sedimentary TOC (TOC sed ) and TN (TN sed ) contents, and the sedimentary δ 13 C and δ 15 N (δ 13 C sed and δ 15 N sed ) values were higher in summer than other seasons. The seasonal variations were controlled by high primary production in the water column and hypoxic water in the bottom water during summer. The fraction of terrestrial and marine derived organic matter was estimated by Bayesian mixing model using stable isotope data and TOC/TN ratio. Surface sediments in Tokyo Bay are dominated by marine derived organic matter, which accounts for about 69±5% of TOC sed . Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A catalog of polychromatic bulge-disc decompositions of ˜17.600 galaxies in CANDELS

    NASA Astrophysics Data System (ADS)

    Dimauro, Paola; Huertas-Company, Marc; Daddi, Emanuele; Pérez-González, Pablo G.; Bernardi, Mariangela; Barro, Guillermo; Buitrago, Fernando; Caro, Fernando; Cattaneo, Andrea; Dominguez-Sánchez, Helena; Faber, Sandra M.; Häußler, Boris; Kocevski, Dale D.; Koekemoer, Anton M.; Koo, David C.; Lee, Christoph T.; Mei, Simona; Margalef-Bentabol, Berta; Primack, Joel; Rodriguez-Puebla, Aldo; Salvato, Mara; Shankar, Francesco; Tuccillo, Diego

    2018-05-01

    Understanding how bulges grow in galaxies is critical step towards unveiling the link between galaxy morphology and star-formation. To do so, it is necessary to decompose large sample of galaxies at different epochs into their main components (bulges and discs). This is particularly challenging, especially at high redshifts, where galaxies are poorly resolved. This work presents a catalog of bulge-disc decompositions of the surface brightness profiles of ˜17.600 H-band selected galaxies in the CANDELS fields (F160W < 23, 0 < z < 2) in 4 to 7 filters covering a spectral range of 430 - 1600nm. This is the largest available catalog of this kind up to z = 2. By using a novel approach based on deep-learning to select the best model to fit, we manage to control systematics arising from wrong model selection and obtain less contaminated samples than previous works. We show that the derived structural properties are within ˜10 - 20% of random uncertainties. We then fit stellar population models to the decomposed SEDs (Spectral Energy Distribution) of bulges and discs and derive stellar masses (and stellar mass bulge-to-total ratios) as well as rest-frame colors (U,V,J) for bulges and discs separately. All data products are publicly released with this paper and through the web page https://lerma.obspm.fr/huertas/form_CANDELS and will be used for scientific analysis in forthcoming works.

  15. Dusty Lyman-alpha Emitters As Seen By Spitzer

    NASA Astrophysics Data System (ADS)

    Dolan, Kyle; Scarlata, C.; Colbert, J. W.; Teplitz, H. I.; Hayes, M.

    2013-01-01

    We have used the IRAC and MIPS Spitzer archive to derive the full mid-IR SED for the largest sample of local Lyman-alpha emitters, probing the internal activities of these sources as well as analyzing the role that dust properties play in the Lyman-alpha escape fraction. We utilized all available IRAC and MIPS data for a sample of about 100 local Lyman-alpha emitters at redshift 0.2≤z≤0.4 , originally discovered by Deharveng et al. (2008) and Cowie et al. (2011), to quantify the level of star formation (SF) and AGN activity in these sources, probing into dust-enshrouded regions that block UV and optical photons from escaping. In order to derive the total bolometric IR luminosity from 8μm to 1000μm, we fit the IR data to the template SEDs derived by Chary and Elbaz (2001). Using this information, we quantified the total star formation rate (SFR) of these galaxies and how much SF is missed by optical and UV surveys. We also identified any AGN activity and produced new estimates for AGN contamination within the population of Lyman-alpha emitters. This work has been supported by NASA's Astrophysics Data Analysis Program, Award # NNX11AH84G.

  16. Discrete Dipole Approximation Models of Crystalline Forsterite: Applications to Cometary Crystalline Silicates

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.

    2012-10-01

    In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal formation environments.

  17. Stellar Populations of Lyman Break Galaxies at z approx. to 1-3 in the HST/WFC3 Early Release Science Observations

    NASA Technical Reports Server (NTRS)

    Hathi, N. P.; Cohen, S. H.; Ryan, R. E., Jr.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H.; Koekemoer, A. M.; Rutkowski, M. J.; OConnell, R. W.; hide

    2012-01-01

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.

  18. Spectroscopic characterization of HD 95086 b with the Gemini Planet Imager

    DOE PAGES

    De Rosa, Robert J.; Rameau, Julien; Patience, Jenny; ...

    2016-06-21

    Here, we present new H (1.5–1.8 μm) photometric and K 1 (1.9–2.2 μm) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The H-band magnitude has been significantly improved relative to previous measurements, whereas the low-resolution K 1 (more » $$\\lambda /\\delta \\lambda \\approx 66$$) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature $$L^{\\prime} $$ photometry, we compare the spectral energy distribution (SED) of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in $${K}_{1}-L^{\\prime} $$ color than 2MASS J12073346–3932539 b and HR 8799 c and d, despite having a similar $$L^{\\prime} $$ magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature ($${T}_{{\\rm{eff}}}$$ = 800–1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color–magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  20. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    NASA Technical Reports Server (NTRS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  1. Models of the strongly lensed quasar DES J0408−5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  2. The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake

    USGS Publications Warehouse

    Smith, R.L.; Miller, L.G.; Howes, B.L.

    1993-01-01

    The abundance and distribution of dissolved CH4 were determined from 1987-1990 in Lake Fryxell, Antarctica, an amictic, permanently ice-covered lake in which solute movement is controlled by diffusion. CH4 concentrations were < 1 ??M in the upper oxic waters, but increased below the oxycline to 936 ??M at 18 m. Sediment CH4 was 1100 ??mol (1 sed)-1 in the 0-5 cm zone. Upward flux from the sediment was the source of the CH4, NH4 +, and DOC in the water column; CH4 was 27% of the DOC+CH4 carbon at 18 m. Incubations with surficial sediments indicated that H14CO3 - reduction was 0.4 ??mol (1 sed)-1 day-1 or 4?? the rate of acetate fermentation to CH4. There was no measurable CH4 production in the water column. However, depth profiles of CH4, NH4, and DIC normalized to bottom water concentrations demonstrated that a significant CH4 sink was evident in the anoxic, sulfate-containing zone of the water column (10-18 m). The ??13CH4 in this zone decreased from -72 % at 18 m to -76% at 12 m, indicating that the consumption mechanism did not result in an isotopic enrichment of 13CH4. In contrast, ??13CH4 increased to -55 % at 9 m due to aerobic oxidation, though this was a minor aspect of the CH4 cycle. The water column CH4 profile was modeled by coupling diffusive flux with a first order consumption term; the best-fit rate constant for anaerobic CH4 consumption was 0.012 yr-1. On a total carbon basis, CH4 consumption in the anoxic water column exerted a major effect on the flux of carbonaceous material from the underlying sediments and serves to exemplify the importance of CH4 to carbon cycling in Lake Fryxell. ?? 1993 Kluwer Academic Publishers.

  3. The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5

    NASA Astrophysics Data System (ADS)

    Hathi, N. P.; Le Fèvre, O.; Ilbert, O.; Cassata, P.; Tasca, L. A. M.; Lemaux, B. C.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Guaita, L.; Koekemoer, A.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-04-01

    The aim of this paper is to investigate spectral and photometric properties of 854 faint (IAB ≲ 25 mag) star-forming galaxies (SFGs) at 2 < z < 2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy as a result of their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes (β) as well as Lyα equivalent widths (EW). On average, the spectroscopically measured β (-1.36 ± 0.02), is comparable to the photometrically measured β (-1.32 ± 0.02), and has smaller measurement uncertainties. The positive correlation of β with the spectral energy distribution (SED)-based measurement of dust extinction Es(B-V) emphasizes the importance of β as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Lyα EW: SFGs with no Lyα emission (SFGN; EW ≤ 0 Å), SFGs with Lyα emission (SFGL; EW > 0 Å), and Lyα emitters (LAEs; EW ≥ 20 Å). The fraction of LAEs at these redshifts is ~10%, which is consistent with previous observations. We compared best-fitSED-estimated stellar parameters of the SFGN, SFGL and LAE samples. For the luminosities probed here (~ L∗), we find that galaxies with and without Lyα in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es(B-V). When we divide the LAEs according to their Spitzer/IRAC 3.6 μm fluxes, we find that the fraction of IRAC-detected (m3.6 ≲ 25 mag) LAEs is much higher than the fraction of IRAC-detected narrow band (NB)-selected LAEs at z ≃ 2-3. This could imply that UV-selected LAEs host a more evolved stellar population, which represents a later stage of galaxy evolution, compared to NB-selected LAEs. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.

  4. The Spectral Energy Distribution of Fermi bright blazars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Agudo, I.; ...

    2010-05-13

    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν F ν representation, the typical broadband spectral signaturesmore » normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. Here, we have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, α ro, and optical to X-ray, α ox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (ν S peak) is positioned between 10 12.5 and 10 14.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 10 17 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between ν S peak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. Finally, this selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.« less

  5. The Spectral Energy Distribution of Fermi Bright Blazars

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; hide

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between v(sup S) (sub peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

  6. Opening the Floodgates? The Social Maladjustment Exclusion and State SED Prevalence Rates.

    ERIC Educational Resources Information Center

    Skiba, Russell; And Others

    1994-01-01

    Surveyed state special education directors in 50 states and District of Columbia regarding social maladjustment exclusionary clause in federal definition of serious emotional disturbance (SED). Thirty-four states included social maladjustment clause or some form of exclusion in SED definition. Found no significant relationship between presence of…

  7. Research Staff | Research Site Name | NREL

    Science.gov Websites

    Research Staff Research Staff Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et , consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. lorem.ipsum

  8. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii... ports of unloading on the SED or AES electronic equivalent and other export control documents, so long...

  9. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...., the SED or AES record, bill of lading or air waybill) must be consistent with the license. (c... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii...

  10. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...., the SED or AES record, bill of lading or air waybill) must be consistent with the license. (c... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii...

  11. SED/Apple Computer, Inc., Partnership Program.

    ERIC Educational Resources Information Center

    Stoll, Peter F.

    1991-01-01

    In 1990, the New York State Education Department (SED), Apple Computer, Inc., Boards of Cooperative Educational Services (BOCES), and school districts formed a partnership to explore the contribution technology can make to schools based on Apple Computer's Learning Society and SED's Long-Range Plan for Technology in Elementary and Secondary…

  12. Artist's Concept of Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Pictured is an artist's concept of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.

  13. EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo

    2012-07-10

    We study the variation of the broadband spectral energy distribution (SED) of the BL Lac object Mrk 501 as a function of source activity, from quiescent to flaring. Through {chi}{sup 2}-minimization we model eight simultaneous SED data sets with a one-zone synchrotron self-Compton (SSC) model, and examine how model parameters vary with source activity. The emerging variability pattern of Mrk 501 is complex, with the Compton component arising from {gamma}-e scatterings that sometimes are (mostly) Thomson and sometimes (mostly) extreme Klein-Nishina. This can be seen from the variation of the Compton to synchrotron peak distance according to source state. Themore » underlying electron spectra are faint/soft in quiescent states and bright/hard in flaring states. A comparison with Mrk 421 suggests that the typical values of the SSC parameters are different in the two sources: however, in both jets the energy density is particle-dominated in all states.« less

  14. Production of Staphylococcal Enterotoxins D and R in Milk and Meat Juice by Staphylococcus aureus Strains.

    PubMed

    Schubert, Justyna; Podkowik, Magdalena; Bystroń, Jarosław; Bania, Jacek

    2017-04-01

    Seventeen Staphylococcus aureus strains were tested for production of staphylococcal enterotoxin D (SED) and staphylococcal enterotoxin R (SER) in milk and meat juice. SED was secreted in milk by 12 S. aureus strains at 6-54 ng/mL at 24 h and 9-98 ng/mL at 48 h. Another five strains secreted SED at 0.9-1.9 μg/mL at 24 h and at 1.2-2.4 μg/mL at 48 h. Strains producing high levels of SED in milk secreted 77-666 μg/mL of SED in meat juice at 24 h and 132-1225 μg/mL at 48 h. Strains producing lower amounts of SED in milk secreted 228-1109 ng/mL of SED at 24 h and 377-1782 ng/mL at 48 h in meat juice. Tested S. aureus strains produced SER in milk at 33-183 ng/mL at 24 h and 41-832 ng/mL at 48 h. Fourteen strains produced more SER in meat juice than in milk (17- to 232-fold and 15- to 269-fold more at 24 and 48 h, respectively). Three S. aureus strains secreted less than 74 ng/mL of SER in meat juice. Expression pattern of known enterotoxin regulators, that is, agrA, sarA, hld, rot, and sigB, was similar in selected strong and weak SED producers grown in both food matrices and could not explain differences in enterotoxin protein level. This suggests that enterotoxin regulation is more complex than previously thought. We demonstrated that in a number of tested S. aureus strains, production of SED and SER was significantly decreased in milk when compared with meat juice, supporting previous reports. However, certain strains secreted high amounts of SED and SER, irrespective of environment, likely contributing to higher food safety risk.

  15. Managing distributed software development in the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  16. Multiband Observations of the Quasar PKS 2326–502 during Active and Quiescent Gamma-Ray States in 2010–2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutka, Michael S.; Carpenter, Bryce D.; Gehrels, Neil

    2017-02-01

    Quasi-simultaneous observations of the Flat Spectrum Radio Quasar PKS 2326−502 were carried out in the γ -ray, X-ray, UV, optical, near-infrared, and radio bands. Using these observations, we are able to characterize the spectral energy distribution (SED) of the source during two flaring and one quiescent γ -ray states. These data were used to constrain one-zone leptonic models of the SEDs of each flare and investigate the physical conditions giving rise to them. While modeling one flare required only changes in the electron spectrum compared to the quiescent state, modeling the other flare required changes in both the electron spectrummore » and the size of the emitting region. These results are consistent with an emerging pattern of two broad classes of flaring states seen in blazars. Type 1 flares are explained by changes solely in the electron distribution, whereas type 2 flares require a change in an additional parameter. This suggests that different flares, even in the same source, may result from different physical conditions or different regions in the jet.« less

  17. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  18. Multiband Observations of the Quasar PKS 2326–502 during Active and Quiescent Gamma-Ray States in 2010–2012

    DOE PAGES

    Dutka, Michael S.; Carpenter, Bryce D.; Ojha, Roopesh; ...

    2017-01-30

    We present that quasi-simultaneous observations of the Flat Spectrum Radio Quasar PKS 2326-502 were carried out in the γ-ray, X-ray, UV, optical, near-infrared, and radio bands. Using these observations, we are able to characterize the spectral energy distribution (SED) of the source during two flaring and one quiescent γ-ray states. These data were used to constrain one-zone leptonic models of the SEDs of each flare and investigate the physical conditions giving rise to them. While modeling one flare required only changes in the electron spectrum compared to the quiescent state, modeling the other flare required changes in both the electronmore » spectrum and the size of the emitting region. These results are consistent with an emerging pattern of two broad classes of flaring states seen in blazars. Type 1 flares are explained by changes solely in the electron distribution, whereas type 2 flares require a change in an additional parameter. Finally, this suggests that different flares, even in the same source, may result from different physical conditions or different regions in the jet.« less

  19. A Profile of Secondary SED Classrooms in Virginia: Curriculum Development and Instructional Procedures.

    ERIC Educational Resources Information Center

    Graham, Marilyn Troth

    A survey of curriculum and instructional practices in high school classrooms (N=151) in 82 school districts serving seriously emotionally disturbed (SED) and emotionally disturbed/learning disabled students in Virginia was conducted for the purpose of identifying the roles, responsibilities, and teaching skills for which SED teachers need to be…

  20. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Herter, T. L.; Adams, J. D.

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, nomore » detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G0.120-0.048 nebula is ∼10{sup 5} L {sub ☉}. From Paschen-α and 6 cm observations we determine a total gas mass of 9.3 M {sub ☉} and 6.2 M {sub ☉} for the Pistol and G0.120-0.048 nebulae, respectively. Given the independent dust and gas mass estimates we find that the Pistol and G0.120-0.048 nebulae exhibit similar gas-to-dust mass ratios of 310{sub −52}{sup +77} and 293{sub −101}{sup +73}, respectively. Both nebulae share identical size scales (∼0.7 pc) which suggests that they have similar dynamical timescales of ∼10{sup 4} yr, assuming a shell expansion velocity of v {sub exp} = 60 km s{sup –1}.« less

  1. Stellar Mass and 3.4 μm M/L Ratio Evolution of Brightest Cluster Galaxies in COSMOS since z ∼ 1.0

    NASA Astrophysics Data System (ADS)

    Cooke, Kevin C.; Fogarty, Kevin; Kartaltepe, Jeyhan S.; Moustakas, John; O’Dea, Christopher P.; Postman, Marc

    2018-04-01

    We investigate the evolution of star formation rates (SFRs), stellar masses, and M/L 3.4 μm ratios of brightest cluster galaxies (BCGs) in the COSMOS survey since z ∼ 1 to determine the contribution of star formation to the growth-rate of BCG stellar mass over time. Through the spectral energy density (SED) fitting of the GALEX, CFHT, Subaru, Vista, Spitzer, and Herschel photometric data available in the COSMOS2015 catalog, we estimate the stellar mass and SFR of each BCG. We use a modified version of the iSEDfit package to fit the SEDs of our sample with both stellar and dust emission models, as well as constrain the impact of star formation history assumptions on our results. We find that in our sample of COSMOS BCGs, star formation evolves similarly to that in BCGs in samples of more massive galaxy clusters. However, compared to the latter, the magnitude of star formation in our sample is lower by ∼1 dex. Additionally, we find an evolution of BCG baryonic mass-to-light ratio (M/L 3.4 μm) with redshift which is consistent with a passively aging stellar population. We use this to build upon Wen et al.'s low-redshift νL 3.4 μm–M Stellar relation, quantifying a correlation between νL 3.4 μm and M Stellar to z ∼ 1. By comparing our results to BCGs in Sunyaev–Zel’dovich and X-ray-selected samples of galaxy clusters, we find evidence that the normalization of star formation evolution in a cluster sample is driven by the mass range of the sample and may be biased upwards by cool cores.

  2. The star formation history of redshift z ~ 2 galaxies: the role of the infrared prior

    NASA Astrophysics Data System (ADS)

    Fan, Lu-Lu; Lapi, Andrea; Bressan, Alessandro; Nonino, Mario; De Zotti, Gianfranco; Danese, Luigi

    2014-01-01

    We build a sample of 298 spectroscopically-confirmed galaxies at redshift z ~ 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 μm luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable RV. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 Msolar yr-1, the masses from 109 to 4 × 1011 Msolar, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at <=100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known ‘downsizing’ scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M*/L ratios.

  3. The effect of chronic treadmill exercise and acetaminophen on collagen and cross-linking in rat skeletal muscle and heart.

    PubMed

    Carroll, Chad C; Martineau, Karl; Arthur, Kathryn A; Huynh, Richard T; Volper, Brent D; Broderick, Tom L

    2015-02-15

    The purpose of this study was to determine whether exercise and/or acetaminophen (APAP) alter collagen and cross-linking in the rat gastrocnemius muscle, soleus muscle, and heart. Male Wistar rats (n = 50; 8 wk old) were divided into placebo (PLA) or APAP groups and sedentary (SED) or exercised (RUN) groups. APAP (200 mg/kg) was administered daily by oral gavage. Exercised groups ran on a treadmill 5 days/wk for 8 wk with progression to 60 min/day, 20 m/min, and 8° incline. Tissues were assayed for collagen (hydroxyproline) and hydroxylyslpyridinoline (HP) and lysylpyridinoline (LP) cross-links by HPLC. Collagen content (μg/mg dry weight) was greater in both the gastrocnemius (SED-PLA: 114 ± 16 vs. 244 ± 32; P < 0.001) and soleus (SED-PLA: 51 ± 7 vs. 99 ± 27; P = 0.005) of exercised animals. In contrast, collagen content was not significantly greater in exercised animals treated with APAP (SED-APAP: 113 ± 16 vs. 145 ± 21) and soleus (SED-APAP: 55 ± 8 vs. 57 ± 10). HP cross-linking (mmol/mol collagen) in the gastrocnemius (SED-PLA: 126 ± 28, RUN-PLA: 50 ± 7, SED-APAP: 41 ± 7, and 30 ± 4) and soleus muscles (SED-PLA: 547 ± 107, RUN-PLA: 318 ± 92, SED-APAP: 247 ± 64, and 120 ± 17) was lower in exercised rats compared with sedentary rats (P < 0.05). Cross-linking was further reduced in animals treated with APAP (P < 0.05). Neither heart collagen nor cross-linking was influenced by exercise or APAP (P > 0.05). Our findings suggest that exercise and APAP have tissue-specific effects on muscle collagen. Given the widespread use of APAP as an analgesic and antipyretic, further work in humans is warranted. Copyright © 2015 the American Physiological Society.

  4. Postprandial metabolism in resistance-trained versus sedentary males.

    PubMed

    Thyfault, John P; Richmond, Scott R; Carper, Michael J; Potteiger, Jeffrey A; Hulver, Matthew W

    2004-04-01

    This investigation examined if postprandial metabolism differed between resistance-trained [(RT), N = 12] and sedentary [(SED), N = 12] males. A secondary objective was to determine whether different resistance-training programs [bodybuilding (BB), N = 8 and power/weight-lifting (PL), N = 8] resulted in disparate effects on postprandial energy metabolism. Moderate fat [(MF), 37% carbohydrate, 18% protein, and 45% fat] and high carbohydrate [(HC), 79% carbohydrate, 20% protein, and 1% fat] meals were randomly administered, and postprandial metabolism was measured for 240 min. Carbohydrate oxidation, fat oxidation, diet-induced thermogenesis (DIT), and glucose and insulin areas under the curve (AUC) were calculated. Fat oxidization/lean body mass (LBM) was significantly greater in SED after the HC (RT, 0.27 +/- 0.02 g vs SED, 0.33 +/- 0.02 g, P = 0.017) and MF (RT, 0.34 +/- 0.02 g vs SED, 0.39 +/- 0.02 g, P = 0.036) meals. Carbohydrate oxidation/LBM was significantly greater in RT after the HC meal (RT, 0.87 +/- 0.03 g vs SED, 0.74 +/- 0.04 g, P = 0.017) only. DIT and DIT/LBM were significantly greater in RT compared with SED after the HC meal (DIT: RT, 351 +/- 21 kJ vs SED, 231 +/- 23 kJ, P = 0.001; DIT/LBM: RT, 5.25 +/- 0.028 kJ vs SED, 3.92 +/- 0.37 kJ, P = 0.009). The AUC for both glucose and insulin were significantly greater in SED compared with RT in response to the HC meal but not the MF meal. There were no differences in the BB and PL groups for any measured variables in response to either the HC or MF meals. These data indicate that postprandial metabolism is different between resistance-trained and sedentary males but that no such differences exist with different resistance training styles.

  5. Correlates of Total Sedentary Time and Screen Time in 9-11 Year-Old Children around the World: The International Study of Childhood Obesity, Lifestyle and the Environment.

    PubMed

    LeBlanc, Allana G; Katzmarzyk, Peter T; Barreira, Tiago V; Broyles, Stephanie T; Chaput, Jean-Philippe; Church, Timothy S; Fogelholm, Mikael; Harrington, Deirdre M; Hu, Gang; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V; Maher, Carol; Maia, José; Matsudo, Victor; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; Zhao, Pei; Tremblay, Mark S

    2015-01-01

    Previously, studies examining correlates of sedentary behavior have been limited by small sample size, restricted geographic area, and little socio-cultural variability. Further, few studies have examined correlates of total sedentary time (SED) and screen time (ST) in the same population. This study aimed to investigate correlates of SED and ST in children around the world. The sample included 5,844 children (45.6% boys, mean age = 10.4 years) from study sites in Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, the United Kingdom, and the United States. Child- and parent-reported behavioral, household, and neighborhood characteristics and directly measured anthropometric and accelerometer data were obtained. Twenty-one potential correlates of SED and ST were examined using multilevel models, adjusting for sex, age, and highest parental education, with school and study site as random effects. Variables that were moderately associated with SED and/or ST in univariate analyses (p<0.10) were included in the final models. Variables that remained significant in the final models (p<0.05) were considered correlates of SED and/or ST. Children averaged 8.6 hours of daily SED, and 54.2% of children failed to meet ST guidelines. In all study sites, boys reported higher ST, were less likely to meet ST guidelines, and had higher BMI z-scores than girls. In 9 of 12 sites, girls engaged in significantly more SED than boys. Common correlates of higher SED and ST included poor weight status, not meeting physical activity guidelines, and having a TV or a computer in the bedroom. In this global sample many common correlates of SED and ST were identified, some of which are easily modifiable (e.g., removing TV from the bedroom), and others that may require more intense behavioral interventions (e.g., increasing physical activity). Future work should incorporate these findings into the development of culturally meaningful public health messages.

  6. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    PubMed Central

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined. PMID:22172142

  7. IOTA interferometer observations of the B[e] star/X-ray transient object CI Cam.

    NASA Astrophysics Data System (ADS)

    Thureau, N. D.; Traub, W.; Millan-Gabet, R.; Monnier, J. D.; Pedretti, E.; Berger, J.-P.; Schloerb, P.

    2005-12-01

    We present the results from an observing campaign on the star CI Cam carried out at the IOTA interferometer in November-December 2004 using the IONIC 3 telescope beam combiner in the H spectral band with projected baselines in the range 10-36m. CI Cam is a known B[e] star and X-ray transient source and has been intensively observed since its powerful X-ray, radio and optical outburst occurred in April 1998. Our visibility measurements put strong constraints on the nature of the source and we can rule out all existing SED models available in the literature. Our new results are in agreement with previous observations of CI Cam obtained with IOTA2 in the H and K' spectral bands in September-November 1998, indicating the infrared excess is long-lived and not directly associated with the outburst. We have explored new models that can better fit our observations. Additionally, we have measured small non-zero closure phases which are the signature of asymmetries in the brightness distribution function. Financial support for NDT is provided by the European Commission through a Marie Curie Outgoing International Fellowships MOIF-CT-2004-002990.

  8. Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS) will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire cornected with a 6.2-mile (10 kilometer) long nonconducting tether. This photograph shows Less Johnson, a scientist at MSFC inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.

  9. New NED XML/VOtable Services and Client Interface Applications

    NASA Astrophysics Data System (ADS)

    Pevunova, O.; Good, J.; Mazzarella, J.; Berriman, G. B.; Madore, B.

    2005-12-01

    The NASA/IPAC Extragalactic Database (NED) provides data and cross-identifications for over 7 million extragalactic objects fused from thousands of survey catalogs and journal articles. The data cover all frequencies from radio through gamma rays and include positions, redshifts, photometry and spectral energy distributions (SEDs), sizes, and images. NED services have traditionally supplied data in HTML format for connections from Web browsers, and a custom ASCII data structure for connections by remote computer programs written in the C programming language. We describe new services that provide responses from NED queries in XML documents compliant with the international virtual observatory VOtable protocol. The XML/VOtable services support cone searches, all-sky searches based on object attributes (survey names, cross-IDs, redshifts, flux densities), and requests for detailed object data. Initial services have been inserted into the NVO registry, and others will follow soon. The first client application is a Style Sheet specification for rendering NED VOtable query results in Web browsers that support XML. The second prototype application is a Java applet that allows users to compare multiple SEDs. The new XML/VOtable output mode will also simplify the integration of data from NED into visualization and analysis packages, software agents, and other virtual observatory applications. We show an example SED from NED plotted using VOPlot. The NED website is: http://nedwww.ipac.caltech.edu.

  10. MULTIWAVELENGTH OBSERVATIONS AND MODELING OF 1ES 1959+650 IN A LOW FLUX STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Errando, M.; Archambault, S.

    We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation ({sigma}) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan {gamma}-ray flare exhibited by this source in 2002, the X-ray flux of the sourcemore » is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of {approx}< 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) {gamma}-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.« less

  11. Nature of the Diffuse Source and Its Central Point-like Source in SNR 0509–67.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litke, Katrina C.; Chu, You-Hua; Holmes, Abigail

    We examine a diffuse emission region near the center of SNR 0509−67.5 to determine its nature. Within this diffuse region we observe a point-like source that is bright in the near-IR, but is not visible in the B and V bands. We consider an emission line observed at 6766 Å and the possibilities that it is Ly α , H α , and [O ii] λ 3727. We examine the spectral energy distribution (SED) of the source, comprised of Hubble Space Telescope B , V , I , J , and H bands in addition to Spitzer /IRAC 3.6, 4.5,more » 5.8, and 8 μ m bands. The peak of the SED is consistent with a background galaxy at z ≈ 0.8 ± 0.2 and a possible Balmer jump places the galaxy at z ≈ 0.9 ± 0.3. These SED considerations support the emission line’s identification as [O ii] λ 3727. We conclude that the diffuse source in SNR 0509−67.5 is a background galaxy at z ≈ 0.82. Furthermore, we identify the point-like source superposed near the center of the galaxy as its central bulge. Finally, we find no evidence for a surviving companion star, indicating a double-degenerate origin for SNR 0509−67.5.« less

  12. Temporal and bi-directional associations between sleep duration and physical activity/sedentary time in children: An international comparison.

    PubMed

    Lin, Yingyi; Tremblay, Mark S; Katzmarzyk, Peter T; Fogelholm, Mikael; Hu, Gang; Lambert, Estelle V; Maher, Carol; Maia, Jose; Olds, Timothy; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; Chaput, Jean-Philippe

    2018-06-01

    The purpose of this multinational and cross-sectional study was to investigate whether nighttime sleep duration was associated with physical activity (PA) and sedentary time (SED) the following day, whether daytime PA/SED were associated with sleep duration the subsequent night, and whether the associations were modified by sex and study sites. Data from 5779 children aged 9-11years were analyzed. A waist-worn Actigraph GT3X+ accelerometer was used to assess children's 24-h movement behaviours for 7days, i.e. sleep duration, total SED, light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA). Multilevel linear regression models were used to account for the repeated measures nested within participants (there were up to 7 sleep→PA/SED and PA/SED→sleep pairings per participant) and schools, and adjusted for covariates. To facilitate interpretation, all sleep and PA/SED variables were standardized. Results showed that the relationship between sleep and PA/SED is bi-directional in this international sample of children. Specifically, for each one standard deviation (SD) unit increase in sleep duration, SED the following day decreased by 0.04 SD units, while LPA and MVPA increased by 0.04 and 0.02 SD units, respectively. Sleep duration decreased by 0.02 SD units and increased by 0.04 SD units for each one SD unit increase in SED and MVPA, respectively. Sleep duration was not affected by changes in LPA. These associations differed across sex and study sites in both directions. However, since the observed effect sizes are subtle, public health initiatives should consider the clinical and practical relevance of these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Identification of Malassezia species isolated from Iranian seborrhoeic dermatitis patients.

    PubMed

    Hedayati, M T; Hajheydari, Z; Hajjar, F; Ehsani, A; Shokohi, T; Mohammadpour, R

    2010-01-01

    In recent years, the genus Malassezia has come to be considered important in the etiology of seborrhoeic dermatitis (SED). The aim of present study was identification of Malassezia species on the lesions of Iranian SED patients. 100 patients with SED were enrolled in the study. The patients were evaluated both clinically for the severity of SED and microscopically for the presence of the yeast Malassezia. Diagnosis of Malassezia was made after the yeast Malassezia was microscopically observed on skin scales stained with methylene blue. All samples were also cultivated on Leeming and Notman and Sabouraud's dextrose agar culture media. The agar plates were incubated at 32 degrees C for 2 weeks and evaluated for the existence of growth every day for one week. Identification of isolated yeast was based on morphological and physiological characteristics. From 100 patients with SED, 60% were female. The age range was 12-65 years with median 27.3 years. The highest prevalence of SED was seen in 20-29 years age group. 59% and 41% of patients had local and generalized lesions, respectively. 58% of patients showed lesion on scalp. Microscopic examination of skin scales was positive in 100% of SED lesions. 96% of patients showed more than 1-3 yeasts in each microscopic field whereas only 4% patients showed 1-3 yeasts in whole slide. Totally, 77% of the specimens yielded Malassezia in culture. Malassezia globosa was the most commonly isolated Malassezia species (55.8%). Malassezia globosa had also most frequencies on scalp and face lesions. Malassezia furfur had most frequency on trunk lesions. The results of our study showed high recovery rate of Malassezia species on lesions of patients with SED. So it might be playing a causative role in the etiology of this disease.

  14. The effects of exercise on cocaine self-administration, food-maintained responding, and locomotor activity in female rats: importance of the temporal relationship between physical activity and initial drug exposure.

    PubMed

    Smith, Mark A; Witte, Maryam A

    2012-12-01

    Previous studies have reported that exercise decreases cocaine self-administration in rats with long-term access (8+ weeks) to activity wheels in the home cage. The purpose of this study was to (a) examine the importance of the temporal relationship between physical activity and initial drug exposure, (b) determine the effects of exercise on responding maintained by a nondrug reinforcer (i.e., food), and (c) investigate the effects of exercise on cocaine-induced increases in locomotor activity. To this end, female rats were obtained at weaning and divided into 4 groups: (a) EXE-SED rats were housed in exercise cages for 6 weeks and then transferred to sedentary cages after the first day of behavioral testing; (b) SED-EXE rats were housed in sedentary cages for 6 weeks and then transferred to exercise cages after the first day of behavioral testing; (c) SED-SED rats remained in sedentary cages for the duration of the study; and (d) EXE-EXE rats remained in exercise cages for the duration of the study. Relative to the sedentary group (SED-SED), exercise reduced cocaine self-administration in both groups with access to activity wheels after initial drug exposure (EXE-EXE, SED-EXE) but did not reduce cocaine self-administration in the group with access to activity wheels only before drug exposure (EXE-SED). Exercise also decreased the effects of cocaine on locomotor activity but did not reduce responding maintained by food. These data suggest that exercise may reduce cocaine use in drug-experienced individuals with no prior history of aerobic activity without decreasing other types of positively reinforced behaviors.

  15. Active vs. sedentary lifestyle from weaning to adulthood and susceptibility to ozone in rats.

    PubMed

    Gordon, C J; Phillips, P M; Ledbetter, A; Snow, S J; Schladweiler, M C; Johnstone, A F M; Kodavanti, U P

    2017-01-01

    The prevalence of a sedentary (SED) life style combined with calorically rich diets has spurred the rise in childhood obesity, which, in turn, translates to adverse health effects in adulthood. Obesity and lack of active (ACT) lifestyle may increase susceptibility to air pollutants. We housed 22-day-old female Long-Evans rats in a cage without (SED) or with a running wheel (ACT). After 10 wk the rats ran 310 ± 16.3 km. Responses of SED and ACT rats to whole-body O 3 (0, 0.25, 0.5, or 1.0 ppm; 5 h/day for 2 days) was assessed. Glucose tolerance testing (GTT) was performed following the first day of O 3 ACT rats had less body fat and an improved glucose GTT. Ventilatory function (plethysmography) of SED and ACT groups was similarly impaired by O 3 Bronchoalveolar lavage fluid (BALF) was collected after the second O 3 exposure. SED and ACT rats were hyperglycemic following 1.0 ppm O 3 GTT was impaired by O 3 in both groups; however, ACT rats exhibited improved recovery to 0.25 and 1.0 ppm O 3 BALF cell neutrophils and total cells were similarly increased in ACT and SED groups exposed to 1.0 ppm O 3 O 3 -induced increase in eosinophils was exacerbated in SED rats. Chronic exercise from postweaning to adulthood improved some of the metabolic and pulmonary responses to O 3 (GTT and eosinophils) but several other parameters were unaffected. The reduction in O 3 -induced rise in BALF eosinophils in ACT rats suggests a possible link between a SED lifestyle and incidence of asthma-related symptoms from O 3 . Copyright © 2017 the American Physiological Society.

  16. FDA-sunlamp recommended Maximum Timer Interval And Exposure Schedule: consensus ISO/CIE dose equivalence.

    PubMed

    Dowdy, John C; Czako, Eugene A; Stepp, Michael E; Schlitt, Steven C; Bender, Gregory R; Khan, Lateef U; Shinneman, Kenneth D; Karos, Manuel G; Shepherd, James G; Sayre, Robert M

    2011-09-01

    The authors compared calculations of sunlamp maximum exposure times following current USFDA Guidance Policy on the Maximum Timer Interval and Exposure Schedule, with USFDA/CDRH proposals revising these to equivalent erythemal exposures of ISO/CIE Standard Erythema Dose (SED). In 2003, [USFDA/CDRH proposed replacing their unique CDRH/Lytle] erythema action spectrum with the ISO/CIE erythema action spectrum and revising the sunlamp maximum exposure timer to 600 J m(-2) ISO/CIE effective dose, presented as being biologically equivalent. Preliminary analysis failed to confirm said equivalence, indicating instead ∼38% increased exposure when applying these proposed revisions. To confirm and refine this finding, a collaboration of tanning bed and UV lamp manufacturers compiled 89 UV spectra representing a broad sampling of U.S. indoor tanning equipment. USFDA maximum recommended exposure time (Te) per current sunlamp guidance and CIE erythemal effectiveness per ISO/CIE standard were calculated. The CIE effective dose delivered per Te averaged 456 J(CIE) m(-2) (SD = 0.17) or ∼4.5 SED. The authors found that CDRH's proposed 600 J(CIE) m(-2) recommended maximum sunlamp exposure exceeds current Te erythemal dose by ∼33%. The current USFDA 0.75 MED initial exposure was ∼0.9 SED, consistent with 1.0 SED initial dose in existing international sunlamp standards. As no sunlamps analyzed exceeded 5 SED, a revised maximum exposure of 500 J(CIE) m(-2) (∼80% of CDRH's proposal) should be compatible with existing tanning equipment. A tanning acclimatization schedule is proposed beginning at 1 SED thrice-weekly, increasing uniformly stepwise over 4 wk to a 5 SED maximum exposure in conjunction with a tan maintenance schedule of twice-weekly 5 SED sessions, as biologically equivalent to current USFDA sunlamp policy.

  17. Physical Education Increases Daily Moderate to Vigorous Physical Activity and Reduces Sedentary Time

    ERIC Educational Resources Information Center

    Mooses, Kerli; Pihu, Maret; Riso, Eva-Maria; Hannus, Aave; Kaasik, Priit; Kull, Merike

    2017-01-01

    Background: Physical activity (PA) is important to mental and physical health. Physical education (PE) lessons have the potential to increase daily moderate to vigorous PA (MVPA) and reduce sedentary time (SED). We measured MVPA and SED in primary school PE, determined the contribution of PE to daily MVPA and SED, and compared PA on days with and…

  18. Theater of Operations Dental Work Load Estimation

    DTIC Science & Technology

    1984-05-01

    such as clinical dental work, forensic dental identification, civic action ’programs, treatment of prisoners of war, dental laboratory services, medical...SED 193 0.3 115.8 0.2 9233 INHAL SED ANALGESIA 4085 7.0 3268.0 5.6 񕐲 ORAL SED 994 107 298.2’ 0.5 9235 HYPNOSIS 58 0.1 52.2 0.1 9610 THERAP MED

  19. ProSEDS Telemetry System Utilization of GPS Position Data for Transmitter Cycling

    NASA Technical Reports Server (NTRS)

    Kennedy, Paul; Sims, Herb

    2000-01-01

    NASA Marshall Space Flight Center will launch the Propulsive Small Expendable Deployer System (ProSEDS) space experiment in late 2000. ProSEDS will demonstrate the use of an electrodynamic tether propulsion system and will utilize a conducting wire tether to generate limited spacecraft power. This paper will provide an overview of the ProSEDS mission and will discuss the design, development and test of the spacecraft telemetry system which utilizes a custom designed GPS subsystem to determine spacecraft position relative to ground station location and to control transmitter on/off cycling based on spacecraft state vector and ground station visibility.

  20. Development of the Flight Tether for ProSEDS

    NASA Technical Reports Server (NTRS)

    Curtis, Leslie; Vaughn, Jason; Welzyn, Ken; Carroll, Joe; Brown, Norman S. (Technical Monitor)

    2002-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS will use the flight-proven Small Expendable Deployer System to deploy a newly designed and developed tether which will provide tether generated drag thrust of approx. 0.4 N. The development and production of very long tethers with specific properties for performance and survivability will be required to enable future tether missions. The ProSEDS tether design and the development process may provide some lessons learned for these future missions. The ProSEDS system requirements drove the design of the tether to have three different sections of tether each serving a specialized purpose. The tether is a total of 15 kilometers long: 10 kilometers of a non-conductive Dyneema lead tether; 5 km of CCOR conductive coated wire; and 220 meters of insulated wire with a protective Kevlar overbraid. Production and joining of long tether lengths involved many development efforts. Extensive testing of tether materials including ground deployment of the full-length ProSEDS tether was conducted to validate the tether design and performance before flight.

Top