Development of a commercially viable piezoelectric force sensor system for static force measurement
NASA Astrophysics Data System (ADS)
Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan
2017-09-01
A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.
Dynamic simulation of Static Var Compensators in distribution systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koessler, R.J.
1992-08-01
This paper is a system study guide for the correction of voltage dips due to large motor startups with Static Var Compensators (SVCs). The method utilizes time simulations, which are an important aid in the equipment design and specification. The paper illustrates the process of setting-up a computer model and performing time simulations. The study process is demonstrated through an example, the Shawnee feeder in the Niagara Mohawk Power Corporation service area.
The force synergy of human digits in static and dynamic cylindrical grasps.
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151
NASA Astrophysics Data System (ADS)
Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.
2017-01-01
In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated treatment concepts in adaptive radiotherapy.
Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System
NASA Astrophysics Data System (ADS)
Singh, Bhim; Arya, Sabha Raj
2014-01-01
This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.
NASA Astrophysics Data System (ADS)
Passeri, Alessandro; Mazzuca, Stefano; Del Bene, Veronica
2014-06-01
Clinical magnetic resonance spectroscopy imaging (MRSI) is a non-invasive functional technique, whose mathematical framework falls into the category of linear inverse problems. However, its use in medical diagnostics is hampered by two main problems, both linked to the Fourier-based technique usually implemented for spectra reconstruction: poor spatial resolution and severe blurring in the spatial localization of the reconstructed spectra. Moreover, the intrinsic ill-posedness of the MRSI problem might be worsened by (i) spatially dependent distortions of the static magnetic field (B0) distribution, as well as by (ii) inhomogeneity in the power deposition distribution of the radiofrequency magnetic field (B1). Among several alternative methods, slim (Spectral Localization by IMaging) and bslim (B0 compensated slim) are reconstruction algorithms in which a priori information concerning the spectroscopic target is introduced into the reconstruction kernel. Nonetheless, the influence of the B1 field, particularly when its operating wavelength is close to the size of the human organs being studied, continues to be disregarded. starslim (STAtic and Radiofrequency-compensated slim), an evolution of the slim and bslim methods, is therefore proposed, in which the transformation kernel also includes the B1 field inhomogeneity map, thus allowing almost complete 3D modelling of the MRSI problem. Moreover, an original method for the experimental determination of the B1 field inhomogeneity map specific to the target under evaluation is also included. The compensation capabilities of the proposed method have been tested and illustrated using synthetic raw data reproducing the human brain.
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
NASA Astrophysics Data System (ADS)
Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza
2016-06-01
This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.
Online compensation for target motion with scanned particle beams: simulation environment.
Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard
2004-07-21
Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.
McAuley, Emily M; Bertram, Susan M
2016-01-01
The evolution of multiple sexual signals presents a dilemma since individuals selecting a mate should pay attention to the most honest signal and ignore the rest; however, multiple signals may evolve if, together, they provide more information to the receiver than either one would alone. Static and dynamic signals, for instance, can act as multiple messages, providing information on different aspects of signaller quality that reflect condition at different time scales. While the nature of static signals makes them difficult or impossible for individuals to augment, dynamic signals are much more susceptible to temporary fluctuations in effort. We investigated whether male Texas field crickets, Gryllus texensis, that produce unattractive static signals compensate by dynamically increasing their calling effort. Our findings lend partial support to the compensation hypothesis, as males that called at unattractive carrier frequencies (a static trait) spent more time calling each night (a dynamic trait). Interestingly, this finding was most pronounced in males that called with attractive pulse characteristics (static traits) but did not occur in males that called with unattractive pulse characteristics. Males that signalled with unattractive pulse characteristics (duration and pause) spent less time calling through the night. Our correlative findings on wild caught males suggest that only males that signal with attractive pulse characteristics may be able to afford to pay the costs of both trait exaggeration and increased calling effort to compensate for poor carrier frequencies.
Palladium-chromium static strain gage for high temperature propulsion systems
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1991-01-01
The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.
Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft
2014-12-15
but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and
NASA Astrophysics Data System (ADS)
Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.
2016-10-01
Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.
Cable delay compensator for microwave signal distribution over optical fibers
NASA Astrophysics Data System (ADS)
Primas, Lori E.
1990-12-01
The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.
McAuley, Emily M.
2016-01-01
The evolution of multiple sexual signals presents a dilemma since individuals selecting a mate should pay attention to the most honest signal and ignore the rest; however, multiple signals may evolve if, together, they provide more information to the receiver than either one would alone. Static and dynamic signals, for instance, can act as multiple messages, providing information on different aspects of signaller quality that reflect condition at different time scales. While the nature of static signals makes them difficult or impossible for individuals to augment, dynamic signals are much more susceptible to temporary fluctuations in effort. We investigated whether male Texas field crickets, Gryllus texensis, that produce unattractive static signals compensate by dynamically increasing their calling effort. Our findings lend partial support to the compensation hypothesis, as males that called at unattractive carrier frequencies (a static trait) spent more time calling each night (a dynamic trait). Interestingly, this finding was most pronounced in males that called with attractive pulse characteristics (static traits) but did not occur in males that called with unattractive pulse characteristics. Males that signalled with unattractive pulse characteristics (duration and pause) spent less time calling through the night. Our correlative findings on wild caught males suggest that only males that signal with attractive pulse characteristics may be able to afford to pay the costs of both trait exaggeration and increased calling effort to compensate for poor carrier frequencies. PMID:27936045
Inertial measurement unit using rotatable MEMS sensors
Kohler, Stewart M [Albuquerque, NM; Allen, James J [Albuquerque, NM
2007-05-01
A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.
Inertial measurement unit using rotatable MEMS sensors
Kohler, Stewart M.; Allen, James J.
2006-06-27
A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.
Aslanides, Ioannis M; Toliou, Georgia; Padroni, Sara; Arba Mosquera, Samuel; Kolli, Sai
2011-06-01
To compare the refractive and visual outcomes using the Schwind Amaris excimer laser in patients with high astigmatism (>1D) with and without the static cyclotorsion compensation (SCC) algorithm available with this new laser platform. 70 consecutive eyes with ≥1D astigmatism were randomized to treatment with compensation of static cyclotorsion (SCC group- 35 eyes) or not (control group- 35 eyes). A previously validated optimized aspheric ablation algorithm profile was used in every case. All patients underwent LASIK with a microkeratome cut flap. The SCC and control group did not differ preoperatively, in terms of refractive error, magnitude of astigmatism or in terms of cardinal or oblique astigmatism. Following treatment, average deviation from target was SEq +0.16D, SD±0.52 D, range -0.98 D to +1.71 D in the SCC group compared to +0.46 D, SD±0.61 D, range -0.25 D to +2.35 D in the control group, which was statistically significant (p<0.05). Following treatment, average astigmatism was 0.24 D (SD±0.28 D, range -1.01 D to 0.00 D) in the SCC group compared to 0.46 D (SD±0.42 D, range -1.80 D to 0.00 D) in the control group, which was highly statistically significant (p<0.005). There was no statistical difference in the postoperative uncorrected vision when the aspheric algorithm was used although there was a trend to increased number of lines gained in the SCC group. This study shows that static cyclotorsion is accurately compensated for by the Schwind Amaris laser platform. The compensation of static cyclotorsion in patients with moderate astigmatism produces a significant improvement in refractive and astigmatic outcomes than when not compensated. Copyright © 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Robotically assisted velocity-sensitive triggered focused ultrasound surgery
NASA Astrophysics Data System (ADS)
Maier, Florian; Brunner, Alexander; Jenne, Jürgen W.; Krafft, Axel J.; Semmler, Wolfhard; Bock, Michael
2012-11-01
Magnetic Resonance (MR) guided Focused Ultrasound Surgery (FUS) of abdominal organs is challenging due to breathing motion and limited patient access in the MR environment. In this work, an experimental robotically assisted FUS setup was combined with a MR-based navigator technique to realize motion-compensated sonications and online temperature imaging. Experiments were carried out in a static phantom, during periodic manual motion of the phantom without triggering, and with triggering to evaluate the triggering method. In contrast to the non-triggered sonication, the results of the triggered sonication show a confined symmetric temperature distribution. In conclusion, the velocity sensitive navigator can be employed for triggered FUS to compensate for periodic motion. Combined with the robotic FUS setup, flexible treatment of abdominal targets might be realized.
NASA Technical Reports Server (NTRS)
Webb, L. D.; Washington, H. P.
1972-01-01
Static pressure position error calibrations for a compensated and an uncompensated XB-70 nose boom pitot static probe were obtained in flight. The methods (Pacer, acceleration-deceleration, and total temperature) used to obtain the position errors over a Mach number range from 0.5 to 3.0 and an altitude range from 25,000 feet to 70,000 feet are discussed. The error calibrations are compared with the position error determined from wind tunnel tests, theoretical analysis, and a standard NACA pitot static probe. Factors which influence position errors, such as angle of attack, Reynolds number, probe tip geometry, static orifice location, and probe shape, are discussed. Also included are examples showing how the uncertainties caused by position errors can affect the inlet controls and vertical altitude separation of a supersonic transport.
Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study
NASA Astrophysics Data System (ADS)
D'Souza, Warren D.; Naqvi, Shahid A.; Yu, Cedric X.
2005-09-01
Significant differences between planned and delivered treatments may occur due to respiration-induced tumour motion, leading to underdosing of parts of the tumour and overdosing of parts of the surrounding critical structures. Existing methods proposed to counter tumour motion include breath-holds, gating and MLC-based tracking. Breath-holds and gating techniques increase treatment time considerably, whereas MLC-based tracking is limited to two dimensions. We present an alternative solution in which a robotic couch moves in real time in response to organ motion. To demonstrate proof-of-principle, we constructed a miniature adaptive couch model consisting of two movable platforms that simulate tumour motion and couch motion, respectively. These platforms were connected via an electronic feedback loop so that the bottom platform responded to the motion of the top platform. We tested our model with a seven-field step-and-shoot delivery case in which we performed three film-based experiments: (1) static geometry, (2) phantom-only motion and (3) phantom motion with simulated couch motion. Our measurements demonstrate that the miniature couch was able to compensate for phantom motion to the extent that the dose distributions were practically indistinguishable from those in static geometry. Motivated by this initial success, we investigated a real-time couch compensation system consisting of a stereoscopic infra-red camera system interfaced to a robotic couch known as the Hexapod™, which responds in real time to any change in position detected by the cameras. Optical reflectors placed on a solid water phantom were used as surrogates for motion. We tested the effectiveness of couch-based motion compensation for fixed fields and a dynamic arc delivery cases. Due to hardware limitations, we performed film-based experiments (1), (2) and (3), with the robotic couch at a phantom motion period and dose rate of 16 s and 100 MU min-1, respectively. Analysis of film measurements showed near-equivalent dose distributions (<=2 mm agreement of corresponding isodose lines) for static geometry and motion-synchronized real-time robotic couch tracking-based radiation delivery.
Enhanced High Performance Power Compensation Methodology by IPFC Using PIGBT-IDVR
Arumugom, Subramanian; Rajaram, Marimuthu
2015-01-01
Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies. PMID:26613101
TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzner, M; Lagendijk, J; Raaymakers, B
Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation
Balaban, Carey D.; Hoffer, Michael E.; Gottshall, Kim R.
2012-01-01
This review examines vestibular compensation and vestibular rehabilitation from a unified translational research perspective. Laboratory studies illustrate neurobiological principles of vestibular compensation at the molecular, cellular and systems levels in animal models that inform vestibular rehabilitation practice. However, basic research has been hampered by an emphasis on ‘naturalistic’ recovery, with time after insult and drug interventions as primary dependent variables. The vestibular rehabilitation literature, on the other hand, provides information on how the degree of compensation can be shaped by specific activity regimens. The milestones of the early spontaneous static compensation mark the re-establishment of static gaze stability, which provides a common coordinate frame for the brain to interpret residual vestibular information in the context of visual, somatosensory and visceral signals that convey gravitoinertial information. Stabilization of the head orientation and the eye orientation (suppression of spontaneous nystagmus) appear to be necessary by not sufficient conditions for successful rehabilitation, and define a baseline for initiating retraining. The lessons from vestibular rehabilitation in animal models offer the possibility of shaping the recovery trajectory to identify molecular and genetic factors that can improve vestibular compensation. PMID:22981400
Optimal placement of FACTS devices using optimization techniques: A review
NASA Astrophysics Data System (ADS)
Gaur, Dipesh; Mathew, Lini
2018-03-01
Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Y.; Ekstroem, A.
1997-01-01
This study is devoted to investigating the possibility of controlling the overcurrent of a forced-commutated voltage source converter (VSC) by PWM when the ac system is undergoing large unbalanced disturbance. The converter is supposed to be used as a static var compensator at a high power level. A novel control strategy is proposed for controlling the reactive current and the dc side voltage independently. Digital simulation results are presented and compared with the results by using just the reactive current control with fundamental switching frequency.
NASA Astrophysics Data System (ADS)
Akbar, P. A.; Hakim, D. L.; Sucita, T.
2018-02-01
In this research, testing improvements to the distribution voltage electricity at 150 kV transmission subsystem Bandung Selatan and New Ujungberung using Flexible AC Transmission System (FACTS) technology. One of them is by doing the control of active and reactive power through the power electronics equipment Static Synchronous Compensator (STATCOM). The subsystem is tested because it has a voltage profile are relatively less well when based on the IEEE / ANSI C.84.1 (142.5 - 157.5 kV). This study was conducted by analyzing the Newton-Raphson power flow on the simulator DigSilent Power Factory 15 to determine the profile of the voltage (V) on the system. Bus which has the lowest voltage to be a reference in the installation of STATCOM. From this research is known that the voltage on the conditions of the existing bus 28, as many as 21-23 still below standard buses (142.5 kV), after the installation is done using STATCOM, voltage on the buses improved by increasing the number of tracks that follow the standard / is in the range 142.5 kV -157.5 kV as many as 23-27 buses or 78.6% - 96%, with the optimum mounting on a bus Rancaekek STATCOM II with a capacity of 300 MVA.
Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan
2008-12-01
Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.
A three-level advanced static VAr compensator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekanayake, J.B.; Jenkins, N.
1996-01-01
An Advanced Static VAr Compensator (ASVC) employing a three level inverter has been investigated for three phase applications. The paper describes the operating principles of the ASVC using an elementary single phase ASVC circuit. The construction of a hardware model of the three phase, three level ASVC is then presented. The performance of the ASVC is obtained from an experimental study carried out on this laboratory model. The use of the selective harmonic elimination modulation (SHEM) technique to minimize harmonics is explored. Experimental studies have been carried out to determine the speed of response of the scheme by controlling itmore » in a closed loop.« less
NASA Astrophysics Data System (ADS)
Fu, Weihua; Dai, Jianrong; Hu, Yimin; Han, Dongsheng; Song, Yixin
2004-04-01
The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques; the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System
NASA Astrophysics Data System (ADS)
Bhende, C. N.; Kalam, A.; Malla, S. G.
2016-04-01
Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.
Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-01-01
In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-06-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-03-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul
2014-01-01
This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
CSI, optimal control, and accelerometers: Trials and tribulations
NASA Technical Reports Server (NTRS)
Benjamin, Brian J.; Sesak, John R.
1994-01-01
New results concerning optimal design with accelerometers are presented. These results show that the designer must be concerned with the stability properties of two Linear Quadratic Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop system dynamics. The new concepts of virtual and implemented compensators are introduced to cope with these subtleties. The virtual compensator appears in the closed-loop system dynamics and the implemented compensator appears in control electronics. The stability of one compensator does not guarantee the stability of the other. For strongly stable (robust) systems, both compensators should be stable. The presence of controlled and uncontrolled modes in the system results in two additional forms of the compensator with corresponding terms that are of like form, but opposite sign, making simultaneous stabilization of both the virtual and implemented compensator difficult. A new design algorithm termed sensor augmentation is developed that aids stabilization of these compensator forms by incorporating a static augmentation term associated with the uncontrolled modes in the design process.
Capacitive Trans-Impedance Amplifier Circuit with Charge Injection Compensation
NASA Technical Reports Server (NTRS)
Milkov, Mihail M. (Inventor); Gulbransen, David J. (Inventor)
2016-01-01
A capacitive trans-impedance amplifier circuit with charge injection compensation is provided. A feedback capacitor is connected between an inverting input port and an output port of an amplifier. A MOS reset switch has source and drain terminals connected between the inverting input and output ports of the amplifier, and a gate terminal controlled by a reset signal. The reset switch is open or inactive during an integration phase, and closed or active to electrically connect the inverting input port and output port of the amplifier during a reset phase. One or more compensation capacitors are provided that are not implemented as gate oxide or MOS capacitors. Each compensation capacitor has a first port connected to a compensation signal that is a static signal or a toggling compensation signal that toggles between two compensation voltage values, and a second port connected to the inverting input port of the amplifier.
Aeromagnetic Compensation for UAVs
NASA Astrophysics Data System (ADS)
Naprstek, T.; Lee, M. D.
2017-12-01
Aeromagnetic data is one of the most widely collected types of data in exploration geophysics. With the continuing prevalence of unmanned air vehicles (UAVs) in everyday life there is a strong push for aeromagnetic data collection using UAVs. However, apart from the many political and legal barriers to overcome in the development of UAVs as aeromagnetic data collection platforms, there are also significant scientific hurdles, primary of which is magnetic compensation. This is a well-established process in manned aircraft achieved through a combination of platform magnetic de-noising and compensation routines. However, not all of this protocol can be directly applied to UAVs due to fundamental differences in the platforms, most notably the decrease in scale causing magnetometers to be significantly closer to the avionics. As such, the methodology must be suitably adjusted. The National Research Council of Canada has collaborated with Aeromagnetic Solutions Incorporated to develop a standardized approach to de-noising and compensating UAVs, which is accomplished through a series of static and dynamic experiments. On the ground, small static tests are conducted on individual components to determine their magnetization. If they are highly magnetic, they are removed, demagnetized, or characterized such that they can be accounted for in the compensation. Dynamic tests can include measuring specific components as they are powered on and off to assess their potential effect on airborne data. The UAV is then flown, and a modified compensation routine is applied. These modifications include utilizing onboard autopilot current sensors as additional terms in the compensation algorithm. This process has been applied with success to fixed-wing and rotary-wing platforms, with both a standard manned-aircraft magnetometer, as well as a new atomic magnetometer, much smaller in scale.
NASA Astrophysics Data System (ADS)
Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan
2018-05-01
This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.
Cosmology with void-galaxy correlations.
Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S
2014-01-31
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
Hofmann, Hannes G; Keck, Benjamin; Rohkohl, Christopher; Hornegger, Joachim
2011-01-01
Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. Hardware optimization is not an option but mandatory for interventional image processing and, in particular, for image reconstruction due to the high demands on performance. Several groups have published fast analytical 3-D reconstruction on highly parallel hardware such as GPUs to mitigate this issue. The authors show that the performance of modern CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outperforms them for a recent motion compensated (3-D+time) image reconstruction algorithm. This work investigates two algorithms: Static 3-D reconstruction as well as a recent motion compensated algorithm. The evaluation was performed using a standardized reconstruction benchmark, RABBITCT, to get comparable results and two additional clinical data sets. The authors demonstrate for a parametric B-spline motion estimation scheme that the derivative computation, which requires many write operations to memory, performs poorly on the GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a 32-core Intel Xeon server system, the authors achieve linear scaling with the number of cores used and reconstruction times almost in the same range as current GPUs. Algorithmic innovations in the field of motion compensated image reconstruction may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s (on-the-fly) using a 32-core server.
Transponder-aided joint calibration and synchronization compensation for distributed radar systems.
Wang, Wen-Qin
2015-01-01
High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.
High temperature static strain measurement with an electrical resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1992-01-01
An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.
Application of the compensated arrhenius formalism to dielectric relaxation.
Petrowsky, Matt; Frech, Roger
2009-12-17
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.
NASA Astrophysics Data System (ADS)
Fedonin, O. N.; Petreshin, D. I.; Ageenko, A. V.
2018-03-01
In the article, the issue of increasing a CNC lathe accuracy by compensating for the static and dynamic errors of the machine is investigated. An algorithm and a diagnostic system for a CNC machine tool are considered, which allows determining the errors of the machine for their compensation. The results of experimental studies on diagnosing and improving the accuracy of a CNC lathe are presented.
Kim, Ji-Sik; Kim, Gi-Woo
2017-01-01
This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane) dispersed with carbon nanotubes (CNTs), to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor) for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS) as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied. PMID:28125046
Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo
2015-01-01
Japan has the most CT and MRI scanners per unit population in the world, and as these technologies spread, their geographic distribution is becoming equalized. In contrast, the number of radiologists per unit population in Japan is the lowest among OECD countries and their geographic distribution is unknown. Likewise, little is known about the use of teleradiology, which can compensate for the uneven distribution of radiologists. Based on the Survey of Physicians, Dentists and Pharmacists and the Static Survey of Medical Institutions by the Ministry of Health, Labour and Welfare, a dataset of radiologists and CT and MRI utilizations in each of Japan's 1811 municipalities was created. The inter-municipality equity of the number of radiologists was evaluated using Gini coefficient. Logistic regression analysis, based on Static Survey data, was performed to evaluate the association between hospital location and teleradiology use. Between 2006 and 2012 the number of radiologists increased by 21.7%, but the Gini coefficient remained unchanged. The number of radiologists per 1,000 CT (MRI) utilizations decreased by 17.9% (1.0%); the number was highest in metropolis and lowest in town/village and the disparity has widened from 1.9 to 2.2 (1.6 to 2.0) times. The number of hospitals and clinics using teleradiology has increased (by 69.6% and 18.1%, respectively). Hospitals located in towns/villages (odds ratio 1.61; 95% confidence interval 1.26-2.07) were more likely to use teleradiology than those in metropolises. Contrary to the CT and MRI distributions, radiologist distribution has not been evened out by the increase in their number; in other words, the distribution of radiologists was not affected by market-derived spatial competition force. As a consequence, the gap of the radiologist shortage between urban and rural areas is increasing. Teleradiology, which is one way to ameliorate this gap, should be encouraged.
NASA Astrophysics Data System (ADS)
Stützer, K.; Bert, C.; Enghardt, W.; Helmbrecht, S.; Parodi, K.; Priegnitz, M.; Saito, N.; Fiedler, F.
2013-08-01
In-beam positron emission tomography (PET) has been proven to be a reliable technique in ion beam radiotherapy for the in situ and non-invasive evaluation of the correct dose deposition in static tumour entities. In the presence of intra-fractional target motion an appropriate time-resolved (four-dimensional, 4D) reconstruction algorithm has to be used to avoid reconstructed activity distributions suffering from motion-related blurring artefacts and to allow for a dedicated dose monitoring. Four-dimensional reconstruction algorithms from diagnostic PET imaging that can properly handle the typically low counting statistics of in-beam PET data have been adapted and optimized for the characteristics of the double-head PET scanner BASTEI installed at GSI Helmholtzzentrum Darmstadt, Germany (GSI). Systematic investigations with moving radioactive sources demonstrate the more effective reduction of motion artefacts by applying a 4D maximum likelihood expectation maximization (MLEM) algorithm instead of the retrospective co-registration of phasewise reconstructed quasi-static activity distributions. Further 4D MLEM results are presented from in-beam PET measurements of irradiated moving phantoms which verify the accessibility of relevant parameters for the dose monitoring of intra-fractionally moving targets. From in-beam PET listmode data sets acquired together with a motion surrogate signal, valuable images can be generated by the 4D MLEM reconstruction for different motion patterns and motion-compensated beam delivery techniques.
A 4D-optimization concept for scanned ion beam therapy.
Graeff, Christian; Lüchtenborg, Robert; Eley, John Gordon; Durante, Marco; Bert, Christoph
2013-12-01
Scanned carbon beam therapy offers advantageous dose distributions and an increased biological effect. Treating moving targets is complex due to sensitivity to range changes and interplay. We propose a 4D treatment planning concept that considers motion during particle number optimization. The target was subdivided into sectors, one for each motion phase of a 4D-CT. Each sector was non-rigidly transformed to its motion phase and there targeted by a dedicated raster field (RST). Therefore, the resulting 4D-RST compensated target motion and range changes. A 4D treatment control system (TCS) was needed for synchronized delivery to the measured patient motion. 4D-optimized plans were simulated for 9 NSCLC lung cancer patients and compared to static irradiation at end-exhale. A prototype TCS was implemented and successfully tested in a film experiment. The 4D-optimized treatment plan resulted in only slightly lower dose coverage of the target compared to static optimization, with V 95% of 97.9% (median, range 96.5-99.4%) vs. 99.3% (98.5-99.8%), with negligible overdose. The conformity number was comparable at 88.2% (85.1-92.5%) vs. 85.2% (79.9-91.2%) for 4D and static, respectively. We implemented and tested a 4D treatment plan optimization method resulting in highly conformal dose delivery. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Development and characterization of PdCr temperature-compensated wire resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1989-01-01
A temperature-compensated resistance static strain gage with potential to be used to 600 C was recently developed. Gages were fabricated from specially developed palladium-13 w/o chromium (Pd-13Cr) wire and platinum (Pt) compensator. When bonded to high temperature Hastelloy X, the apparent strain from room temperature to 600 C was within 400 microstrain for gages with no preheat treatment and within 3500 microstrain for gages with 16 hours prestabilization at 640 C. The apparent strain versus temperature relationship of stabilized PdCr gages were repeatable with the reproducibility within 100 microstrain during three thermal cycles to 600 C and an 11 hours soak at 600 C. The gage fabrication, construction and installation is described. Also, the coating system used for this compensated resistance strain gage is explained. The electrical properties of the strain sensing element and main characteristics of the compensated gage including apparent strain, drift and reproducibility are discussed.
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
Compressing the fluctuation of the magnetic field by dynamic compensation
NASA Astrophysics Data System (ADS)
Wang, Wenli; Dong, Richang; Wei, Rong; Chen, Tingting; Wang, Qian; Wang, Yuzhu
2018-03-01
We present a dynamic compensation method to compress the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the atomic fountain clock. The coil current of the C-field is point-by-point modulated in accordance with the atoms probing the magnetic field along the flight trajectory. A homogeneous field with a 0.2 nT inhomogeneity is produced compared to a 5 nT under the static magnetic field with a constant current during the Ramsey interrogation. The corresponding uncertainty associated with the second-order Zeeman shift that we calculate is improved by one order of magnitude. The technique provides an alternative method to improve the uniformity of the magnetic field, particularly for large-scale equipment that is difficult to construct with an effective magnetic shielding. Our method is simple, robust, and essentially important in frequency evaluations concerning the dominant uncertainty contribution due to the quadratic Zeeman shift.
Petrowsky, Matt; Fleshman, Allison; Frech, Roger
2012-05-17
The temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation. Below ambient temperature, the dielectric constant changes only slightly with temperature in electrolytes whose salt has a cation that is not charge-protected. The compensated Arrhenius formalism is used to describe the temperature-dependent conductivity in terms of the contributions from both the exponential prefactor σo and Boltzmann factor exp(-Ea/RT). This analysis explains why the conductivity decreases with increasing temperature above 65 °C for the LiTf-dodecanol electrolyte. At higher temperatures, the decrease in the exponential prefactor is greater than the increase in the Boltzmann factor.
Preisach modeling and compensation for smart material hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan C.; Wen, John T.
1995-02-01
Many of the Smart materials being investigated (e.g., Shape Memory Alloys (SMAs), piezoceramics, and magnetostrictives) exhibit significant hysteresis effects, especially when driven with large control signals. In this paper the similarity between the microscopic domain kinematics that generate static hysteresis effects, or ferromagnetics, piezoceramics and SMAs is noted. The Preisach independent domain hysteresis model, and its derivatives, have been shown to be a comprehensive class of hysteresis operator that captures the major features of ferromagnetic hysteresis, and hence it is proposed here as a suitable model for piezoceramic and SMA hysteresis also. This basic Preisach model is used to model piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of the beam. A numerical inverse Preisach hysteresis series compensator is also proposed and applied in a real time experiment thereby reducing the apparent nonlinear hysteresis effects for the piezoceramic actuator quasi-static case.
An MR-based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy
Fischer, Peter; Faranesh, Anthony; Pohl, Thomas; Maier, Andreas; Rogers, Toby; Ratnayaka, Kanishka; Lederman, Robert; Hornegger, Joachim
2017-01-01
In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos. PMID:28692969
Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles
NASA Astrophysics Data System (ADS)
Collings, E. W.; Sumption, M. D.
2001-05-01
Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.
NASA Technical Reports Server (NTRS)
Johnson, Dean; Calhoun, Malcolm; Sydnor, Richard; Lutes, George
1993-01-01
An active wide-band fiber optic frequency distribution system employing a thermally controlled phase compensator to stabilize phase variations induced by environmental temperature changes is described. The distribution system utilizes bidirectional dual wavelength transmission to provide optical feedback of induced phase variations of 100 MHz signals propagating along the distribution cable. The phase compensation considered differs from earlier narrow-band phase compensation designs in that it uses a thermally controlled fiber delay coil rather than a VCO or phase modulation to compensate for induced phase variations. Two advantages of the wide-band system over earlier designs are (1) that it provides phase compensation for all transmitted frequencies, and (2) the compensation is applied after the optical interface rather than electronically ahead of it as in earlier schemes. Experimental results on the first prototype shows that the thermal stabilizer reduces phase variations and Allan deviation by a factor of forty over an equivalent uncompensated fiber optic distribution system.
Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G
2014-12-01
The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.
Vibration of a hydrostatic gas bearing due to supply pressure oscillations
NASA Technical Reports Server (NTRS)
Branch, H. D.; Watkins, C. B.; Eronini, I. E.
1984-01-01
The vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating supply pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and the sleeve is solved numerically together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The results presented include Bode plots of bearing oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency. The results are compared with the results of an earlier study involving the response of a similar bearing to oscillating exhaust pressure.
The impact of productivity-based incentives on faculty salary-based compensation.
Miller, Ronald D; Cohen, Neal H
2005-07-01
In industry and academic anesthesia departments, incentives and bonus payments based on productivity are accounting for an increasing proportion of a total compensation. When incentives are primarily based on clinical productivity, the impact on the distribution of total compensation to the faculty is not known. We compared a pure salary-based compensation methodology based entirely on academic rank to salary plus incentives and/or clinical productivity compensation (i.e., billable hours). The change in compensation methodology resulted in two major findings. First, the productivity-based compensation resulted in a large increase in the variability of total compensation among faculty, especially at the Assistant Professor rank. Second, the mean difference in total compensation between Assistant and Full Professors decreased. The authors conclude that this particular incentive plan, primarily directed toward clinical productivity, dramatically changed the distribution of total compensation in favor of junior faculty. Although not analytically investigated, the potential impact of these changes on faculty morale and distribution of faculty activities is discussed.
Reaction wheel low-speed compensation using a dither signal
NASA Astrophysics Data System (ADS)
Stetson, John B., Jr.
1993-08-01
A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.
Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.
Ni, Yunfang; Li, Hongsheng; Huang, Libin
2014-10-29
This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.
Morphofunctional changes in distribution of pressure center in multiple sclerosis.
Neamţu, Marius Cristian; Neamţu, Oana Maria; Enescu Bieru, Denisa; Marin, Mihnea Ion; Rusu, Mihai Robert; Tudorache, Ştefania; Brăila, Anca Daniela; Poiană, Cătălina; Rusu, Ligia
2018-01-01
Gait evaluation and assessment of motor performance are of utmost importance in the clinical management of multiple sclerosis (MS). A new approach to the analysis of static and dynamic balance of MS patients is the use of complex biomechanical analysis that includes an analysis of the distribution of the center of pressure (DCP) and loading, measured by using the pressure and force platforms. The study was conducted on a total of 18 patients with MS, with the mean age of 41.2 years old, divided into two groups, according to the presence of clinically detectable gait disturbances. The biomechanical analysis that included the assessment of the loading and DPC was performed using the platform of force distribution. DPC represented the center of all the forces applied and its value could appreciate the mediolateral stability, hence the pronation or, respectively, the supination. Group 1, consisting of 12 patients with MS with clinically detectable gait disorders, including six men and six women, and group 2, of six MS patients without clinically detectable gait disorders, including two men and four women. For group 1, the center of pressure had a left-right asymmetric distribution, and also an anterior-posterior one. There was a predominant distribution at the medial heel, at metatarsals 1-3 and at the hallux. For group 2, the analysis of the plantograms recorded in our study indicated a tendency of the distribution of the pressure center in the metatarsals 2, 3 and less in the heel. The analysis of the loading and distribution of the pressure center was important not only to appreciate the static equilibrium disorders but also to appreciate how these disorders affected the gait initiation, since the patients suffered from anterior-posterior and mediolateral disorders, which produced spatial and temporal distortion preventing gait initiation. In the study of pressure and force, we noticed a predominant distribution on the lateral region of the heel, explained by an attempt of the body to compensate the disorders of balance and orientation of the reaction force of the ground to normalize the gait.
Research on the compensation of laser launch optics to improve the performance of the LGS spot.
Liu, Jie; Wang, Jianli; Wang, Yuning; Tian, Donghe; Zheng, Quan; Lin, Xudong; Wang, Liang; Yang, Qingyun
2018-02-01
To improve the beam quality of the uplink laser, a 37 channel piezo-ceramic deformable mirror was inserted into the laser launch optics to compensate the static aberrations. An interferometer was used as the calibration light source as well as the wavefront sensor to perform closed-loop correction for the moment. About 0.38λ root mean square (rms) aberrations, including the deformable mirror's initial figure error, were compensated, and the residual error was less than 0.07λ rms. Field observations with a 2 m optical telescope demonstrated that the peak intensity value of the laser guide star (LGS) spot increased from 5650 to 7658, and the full width at half-maximum (FWHM) size reduced from 4.07 arcseconds to 3.52 arcseconds. With the compensation, an improved guide star spot can be obtained, which is crucial for the adaptive optics systems of ground-based large telescopes.
Osei, Ernest; Barnett, Rob
2015-01-01
The aim of this study is to provide guidelines for the selection of external‐beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm. PACS numbers: 87.53.Bn, 87.53.Kn, 87.55.D‐, 87.55.Gh
Multirate parallel distributed compensation of a cluster in wireless sensor and actor networks
NASA Astrophysics Data System (ADS)
Yang, Chun-xi; Huang, Ling-yun; Zhang, Hao; Hua, Wang
2016-01-01
The stabilisation problem for one of the clusters with bounded multiple random time delays and packet dropouts in wireless sensor and actor networks is investigated in this paper. A new multirate switching model is constructed to describe the feature of this single input multiple output linear system. According to the difficulty of controller design under multi-constraints in multirate switching model, this model can be converted to a Takagi-Sugeno fuzzy model. By designing a multirate parallel distributed compensation, a sufficient condition is established to ensure this closed-loop fuzzy control system to be globally exponentially stable. The solution of the multirate parallel distributed compensation gains can be obtained by solving an auxiliary convex optimisation problem. Finally, two numerical examples are given to show, compared with solving switching controller, multirate parallel distributed compensation can be obtained easily. Furthermore, it has stronger robust stability than arbitrary switching controller and single-rate parallel distributed compensation under the same conditions.
77 FR 30002 - Primary Power, LLC v. PJM Interconnection, LLC; Notice of Complaint
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... Respondent) for the Respondent's failure to designate the Complainant to construct, own, and finance two static VAR compensator (``SVC'') projects sponsored by the Complainant that have been included in the PJM Regional Transmission Expansion Plan. The Complainant requests that the Commission grant emergency, interim...
38 CFR 4.57 - Static foot deformities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... acquired condition. The congenital condition, with depression of the arch, but no evidence of abnormal... compensable or pensionable. In the acquired condition, it is to be remembered that depression of the longitudinal arch, or the degree of depression, is not the essential feature. The attention should be given to...
38 CFR 4.57 - Static foot deformities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... acquired condition. The congenital condition, with depression of the arch, but no evidence of abnormal... compensable or pensionable. In the acquired condition, it is to be remembered that depression of the longitudinal arch, or the degree of depression, is not the essential feature. The attention should be given to...
38 CFR 4.57 - Static foot deformities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... acquired condition. The congenital condition, with depression of the arch, but no evidence of abnormal... compensable or pensionable. In the acquired condition, it is to be remembered that depression of the longitudinal arch, or the degree of depression, is not the essential feature. The attention should be given to...
38 CFR 4.57 - Static foot deformities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... acquired condition. The congenital condition, with depression of the arch, but no evidence of abnormal... compensable or pensionable. In the acquired condition, it is to be remembered that depression of the longitudinal arch, or the degree of depression, is not the essential feature. The attention should be given to...
38 CFR 4.57 - Static foot deformities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... acquired condition. The congenital condition, with depression of the arch, but no evidence of abnormal... compensable or pensionable. In the acquired condition, it is to be remembered that depression of the longitudinal arch, or the degree of depression, is not the essential feature. The attention should be given to...
A study of digital gyro compensation loops. [data conversion routines and breadboard models
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.
The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.
Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J
2014-01-01
This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.
Instrumented urethral catheter and its ex vivo validation in a sheep urethra
NASA Astrophysics Data System (ADS)
Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, Serdar
2017-03-01
This paper designs and fabricates an instrumented catheter for instantaneous measurement of distributed urethral pressure profiles. Since the catheter enables a new type of urological measurement, a process for accurate ex vivo validation of the catheter is developed. A flexible sensor strip is first fabricated with nine pressure sensors and integrated electronic pads for an associated sensor IC chip. The flexible sensor strip and associated IC chip are assembled on a 7 Fr Foley catheter. A sheep bladder and urethra are extracted and used in an ex vivo set up for verification of the developed instrumented catheter. The bladder-urethra are suspended in a test rig and pressure cuffs placed to apply known static and dynamic pressures around the urethra. A significant challenge in the performance of the sensor system is the presence of parasitics that introduce large bias and drift errors in the capacitive sensor signals. An algorithm based on use of reference parasitic transducers is used to compensate for the parasitics. Extensive experimental results verify that the developed compensation method works effectively. Results on pressure variation profiles circumferentially around the urethra and longitudinally along the urethra are presented. The developed instrumented catheter will be useful in improved urodynamics to more accurately diagnose the source of urinary incontinence in patients.
The voltage control for self-excited induction generator based on STATCOM
NASA Astrophysics Data System (ADS)
Yan, Dandan; Wang, Feifeng; Pan, Juntao; Long, Weijie
2018-05-01
The small independent induction generator can build up voltage under its remanent magnetizing and excitation capacitance, but it is prone to voltage sag and harmonic increment when running with load. Therefore, the controller for constant voltage is designed based on the natural coordinate system to adjust the static synchronous compensator (STATCOM), which provides two-way dynamic reactive power compensation for power generation system to achieve voltage stability and harmonic suppression. The control strategy is verified on Matlab/Sinmulik, and the results show that the STATCOM under the controller can effectively improve the load capacity and reliability of asynchronous generator.
Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier
2016-01-01
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635
Tao, Kai; Ji, Wen-Ting; Wang, Dong-Mei; Wang, Cheng-Tao; Wang, Xu
2010-10-01
The plantar fascia (PF) and major ligaments play important roles in keeping the static foot arch structure. Their functions and relative contributions to the arch stability have not been well studied. A three-dimensional finite element foot model was created based on the reconstruction of magnetic resonance images. During balanced standing, four cases after individual releases of the PF, spring ligament (SL), and long and short plantar ligaments (LPL and SPL) were simulated, to compare their biomechanical consequences with the normal predictions under the intact structure. Although the predictions showed the arch did not collapse obviously after each structure sectioning, the internal mechanical behaviors changed considerably. The PF release resulted in the maximal increases of approximately 91%, 65% and 47% in the tensions of the LPF, SPL and SL, produced the largest changes in all bone rotations, and brought an obvious shift of high stress from the medial metatarsals to the lateral metatarsals. The SL release mainly enhanced bone rotation angles and weakened the joint stability of the arch structure. The LPL and the SPL performed the roles of mutual compensation as either one was released. The influence of the LPL on the load distribution among metatarsals was greater than for the SPL and the SL.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar
2014-10-01
Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.
Approximation of Optimal Infinite Dimensional Compensators for Flexible Structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.; Adamian, A.; Jabbari, F.
1985-01-01
The infinite dimensional compensator for a large class of flexible structures, modeled as distributed systems are discussed, as well as an approximation scheme for designing finite dimensional compensators to approximate the infinite dimensional compensator. The approximation scheme is applied to develop a compensator for a space antenna model based on wrap-rib antennas being built currently. While the present model has been simplified, it retains the salient features of rigid body modes and several distributed components of different characteristics. The control and estimator gains are represented by functional gains, which provide graphical representations of the control and estimator laws. These functional gains also indicate the convergence of the finite dimensional compensators and show which modes the optimal compensator ignores.
An observer-based compensator for distributed delays
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.
Dynamic characteristics of a hydrostatic gas bearing driven by oscillating exhaust pressure
NASA Technical Reports Server (NTRS)
Watkins, C. B.; Eronini, I. E.; Branch, H. D.
1984-01-01
Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference aproximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.
Integrated flight/propulsion control system design based on a centralized approach
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.
1989-01-01
An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.
[Static posturography versus clinical tests in elderly people with vestibular pathology].
Ortuño-Cortés, Miguel A; Martín-Sanz, Eduardo; Barona-de Guzmán, Rafael
2008-01-01
Balance can be quantified by clinical tests and through instrumental studies. The objective of this paper is to determine the correlation between static posturography and 4 clinical tests of balance in elderly people with vestibular disorders and to identify its capability to discriminate the groups studied. 60 patients with vestibular disorders and 60 healthy subjects performed 4 clinical tests (one leg standing with opened eyes, Timed Up and Go, Tinetti and Berg tests) and a static posturography analysis (NedSVE/IBV system) under 4 conditions: Romberg Test, Eyes Open (REO), Romberg Test, Eyes Closed (REC), Romberg Test on Foam with Eyes Open (RFEO), and Romberg Test on Foam with Eyes Closed (RFEC). RFEO correlated best with the clinical tests and RFEC was the worst. RFEO distinguished between healthy individuals and decompensated patients. RFEO gave the best information about postural balance in the elderly. RFEC was not useful. Static posturography can be useful to distinguish vestibular compensation status.
Performance Analysis of a Static Synchronous Compensator (STATCOM)
NASA Astrophysics Data System (ADS)
Kambey, M. M.; Ticoh, J. D.
2018-02-01
Reactive power and voltage are some of the problems in electric power supply and A Gate Turn Off (GTO) Static Synchronous Compensator (STATCOM) is one of the type of FACTS with shunt which can supply variable reactive power and regulate the voltage of the bus where it is connected. This study only discuss about the performance characteristic of the three phase six-pulse STATCOM by analysing the current wave flowing through DC Capacitor which depend on switching current and capacitor voltage wave. Simulation methods used in this research is started with a mathematical analysis of the ac current, dc voltage and current equations that pass STATCOM from a literature. The result shows the presence of the capacitor voltage ripple also alters the ac current waveform, even though the errors to be not very significant and the constraint of the symmetry circuit is valid if the source voltages have no zero sequence components and the impedances in all the three phases are identical. There for to improve STATCOM performance it is necessary to use multi-pulse 12, 24, 36, 48 or more, and/or with a multilevel converter.
NASA Astrophysics Data System (ADS)
Kirmani, Sheeraz; Kumar, Brijesh
2018-01-01
“Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.
Teufel, Julian; Bardins, S; Spiegel, Rainer; Kremmyda, O; Schneider, E; Strupp, M; Kalla, R
2016-01-04
Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.
A comparison of dynamic and static economic models of uneven-aged stand management
Robert G. Haight
1985-01-01
Numerical techniques have been used to compute the discrete-time sequence of residual diameter distributions that maximize the present net worth (PNW) of harvestable volume from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions determined with static analysis. In this paper, optimality conditions for solutions to dynamic and static...
Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng
2014-06-01
A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield.
Compensation of distributed delays in integrated communication and control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Luck, Rogelio
1991-01-01
The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor.
An observer-based compensator for distributed delays in integrated control systems
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1989-01-01
This paper presents an algorithm for compensation of delays that are distributed within a control loop. The observer-based algorithm is especially suitable for compensating network-induced delays that are likely to occur in integrated control systems of the future generation aircraft. The robustness of the algorithm relative to uncertainties in the plant model have been examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaohu; Shi, Di; Wang, Zhiwei
Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less
Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.
1978-01-01
An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.
Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA
NASA Astrophysics Data System (ADS)
Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.
2018-03-01
Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure
Tang, Yongsheng; Wu, Zhishen
2016-01-01
Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110
Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.
Tang, Yongsheng; Wu, Zhishen
2016-02-25
Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.
Discourse Analysis and Development of English Listening for Non-English Majors in China
ERIC Educational Resources Information Center
Ji, Yinxiu
2015-01-01
Traditional approach of listening teaching mainly focuses on the sentence level and regards the listening process in a passive and static way. To compensate for this deficiency, a new listening approach, that is, discourse-oriented approach has been introduced into the listening classroom. Although discourse analysis is a comparatively new field…
Minimal complexity control law synthesis
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.
1989-01-01
A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic filter for real-time detection and tracking of independently moving objects. The proposed approach introduces a competition scheme between particles in order to ensure an improved multi-modality. Further, the filter design helps to generate a particle distribution which is homogenous even in the presence of multiple targets showing non-rigid motion patterns. The effectiveness of the method is shown on exemplary outdoor sequences.
Dynamic stress compensation by smart actuation
NASA Astrophysics Data System (ADS)
Irschik, Hans; Gusenbauer, Markus; Pichler, Uwe
2004-07-01
The actuating physical mechanisms utilized in smart materials can be described by eigenstrains. E.g., the converse piezoelectric effect in a piezoelastic body may be understood as an actuating eigenstrain. In the last decades, piezoelectricity has been extensively applied for the sake of actuation and sensing of structural vibrations. An important field of research in this respect has been devoted to the goal of compensating force-induced vibrations by means of eigenstrains. Considering the state-of-the-art in structural control and smart materials, almost no research has been performed on the problem of compensating stresses in force-loaded engineering structures by eigenstrains. It is well-known that stresses can influence the characteristics and the age of structures in various unpleasant ways. The present contribution is concerned with corresponding concepts for stress compensation which may have a highly beneficial influence upon the lifetime and structural integrity of the structure under consideration. We discuss the possibilities offered by displacement compensation to reduce the stresses to their quasi-static parts. As a numerical example, we consider the step response of an irregularly shaped cantilevered elastic plate under the action of an assigned traction at its boundary.
NASA Astrophysics Data System (ADS)
Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun
2017-11-01
The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.
2015-03-26
COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Casey E. Fillmore, Capt, USAF... ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Presented to the Faculty Department of Electrical and...2015 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-011 COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW
The Seismic Design of Waterfront Retaining Structures
1993-01-01
of elastic backfill behind a rigid wall .... .......... .. 134 5.2 Pressure distributions on smooth rigid wall for l-g static horizontal body force...135 5.3 Resultant force and resultant moment on smooth rigid wall for l-g static horizontal body force...distributions on smooth rigid wall for 1-g static horizontal body force clearly showed the limitations of Woods simplified procedure when this condi- tion is not
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar
2010-09-01
This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.
Load positioning system with gravity compensation
NASA Technical Reports Server (NTRS)
Hollow, R. H.
1984-01-01
A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.
Small arms mini-fire control system: fiber-optic barrel deflection sensor
NASA Astrophysics Data System (ADS)
Rajic, S.; Datskos, P.; Lawrence, W.; Marlar, T.; Quinton, B.
2012-06-01
Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight, weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei
2014-06-15
A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelengthmore » of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.« less
The effect of general and spinal anesthesia on balance control in elderly patients.
Suárez, Alejo; Macadar, Omar
2008-01-01
Falls are a major problem in the elderly population, but few communications address the influence of anesthesia on balance control. This study reports how a general balanced anesthesia (GBA) and a spinal anesthesia (SA) affect balance control in the elderly. We divided into three groups, according to electronystagmography findings and type of anesthesia, 21 men older than 65 years (mean age, 72 years) who were scheduled for prostate adenectomy. One group, designated GBN, consisted of normal subjects who underwent surgery under GBA. In another group, designated GBP, were pathological subjects who had clinically compensated central vestibular disorders (CVDs) and underwent surgery under GBA. The third group, designated SP, contained CVD patients who underwent surgery under SA. We assessed balance control via static posturography preoperatively and 48 hours postoperatively. We observed no change in balance control parameters (center of pressure distribution area [COPa] or COP sway velocity [SV]) for those patients in the GBN group or for those in the SP group. We did observe a significant difference for the patients in the GBP group, with higher postoperative values of COPa and SV (Wilcoxon signed rank test). Our results showed that in subjects with clinically compensated underlying CVD prior to a GBA, balance control worsens after the procedure, whereas no change in balance control occurs after an SA. Balance control in subjects with normal vestibuloocular function did not change even after a GBA.
McHugh, Stuart
1976-01-01
The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.
NASA Astrophysics Data System (ADS)
Xia, Li; Li, Xuhui; Chen, Xiangfei; Xie, Shizhong
2003-11-01
A novel fiber grating structure is proposed for the purpose of dispersion compensation. This kind of grating can be produced with a large chirp parameter and period sampled distribution along the grating length. There are multiple channels in the wide bandwidth and each channel has totally different dispersion and bandwidth. The dispersion compensation effect of this special designed grating is verified through system simulation.
On the Electromagnetic Momentum of Static Charge and Steady Current Distributions
ERIC Educational Resources Information Center
Gsponer, Andre
2007-01-01
Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…
Development of an advanced pitch active control system for a wide body jet aircraft
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.
1984-01-01
An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.
NASA Astrophysics Data System (ADS)
Alimi, Jean-Michel; de Fromont, Paul
2018-04-01
The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.
Motion Compensation in Extremity Cone-Beam CT Using a Penalized Image Sharpness Criterion
Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.
2017-01-01
Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm – 0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure Similarity Index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction of streaks and improvement in delineation of tissue boundaries and trabecular structures throughout the whole volume. The proposed method will support new applications of extremity CBCT in areas where patient motion may not be sufficiently managed by immobilization, such as imaging under load and quantitative assessment of subchondral bone architecture. PMID:28327471
Maintaining the Balance Between Manpower, Skill Levels, and PERSTEMPO
2006-01-01
requirement processes. Models and tools that integrate these dimensions would help crys- tallize issues, identify embedded assumptions , and surface...problems will change if the planning assumptions are incorrect or if the other systems are incapable of making the nec- essary adjustments. Static...Carrillo, Background and Theory Behind the Compensations, Accessions, and Personnel ( CAPM ) Model, Santa Monica, Calif.: RAND Corporation, MR-1667
Quasi-static shape adjustment of a 15 meter diameter space antenna
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Herstrom, Catherine L.; Edighoffer, Harold H.
1987-01-01
A 15 meter diameter Hoop-Column antenna has been analyzed and tested to study shape adjustment of the reflector surface. The Hoop-Column antenna concept employs pretensioned cables and mesh to produce a paraboloidal reflector surface. Fabrication errors and thermal distortions may significantly reduce surface accuracy and consequently degrade electromagnetic performance. Thus, the ability to adjust the surface shape is desirable. The shape adjustment algorithm consisted of finite element and least squares error analyses to minimize the surface distortions. Experimental results verified the analysis. Application of the procedure resulted in a reduction of surface error by 38 percent. Quasi-static shape adjustment has the potential for on-orbit compensation for a variety of surface shape distortions.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
NASA Astrophysics Data System (ADS)
Milojević, Slavka; Stojanovic, Vojislav
2017-04-01
Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface layers and therefore more accurately computed static corrections.
Perry, Bonnie E; Evans, Emily K; Stokic, Dobrivoje S
2017-02-17
Armeo®Spring exoskeleton is widely used for upper extremity rehabilitation; however, weight compensation provided by the device appears insufficiently characterized to fully utilize it in clinical and research settings. Weight compensation was quantified by measuring static force in the sagittal plane with a load cell attached to the elbow joint of Armeo®Spring. All upper spring settings were examined in 5° increments at the minimum, maximum, and two intermediate upper and lower module length settings, while keeping the lower spring at minimum. The same measurements were made for minimum upper spring setting and maximum lower spring setting at minimum and maximum module lengths. Weight compensation was plotted against upper module angles, and slope was analyzed for each condition. The Armeo®Spring design prompted defining the slack angle and exoskeleton balance angle, which, depending on spring and length settings, divide the operating range into different unloading and loading regions. Higher spring tensions and shorter module lengths provided greater unloading (≤6.32 kg of support). Weight compensation slope decreased faster with shorter length settings (minimum length = -0.082 ± 0.002 kg/°; maximum length = -0.046 ± 0.001 kg/°) independent of spring settings. Understanding the impact of different settings on the Armeo®Spring weight compensation should help define best clinical practice and improve fidelity of research.
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Parameter tuning method for dither compensation of a pneumatic proportional valve with friction
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei
2016-05-01
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Nathan; Hariri, Ali; Prabakar, Kumaraguru
Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stabilitymore » and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabakar, Kumaraguru; Ainsworth, Nathan; Pratt, Annabelle
Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stabilitymore » and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.« less
Dimensions of Employee Compensation: Practical and Theoretical Implications for Superintendents.
ERIC Educational Resources Information Center
Young, I. Phillip
1997-01-01
Explores compensation practices fundamental to the school board/employee exchange relationship, using a sample of 615 midwestern superintendents. Employs an organizational justice model, focusing on its procedural and distributive dimensions. Explores procedural justice via market-rate earnings equations and distributive justice by examining…
NASA Astrophysics Data System (ADS)
Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang
2016-08-01
There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Adaptive independent joint control of manipulators - Theory and experiment
NASA Technical Reports Server (NTRS)
Seraji, H.
1988-01-01
The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.
Design and Analysis of AN Static Aeroelastic Experiment
NASA Astrophysics Data System (ADS)
Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang
2016-06-01
Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.
ERIC Educational Resources Information Center
Nondahl, David M.; Cruickshanks, Karen J.; Wiley, Terry L.; Tweed, Ted S.; Dalton, Dayna S.
2013-01-01
Purpose: The primary purpose of this study was to measure the 16-year change in peak compensated static acoustic admittance (Peak Y[subscript tm]) in a population-based cohort of older adults, and to determine whether age was associated with any observed change in Peak Y[subscript tm]. Other tympanometric measures also were taken and analyzed.…
Flow Field Measurements Using Hotwire Anemometry.
1987-09-01
is connected to the differential pressure transducer, the other is connected to an absolute pressure transducer. Static pressure from the absolute ...and intercept data. The seventh variable contains the calibration tunnel temperature in degrees Farenheit . This is0* . used for hotwire compensation...output is then directed to channel five of the Relay Multiplexer. Voltage output from the signal amplifier is zeroed at 0 degrees AOA and is positive for
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Meju, Max A.
2006-05-01
Accurate interpretation of magnetotelluric (MT) data in the presence of static shift arising from near-surface inhomogeneities is an unresolved problem in three-dimensional (3-D) inversion. While it is well known in 1-D and 2-D studies that static shift can lead to erroneous interpretation, how static shift can influence the result of 3-D inversion is not fully understood and is relevant to improved subsurface analysis. Using the synthetic data generated from 3-D models with randomly distributed heterogeneous overburden and elongate homogeneous overburden that are consistent with geological observations, this paper examines the effects of near-surface inhomogeneity on the accuracy of 3-D inversion models. It is found that small-scale and shallow depth structures are severely distorted while the large-scale structure is marginally distorted in 3-D inversion not accounting for static shift; thus the erroneous near-surface structure does degrade the reconstruction of smaller-scale structure at any depth. However, 3-D joint inversion for resistivity and static shift significantly reduces the artifacts caused by static shifts and improves the overall resolution, irrespective of whether a zero-sum or Gaussian distribution of static shifts is assumed. The 3-D joint inversion approach works equally well for situations where the shallow bodies are of small size or long enough to allow some induction such that the effects of near-surface inhomogeneity are manifested as a frequency-dependent shift rather than a constant shift.
Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC
NASA Astrophysics Data System (ADS)
Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.
2015-06-01
Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.
Small arms mini-fire control system: fiber-optic barrel deflection sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajic, Slobodan; Datskos, Panos G
Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight,more » weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.« less
SU-E-T-04: 3D Dose Based Patient Compensator QA Procedure for Proton Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, W; Reyhan, M; Zhang, M
2015-06-15
Purpose: In proton double-scattering radiotherapy, compensators are the essential patient specific devices to contour the distal dose distribution to the tumor target. Traditional compensator QA is limited to checking the drilled surface profiles against the plan. In our work, a compensator QA process was established that assess the entire compensator including its internal structure for patient 3D dose verification. Methods: The fabricated patient compensators were CT scanned. Through mathematical image processing and geometric transformations, the CT images of the proton compensator were combined with the patient simulation CT images into a new series of CT images, in which the imagedmore » compensator is placed at the planned location along the corresponding beam line. The new CT images were input into the Eclipse treatment planning system. The original plan was calculated to the combined CT image series without the plan compensator. The newly computed patient 3D dose from the combined patientcompensator images was verified against the original plan dose. Test plans include the compensators with defects intentionally created inside the fabricated compensators. Results: The calculated 3D dose with the combined compensator and patient CT images reflects the impact of the fabricated compensator to the patient. For the test cases in which no defects were created, the dose distributions were in agreement between our method and the corresponding original plans. For the compensator with the defects, the purposely changed material and a purposely created internal defect were successfully detected while not possible with just the traditional compensator profiles detection methods. Conclusion: We present here a 3D dose verification process to qualify the fabricated proton double-scattering compensator. Such compensator detection process assesses the patient 3D impact of the fabricated compensator surface profile as well as the compensator internal material and structure changes. This research receives funding support from CURA Medical Technologies.« less
Eye-lens accommodation load and static trapezius muscle activity.
Richter, H O; Bänziger, T; Forsman, M
2011-01-01
The purpose of this experimental study was to investigate if sustained periods of oculomotor load impacts on neck/scapular area muscle activity. The static trapezius muscle activity was assessed from bipolar surface electromyography, normalized to a submaximal contraction. Twenty-eight subjects with a mean age of 29 (range 19-42, SD 8) viewed a high-contrast fixation target for two 5-min periods through: (1) -3.5 dioptre (D) lenses; and (2) 0 D lenses. The target was placed 5 D away from the individual's near point of accommodation. Each subject's ability to compensate for the added blur was extracted via infrared photorefraction measurements. Subjects whose accommodative response was higher in the -D blur condition (1) showed relatively more static bilateral trapezius muscle activity level. During no blur (2) there were no signs of relationships. The results indicate that sustained eye-lens accommodation at near, during ergonomically unfavourable viewing conditions, could possibly represent a risk factor for trapezius muscle myalgia.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
Kohnen, T; Kühne, C; Cichocki, M; Strenger, A
2007-01-01
Centration of the ablation zone decisively influences the result of wavefront-guided LASIK. Cyclorotation of the eye occurs as the patient changes from the sitting position during aberrometry to the supine position during laser surgery and may lead to induction of lower and higher order aberrations. Twenty patients (40 eyes) underwent wavefront-guided LASIK (B&L 217z 100 excimer laser) with a static eyetracker driven by iris recognition (mean preoperative SE: -4.72+/-1.45 D; range: -1.63 to -7.00 D). The iris patterns of the patients' eyes were memorized during aberrometry and after flap creation. The mean absolute value of the measured cyclorotation was -1.5+/-4.2 degrees (range: -11.0 to 6.9 degrees ). The mean cyclorotation was 3.5+/-2.7 masculine (range: 0.1 to 11.0 degrees ). In 65% of all eyes cyclorotation was >2 masculine. A static eyetracker driven by iris recognition demonstrated that cyclorotation of up to 11 degrees may occur in myopic and myopic astigmatic eyes when changing from a sitting to a supine position. Use of static eyetrackers with iris recognition may provide a more precise positioning of the ablation profile as they detect and compensate cyclorotation.
Compensation for Distributed Solar. A Survey of Options to Preserve Stakeholder Value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Espino, Francisco
2015-09-01
Compensation mechanisms for electricity generation systems installed behind the meter are under scrutiny in several jurisdictions in the United States. Legislators in 29 states introduced bills to amend net metering provisions in 2014, and in 33 states in the 2015 legislative session as of August 20, 2015. Some utilities have also sought to increase the revenue they receive from net-metered customers through rate redesign. The circumstances that have triggered the recent push for change include a growing percentage of net-metered customers, potential effects of distributed generation on cost allocation, decreasing photovoltaic (PV) system costs, the challenges of integrating high levelsmore » of solar generation in the distribution network, and increasing pressure on utility business models. This report presents a survey of options to charge and compensate PV customers, as well as options that may preserve utility revenues in scenarios with increased DG. These options could be used as building blocks to create a distributed generation (DG) compensation policy that may preserve the value of the different stakeholders and balance their interests.« less
An Active Z Gravity Compensation System
1992-07-01
is necessary to convert the modified digital controller back into continuous time, assuming a zero -order hold for output, and using the Padd ...most likely higher frequency pole- zero pairs introduced by the motor and torque servo, these are generally non-oscillatory, and small in amplitude...on the output of the PI control. The detection scheme is the following: if the output of the fuzzy controller has remained zero (static system) for
Introduction to Reactor Statics Modules, RS-1. Nuclear Engineering Computer Modules.
ERIC Educational Resources Information Center
Edlund, Milton C.
The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burn-up for both slow neutron and fast neutron fission reactors. The diffusion…
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.
NASA Astrophysics Data System (ADS)
Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu
2017-03-01
In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.
Software compensation of eddy current fields in multislice high order dynamic shimming.
Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E
2011-06-01
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.
To Each According to its Degree: The Meritocracy and Topocracy of Embedded Markets
NASA Astrophysics Data System (ADS)
Borondo, J.; Borondo, F.; Rodriguez-Sickert, C.; Hidalgo, C. A.
2014-01-01
A system is said to be meritocratic if the compensation and power available to individuals is determined by their abilities and merits. A system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Here we introduce a model that is perfectly meritocratic for fully connected networks but that becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. We conclude that, in the light of this model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies.
To each according to its degree: the meritocracy and topocracy of embedded markets.
Borondo, J; Borondo, F; Rodriguez-Sickert, C; Hidalgo, C A
2014-01-21
A system is said to be meritocratic if the compensation and power available to individuals is determined by their abilities and merits. A system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Here we introduce a model that is perfectly meritocratic for fully connected networks but that becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. We conclude that, in the light of this model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies.
Analytical study on web deformation by tension in roll-to-roll printing process
NASA Astrophysics Data System (ADS)
Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.
2017-08-01
Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.
Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de
The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less
Carr, Karen D.; Norman, John C.; Huye, Leslie; Hegde, Meenakshi
2015-01-01
Abstract Compensation is a critical process for the unbiased analysis of flow cytometry data. Numerous compensation strategies exist, including the use of bead‐based products. The purpose of this study was to determine whether beads, specifically polystyrene microspheres (PSMS) compare to the use of primary leukocytes for single color based compensation when conducting polychromatic flow cytometry. To do so, we stained individual tubes of both PSMS and leukocytes with panel specific antibodies conjugated to fluorochromes corresponding to fluorescent channels FL1‐FL10. We compared the matrix generated by PSMS to that generated using peripheral blood mononuclear cells (PBMC). Ideal for compensation is a sample with both a discrete negative population and a bright positive population. We demonstrate that PSMS display autofluorescence properties similar to PBMC. When comparing PSMS to PBMC for compensation PSMS yielded more evenly distributed and discrete negative and positive populations to use for compensation. We analyzed three donors' PBMC stained with our 10‐color T cell subpopulation panel using compensation generated by PSMS vs.PBMC and detected no significant differences in the population distribution. Panel specific antibodies bound to PSMS represent an invaluable valid tool to generate suitable compensation matrices especially when sample material is limited and/or the sample requires analysis of dynamically modulated or rare events. © 2015 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. PMID:26202733
Investigation of two pitot-static tubes at supersonic speeds
NASA Technical Reports Server (NTRS)
Hasel, Lowell E; Coletti, Donald E
1948-01-01
The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
ERIC Educational Resources Information Center
Macek, Victor C.
The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…
Banerjee, P.; Pollitz, F.; Nagarajan, B.; Burgmann, R.
2007-01-01
Static offsets produced by the 26 December 2004 M ???9 Sumatra-Andaman earthquake as measured by Global Positioning System (GPS) reveal a large amount of slip along the entire ???1300 km-long rupture. Most seismic slip inversions place little slip on the Andaman segment. whereas both near-field and far-field GPS offsets demand large slip on the Andaman segment. We compile available datasets of the static offset to render a more detailed picture of the static-slip distribution. We construct geodetic offsets such that postearthquake positions of continuous GPS sites are reckoned to a time 1 day after the earthquake and campaign GPS sites are similarly corrected for postseismic motions. The newly revised slip distribution (Mw 9.22) reveals substantial segmentation of slip along the Andaman Islands, with the southern quarter slipping ???15 m in unison with the adjacent Nicobar and northern Sumatran segments of length ???700 km. We infer a small excess of geodetic moment relative to the seismic moment. A similar compilation of GPS offsets from the 28 March 2005 Nias earthquake is well explained with dip slip averaging several meters (Mw = 8.66) distributed primarily at depths greater than 20 km.
Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi
2016-09-15
A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, A; Chang, S; Matney, J
2016-06-15
Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate).more » The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Kry, S; Salehpour, M
Purpose: Patient-specific tissue equivalent compensators can be used for post-mastectomy radiation therapy (PMRT) to achieve homogenous dose distributions with single-field treatments. However, current fabrication methods are time consuming and expensive. 3D-printing technology could overcome these limitations. The purposes of this study were to [1] evaluate materials for 3D-printed compensators [2] design and print a compensator to achieve a uniform thickness to a clinical target volume (CTV), and [3] demonstrate that a single-field electron compensator plan is a clinically feasible treatment option for PMRT. Methods: Blocks were printed with three materials; print accuracy, density, Hounsfield units (HU), and percent depth dosesmore » (PDD) were evaluated. For a CT scan of an anthropomorphic phantom, we used a ray-tracing method to design a compensator that achieved uniform thickness from compensator surface to CTV. The compensator was printed with flexible tissue equivalent material whose physical and radiological properties were most similar to soft tissue. A single-field electron compensator plan was designed and compared with two standard-of-care techniques. The compensator plan was validated with thermoluminescent dosimeter (TLD) measurements. Results: We identified an appropriate material for 3D-printed compensators that had high print accuracy (99.6%) and was similar to soft tissue; density was 1.04, HU was - 45 ± 43, and PDD curves agreed with clinical curves within 3 mm. We designed and printed a compensator that conformed well to the phantom surface and created a uniform thickness to the CTV. In-house fabrication was simple and inexpensive (<$75). Compared with the two standard plans, the compensator plan resulted in overall more homogeneous dose distributions and performed similarly in terms of lung/heart doses and 90% isodose coverage of the CTV. TLD measurements agreed well with planned doses (within 5 %). Conclusions: We have demonstrated that 3D-printed compensators make single-field electron therapy a clinically feasible treatment option for PMRT.« less
SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D; Feygelman, V; Moros, E
2016-06-15
Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less
High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization
NASA Astrophysics Data System (ADS)
Zhang, Hua; Ma, Jianhua; Bian, Zhaoying; Zeng, Dong; Feng, Qianjin; Chen, Wufan
2017-04-01
Four dimensional cone-beam computed tomography (4D-CBCT) has great potential clinical value because of its ability to describe tumor and organ motion. But the challenge in 4D-CBCT reconstruction is the limited number of projections at each phase, which result in a reconstruction full of noise and streak artifacts with the conventional analytical algorithms. To address this problem, in this paper, we propose a motion compensated total variation regularization approach which tries to fully explore the temporal coherence of the spatial structures among the 4D-CBCT phases. In this work, we additionally conduct motion estimation/motion compensation (ME/MC) on the 4D-CBCT volume by using inter-phase deformation vector fields (DVFs). The motion compensated 4D-CBCT volume is then viewed as a pseudo-static sequence, of which the regularization function was imposed on. The regularization used in this work is the 3D spatial total variation minimization combined with 1D temporal total variation minimization. We subsequently construct a cost function for a reconstruction pass, and minimize this cost function using a variable splitting algorithm. Simulation and real patient data were used to evaluate the proposed algorithm. Results show that the introduction of additional temporal correlation along the phase direction can improve the 4D-CBCT image quality.
Improving material removal determinacy based on the compensation of tool influence function
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Xian-hua; Deng, Wen-hui; Zhao, Shi-jie; Zheng, Nan
2018-03-01
In the process of computer-controlled optical surfacing (CCOS), the key of correcting the surface error of optical components is to ensure the consistency between the simulated tool influence function and the actual tool influence function (TIF). The existing removal model usually adopts the fixed-point TIF to remove the material with the planning path and velocity, and it considers that the polishing process is linear and time invariant. However, in the actual polishing process, the TIF is a function related to the feed speed. In this paper, the relationship between the actual TIF and the feed speed (i.e. the compensation relationship between static removal and dynamic removal) is determined by experimental method. Then, the existing removal model is modified based on the compensation relationship, to improve the conformity between simulated and actual processing. Finally, the surface error modification correction test are carried out. The results show that the fitting degree of the simulated surface and the experimental surface is better than 88%, and the surface correction accuracy can be better than 1/10 λ (Λ=632.8nm).
1.688 g/cm(3) satellite-related repeats: a missing link to dosage compensation and speciation.
Gallach, Miguel
2015-09-01
Despite the important progress that has been made on dosage compensation (DC), a critical link in our understanding of the X chromosome recognition mechanisms is still missing. Recent studies in Drosophila indicate that the missing link could be a family of DNA repeats populating the euchromatin of the X chromosome. In this opinion article, I discuss how these findings add a new fresh twist on the DC problem. In the following sections, I first summarize our understanding of DC in Drosophila and integrate these recent discoveries into our knowledge of the X chromosome recognition problem. Next, I introduce a model according to which, 1.688 g/cm(3) satellite-related (SR) repeats would be the primary recognition elements for the dosage compensation complex. Contrary to the current belief, I suggest that the DC system in Drosophila is not conserved and static, but it is continuously co-evolving with the target SR repeats. The potential role of the SR repeats in hybrid incompatibilities and speciation is also discussed. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Song, X.; Frey, E. C.; Wang, W. T.; Du, Y.; Tsui, B. M. W.
2004-02-01
Simultaneous acquisition of /sup 99m/Tc stress and /sup 201/Tl rest myocardial perfusion SPECT has several potential advantages, but the image quality is degraded by crosstalk between the Tc and Tl data. We have previously developed a crosstalk model that includes estimates of the downscatter and Pb X-ray for use in crosstalk compensation. In this work, we validated the model by comparing the crosstalk from /sup 99m/Tc to the Tl window calculated using a combination of the SimSET-MCNP Monte Carlo simulation codes. We also evaluated the model-based crosstalk compensation method using both simulated data from the 3-D MCAT phantom and experimental data from a physical phantom with a myocardial defect. In these studies, the Tl distributions were reconstructed from crosstalk contaminated data without crosstalk compensation, with compensation using the model-based crosstalk estimate, and with compensation using the known true crosstalk, and were compared with the Tl distribution reconstructed from uncontaminated Tl data. Results show that the model gave good estimates of both the downscatter photons and Pb X-rays in the simultaneous dual-isotopes myocardial perfusion SPECT. The model-based compensation method provided image quality that was significantly improved as compared to no compensation and was very close to that from the separate acquisition.
Demonstration test of burner liner strain measuring system
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1984-01-01
A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang
2010-04-01
A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.
Compensated Fiber-Optic Frequency Distribution Equipment
2010-11-01
fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link
NASA Astrophysics Data System (ADS)
Bergmann, P.; Kashubin, A.; Ivandic, M.; Lueth, S.; Juhlin, C.
2013-12-01
Statics are time-shifts that occur in reflection seismic trace data and are generally considered to be mainly due to shallow velocity variations. Since the refraction static correction is most often based on first break picking and subsequent velocity model estimation, it is even today a labor-consuming and error-prone procedure. Time-lapse seismic also faces this issue in a temporal sense, since changes in statics, due to temporally variable near-surface conditions, are known to be first-order contributors to time-lapse noise. Considerable changes in the statics of repeated on-shore seismic surveys can occur due to precipitation-related changes in soil moisture and in the groundwater table, or may be due to man-made earthworks. Production-related or injection-related processes can cause considerable velocity changes, which leave time-shift imprints on time-lapse seismic data that can be very similar to that of near-surface velocity variations. In this context it is crucial to consider that refraction static corrections are in many cases of limited use, as they aim to enhance the stack coherency of the individual time-lapse data sets only. As an alternative, we propose a time-lapse difference (TLD) static correction that is focused on the accommodation of static changes between the time-lapse data sets. This TLD static correction decomposes the static differences that are determined from cross-correlations in a surface-consistent manner. It therefore does not require first break picking and inversion for velocities from repeat data sets. We tested the TLD static correction for a 4D case study from the Ketzin CO2 storage site, Germany. As a reference we used the results that were obtained from a recent processing in which refraction static corrections were performed individually on the time-lapse data sets. Although the TLD static corrections method is considerably less time-consuming, we found that it is providing a stack difference with enhanced S/N. This is particularly demonstrated for a 4D seismic signature that is proven to be due to injected CO2. This Ketzin case study shows further that the pattern of the TLD statics is highly consistent with patterns in the cumulative precipitation data. This observation confirms that near-surface velocity changes are due to changes in the soil-moisture saturation and that an efficient compensation for them can be achieved by the TLD static correction.
NASA Astrophysics Data System (ADS)
M, Adimurthy; Katti, Vadiraj V.
2017-02-01
Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.
1973-06-01
one in laboratory tests. All components of the hydraulic power supply system, with the exceptions of the pumps and the heat exchanger, are located...servoactuator operated by a hydraulic power supply and a control electronics package mounted inside the cabin. For the seat isolation system, the...compensate for the static load b>ing supported. The actuators are the sole supportl.g link in the vertical direction. Hydraulic Power Supply The
FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com
2013-04-20
Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphsmore » and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.« less
Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat
NASA Technical Reports Server (NTRS)
Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas
2016-01-01
This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.
Evaluating Implementations of Service Oriented Architecture for Sensor Network via Simulation
2011-04-01
Subject: COMPUTER SCIENCE Approved: Boleslaw Szymanski , Thesis Adviser Rensselaer Polytechnic Institute Troy, New York April 2011 (For Graduation May 2011...simulation supports distributed and centralized composition with a type hierarchy and multiple -service statically-located nodes in a 2-dimensional space...distributed and centralized composition with a type hierarchy and multiple -service statically-located nodes in a 2-dimensional space. The second simulation
NASA Astrophysics Data System (ADS)
Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Sun, Huaiwei; Zeng, Fanjiang; Feng, Xinlong
2017-12-01
Agriculture and the eco-environment are increasingly competing for water. The extension of intensive farmland for ensuring food security has resulted in excessive water exploitation by agriculture. Consequently, this has led to a lack of water supply in natural ecosystems. This paper proposes a trade-off framework to coordinate the water-use conflict between agriculture and the eco-environment, based on economic compensation for irrigation stakeholders. A hybrid Bayesian network (HBN) is developed to implement the framework, including: (a) agricultural water shortage assessments after meeting environmental flows; (b) water-use tradeoff analysis between agricultural irrigation and environmental flows using the HBN; and (c) quantification of the agricultural economic compensation for different irrigation stakeholders. The constructed HBN is computed by dynamic discretization, which is a more robust and accurate propagation algorithm than general static discretization. A case study of the Qira oasis area in Northwest China demonstrates that the water trade-off based on economic compensation depends on the available water supply and environmental flows at different levels. Agricultural irrigation water extracted for grain crops should be preferentially guaranteed to ensure food security, in spite of higher economic compensation in other cash crops' irrigation for water coordination. Updating water-saving engineering and adopting drip irrigation technology in agricultural facilities after satisfying environmental flows would greatly relieve agricultural water shortage and save the economic compensation for different irrigation stakeholders. The approach in this study can be easily applied in water-stressed areas worldwide for dealing with water competition.
Motion detection and compensation in infrared retinal image sequences.
Scharcanski, J; Schardosim, L R; Santos, D; Stuchi, A
2013-01-01
Infrared image data captured by non-mydriatic digital retinography systems often are used in the diagnosis and treatment of the diabetic macular edema (DME). Infrared illumination is less aggressive to the patient retina, and retinal studies can be carried out without pupil dilation. However, sequences of infrared eye fundus images of static scenes, tend to present pixel intensity fluctuations in time, and noisy and background illumination changes pose a challenge to most motion detection methods proposed in the literature. In this paper, we present a retinal motion detection method that is adaptive to background noise and illumination changes. Our experimental results indicate that this method is suitable for detecting retinal motion in infrared image sequences, and compensate the detected motion, which is relevant in retinal laser treatment systems for DME. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lai, Lei-Jie; Gu, Guo-Ying; Zhu, Li-Min
2012-04-01
This paper presents a novel decoupled two degrees of freedom (2-DOF) translational parallel micro-positioning stage. The stage consists of a monolithic compliant mechanism driven by two piezoelectric actuators. The end-effector of the stage is connected to the base by four independent kinematic limbs. Two types of compound flexure module are serially connected to provide 2-DOF for each limb. The compound flexure modules and mirror symmetric distribution of the four limbs significantly reduce the input and output cross couplings and the parasitic motions. Based on the stiffness matrix method, static and dynamic models are constructed and optimal design is performed under certain constraints. The finite element analysis results are then given to validate the design model and a prototype of the XY stage is fabricated for performance tests. Open-loop tests show that maximum static and dynamic cross couplings between the two linear motions are below 0.5% and -45 dB, which are low enough to utilize the single-input-single-out control strategies. Finally, according to the identified dynamic model, an inversion-based feedforward controller in conjunction with a proportional-integral-derivative controller is applied to compensate for the nonlinearities and uncertainties. The experimental results show that good positioning and tracking performances are achieved, which verifies the effectiveness of the proposed mechanism and controller design. The resonant frequencies of the loaded stage at 2 kg and 5 kg are 105 Hz and 68 Hz, respectively. Therefore, the performance of the stage is reasonably good in term of a 200 N load capacity. © 2012 American Institute of Physics
An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors
NASA Technical Reports Server (NTRS)
Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph
2004-01-01
An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
The dependence of the anisoplanatic Strehl of a compensated beam on the beacon distribution
NASA Astrophysics Data System (ADS)
Stroud, P.
1992-02-01
There are several applications for lasers where the effect of atmospheric turbulence is strong enough to require wavefront compensation, and the compensation can be made by an adaptive optics (AO) system which processes light returned from the target itself. The distribution of the target return light produces limitations to the performance of the AO system. The primary intent of this documentation is to present the new results of an analysis of the anisoplanatic effects arising from target return beacon geometries. It will also lay out the assumptions and steps in the analysis, so that the results can be validated or extended. The intent is to provide a self-consistent notation, simple physical interpretations of the mathematical formulations, and enough detail to reduce the investment of time required to become acquainted or reacquainted with the physics of laser propagation through turbulence, at a level needed to analyze anisoplanatic effects. A general formulation has been developed to calculate the anisoplanatic Strehl of a compensated beam for any beacon distribution and turbulence profile. Numerical calculations are also shown for several beacon geometries and turbulence profiles. The key result is that the spread of the beacon distribution has a much less deleterious effect than does the offset of the beacon centroid from the aimpoint.
Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.
Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene
2017-08-01
Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.
Effect of armor and carrying load on body balance and leg muscle function.
Park, Huiju; Branson, Donna; Kim, Seonyoung; Warren, Aric; Jacobson, Bert; Petrova, Adriana; Peksoz, Semra; Kamenidis, Panagiotis
2014-01-01
This study investigated the impact of weight and weight distribution of body armor and load carriage on static body balance and leg muscle function. A series of human performance tests were conducted with seven male, healthy, right-handed military students in seven garment conditions with varying weight and weight distributions. Static body balance was assessed by analyzing the trajectory of center of plantar pressure and symmetry of weight bearing in the feet. Leg muscle functions were assessed by analyzing the peak electromyography amplitude of four selected leg muscles during walking. Results of this study showed that uneven weight distribution of garment and load beyond an additional 9 kg impaired static body balance as evidenced by increased sway of center of plantar pressure and asymmetry of weight bearing in the feet. Added weight on non-dominant side of the body created greater impediment to static balance. Increased garment weight also elevated peak EMG amplitude in the rectus femoris to maintain body balance and in the medial gastrocnemius to increase propulsive force. Negative impacts on balance and leg muscle function with increased carrying loads, particularly with an uneven weight distribution, should be stressed to soldiers, designers, and sports enthusiasts. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamic compensation in the central Pacific Ocean
NASA Technical Reports Server (NTRS)
Hinojosa, Juan Homero; Marsh, Bruce D.
1988-01-01
The intermediate-wavelength geoid (lambda similar to 2000 km) and sea-floor topography fields in the central Pacific Ocean were studied in terms of static and dynamic compensation models. Topographic features on the sea-floor with lambda less than 1000 km were found to be compensated both regionally, by the elastic strength of the lithosphere, and locally, by displacing mantle material to reach isostatic adjustment. The larger-scale sea-floor topography and the corresponding geoid anomalies with lambda similar to 2000 km cannot be explained by either local or regional compensation. The topography and the resulting geoid anomaly at this wavelength were modeled by considering the dynamic effects arising from viscous stresses in a layer of fluid with a highly temperature-dependent viscosity for the cases of: (1) surface cooling, and (2) basal heating. In this model, the mechanical properties of the elastic part of the lithosphere were taken into account by considering an activation energy of about 520 kJ/mol in the Arrhenius law for the viscosity. Numerical predictions of the topography, total geoid anomaly, and admittance were obtained, and the results show that the thermal perturbation in the layer, which accounts for the mass deficit, must be located close to the surface to compensate the gravitational effect of the surface deformation. For the case of basal heating, the temperature dependence of viscosity results in a separation of the upper, quasi-rigid lid from the lower mobile fluid, hence inhibiting the development of a compensating thermal perturbation at shallow depths. The results clearly rule out small-scale, upper-mantle convection as the source of these anomalies. Instead, the geophysical observables can be well explained by a shallow, transient thermal perturbation.
Instrumentation for measuring aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1976-01-01
Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
Grid-Connected Distributed Generation: Compensation Mechanism Basics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Alexandra Y; Zinaman, Owen R
2017-10-02
This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.
Effects of employer-sponsored health insurance costs on Social Security taxable wages.
Burtless, Gary; Milusheva, Sveta
2013-01-01
The increasing cost of employer contributions for employee health insurance reduces the share of compensation subject to the Social Security payroll tax. Rising insurance contributions can also have a more subtle effect on the Social Security tax base because they influence the distribution of money wages above and below the taxable maximum amount. This article uses the Medical Expenditure Panel Survey to analyze trends in employer health insurance contributions and the distribution of those costs up and down the wage distribution. Our analysis shows that employer health insurance contributions increased faster than overall compensation during 1996-2008, but such contributions grew only slightly faster among workers earning less than the taxable maximum than they did among those earning more. Because employer health insurance contributions represent a much higher percentage of compensation below the taxable maximum, health insurance cost trends exerted a disproportionate downward pressure on money wages below the taxable maximum.
Theory for solubility in static systems
NASA Astrophysics Data System (ADS)
Gusev, Andrei A.; Suter, Ulrich W.
1991-06-01
A theory for the solubility of small particles in static structures has been developed. The distribution function of the solute in a frozen solid has been derived in analytical form for the quantum and the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry's constant) as well as the pressure dependence of the solute concentration at elevated pressures has been found from the statistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution function of a solute containing different particles has been evaluated in closed form. An application of the theory to the sorption of methane in the computed structures of glassy polycarbonate has resulted in a satisfactory agreement with experimental data.
Performance tradeoffs in static and dynamic load balancing strategies
NASA Technical Reports Server (NTRS)
Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.
1986-01-01
The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.
A Review of Distributed Control Techniques for Power Quality Improvement in Micro-grids
NASA Astrophysics Data System (ADS)
Zeeshan, Hafiz Muhammad Ali; Nisar, Fatima; Hassan, Ahmad
2017-05-01
Micro-grid is typically visualized as a small scale local power supply network dependent on distributed energy resources (DERs) that can operate simultaneously with grid as well as in standalone manner. The distributed generator of a micro-grid system is usually a converter-inverter type topology acting as a non-linear load, and injecting harmonics into the distribution feeder. Hence, the negative effects on power quality by the usage of distributed generation sources and components are clearly witnessed. In this paper, a review of distributed control approaches for power quality improvement is presented which encompasses harmonic compensation, loss mitigation and optimum power sharing in multi-source-load distributed power network. The decentralized subsystems for harmonic compensation and active-reactive power sharing accuracy have been analysed in detail. Results have been validated to be consistent with IEEE standards.
Statistics of Stacked Strata on Experimental Shelf Margins
NASA Astrophysics Data System (ADS)
Fernandes, A. M.; Straub, K. M.
2015-12-01
Continental margin deposits provide the most complete record on Earth of paleo-landscapes, but these records are complex and difficult to interpret. To a seismic geomorphologist or stratigrapher, mapped surfaces often present a static diachronous record of these landscapes through time. We present data that capture the dynamics of experimental shelf-margin landscapes at high-temporal resolution and define internal hierarchies within stacked channelized and weakly channelized deposits from the shelf to the slope. Motivated by observations from acoustically-imaged continental margins offshore Brunei and in the Gulf of Mexico, we use physical experiments to quantify stratal patterns of sub-aqueous slope channels and lobes that are linked to delta-top channels. The data presented here are from an experiment that was run for 26 hours of experimental run time. Overhead photographs and topographic scans captured flow dynamics and surface aggradation/degradation every ten minutes. Currents rich in sediment built a delta that prograded to the shelf-edge. These currents were designed to plunge at the shoreline and travel as turbidity currents beyond the delta and onto the continental slope. Pseudo-subsidence was imposed by a slight base-level rise that generated accommodation space and promoted the construction of stratigraphy on the delta-top. Compensational stacking is a term that is frequently applied to deposits that tend to fill in topographic lows in channelized and weakly channelized systems. The compensation index, a metric used to quantify the strength of compensation, is used here to characterize deposits at different temporal scales on the experimental landscape. The compensation timescale is the characteristic time at which the accumulated deposits begins to match the shape of basin-wide subsidence rates (uniform for these experiments). We will use the compensation indices along strike transects across the delta, proximal slope and distal slope to evaluate the degree of compensation and the trends in the compensation time-scale, tied to a reduced degree of channelization in the down-slope direction.
Fleshman, Allison M; Petrowsky, Matt; Frech, Roger
2013-05-02
The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.
Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue
NASA Astrophysics Data System (ADS)
Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku
2018-02-01
Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.
Single link flexible beam testbed project. Thesis
NASA Technical Reports Server (NTRS)
Hughes, Declan
1992-01-01
This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.
Rolling Shutter Effect aberration compensation in Digital Holographic Microscopy
NASA Astrophysics Data System (ADS)
Monaldi, Andrea C.; Romero, Gladis G.; Cabrera, Carlos M.; Blanc, Adriana V.; Alanís, Elvio E.
2016-05-01
Due to the sequential-readout nature of most CMOS sensors, each row of the sensor array is exposed at a different time, resulting in the so-called rolling shutter effect that induces geometric distortion to the image if the video camera or the object moves during image acquisition. Particularly in digital holograms recording, while the sensor captures progressively each row of the hologram, interferometric fringes can oscillate due to external vibrations and/or noises even when the object under study remains motionless. The sensor records each hologram row in different instants of these disturbances. As a final effect, phase information is corrupted, distorting the reconstructed holograms quality. We present a fast and simple method for compensating this effect based on image processing tools. The method is exemplified by holograms of microscopic biological static objects. Results encourage incorporating CMOS sensors over CCD in Digital Holographic Microscopy due to a better resolution and less expensive benefits.
Visually-induced reorientation illusions as a function of age.
Howard, I P; Jenkin, H L; Hu, G
2000-09-01
We reported previously that supine subjects inside a furnished room who are tilted 90 degrees may experience themselves and the room as upright to gravity. We call this the levitation illusion because it creates sensations similar to those experienced in weightlessness. It is an example of a larger class of novel static reorientation illusions that we have explored. Stationary subjects inside a furnished room rotating about a horizontal axis experience complete self rotation about the roll or pitch axis. We call this a dynamic reorientation illusion. We have determined the incidence of static and dynamic reorientation illusions in subjects ranging in age from 9 to 78 yr. Some 90% of subjects of all ages experienced the dynamic reorientation illusion but the percentage of subjects experiencing static reorientation illusions increased with age. We propose that the dynamic illusion depends on a primitive mechanism of visual-vestibular interaction but that static reorientation illusions depend on learned visual cues to the vertical arising from the perceived tops and bottoms of familiar objects and spatial relationships between objects. Older people become more dependent on visual polarity to compensate for loss in vestibular sensitivity. Of 9 astronauts, 4 experienced the levitation illusion. The relationship between susceptibility to reorientation illusions on Earth and in space has still to be determined. We propose that the Space Station will be less disorienting if pictures of familiar objects line the walls.
NASA Astrophysics Data System (ADS)
Peng, Heng; Liu, Yinghua; Chen, Haofeng
2018-05-01
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
Directed current in the Holstein system.
Hennig, D; Burbanks, A D; Osbaldestin, A H
2011-03-01
We propose a mechanism to rectify charge transport in the semiclassical Holstein model. It is shown that localized initial conditions associated with a polaron solution, in conjunction with static electron on-site potential not having inversion symmetry, constitute minimal prerequisites for the emergence of a directed current in the underlying periodic lattice system. In particular, we demonstrate that for unbiased spatially localized initial conditions (constituted by kicked static polaron states), violation of parity prevents the existence of pairs of counterpropagating trajectories, thus allowing for a directed current despite the time reversibility of the equations of motion. Nevertheless, propagating polaron solutions associated with sets of unbiased localized initial conditions which eventually leave the region of localized initial conditions do not exhibit time reversibility. Since the initial conditions belonging to the corresponding counterpropagating, current-compensating polaron solutions are not contained in the set, this gives rise to the emergence of a current. Occurrence of long-range coherent charge transport is demonstrated.
Wavefront correction by target-phase-locking technology in a 500 TW laser facility
NASA Astrophysics Data System (ADS)
Wang, D. E.; Dai, W. J.; Zhou, K. N.; Su, J. Q.; Xue, Q.; Yuan, Q.; Zhang, X.; Deng, X. W.; Yang, Y.; Wang, Y. C.; Xie, N.; Sun, L.; Hu, D. X.; Zhu, Q. H.
2017-03-01
We demonstrate a novel approach termed target-phase-locking that could improve the entire beam wavefront quality of a 500 TW Nd3+:phosphate glass laser facility. The thermal and static wavefront from front-end to target is corrected by using one deformable mirror that receives feedback from both the focal-spot sensor and wavefront sensor, and only the main laser of the laser system is employed in the correction process, with auxiliary calibration light no longer necessary. As a result, a static focal spot with full width at half maximum of 8.87 × 5.74 µm is achieved, the thermal wavefront induced by flash-lamp-pumped Nd3+:phosphate glass is compensated with PV from 3.54-0.43 µm, and a dynamic focal spot with intensity exceeding 1020 W cm-2 is precisely predicted at the target with such an approach.
Torque Compensator for Mirror Mountings
NASA Technical Reports Server (NTRS)
Howe, S. D.
1983-01-01
Device nulls flexural distributions of pivotal torques. Magnetic compensator for flexing pivot torque consists of opposing fixed and movable magnet bars. Magnetic torque varies nonlinearly as function of angle of tilt of movable bar. Positions of fixed magnets changed to improve magnetic torque linearity.
Aguirre-Ollinger, G; Colgate, J E; Peshkin, M A; Goswami, A
2011-03-01
Many of the current implementations of exoskeletons for the lower extremities are conceived to either augment the user's load-carrying capabilities or reduce muscle activation during walking. Comparatively little research has been conducted on enabling an exoskeleton to increase the agility of lower-limb movements. One obstacle in this regard is the inertia of the exoskeleton's mechanism, which tends to reduce the natural frequency of the human limbs. A control method is presented that produces an approximate compensation of the inertia of an exoskeleton's mechanism. The controller was tested on a statically mounted, single-degree-of-freedom (DOF) exoskeleton that assists knee flexion and extension. Test subjects performed multiple series of leg-swing movements in the context of a computer-based, sprint-like task. A large initial acceleration of the leg was needed for the subjects to track a virtual target on a computer screen. The uncompensated inertia of the exoskeleton mechanism slowed down the transient response of the subjects' limb, in comparison with trials performed without the exoskeleton. The subsequent use of emulated inertia compensation on the exoskeleton allowed the subjects to improve their transient response for the same task.
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-05-13
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.
Hao, Li-Ying; Yang, Guang-Hong
2013-09-01
This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Graphene nanoribbons on gold: understanding superlubricity and edge effects
NASA Astrophysics Data System (ADS)
Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.
2017-12-01
We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.
NASA Astrophysics Data System (ADS)
Zhang, Hong-bo; Liu, Jin-liang; Cheng, Xin-bing; Zhang, Yu
2011-09-01
The static voltage distribution between winding turns has great impact on output characteristics and lifetime of the air-core spiral strip pulse transformer (ACSSPT). In this paper, winding inductance was calculated by electromagnetic theory, so that the static voltage distribution between turns of secondary winding of ACSSPT was analyzed conveniently. According to theoretical analysis, a voltage gradient because of the turn-to-turn capacitance was clearly noticeable across the ground turns. Simulation results of Pspice and CST EM Studio codes showed that the voltage distribution between turns of secondary winding had linear increments from the output turn to the ground turn. In experiment, the difference in increased voltage between the ground turns and the output turns of a 20-turns secondary winding is almost 50%, which is believed to be responsible for premature breakdown of the insulation, particularly between the ground turns. The experimental results demonstrated the theoretical analysis and simulation results, which had important value for stable and long lifetime ACSSPT design. A new ACSSPT with improved structure has been used successfully in intense electron beam accelerators steadily.
Estimating indices of range shifts in birds using dynamic models when detection is imperfect
Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.
2016-01-01
There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.
Dalle Carbonare, S; Folli, F; Patrini, E; Giudici, P; Bellazzi, R
2013-01-01
The increasing demand of health care services and the complexity of health care delivery require Health Care Organizations (HCOs) to approach clinical risk management through proper methods and tools. An important aspect of risk management is to exploit the analysis of medical injuries compensation claims in order to reduce adverse events and, at the same time, to optimize the costs of health insurance policies. This work provides a probabilistic method to estimate the risk level of a HCO by computing quantitative risk indexes from medical injury compensation claims. Our method is based on the estimate of a loss probability distribution from compensation claims data through parametric and non-parametric modeling and Monte Carlo simulations. The loss distribution can be estimated both on the whole dataset and, thanks to the application of a Bayesian hierarchical model, on stratified data. The approach allows to quantitatively assessing the risk structure of the HCO by analyzing the loss distribution and deriving its expected value and percentiles. We applied the proposed method to 206 cases of injuries with compensation requests collected from 1999 to the first semester of 2007 by the HCO of Lodi, in the Northern part of Italy. We computed the risk indexes taking into account the different clinical departments and the different hospitals involved. The approach proved to be useful to understand the HCO risk structure in terms of frequency, severity, expected and unexpected loss related to adverse events.
Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki
2017-11-01
Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Evaluation of a new breast-shaped compensation filter for a newly built breast imaging system
NASA Astrophysics Data System (ADS)
Cai, Weixing; Ning, Ruola; Zhang, Yan; Conover, David
2007-03-01
A new breast-shaped compensation filter has been designed and fabricated for breast imaging using our newly built breast imaging (CBCTBI) system, which is able to scan an uncompressed breast with pendant geometry. The shape of this compensation filter is designed based on an average-sized breast phantom. Unlike conventional bow-tie compensation filters, its cross-sectional profile varies along the chest wall-to-nipple direction for better compensation for the shape of a breast. Breast phantoms of three different sizes are used to evaluate the performance of this compensation filter. The reconstruction image quality was studied and compared to that obtained without the compensation filter in place. The uniformity of linear attenuation coefficient and the uniformity of noise distribution are significantly improved, and the contrast-to-noise ratios (CNR) of small lesions near the chest wall are increased as well. Multi-normal image method is used in the reconstruction process to correct compensation flood field and to reduce ring artifacts.
Lopatiuk-Tirpak, O; Su, Z; Hsi, W; Zeidan, O; Meeks, S
2012-06-01
to present and validate a method for modeling three-dimensional positron emission (PE) activity distributions induced by proton beam irradiation for PET/CT delivery verification studies in homogeneous media. the method relies on modeling the 3D proton flux distribution by combining the analytical expression for the depth reduction of proton flux with the empirically obtained lateral distribution. The latter is extracted from the corresponding dose distribution under the assumption that the projectile energy is nearly constant in the lateral plane. The same assumption allows calculating the 3D induced activity distributions from proton flux distributions by parameterizing the energy-dependent activation cross-sections in terms of depth via the energy-range relation. Results of this modeling approach were validated against experimental PET/CT data from three phantom deliveries: unmodulated (pristine) beam, spread-out Bragg peak (SOBP) delivery without a range compensator, and SOBP with a range compensator. BANG3-Pro2 polymer gel was used as a phantom material because of its elemental soft-tissue equivalence. the agreement between modeled and measured activity distributions was evaluated using 3D gamma index analysis method, which, despite being traditionally reserved for dose distribution comparisons, is sufficiently general to be applied to other quantities. The evaluation criteria were dictated by limitations of PET imaging and were chosen to correspond to count rate uncertainty (6% value difference) and spatial resolution (4 mm distance to agreement). With these criteria and the threshold of 6%, the fraction of evaluated voxels passing the gamma evaluation was 97.9% for the pristine beam, 98.9% for the SOBP without compensator, and 98.5% for SOBP with compensator. results of gamma evaluation indicate that the activity distributions produced by the model are consistent with experimental data within the uncertainties of PET imaging for clinical proton beams deliveries. This work was supported by the Bankhead-Coley Florida Biomedical Research Program under Grant No. 1BD10-34212. © 2012 American Association of Physicists in Medicine.
Static structure of a pointed charged drop
NASA Astrophysics Data System (ADS)
Fernandez de La Mora, Juan
2017-11-01
The static equilibrium structure of an equipotential drop with two symmetric Taylor cones is computed by assigning a charge distribution along the z axis q (z) = ∑Bn (L2 -z2)n + 1 / 2 . Taylor's local equilibrium at the poles z = L , - L fixes two of the Bn coefficients as a function of the other, determined by minimizing stress imbalance. Just two optimally chosen terms in the Bn expansion yield imperceptible errors. Prior work has argued that an exploding drop initially carrying Rayleigh's charge qR is quasi static. Paradoxically, quasi-static predictions on the size of the progeny drops emitted during a Coulombic explosion disagree with observations. The static drop structure found here also models poorly a Coulomb explosion having an equatorial over polar length ratio (0.42) and the a drop charge exceeding those observed (0.28-0.36 and qR / 2). Our explanation for this paradox is that, while the duration tc of a Coulomb explosion is much larger than the charge relaxation time, the dynamic time scale for drop elongation is typically far longer than tc. Therefore, the pressure distribution within the exploding drop is not uniform. A similar analysis for a drop in an external field fits well the experimental shape.
Thick shell tectonics on one-plate planets - Applications to Mars
NASA Technical Reports Server (NTRS)
Banerdt, W. B.; Saunders, R. S.; Phillips, R. J.; Sleep, N. H.
1982-01-01
Using the zero frequency equations of a self-gravitating elastic spherical shell overlying a strengthless fluid, a theory for stress distribution in thick lithospheric shells on one-plate planets is developed. For both the compensated and flexural modes, stress distributions in lithospheres are reviewed. For compensated modes, surface stresses depend only on surface topography, whereas for flexural modes it is shown that, for long wavelengths, stress trajectories are mainly dependent on the lithospheric lateral density distribution and not on elastic properties. Computational analyses are performed for Mars, and it is found that isostatically compensated models correctly predict the graben structure in the immediate Tharsis region and a flexural loading model is satisfactory in explaining the graben in the regions surrounding Tharsis. A three-stage model for the evolution of Tharsis is hypothesized: isostasy with north-south graben formation on Tharsis, followed by flexural loading and radial graben formation on the perimeter of Tharsis, followed by a last stage of loading with little or no regional deformation.
Imbalance detection in a manufacturing system: An agent-based model usage
NASA Astrophysics Data System (ADS)
Shevchuk, G. K.; Zvereva, O. M.; Medvedev, M. A.
2017-11-01
This paper delivers the results of the research work targeted at communications in a manufacturing system. A computer agent-based model which simulates manufacturing system functioning has been engineered. The system lifecycle consists of two recursively repeated stages: a communication stage and a production stage. Model data sets were estimated with the static Leontief's equilibrium equation usage. In experiments relationships between the manufacturing system lifecycle time and conditions of equilibrium violations have been identified. The research results are to be used to propose violation negative influence compensation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran-Valle, Omar; Pena-Gallardo, Rafael; Segundo-Ramirez, Juan
This paper presents a comparative study of the application of Flexible AC Transmission System (FACTS) devices, as Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Compensator (STATCOM) and Unified Power Controller (UPFC) on congestion management and voltage support in the area of the Istmo of Tehuantepec, Oaxaca, Mexico. The present work provides an analysis about the performance of the control of active and reactive power of the FACTS controllers applied to mentioned problems in the power system.
High temperature strain measurement with a resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos
1993-01-01
A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.
Strong-field two-photon transition by phase shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook
2010-08-15
We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.
Athermal design for the potassium titanyl phosphate electro-optical modulator
NASA Astrophysics Data System (ADS)
Zheng, Guoliang; Xu, Jie; Chen, Lixiang; Wang, Hongcheng; She, Weilong
2007-09-01
An athermal design for the KTP electro-optical modulator is presented. By using the wave coupling theory of linear electro-optic effect and taking account of thermal expansion, the more accurate athermal static phase retardation (ASPR) directions in potassium titanyl phosphate (KTP) are found, and the optimized design for a transverse amplitude modulator at ASPR orientation is obtained. The numerical results show that the modulator with an athermal Soleil-Babinet compensator is of excellent thermal stability, and the acceptable error of the ASPR direction is less than 0.1°.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Shu, Deming; Kearney, Steven P.; Preissner, Curt A.
2015-02-17
A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.
2014-11-17
Compensation and Low -Cost Applications Frederic Grillot CTRE NAT DE LA RECHERCHE SCIENTIFIQUE 74, RUE DE PARIS CENTRE AFFAIRES OBERTHUR RENNES, 35000...of Scientific Research European Office of Aerospace Research and Development Unit 4515, APO AE 09421-4515 Distribution Statement A: Approved for...Amplitude Coupling Factor in Quantum Nanostructure Based Devices for On-Chip Chirp Compensation and Low -Cost Applications 5a. CONTRACT NUMBER
Static analysis of the hull plate using the finite element method
NASA Astrophysics Data System (ADS)
Ion, A.
2015-11-01
This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.
MaxEnt-Based Ecological Theory: A Template for Integrated Catchment Theory
NASA Astrophysics Data System (ADS)
Harte, J.
2017-12-01
The maximum information entropy procedure (MaxEnt) is both a powerful tool for inferring least-biased probability distributions from limited data and a framework for the construction of complex systems theory. The maximum entropy theory of ecology (METE) describes remarkably well widely observed patterns in the distribution, abundance and energetics of individuals and taxa in relatively static ecosystems. An extension to ecosystems undergoing change in response to disturbance or natural succession (DynaMETE) is in progress. I describe the structure of both the static and the dynamic theory and show a range of comparisons with census data. I then propose a generalization of the MaxEnt approach that could provide a framework for a predictive theory of both static and dynamic, fully-coupled, eco-socio-hydrological catchment systems.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.
Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4
2013-11-15
Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.« less
Dosimetric feasibility of MRI-guided external beam radiotherapy of the kidney
NASA Astrophysics Data System (ADS)
Stam, Mette K.; van Vulpen, Marco; Barendrecht, Maurits M.; Zonnenberg, Bernard A.; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2013-07-01
At our institution a treatment for kidney tumours with an MRI-Linac is under development. In order to set inclusion criteria for this treatment the anatomical eligibility criteria and the influence of the motion compensation strategy on the delivered dose should be known. Twenty patients with a renal lesion underwent an MR-scan to image the kidney. Static treatment plans were made and the doses to the organs at risk were evaluated. Furthermore, to calculate the influence of remnant motion in a gated treatment, a convolution of the static dose plan with the residual motion in a gating window was done. For ten patients (50%) a static plan within the dose constraints could be obtained. For all patients where the kidney constraint was obeyed in the static plan, the dose to the gross tumour volume (GTV) and the ipsilateral kidney remained within limits for residual motion in a gating window up to and including 12 mm. For four patients (20%) no static plan without violation of the constraint to the ipsilateral kidney could be made. One of these patients had a tumour of 73 mm in the upper pole and the other patients had a tumour of at least 30 mm in the mid pole. In 6 patients (30%), where the bowels were within the planning target volume, the maximum dose to the bowels was above the limit used. Patient specific assessment might degrade this violation. For tumours smaller than 30 mm a clinically acceptable plan could be created. For other patients the feasibility depends on the geometry of the GTV and kidney. Neither the GTV coverage nor the ipsilateral kidney dose is compromised by breathing motion for gating with a gating window up to and including 12 mm.
INTRODUCTION AND STATIC ELECTRICITY, VOLUME 1.
ERIC Educational Resources Information Center
KLAUS, DAVID J.; AND OTHERS
THIS VOLUME, PART OF A TWO-VOLUME SET, PROVIDES AUTOINSTRUCTION IN PHYSICS. THE MATERIAL COVERS UNITS ON (1) STATIC ELECTRICITY AND ELECTRICAL CHARGES, (2) COULOMB'S LAW, (3) DISTRIBUTION OF CHARGE AND FLOW OF CURRENT, (4) DIFFERENCE OF POTENTIAL, (5) BATTERIES AND CIRCUITS, (6) RESISTANCE AND RESISTORS, (7) POTENTIAL DIVIDER AND WHEATSTONE…
Non-axisymmetric flow characteristics in centrifugal compressor
NASA Astrophysics Data System (ADS)
Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce
2015-06-01
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Wang, Yun
1994-01-01
Based on a distributed parameter model for vibrations, an approximate finite dimensional dynamic compensator is designed to suppress vibrations (multiple modes with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and clamped boundary conditions. The control is realized via piezoceramic patches bonded to the plate and is calculated from information available from several pointwise observed state variables. Examples from computational studies as well as use in laboratory experiments are presented to demonstrate the effectiveness of this design.
Kim, Young Hoon; Song, Kwang Yong
2017-06-26
A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.
NASA Astrophysics Data System (ADS)
Meda, Adimurthy; Katti, Vadiraj V.
2017-08-01
The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.
Hardebeck, Jeanne L.
2014-01-01
The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.
Compensating for estimation smoothing in kriging
Olea, R.A.; Pawlowsky, Vera
1996-01-01
Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.
Alecu, R; Alecu, M; Loomis, T; Ochran, T; He, T
1999-01-01
Perturbations in the dose distribution caused by a hip prosthesis when treating pelvic malignancies can result in unacceptable dose inhomogeneities within the target volume. Our results, obtained by in vivo exit dose measurements with diodes, showed a 55% reduction in the dose at the exit dmax of a lateral 15 MV photon beam after passing through a bilateral cobalt-chrome alloy hip prosthesis. Such an inhomogeneous dose distribution may decrease the curability. Solutions such as treatment techniques to avoid the prosthesis are often not the best choice as the dose to the rectum may be unacceptably high. In this work an alternative method of dose compensator is presented. Two types of dose compensators were designed based on a 3-D treatment planning system and CT images of a pelvic phantom containing a hip prosthesis: one was fabricated from a polyethylene-lead slab in the representation of step fringes and placed on a tray in the path of the beam while the other was produced by the use of several fields shaped with a multileaf collimator. The calculation procedures developed by the authors for generating the compensators are described. Results of film measurements performed in a phantom with and without the compensators in place are discussed.
Characterization of gigahertz (GHz) bandwidth photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Rowe, H. E.
1977-01-01
The average impulse response, root-mean-square times jitter as a function of signal level, single photoelectron distribution, and multiphotoelectron dark-count distribution have been measured for two static crossed-field and five electrostatic photomultipliers. The optical signal source for the first three of these tests was a 30 picosecond mode-locked laser pulse at 0.53 micron. The static crossed-field detectors had 2-photoelectron resolution, less than 200 ps rise times, and rms time jitters of 30 ps at the single photoelectron level. The electrostatic photomultipliers had rise times from 1 to 2.5 nanoseconds, and rms time jitters from 160 to 650 ps at the same signal level. The two static crossed-field photomultipliers had ion-feedback-generated dark pulses to the 50-photoelectron level, whereas one electrostatic photomultiplier had dark pulses to the 30-photoelectron level.
Significance of the impact of motion compensation on the variability of PET image features
NASA Astrophysics Data System (ADS)
Carles, M.; Bach, T.; Torres-Espallardo, I.; Baltas, D.; Nestle, U.; Martí-Bonmatí, L.
2018-03-01
In lung cancer, quantification by positron emission tomography/computed tomography (PET/CT) imaging presents challenges due to respiratory movement. Our primary aim was to study the impact of motion compensation implied by retrospectively gated (4D)-PET/CT on the variability of PET quantitative parameters. Its significance was evaluated by comparison with the variability due to (i) the voxel size in image reconstruction and (ii) the voxel size in image post-resampling. The method employed for feature extraction was chosen based on the analysis of (i) the effect of discretization of the standardized uptake value (SUV) on complementarity between texture features (TF) and conventional indices, (ii) the impact of the segmentation method on the variability of image features, and (iii) the variability of image features across the time-frame of 4D-PET. Thirty-one PET-features were involved. Three SUV discretization methods were applied: a constant width (SUV resolution) of the resampling bin (method RW), a constant number of bins (method RN) and RN on the image obtained after histogram equalization (method EqRN). The segmentation approaches evaluated were 40% of SUVmax and the contrast oriented algorithm (COA). Parameters derived from 4D-PET images were compared with values derived from the PET image obtained for (i) the static protocol used in our clinical routine (3D) and (ii) the 3D image post-resampled to the voxel size of the 4D image and PET image derived after modifying the reconstruction of the 3D image to comprise the voxel size of the 4D image. Results showed that TF complementarity with conventional indices was sensitive to the SUV discretization method. In the comparison of COA and 40% contours, despite the values not being interchangeable, all image features showed strong linear correlations (r > 0.91, p\\ll 0.001 ). Across the time-frames of 4D-PET, all image features followed a normal distribution in most patients. For our patient cohort, the compensation of tumor motion did not have a significant impact on the quantitative PET parameters. The variability of PET parameters due to voxel size in image reconstruction was more significant than variability due to voxel size in image post-resampling. In conclusion, most of the parameters (apart from the contrast of neighborhood matrix) were robust to the motion compensation implied by 4D-PET/CT. The impact on parameter variability due to the voxel size in image reconstruction and in image post-resampling could not be assumed to be equivalent.
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
NASA Astrophysics Data System (ADS)
Wapenaar, K.; van der Neut, J.; Ruigrok, E.; Draganov, D.; Hunziker, J.; Slob, E.; Thorbecke, J.; Snieder, R.
2008-12-01
It is well-known that under specific conditions the crosscorrelation of wavefields observed at two receivers yields the impulse response between these receivers. This principle is known as 'Green's function retrieval' or 'seismic interferometry'. Recently it has been recognized that in many situations it can be advantageous to replace the correlation process by deconvolution. One of the advantages is that deconvolution compensates for the waveform emitted by the source; another advantage is that it is not necessary to assume that the medium is lossless. The approaches that have been developed to date employ a 1D deconvolution process. We propose a method for seismic interferometry by multidimensional deconvolution and show that under specific circumstances the method compensates for irregularities in the source distribution. This is an important difference with crosscorrelation methods, which rely on the condition that waves are equipartitioned. This condition is for example fulfilled when the sources are regularly distributed along a closed surface and the power spectra of the sources are identical. The proposed multidimensional deconvolution method compensates for anisotropic illumination, without requiring knowledge about the positions and the spectra of the sources.
Aguirre-Ollinger, Gabriel; Colgate, J Edward; Peshkin, Michael A; Goswami, Ambarish
2012-01-01
A new method of lower-limb exoskeleton control aimed at improving the agility of leg-swing motion is presented. In the absence of control, an exoskeleton's mechanism usually hinders agility by adding mechanical impedance to the legs. The uncompensated inertia of the exoskeleton will reduce the natural frequency of leg swing, probably leading to lower step frequency during walking as well as increased metabolic energy consumption. The proposed controller emulates inertia compensation by adding a feedback loop consisting of low-pass filtered angular acceleration multiplied by a negative gain. This gain simulates negative inertia in the low-frequency range. The resulting controller combines two assistive effects: increasing the natural frequency of the lower limbs and performing net work per swing cycle. The controller was tested on a statically mounted exoskeleton that assists knee flexion and extension. Subjects performed movement sequences, first unassisted and then using the exoskeleton, in the context of a computer-based task resembling a race. In the exoskeleton's baseline state, the frequency of leg swing and the mean angular velocity were consistently reduced. The addition of inertia compensation enabled subjects to recover their normal frequency and increase their selected angular velocity. The work performed by the exoskeleton was evidenced by catch trials in the protocol.
Static Postural Stability in Chronic Ankle Instability, An Ankle Sprain and Healthy Ankles.
Kwon, Yong Ung
2018-05-18
To identify the single leg balance (SLB) test that discriminates among healthy, coper, and chronic ankle instability (CAI) groups and to determine effects of ankle muscles on the balance error scoring system (BESS) among the three populations. 60 subjects (20 per group) performed the SLB test with eyes open (EO) and eyes closed (EC). Normalized mean amplitude (NMA) of the tibia anterior (TA), fibularis longus (FL), and medial gastrocnemius (MG) muscles and BESS were measured while performing the SLB test. The coper group had a lower error score than the CAI group in the EC. NMA was greater in the CAI group compared to in the healthy and coper groups regardless of muscle type. NMA of the TA was less than the PL and MG regardless of the group in the EO. The CAI group demonstrated greater NMAs of the PL and MG than the healthy and coper groups in the EC. The CAI group demonstrated greater NMA of the PL and MG by compensating their ankle muscles in the EO and EC. BESS suggests that the coper group may have coping mechanisms to stabilize static postural control compared to the CAI group. The EC may be better to detect static postural instability in the CAI or coper group. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, A. K.
1979-01-01
Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.
Hysteresis compensation for piezoelectric actuators in single-point diamond turning
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Hu, Dejin; Wan, Daping; Liu, Hongbin
2006-02-01
In recent years, interests have been growing for fast tool servo (FTS) systems to increase the capability of existing single-point diamond turning machines. Although piezoelectric actuator is the most universal base of FTS system due to its high stiffness, accuracy and bandwidth, nonlinearity in piezoceramics limits both the static and dynamic performance of piezoelectric-actuated control systems evidently. To compensate the nonlinear hysteresis behavior of piezoelectric actuators, a hybrid model coupled with Preisach model and feedforward neural network (FNN) has been described. Since the training of FNN does not require a special calibration sequence, it is possible for on-line identification and real-time implementation with general operating data of a specific piezoelectric actuator. To describe the rate dependent behavior of piezoelectric actuators, a hybrid dynamic model was developed to predict the response of piezoelectric actuators in a wider range of input frequency. Experimental results show that a maximal error of less than 3% was accomplished by this dynamic model.
Structural Influence on the Mechanical Response of Adolescent Gottingen Porcine Cranial Bone
2016-10-01
specimens were then loaded in quasi -static compression to measure their mechanical response. The surface strain distribution on the specimen face was...13 Fig. 10 Apparent stress-strain responses of a sample of specimens loaded in quasi -static compression...modulus-BVF experimental results shown in Fig. 15 ..................................................................................19 Fig. 17 The
Tilted orthodontic micro implants: a photoelastic stress analysis.
Çehreli, Seçil; Özçırpıcı, Ayça Arman; Yılmaz, Alev
2013-10-01
The aim of this study was to examine peri-implant stresses around orthodontic micro implants upon torque-tightening and static load application by quasi-three-dimensional photoelastic stress analysis. Self-tapping orthodontic micro implants were progressively inserted into photoelastic models at 30, 45, 70, and 90 degrees and insertion torques were measured. Stress patterns (isochromatic fringe orders) were recorded by the quasi-three-dimensional photoelastic method using a circular polariscope after insertion and 250 g static force application. Torque-tightening of implants generated peri-implant stresses. Upon insertion, 90 degree placed implants displayed the lowest and homogeneous stress distribution followed by 30, 70, and 45 degree tilted implants. Static loading did not dramatically alter stress fields around the implants tested. The highest alteration in stress distribution was observed for the 90 degree placed implant, while 70 degree tilted implant had the lowest stresses among tilted implants. Torque-tightening of orthodontic micro implants creates a stress field that is not dramatically altered after application of static lateral moderate orthodontic loads, particularly at the cervical region of tilted implants.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
High resolution strain sensor for earthquake precursor observation and earthquake monitoring
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang
2016-05-01
We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.
Liquidity crises on different time scales
NASA Astrophysics Data System (ADS)
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Liquidity crises on different time scales.
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Liu, Yingjie; Li, Lin; Zheng, Li; Guo, Xiuyan
2017-01-01
Third-party punishment and third-party compensation are primary responses to observed norms violations. Previous studies mostly investigated these behaviors in gain rather than loss context, and few study made direct comparison between these two behaviors. We conducted three experiments to investigate third-party punishment and third-party compensation in the gain and loss context. Participants observed two persons playing Dictator Game to share an amount of gain or loss, and the proposer would propose unfair distribution sometimes. In Study 1A, participants should decide whether they wanted to punish proposer. In Study 1B, participants decided to compensate the recipient or to do nothing. This two experiments explored how gain and loss contexts might affect the willingness to altruistically punish a perpetrator, or to compensate a victim of unfairness. Results suggested that both third-party punishment and compensation were stronger in the loss context. Study 2 directly compare third-party punishment and third-party compensation in the both contexts, by allowing participants choosing between punishment, compensation and keeping. Participants chose compensation more often than punishment in the loss context, and chose more punishments in the gain context. Empathic concern partly explained between-context differences of altruistic compensation and punishment. Our findings provide insights on modulating effect of context on third-party altruistic decisions.
NASA Astrophysics Data System (ADS)
Delhaye, Robert; Rath, Volker; Jones, Alan G.; Muller, Mark R.; Reay, Derek
2017-05-01
Galvanic distortions of magnetotelluric (MT) data, such as the static-shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes; however, static-shift correction is required in order to ensure robust and precise modelling accuracy.We present here a possible method to employ frequency-domain electromagnetic data in order to correct static-shift effects, illustrated by a case study from Northern Ireland. In our survey area, airborne frequency domain electromagnetic (FDEM) data are regionally available with high spatial density. The spatial distributions of the derived static-shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static-shift corrections, with instructive results. As expected from the one-dimensional analogy of static-shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static-shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using Archie's Law, between the two models reinforces our conclusion that the suborder of magnitude resistivity contrasts induced by the correction of static shifts correspond to similar contrasts in estimated porosities, and hence, for purposes of reservoir investigation or similar cases requiring accurate absolute resistivity estimates, galvanic distortion correction, especially static-shift correction, is essential.
Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene
2017-01-01
Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification. PMID:28367991
NASA Astrophysics Data System (ADS)
Masaud, Tarek
Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this dissertation. Finally, the integration of the battery energy storage system (BESS) into a grid connected DFIG- based wind turbine as a proposed solution to smooth out the output power during wind speed variations is also addressed.
Violent crime and victim compensation: implications for social justice.
Smith, Hayden P
2006-06-01
Restorative justice offers several innovative methods designed to heal the injury that the offender may have caused to the victim. One of these innovative methods is victim compensation, a form of income redistribution designed to redistribute wealth from offenders to victims of crime. Restitution, particularly through the Victim of Crime Act (VOCA), is a needs-based form of justice designed to assist the most needy victims of violent crime. Recent studies suggest that while state-level compensation programs may target poor, young, African American men, compensation at the national level tends to be received more by older, White women who experienced domestic violence. The author suggests that this disparity between state and local resource distribution in the allocation of victim compensation is a reflection of the ideological differences between the established theoretical frameworks of liberalism and radical feminism.
1984-09-01
OF’ COMMISSIONED SERVICE AND THE PERCEIVED IMPORTANCE OF THE MILITARY COMPENSATION PACKAGE TO AIR FORCE OFFICERS THESIS Daniel A. Ovelbar Captain, USAF... THESIS Daniel A. Cvelbar Captain, USAF AFI T/GSM/LSY/84S-8 DTICSLECTE3 Approved for public release; distribution unlimited The contents of the document...OF THE MILITARY COMPENSATION PACKAGE TO AIR FORCE OFFICERS THESIS Presented to the Faculty of the School of Systems and Logistics of the Air Force
Karanth, Krithi K; Gopalaswamy, Arjun M; DeFries, Ruth; Ballal, Natasha
2012-01-01
Mitigating crop and livestock loss to wildlife and improving compensation distribution are important for conservation efforts in landscapes where people and wildlife co-occur outside protected areas. The lack of rigorously collected spatial data poses a challenge to management efforts to minimize loss and mitigate conflicts. We surveyed 735 households from 347 villages in a 5154 km(2) area surrounding Kanha Tiger Reserve in India. We modeled self-reported household crop and livestock loss as a function of agricultural, demographic and environmental factors, and mitigation measures. We also modeled self-reported compensation received by households as a function of demographic factors, conflict type, reporting to authorities, and wildlife species involved. Seventy-three percent of households reported crop loss and 33% livestock loss in the previous year, but less than 8% reported human injury or death. Crop loss was associated with greater number of cropping months per year and proximity to the park. Livestock loss was associated with grazing animals inside the park and proximity to the park. Among mitigation measures only use of protective physical structures were associated with reduced livestock loss. Compensation distribution was more likely for tiger related incidents, and households reporting loss and located in the buffer. Average estimated probability of crop loss was 0.93 and livestock loss was 0.60 for surveyed households. Estimated crop and livestock loss and compensation distribution were higher for households located inside the buffer. Our approach modeled conflict data to aid managers in identifying potential conflict hotspots, influential factors, and spatially maps risk probability of crop and livestock loss. This approach could help focus allocation of conservation efforts and funds directed at conflict prevention and mitigation where high densities of people and wildlife co-occur.
Karanth, Krithi K.; Gopalaswamy, Arjun M.; DeFries, Ruth; Ballal, Natasha
2012-01-01
Mitigating crop and livestock loss to wildlife and improving compensation distribution are important for conservation efforts in landscapes where people and wildlife co-occur outside protected areas. The lack of rigorously collected spatial data poses a challenge to management efforts to minimize loss and mitigate conflicts. We surveyed 735 households from 347 villages in a 5154 km2 area surrounding Kanha Tiger Reserve in India. We modeled self-reported household crop and livestock loss as a function of agricultural, demographic and environmental factors, and mitigation measures. We also modeled self-reported compensation received by households as a function of demographic factors, conflict type, reporting to authorities, and wildlife species involved. Seventy-three percent of households reported crop loss and 33% livestock loss in the previous year, but less than 8% reported human injury or death. Crop loss was associated with greater number of cropping months per year and proximity to the park. Livestock loss was associated with grazing animals inside the park and proximity to the park. Among mitigation measures only use of protective physical structures were associated with reduced livestock loss. Compensation distribution was more likely for tiger related incidents, and households reporting loss and located in the buffer. Average estimated probability of crop loss was 0.93 and livestock loss was 0.60 for surveyed households. Estimated crop and livestock loss and compensation distribution were higher for households located inside the buffer. Our approach modeled conflict data to aid managers in identifying potential conflict hotspots, influential factors, and spatially maps risk probability of crop and livestock loss. This approach could help focus allocation of conservation efforts and funds directed at conflict prevention and mitigation where high densities of people and wildlife co-occur. PMID:23227173
ERIC Educational Resources Information Center
Marsh, Julie
2012-01-01
This article examines the micropolitics of implementing New York City's Schoolwide Performance Bonus Program and school governance bodies (Compensation Committees) that determined distribution of school-level rewards among personnel. Drawing on a two-year, mixed-methods study, the author finds that although most participants surveyed described a…
ERIC Educational Resources Information Center
Goldhaber, Dan; Destler, Katharine; Player, Daniel
2010-01-01
Some scholars and policymakers who are concerned about the inequitable distribution of quality teachers suggest offering financial incentives for working in hard-to-staff schools. Previous studies have estimated compensating differentials using hedonic modeling, an approach potentially undermined by district-wide salary schedules and the lack of…
NASA Astrophysics Data System (ADS)
Ries, Mario; de Senneville, Baudouin Denis; Regard, Yvan; Moonen, Chrit
2012-11-01
The objective of this study is to evaluate the feasibility to integrate ultrasound echography as an additional imaging modality for continuous target tracking, while performing simultaneously real-time MR- thermometry to guide a High Intensity Focused Ultrasound (HIFU) ablation. Experiments on a moving phantom were performed with MRI-guided HIFU during continuous ultrasound echography. Real-time US echography-based target tracking during MR-guided HIFU heating was performed with heated area dimensions similar to those obtained for a static target. The combination of both imaging modalities shows great potential for real-time beam steering and MR-thermometry.
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Morozov, I.
2018-01-01
The paper presents the calculating results of the combustion products parameters in the tract of the low thrust rocket engine with thrust P ∼ 100 N. The article contains the following data: streamlines, distribution of total temperature parameter in the longitudinal section of the engine chamber, static temperature distribution in the cross section of the engine chamber, velocity distribution of the combustion products in the outlet section of the engine nozzle, static temperature near the inner wall of the engine. The presented parameters allow to estimate the efficiency of the mixture formation processes, flow of combustion products in the engine chamber and to estimate the thermal state of the structure.
A method to obtain static potential for electron-molecule scattering
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Das, Tapasi; Stauffer, Allan
2014-05-01
Electron scattering from molecules is complicated by the fact that molecules are a multi-centered target with the nuclei of the constituent atoms being a center of charge. One of the most important parts of a scattering calculation is to obtain the static potential which represents the interaction of the incident electron with the unperturbed charge distribution of the molecule. A common way to represent the charge distribution of molecules is with Gaussian orbitals centered on the various nuclei. We have derived a way to calculate spherically-averaged molecular static potentials using this form of molecular wave function which is mostly analytic. This method has been applied to elastic electron scattering from water molecules and we obtained differential cross sections which are compared with previous experimental and theoretical results. The method can be extended to more complex molecules. One of us (RS) is thankful to IAEA, Vienna, Austria and DAE-BRNS, Mumbai, India for financial support.
Location Management in Distributed Mobile Environments
1994-09-01
carried out to evaluate the performanceof di erent static strategies for various communica-tion and mobility patterns. Simulation results indi-cate...results ofsimulations carried out to evaluate the performanceof proposed static location management strategies forvarious call and mobility patterns...Systems, Austin, Sept. 1994. U.S. Government or Federal Rights License 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
The impact of occupational health service network and reporting system in Taiwan.
Chu, Po-Ching; Fuh, Hwan-Ran; Luo, Jiin-Chyuan; Du, Chung-Li; Chuang, Hung-Yi; Guo, How-Ran; Liu, Chiu-Shong; Su, Chien-Tien; Tang, Feng-Cheng; Chen, Chun-Chieh; Yang, Hsiao-Yu; Guo, Yue Leon
2013-01-01
Underreporting occupational disease cases has been a long-standing problem in Taiwan, which hinders the progress in occupational health and safety. To address this problem, the government has founded the Network of Occupational Diseases and Injuries Service (NODIS) for occupational disease and injury services and established a new Internet-based reporting system. The aims of this study are to analyze the possible influence of the NODIS, comprised of Center for Occupational Disease and Injury Services and their local network hospitals, on compensable occupational diseases and describe the distribution of occupational diseases across occupations and industries from 2005 to 2010 in Taiwan. We conducted a secondary analysis of two datasets, including the NODIS reporting dataset and the National Labor Insurance scheme's dataset of compensated cases. For the NODIS dataset, demographics, disease distribution, and the time trends of occupational diseases were analyzed. The data of the Labor Insurance dataset was used to calculate the annual incidence of compensated cases. Furthermore, the annual incidence of reported occupational diseases from the NODIS was further compared with the annual incidence of compensable occupational diseases from the compensated dataset during the same period. After the establishment of the NODIS, the two annual incidence rates of reported and compensable occupational disease cases have increased by 1.2 and 2.0 folds from 2007 to 2010, respectively. The reason for this increased reporting may be the implementation of the new government-funded Internet-based system. The reason for the increased compensable cases may be the increasing availability of hospitals and clinics to provide occupational health services. During the 2008-2010 period, the most frequently reported occupational diseases were carpal tunnel syndrome, lumbar disc disorder, upper limb musculoskeletal disorders, and contact dermatitis. The new network and reporting system was successful in providing more occupational health services, providing more workers with compensation for occupational diseases, and reducing underreporting of occupational diseases. Therefore, the experience in Taiwan could serve as an example for other newly developed countries in a similar situation.
NASA Astrophysics Data System (ADS)
Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee
2016-09-01
We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.
Motion-aware temporal regularization for improved 4D cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Mory, Cyril; Janssens, Guillaume; Rit, Simon
2016-09-01
Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp-Davis-Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.
Ripple distribution for nonlinear fiber-optic channels.
Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei
2017-02-06
We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.
NASA Astrophysics Data System (ADS)
Lizar, J. C.; Santos, L. F.; Brandão, F. C.; Volpato, K. C.; Guimarães, F. S.; Pavoni, J. F.
2017-05-01
This study aims to evaluate the motion influence in the tridimensional dose distribution due to respiratory for IMRT breast planning technique. To simulate the breathing movement an oscillating platform was used. To simulate the breast, MAGIC-f phantoms were used. CT images of a static phantom were obtained and the IMRT treatment was planned based on them. One phantom was irradiated static in the platform and two other phantoms were irradiated while oscillating in the platform with amplitudes of 0.34 cm and 1.22 cm, the fourth phantom was used as reference in the MRI acquisition. The percentage of points approved in the 3D global gamma analyses (3%/3mm) when comparing the dose distribution of the static phantom with the oscillating ones was 91% for the 0.34cm amplitude and 62% for the 1.22 cm amplitude. Considering this result, the differences found in the dosimetric analyses for the oscillating amplitude of 0.34cm could be considered acceptable in a real treatment. The isodose distribution analyses showed a decrease of dose in the anterior breast region and an increase of dose on the posterior breast region, being these differences most pronounced for large amplitude motion.
Liu, Yingjie; Li, Lin; Zheng, Li; Guo, Xiuyan
2017-01-01
Third-party punishment and third-party compensation are primary responses to observed norms violations. Previous studies mostly investigated these behaviors in gain rather than loss context, and few study made direct comparison between these two behaviors. We conducted three experiments to investigate third-party punishment and third-party compensation in the gain and loss context. Participants observed two persons playing Dictator Game to share an amount of gain or loss, and the proposer would propose unfair distribution sometimes. In Study 1A, participants should decide whether they wanted to punish proposer. In Study 1B, participants decided to compensate the recipient or to do nothing. This two experiments explored how gain and loss contexts might affect the willingness to altruistically punish a perpetrator, or to compensate a victim of unfairness. Results suggested that both third-party punishment and compensation were stronger in the loss context. Study 2 directly compare third-party punishment and third-party compensation in the both contexts, by allowing participants choosing between punishment, compensation and keeping. Participants chose compensation more often than punishment in the loss context, and chose more punishments in the gain context. Empathic concern partly explained between-context differences of altruistic compensation and punishment. Our findings provide insights on modulating effect of context on third-party altruistic decisions. PMID:29234295
Robust fixed order dynamic compensation for large space structure control
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Byrns, Edward V., Jr.
1989-01-01
A simple formulation for designing fixed order dynamic compensators which are robust to both uncertainty at the plant input and structured uncertainty in the plant dynamics is presented. The emphasis is on designing low order compensators for systems of high order. The formulation is done in an output feedback setting which exploits an observer canonical form to represent the compensator dynamics. The formulation also precludes the use of direct feedback of the plant output. The main contribution lies in defining a method for penalizing the states of the plant and of the compensator, and for choosing the distribution on initial conditions so that the loop transfer matrix approximates that of a full state design. To improve robustness to parameter uncertainty, the formulation avoids the introduction of sensitivity states, which has led to complex formulations in earlier studies where only structured uncertainty has been considered.
Performance prediction of a synchronization link for distributed aerospace wireless systems.
Wang, Wen-Qin; Shao, Huaizong
2013-01-01
For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
NASA Astrophysics Data System (ADS)
Li, Cheng
Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.
Adaptive piezoelectric sensoriactuators for active structural acoustic control
NASA Astrophysics Data System (ADS)
Vipperman, Jeffrey Stuart
1997-09-01
A new transducer technology with application to active control systems, modal analysis, and autonomous system health monitoring, is brought to fruition in this work. It has the advantages of being lightweight, potentially cost-effective, self-tuning, has negligible dynamics, and most importantly (from a robustness perspective), it provides a colocated sensor/actuator pair. The transducer consists of a piezoceramic element which serves as both an actuator and a sensor and will be referred to in this work as a sensoriactuator. Simple, adaptive signal processing in conjunction with a voltage controlled amplifier, reference capacitor, and a common-mode rejection circuit extract the mechanical response from the total response of the piezoelectric sensoriactuator for sensing. The digital portion of the adaptive piezoelectric sensoriactuator merely serves to tune the circuit, avoiding the potentially destabilizing effects of introducing a digital delay in the signal path, when used for feedback control applications. Adaptive compensation of the sensoriactuator is necessary since the signal to noise ratio is typically greater than 40 dB, making it prohibitive to tune the circuit manually. In addition, the constitutive properties of piezoceramics vary with time and environment, necessitating that the circuit be periodically re-tuned. The analog portion of the hardware is based upon op-amp circuits and an AD632 analog multiplier chip, which serves as both a voltage controlled amplifier (VCA) and a common mode rejection (CMR) circuit. A single coefficient least-mean square (LMS) adaptive filter continuously adjusts the gain of the VCA circuit as necessary. Nonideal behavior of piezoceramics is discussed along with methods to counter the consequential deterioration in circuit performance. A multiple input multiple output (MIMO) implementation of the adaptive piezoelectric sensoriactuator is developed using orthogonal white noise training signals for each sensoriactuator. Two piezostructures were used to demonstrate and verify the adaptive piezoelectric sensoriactuator, a cantilevered beam and a simply-supported plate. The experimental open- loop results compare well with theory. A preliminary closed-loop rate controller applied to the cantilevered beam demonstrates simultaneous control and adaptation of the piezoelectric sensoriactuator. Lastly, [/cal H]2 optimal feedback Active Structural Acoustic Control (ASAC) is demonstrated using the adaptive piezoelectric sensoriactuators and the simply- supported plate test bed. A cost function is formulated based upon control effort and predicted radiated acoustic power. Radiation filters are created to predict acoustic power based on the self and mutual radiation efficiencies of the plate modes to be controlled. Both static output feedback and state-feedback compensation as well as dynamic (Linear Quadratic Gaussian) compensation are investigated and compared analytically. The importance of choosing an appropriate spatial aperture for the piezoceramic transducer for static compensation is discussed. Finally, multivariable Active Vibration Control (AVC) and ASAC are implemented experimentally on a simply-supported plate test bed using an array of four Adaptive Piezoelectric Sensoriactuators as the control sensors and actuators. Unfavorable high-frequency response from the given piezoceramic transducers required that dynamic, Linear Quadratic Gaussian (LQG) compensation be used to achieve good control performance.
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning
McGregor, Heather R.; Mohatarem, Ayman
2017-01-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.
Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L
2017-07-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.
A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide.
Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei
2017-02-17
Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system.
An open-source model and solution method to predict co-contraction in the finger.
MacIntosh, Alexander R; Keir, Peter J
2017-10-01
A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.
Limitation of degree information for analyzing the interaction evolution in online social networks
NASA Astrophysics Data System (ADS)
Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke
2014-04-01
Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.
Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification.
Wang, Shouyi; Bowen, Stephen R; Chaovalitwongse, W Art; Sandison, George A; Grabowski, Thomas J; Kinahan, Paul E
2014-02-21
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
Palladium-chromium static strain gages for high temperatures
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1992-01-01
An electrical resistance strain gage that can provide accurate static strain measurement to a temperature of 1500 F or above is being developed both in fine wire and thin film forms. The gage is designed to be temperature compensated on any substrate material. It has a dual element: the gage element is a special alloy, palladium-13wt percent chromium (PdCr), and the compensator element is platinum (Pt). Earlier results of a PdCr based wire gage indicated that the apparent strain of this gage can be minimized and the repeatability of the apparent strain can be improved by prestabilizing the gage on the substrate for a long period of time. However, this kind of prestabilization is not practical in many applications and therefore the development of a wire gage which is prestabilized before installation on the substrate is desirable. This paper will present our recent progress in the development of a prestabilized wire gage which can provide meaningful strain data for the first thermal cycle. A weldable PdCr gage is also being developed for field testing where conventional flame-spraying installation can not be applied. This weldable gage is narrower than a previously reported gage, thereby allowing the gage to be more resistant to buckling under compressive loads. Some preliminary results of a prestabilized wire gage flame-sprayed directly on IN100, an engine material, and a weldable gage spot-welded on IN100 and SCS-6/(beta)21-S Titanium Matrix Composite (TMC), a National Aero-Space Plane (NASP) structure material, will be reported. Progress on the development of a weldable thin film gage will also be addressed. The measurement technique and procedures and the lead wire effect will be discussed.
Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification
NASA Astrophysics Data System (ADS)
Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.
2014-02-01
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
NASA Astrophysics Data System (ADS)
Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias
2018-02-01
Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.
A cluster pattern algorithm for the analysis of multiparametric cell assays.
Kaufman, Menachem; Bloch, David; Zurgil, Naomi; Shafran, Yana; Deutsch, Mordechai
2005-09-01
The issue of multiparametric analysis of complex single cell assays of both static and flow cytometry (SC and FC, respectively) has become common in recent years. In such assays, the analysis of changes, applying common statistical parameters and tests, often fails to detect significant differences between the investigated samples. The cluster pattern similarity (CPS) measure between two sets of gated clusters is based on computing the difference between their density distribution functions' set points. The CPS was applied for the discrimination between two observations in a four-dimensional parameter space. The similarity coefficient (r) ranges between 0 (perfect similarity) to 1 (dissimilar). Three CPS validation tests were carried out: on the same stock samples of fluorescent beads, yielding very low r's (0, 0.066); and on two cell models: mitogenic stimulation of peripheral blood mononuclear cells (PBMC), and apoptosis induction in Jurkat T cell line by H2O2. In both latter cases, r indicated similarity (r < 0.23) within the same group, and dissimilarity (r > 0.48) otherwise. This classification and algorithm approach offers a measure of similarity between samples. It relies on the multidimensional pattern of the sample parameters. The algorithm compensates for environmental drifts in this apparatus and assay; it also may be applied to more than four dimensions.
Song, Na; Du, Yong; He, Bin; Frey, Eric C.
2011-01-01
Purpose: The radionuclide 131I has found widespread use in targeted radionuclide therapy (TRT), partly due to the fact that it emits photons that can be imaged to perform treatment planning or posttherapy dose verification as well as beta rays that are suitable for therapy. In both the treatment planning and dose verification applications, it is necessary to estimate the activity distribution in organs or tumors at several time points. In vivo estimates of the 131I activity distribution at each time point can be obtained from quantitative single-photon emission computed tomography (QSPECT) images and organ activity estimates can be obtained either from QSPECT images or quantification of planar projection data. However, in addition to the photon used for imaging, 131I decay results in emission of a number of other higher-energy photons with significant abundances. These higher-energy photons can scatter in the body, collimator, or detector and be counted in the 364 keV photopeak energy window, resulting in reduced image contrast and degraded quantitative accuracy; these photons are referred to as downscatter. The goal of this study was to develop and evaluate a model-based downscatter compensation method specifically designed for the compensation of high-energy photons emitted by 131I and detected in the imaging energy window. Methods: In the evaluation study, we used a Monte Carlo simulation (MCS) code that had previously been validated for other radionuclides. Thus, in preparation for the evaluation study, we first validated the code for 131I imaging simulation by comparison with experimental data. Next, we assessed the accuracy of the downscatter model by comparing downscatter estimates with MCS results. Finally, we combined the downscatter model with iterative reconstruction-based compensation for attenuation (A) and scatter (S) and the full (D) collimator-detector response of the 364 keV photons to form a comprehensive compensation method. We evaluated this combined method in terms of quantitative accuracy using the realistic 3D NCAT phantom and an activity distribution obtained from patient studies. We compared the accuracy of organ activity estimates in images reconstructed with and without addition of downscatter compensation from projections with and without downscatter contamination. Results: We observed that the proposed method provided substantial improvements in accuracy compared to no downscatter compensation and had accuracies comparable to reconstructions from projections without downscatter contamination. Conclusions: The results demonstrate that the proposed model-based downscatter compensation method is effective and may have a role in quantitative 131I imaging. PMID:21815394
Spillover Compensation in the Presence of Respiratory Motion Embedded in SPECT Perfusion Data
NASA Astrophysics Data System (ADS)
Pretorius, P. Hendrik; King, Michael A.
2008-02-01
Spillover from adjacent significant accumulations of extra-cardiac activity decreases diagnostic accuracy of SPECT perfusion imaging in especially the inferior/septal cardiac region. One method of compensating for the spillover at some location outside of a structure is to estimate it as the counts blurred into this location when a template (3D model) of the structure undergoes simulated imaging followed by reconstruction. The objective of this study was to determine what impact uncorrected respiratory motion has on such spillover compensation of extra-cardiac activity in the right coronary artery (RCA) territory, and if it is possible to use manual segmentation to define the extra-cardiac activity template(s) used in spillover correction. Two separate MCAT phantoms (1283 matrices) were simulated to represent the source and attenuation distributions of patients with and without respiratory motion. For each phantom the heart was modeled: 1) with a normal perfusion pattern and 2) with an RCA defect equal to 50% of the normal myocardium count level. After Monte Carlo simulation of 64times64times120 projections with appropriate noise, data were reconstructed using the rescaled block iterative (RBI) algorithm with 30 subsets and 5 iterations with compensation for attenuation, scatter and resolution. A 3D Gaussian post-filter with a sigma of 0.476 cm was used to suppress noise. Manual segmentation of the liver in filtered emission slices was used to create 3D binary templates. The true liver distribution (with and without respiratory motion included) was also used as binary templates. These templates were projected using a ray-driven projector simulating the imaging system with the exclusion of Compton scatter and reconstructed using the same protocol as for the emission data, excluding scatter compensation. Reconstructed templates were scaled using reconstructed emission count levels from the liver, and spillover subtracted outside the template. It was evident from the polar maps that the manually segmented template reconstructions were unable to remove all the spillover originating in the liver from the inferior wall. This was especially noticeable when a perfusion defect is present. Templates based on the true liver distribution appreciably improved spillover correction. Thus the emerging combined SPECT/CT technology may play a vital role in identifying and segmenting extra-cardiac structures more reliably thereby facilitating spillover correction. This study also indicates that compensation for respiratory motion might play an important role in spillover compensation.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
NASA Astrophysics Data System (ADS)
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
NASA Technical Reports Server (NTRS)
Green, Robert S.; Carson, George T., Jr.
1987-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.
NASA Astrophysics Data System (ADS)
Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.
2016-08-01
The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.
An alternating pressure sequence proposal for an air-cell cushion for preventing pressure ulcers.
Arias, Sandra; Cardiel, Eladio; Rogeli, Pablo; Mori, Taketoshi; Nakagami, Gojiro; Noguchi, Hiroshi; Sanada, Hiromi
2014-01-01
The distribution and release of pressure on ischial regions are two important parameters for evaluating the effectiveness of a cushion; especially the release of pressure over time on ischial tuberosities, which is significant for preventing pressure ulcers. The aim of this work is to evaluate the effect on interface pressure through the application of a proposed alternating pressure sequence for an air-cell cushion. Six healthy volunteers were asked to sit on the air cell cushion, in static and alternating modes, as well as on a typical foam cushion for 12 minutes. Interface pressure was monitored with a matrix sensor system. Interface pressure values on ischial tuberosities, user contact area and pressure distribution were analyzed. Results showed that IP on IT tends to increase in both foam and static cushions, while in alternating cushion IP on IT tends to decrease. User contact area was significantly larger in alternating cushion than in static or foam cushions. Moreover, there is a better pressure re-distribution with alternating cushion than with the other cushions. The goal of the alternating sequence is to redistribute pressure and stimulate the ischial regions in order to promote blood flow and prevent pressure occurring in wheelchair users.
In need of remedy: US policy for compensating injured research participants.
Pike, Elizabeth R
2014-03-01
There is an emerging ethical consensus that injured research participants should receive medical care and compensation for their research-related injuries. This consensus is premised on notions of beneficence, distributive justice, compensatory justice and reciprocity. In response, countries around the world have implemented no-fault compensation systems to ensure that research participants are adequately protected in the event of injury. The United States, the world's leading sponsor of research, has chosen instead to rely on its legal system to provide injured research participants with medical care and compensation. This article argues that US reliance on its legal system leaves injured research participants unprotected in the event of injury. Nearly every injured research participant will have difficulty receiving compensation in court, and certain classes of research participants will be barred from receiving compensation altogether. The United States' outlier status also threatens to impede US-sponsored multinational research, potentially delaying important biomedical advances. To rectify this injustice, researchers, Institutional Review Boards, sponsors and research institutions should advocate systematic no-fault compensation in the United States to bring US law into accord with global ethical norms and ensure that injured research participants are adequately protected.
Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background
NASA Astrophysics Data System (ADS)
Saari, Mohd Mawardi; Che Lah, Nurul Akmal; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji
2018-04-01
The static and dynamic magnetizations of low concentrated multi-core iron oxide nanoparticles solutions were investigated by a specially developed high-Tc Superconducting Quantum Interference Device (SQUID) magnetometer. The size distribution of iron oxide cores was determined from static magnetization curves concerning different concentrations. The simulated harmonics distribution was compared to the experimental results. Effect of the diamagnetic background from carrier liquid to harmonics distribution was investigated with respect to different intensity and position of peaks in the magnetic moment distribution using a numerical simulation. It was found that the diamagnetic background from carrier liquid of iron oxide nanoparticles affected the harmonics distribution as their concentration decreased and depending on their magnetic moment distribution. The first harmonic component was susceptible to the diamagnetic contribution of carrier liquid when the concentration was lower than 24 μg/ml. The second and third harmonics were affected when the peak position of magnetic moment distribution was smaller than m = 10-19 Am2 and the concentration was 10 ng/ml. A highly sensitive detection up to sub-nanogram of iron oxide nanoparticles in solutions can be achieved by utilizing second and third harmonic components.
Occupational health nursing interventions to reduce third-party liability in workplace injuries.
Delk, Kayla L
2012-03-01
This article explores general principles of workers' compensation law and the ability to sue third parties for employee injuries by using case law and the treatise Larson's Workers' Compensation Law. This overview provides occupational health nurses with a background on workers' compensation law, who is liable for employee injuries, and how recovery from third parties is distributed between the employer or insurer and the employee. The author then explores interventions that occupational health nurses can implement to reduce employee injury and employer costs for providing workers' compensation. The goal of this article is to stimulate occupational health nurses' critical-thinking and problem-solving skills so they may identify risks and implement cost-effective solutions that will prevent injuries to employees. Copyright 2012, SLACK Incorporated.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.
1979-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model were determined. The effects of nozzle power setting and horizontal tail deflection angle on the pressure coefficient distributions were investigated.
A Planar Quasi-Static Constraint Mode Tire Model
2015-07-10
strikes a balance between simple tire models that lack the fidelity to make accurate chassis load predictions and computationally intensive models that...strikes a balance between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load predictions...UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris
SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakeman, T; Wang, I; Podgorsak, M
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CTmore » data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less
Denzin, Nicolai; Gerdes, Ursula
2015-01-01
One of the tasks of the livestock disease compensation funds of the federal states in Germany is the financial compensation of livestock holders for livestock losses and costs incurred for disease control measures due to certain diseases. Usually, one half of these services are financed through financial reserves built up with the contributions paid by the owners of the respective animal species. The other half is covered by the federal state itself. But there is hardly any reference to how to calculate aforementioned financial reserves. Basically, following an approach presented recently regarding estimations concerning the compensation fund of the federal state of Saxony-Anhalt, in a stochastic modeling of the required reserves concerning the fund of Lower Saxony the anticipated costs within the spatial restriction zones allocated to outbreaks were incorporated for the first time. The overall costs (including the federal state's stakes), the share of the comnensation fund (required reserves) and the the partial costs for a total of 25 categories and subcategories and subcategories of livestock species making up the latter were estimated. It became evident that overall costs/the share of the fund were particularly determined among the diseases by foot-and-mouth disease and among the cost factors by the costs incurred for the compensation of livestock value within the areas surrounding the outbreaks in which all susceptible animals are killed (culling zone). The 80th, 90 and 95th percentile of the established probability distribution of the overall costs referred to a financial volume of about 312, 409 and 540 million euro, while the respective percentiles of the probability distribution of the required reserves of the compensation fund amounted to 175, 225 and 296 million euro.
Yao, Xiayuan; Liang, Bingyuan; Bai, Ming
2017-09-18
In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.
Lee, Min-Young; Han, Bin; Jenkins, Cesare; Xing, Lei; Suh, Tae-Suk
2016-01-01
Purpose: The purpose of total body irradiation (TBI) techniques is to deliver a uniform radiation dose to the entire volume of a patient’s body. Due to variations in the thickness of the patient, it is difficult to produce such a uniform dose distribution throughout the body. In many techniques, a compensator is used to adjust the dose delivered to various sections of the patient. The current study aims to develop and validate an innovative method of using depth-sensing cameras and 3D printing techniques for TBI treatment planning and compensator fabrication. Methods: A tablet with an integrated depth-sensing camera and motion tracking sensors was used to scan a RANDO™ phantom positioned in a TBI treatment booth to detect and store the 3D surface in a point cloud format. The accuracy of the detected surface was evaluated by comparing extracted body thickness measurements with corresponding measurements from computed tomography (CT) scan images. The thickness, source to surface distance, and off-axis distance of the phantom at different body section were measured for TBI treatment planning. A detailed compensator design was calculated to achieve a uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding, and a mixture of wax and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors. Results: The scan of the phantom took approximately 30 s. The mean error for thickness measurements at each section of phantom relative to CT was 0.48 ± 0.27 cm. The average fabrication error for the 3D-printed compensator was 0.16 ± 0.15 mm. In vivo measurements for an end-to-end test showed that overall dose differences were within 5%. Conclusions: A technique for planning and fabricating a compensator for TBI treatment using a depth camera equipped tablet and a 3D printer was demonstrated to be sufficiently accurate to be considered for further investigation. PMID:27806603
Predicting the stability of nanodevices
NASA Astrophysics Data System (ADS)
Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.
2011-05-01
A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.
Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel
2015-12-15
Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurz, Christopher, E-mail: christopher.kurz@physik.uni-muenchen.de; Bauer, Julia; Unholtz, Daniel
2016-02-15
Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolvedmore » (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.« less
NASA Astrophysics Data System (ADS)
Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.
2017-04-01
Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.
Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients
Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.
2011-01-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614
Quantification and compensation of eddy-current-induced magnetic-field gradients.
Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R
2011-09-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.
Active optics null test system based on a liquid crystal programmable spatial light modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ares, Miguel; Royo, Santiago; Sergievskaya, Irina
2010-11-10
We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack-Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM's phase response at 635 nmmore » and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below {lambda}/18 for spherical wavefronts with peak-to-valley heights of up to 78.7{lambda}, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed.« less
Error analysis and experiments of attitude measurement using laser gyroscope
NASA Astrophysics Data System (ADS)
Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao
2018-03-01
The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.
Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.
2013-03-01
Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Bergman, Arik; Langer, Tomi; Tur, Moshe
2017-03-06
A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.
Precise and Efficient Static Array Bound Checking for Large Embedded C Programs
NASA Technical Reports Server (NTRS)
Venet, Arnaud
2004-01-01
In this paper we describe the design and implementation of a static array-bound checker for a family of embedded programs: the flight control software of recent Mars missions. These codes are large (up to 250 KLOC), pointer intensive, heavily multithreaded and written in an object-oriented style, which makes their analysis very challenging. We designed a tool called C Global Surveyor (CGS) that can analyze the largest code in a couple of hours with a precision of 80%. The scalability and precision of the analyzer are achieved by using an incremental framework in which a pointer analysis and a numerical analysis of array indices mutually refine each other. CGS has been designed so that it can distribute the analysis over several processors in a cluster of machines. To the best of our knowledge this is the first distributed implementation of static analysis algorithms. Throughout the paper we will discuss the scalability setbacks that we encountered during the construction of the tool and their impact on the initial design decisions.
Boundary control for a flexible manipulator based on infinite dimensional disturbance observer
NASA Astrophysics Data System (ADS)
Jiang, Tingting; Liu, Jinkun; He, Wei
2015-07-01
This paper focuses on disturbance observer and boundary control design for the flexible manipulator in presence of both boundary disturbance and spatially distributed disturbance. Taking the infinite-dimensionality of the flexural dynamics into account, this study proposes a partial differential equation (PDE) model. Since the spatially distributed disturbance is infinite dimensional, it cannot be compensated by the typical disturbance observer, which is designed by finite dimensional approach. To estimate the spatially distributed disturbance, we propose a novel infinite dimensional disturbance observer (IDDO). Applying the IDDO as a feedforward compensator, a boundary control scheme is designed to regulate the joint position and eliminate the elastic vibration simultaneously. Theoretical analysis validates the stability of both the proposed disturbance observer and the boundary controller. The performance of the closed-loop system is demonstrated by numerical simulations.
2018 Military Retirement Options: An Expected Net Present Value Decision Analysis Model
2017-03-23
Decision Analysis Model Bret N. Witham Follow this and additional works at: https://scholar.afit.edu/etd Part of the Benefits and Compensation Commons...FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...Science in Operations Research Bret N. Witham, BS Captain, USAF March 2017 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
Thermal solitons as revealed by the static structure factor
NASA Astrophysics Data System (ADS)
Gawryluk, Krzysztof; Brewczyk, Mirosław; Rzążewski, Kazimierz
2017-04-01
We study, within a framework of the classical fields approximation, the static structure factor of a weakly interacting Bose gas at thermal equilibrium. As in a recent experiment [R. Schley et al., Phys. Rev. Lett. 111, 055301 (2013), 10.1103/PhysRevLett.111.055301], we find that the thermal distribution of phonons in a three-dimensional Bose gas follows the Planck distribution. On the other hand we find a disagreement between the Planck and phonon (calculated just as for the bulk gas) distributions in the case of elongated quasi-one-dimensional systems. We attribute this discrepancy to the existence of spontaneous dark solitons [i.e., thermal solitons as reported in T. Karpiuk et al., Phys. Rev. Lett. 109, 205302 (2012), 10.1103/PhysRevLett.109.205302] in an elongated Bose gas at thermal equilibrium.
NASA Technical Reports Server (NTRS)
Braddock, W. F.; Streby, G. D.
1977-01-01
The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Carson, G. T., Jr.
1984-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model was determined in the 16 foot transonic tunnel for Mach numbers from 0.60 to 1.20, angles of attack from -2 deg to 7 deg and ratio of jet total pressure to free stream static pressure from 1 up to about 7, depending on Mach number. The effects of nozzle geometry and horizontal tail deflection on the pressure distributions were investigated. Boundary layer total pressure profiles were determined at two locations ahead of the nozzles on the top nacelle surface. Reynolds number varied from about 1.0 x 10 to the 7th power per meter, depending on Mach number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Hollebeek, R; Teo, B
2014-06-15
Purpose: Quality Assurance (QA) measurements of proton therapy fields must accurately measure steep longitudinal dose gradients as well as characterize the dose distribution laterally. Currently, available devices for two-dimensional field measurements perturb the dose distribution such that routine QA measurements performed at multiple depths require multiple field deliveries and are time consuming. Methods: A design procedure for a two-dimensional detector array is introduced whereby the proton energy loss and scatter are adjusted so that the downstream dose distribution is maintained to be equivalent to that which would occur in uniform water. Starting with the design for an existing, functional two-dimensionalmore » segmented ion chamber prototype, a compensating material is introduced downstream of the detector to simultaneously equate the energy loss and lateral scatter in the detector assembly to the values in water. An analytic formalism and procedure is demonstrated to calculate the properties of the compensating material in the general case of multiple layers of arbitrary material. The resulting design is validated with Monte Carlo simulations. Results: With respect to the specific prototype design considered, the results indicate that a graphite compensating layer of the proper dimensions can yield proton beam range perturbation less than 0.1mm and beam sigma perturbation less than 2% across the energy range of therapeutic proton beams. Conclusion: We have shown that, for a 2D gas-filled detector array, a graphite-compensating layer can balance the energy loss and multiple Coulomb scattering relative to uniform water. We have demonstrated an analytic formalism and procedure to determine a compensating material in the general case of multiple layers of arbitrary material. This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-04-2-0022. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.« less
Electronic compensation technique to deliver a total body dose
NASA Astrophysics Data System (ADS)
Lakeman, Tara E.
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.
NASA Astrophysics Data System (ADS)
Kagoshima, Yasushi; Miyagawa, Takamasa; Kagawa, Saki; Takeda, Shingo; Takano, Hidekazu
2017-08-01
The intensity distribution in phase space of an X-ray synchrotron radiation beamline was measured using a pinhole camera method, in order to verify astigmatism compensation by a Fresnel zone plate focusing optical system. The beamline is equipped with a silicon double crystal monochromator. The beam size and divergence at an arbitrary distance were estimated. It was found that the virtual source point was largely different between the vertical and horizontal directions, which is probably caused by thermal distortion of the monochromator crystal. The result is consistent with our astigmatism compensation by inclining a Fresnel zone plate.
Asymmetric dee-voltage compensation of beam off-centering in the milan superconducting cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milinkovic, Lj.; Fabrici, E.; Ostojic, R.
1985-10-01
An analysis of the effects of orbit off-centering on the beam extraction in the Milan superconducting cyclotron is made, and the sensitivity of axial beam loss and radial phase space distortions to beam off-centering determined for various acceleration conditions. We conclude that the first field harmonic compensation of beam off-centering is ineffective in the region of the operating diagram where the Walkinshaw resonance precedes the ..nu.. /SUB r/ =1 resonance. Asymmetric dee-voltage compensation is considered in these cases, and the domain of validity of the method determined. A semi-empirical relation for dee-voltage distribution is deduced, and the extraction efficiency discussed.
NASA Astrophysics Data System (ADS)
Wruck, D.; Knauer, A.
1988-11-01
A comparison was made of the distributions of Sn and of the chalcogens S and Se in InP and GaAs, determined from infrared absorption and the Hall effect. An analysis was made of the possible cause of the difference between the values of the degree of compensation determined by the two methods.
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Zhang, Ye; Qin, Yuliang
2018-01-01
Imaging, classification, and recognition techniques of ballistic targets in midcourse have always been the focus of research in the radar field for military applications. However, the high velocity translation of ballistic targets will subject range profile and Doppler to translation, slope, and fold, which are especially severe in the terahertz region. Therefore, a two-step translation compensation method based on envelope alignment is presented. The rough compensation is based on the traditional envelope alignment algorithm in inverse synthetic aperture radar imaging, and the fine compensation is supported by distance fitting. Then, a wideband imaging radar system with a carrier frequency of 0.32 THz is introduced, and an experiment on a precession missile model is carried out. After translation compensation with the method proposed in this paper, the range profile and the micro-Doppler distributions unaffected by translation are obtained, providing an important foundation for the high-resolution imaging and micro-Doppler extraction of the terahertz radar.
Gao, Changwei; Liu, Xiaoming; Chen, Hai
2017-08-22
This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.
Repelling, binding, and oscillating of two-particle discrete-time quantum walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghao; Li, Zhi-Jian, E-mail: zjli@sxu.edu.cn
In this paper, we investigate the effects of particle–particle interaction and static force on the propagation of probability distribution in two-particle discrete-time quantum walk, where the interaction and static force are expressed as a collision phase and a linear position-dependent phase, respectively. It is found that the interaction can lead to boson repelling and fermion binding. The static force also induces Bloch oscillation and results in a continuous transition from boson bunching to fermion anti-bunching. The interplays of particle–particle interaction, quantum interference, and Bloch oscillation provide a versatile framework to study and simulate many-particle physics via quantum walks.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
Static aeroelastic behavior of a subsonic plate wing
NASA Astrophysics Data System (ADS)
Berci, M.
2017-07-01
The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.
A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide
Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei
2017-01-01
Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system. PMID:28218673
NASA Astrophysics Data System (ADS)
Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan
2006-12-01
A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low resistivity (0.59Ωcm) and highly p-type (1.2×1018cm-3 holes) Mg-doped GaN.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
A Static Burst Test for Composite Flywheel Rotors
NASA Astrophysics Data System (ADS)
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
Mach 6 flow field surveys beneath the forebody of an airbreathing missile
NASA Technical Reports Server (NTRS)
Johnson, P. J.; Hunt, J. L.
1986-01-01
Wall static, local stream static, and pitot pressure surveys were made on the windward side of a hypersonic airbreathing missile at full-scale length Reynolds numbers. In the inviscid part of the flow field, the experimental massflow ratios agreed with trends predicted by a three-dimensional method-of-characteristics solution. At a longitudinal station 3.5 diameters downstrea of the nose, the boundary layer was transitional or turbulent at zero incidence but became laminar as the angle of attack increased. The bell-shaped distribution of the boundary layer across the width of the body affected the mass flow distribution out to the bow shock and decreased the mass flow available the engine inlet.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.; Winkler, G. W.
1975-01-01
Static pressure distributions for the external tank (ET) at reentry conditions are presented. Basic configuration of the model was the MCR 0200 ET modified to include a rectangular crossbar at the aft ET/orbiter attach point. Mach numbers were 1.96, 3.48, and 4.96. Reynolds number per foot at these Mach numbers were 6.95 million, 6.42 million, and 4.95 million, respectively. Angle of attack range was -8 to 100 degrees and roll angle was 0 to 315 degrees.
Novel wavelength diversity technique for high-speed atmospheric turbulence compensation
NASA Astrophysics Data System (ADS)
Arrasmith, William W.; Sullivan, Sean F.
2010-04-01
The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.
Performance Prediction of a Synchronization Link for Distributed Aerospace Wireless Systems
Shao, Huaizong
2013-01-01
For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link. PMID:23970828
Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure
NASA Astrophysics Data System (ADS)
Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.
2012-02-01
In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2013-09-01
In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.
NASA Astrophysics Data System (ADS)
Urano, S.; Hiramatsu, Y.; Yamada, T.
2013-12-01
The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other inland earthquakes in Japan (Ito et al., 2005; Iio et al., 2006) and independent of the seismic moment. We then compare the values with the coseismic slip distribution of the main shock reported by Horikawa (2008). If we define large slip areas as areas with a slip exceeding 1 m, the average value of static stress drop is 12×2.3 (MPa) in the area. On the other hand, the average value is 5.7×0.9 (MPa) outside the large slip area. These results suggest that aftershocks in the large slip area likely have larger values of static stress drop, which would reflect the spatial heterogeneity of shear strength and dynamic stress level. Our results are coincident with the result of Yamada et al. (2010).
Tutorial videos of bioinformatics resources: online distribution trial in Japan named TogoTV.
Kawano, Shin; Ono, Hiromasa; Takagi, Toshihisa; Bono, Hidemasa
2012-03-01
In recent years, biological web resources such as databases and tools have become more complex because of the enormous amounts of data generated in the field of life sciences. Traditional methods of distributing tutorials include publishing textbooks and posting web documents, but these static contents cannot adequately describe recent dynamic web services. Due to improvements in computer technology, it is now possible to create dynamic content such as video with minimal effort and low cost on most modern computers. The ease of creating and distributing video tutorials instead of static content improves accessibility for researchers, annotators and curators. This article focuses on online video repositories for educational and tutorial videos provided by resource developers and users. It also describes a project in Japan named TogoTV (http://togotv.dbcls.jp/en/) and discusses the production and distribution of high-quality tutorial videos, which would be useful to viewer, with examples. This article intends to stimulate and encourage researchers who develop and use databases and tools to distribute how-to videos as a tool to enhance product usability.
Tutorial videos of bioinformatics resources: online distribution trial in Japan named TogoTV
Kawano, Shin; Ono, Hiromasa; Takagi, Toshihisa
2012-01-01
In recent years, biological web resources such as databases and tools have become more complex because of the enormous amounts of data generated in the field of life sciences. Traditional methods of distributing tutorials include publishing textbooks and posting web documents, but these static contents cannot adequately describe recent dynamic web services. Due to improvements in computer technology, it is now possible to create dynamic content such as video with minimal effort and low cost on most modern computers. The ease of creating and distributing video tutorials instead of static content improves accessibility for researchers, annotators and curators. This article focuses on online video repositories for educational and tutorial videos provided by resource developers and users. It also describes a project in Japan named TogoTV (http://togotv.dbcls.jp/en/) and discusses the production and distribution of high-quality tutorial videos, which would be useful to viewer, with examples. This article intends to stimulate and encourage researchers who develop and use databases and tools to distribute how-to videos as a tool to enhance product usability. PMID:21803786
Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle
NASA Technical Reports Server (NTRS)
Springer, A. M.; Pokora, D. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.
Xu, Di; Chai, Meiyun; Dong, Zhujun; Rahman, Md Maksudur; Yu, Xi; Cai, Junmeng
2018-06-04
The kinetic compensation effect in the logistic distributed activation energy model (DAEM) for lignocellulosic biomass pyrolysis was investigated. The sum of square error (SSE) surface tool was used to analyze two theoretically simulated logistic DAEM processes for cellulose and xylan pyrolysis. The logistic DAEM coupled with the pattern search method for parameter estimation was used to analyze the experimental data of cellulose pyrolysis. The results showed that many parameter sets of the logistic DAEM could fit the data at different heating rates very well for both simulated and experimental processes, and a perfect linear relationship between the logarithm of the frequency factor and the mean value of the activation energy distribution was found. The parameters of the logistic DAEM can be estimated by coupling the optimization method and isoconversional kinetic methods. The results would be helpful for chemical kinetic analysis using DAEM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed parameter statics of magnetic catheters.
Tunay, Ilker
2011-01-01
We discuss how to use special Cosserat rod theory for deriving distributed-parameter static equilibrium equations of magnetic catheters. These medical devices are used for minimally-invasive diagnostic and therapeutic procedures and can be operated remotely or controlled by automated algorithms. The magnetic material can be lumped in rigid segments or distributed in flexible segments. The position vector of the cross-section centroid and quaternion representation of an orthonormal triad are selected as DOF. The strain energy for transversely isotropic, hyperelastic rods is augmented with the mechanical potential energy of the magnetic field and a penalty term to enforce the quaternion unity constraint. Numerical solution is found by 1D finite elements. Material properties of polymer tubes in extension, bending and twist are determined by mechanical and magnetic experiments. Software experiments with commercial FEM software indicate that the computational effort with the proposed method is at least one order of magnitude less than standard 3D FEM.
Optimum performance of hovering rotors
NASA Technical Reports Server (NTRS)
Wu, J. C.; Goorjian, P. M.
1972-01-01
A theory for the optimum performance of a rotor hovering out of ground effect is developed. The performance problem is formulated using general momentum theory for an infinitely bladed rotor, and the effect of a finite number of blades is estimated. The analysis takes advantage of the fact that a simple relation exists between the radial distributions of static pressure and angular velocity in the ultimate wake, far downstream of the rotor, since the radial velocity vanishes there. This relation permits the establishment of an optimum performance criterion in terms of the ultimate wake velocities by introducing a small local perturbation of the rotational velocity and requiring the resulting ratio of thrust and power changes to be independent of the radial location of the perturbation. This analysis fully accounts for the changes in static pressure distribution and axial velocity distribution throughout the wake as the result of the local perturbation of the rotational velocity component.
Beaked Whale Habitat Characterization and Prediction
2005-09-30
trying to develop a better understanding of beaked whale distribution. For long - range planning, the static habitat prediction maps provide a broad... whale presence ranged from 79.3% to 100.0% for the static models and 85.7% to 94.5% for the dynamic models. Beaked whale habitat prediction has been...submerged for such long periods of time that there is a high probability that they will never surface within the visual range of observers aboard a
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
Functional asymmetry of gait in children and youth with low-grade scoliosis.
Nowotny-Czupryna, Olga; Nowotny, Janusz; Brzek, Anna; Czupryna, Krzysztof
2006-04-28
Background. Compensation for abnormal alignment of body parts in scoliosis may occur above or below the pelvis. This manifests as dislocation of body parts or changes in the angular composition of the lower limbs. Compensation for unbalanced body arrangement through changes in pelvic tilt and lower limb joints are typically reflected in the gait pattern of the person with scoliosis. The aim of our research was to determine whether and how improper body arrangement in the frontal plane is reflected in the gait pattern of children and youth with lower degree scolioses. Material and method. Children and youth with scolioses of varying grade were examined. In addition to photogrammetric body posture examination, three-dimensional gait analysis was performed during particular gait phases. For each examined child the results of this analysis were compared to the posture parameters. Results. Varying signs of gait asymmetry were observed in the whole group of children and youth with scoliosis. The symptoms were connected with both general gait attributes (unisommetry and unisochrony) and further gait markers. The most obvious changes were observed in pelvis rotation during the swing phase and excessive pelvis elevation during the mid-stance phase. These deviations did not correlate significantly with the results of the static examination. Conclusions. The gait asymmetries observed in children and youth with low-grade scoliosis are non-specific, and probably depend on the individual capabilities of each person to compensate for deficiencies.
Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography
Liu, J.; Xia, J.; Chen, C.; Zhang, G.
2005-01-01
The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.
NASA Astrophysics Data System (ADS)
Patton, Howard J.; Bonner, Jessie L.; Gupta, Indra N.
2005-12-01
Near-field seismograms of chemical explosions detonated as part of the 1997 depth-of-burial (DOB) experiment at the former Semipalatinsk nuclear test site provide an excellent opportunity to study the excitation of Rg waves for source effects. Rg waves were identified with particle-motion analysis and isolated from other arrivals using group velocity filtering. Amplitude and phase spectra of Rg waves were corrected for path effects based on observed attenuation in the near-field and path-specific phase velocity models. The path-corrected spectra were inputs to a grid-search method for finding source parameters of an axisymmetric source consisting of a monopole plus a compensated linear vector dipole (CLVD) or a horizontal tensile crack. The suite of observations, including ground-zero accelerograms and geophysical data from borehole logs, are best satisfied by models involving a CLVD with static (zero-frequency) seismic moment Mo. The CLVD source is related to tensile failure occurring at depths above the shotpoint. A static Mo distinguishes this source from classical models of spall, which are usually characterized by horizontal cracks that dynamically open and close with no permanent displacement (i.e. no static Mo). The CLVD source in this study appears to be more closely related to a driven block motion model envisaged by Masse. Rg source amplitudes are consistent with mb(Lg) measurements at station MAK, as would be expected if near-field Rg-to-S scattering plays a role in generating S waves observed at regional distances.
Human ocular torsion during parabolic flights: an analysis with scleral search coil
NASA Technical Reports Server (NTRS)
Cheung, B. S.; Money, K.; Howard, I.; Kirienko, N.; Johnson, W.; Lackner, J.; Dizio, P.; Evanoff, J.
1992-01-01
Rotation of the eyes about the visual axis is known as ocular torsion. A lateral inclination (a "roll") of the head induces ocular torsion in the opposite direction, a response known as ocular counterrolling. For six subjects, we recorded the static (head still) and dynamic (head in oscillatory roll motion) ocular torsion in normal 1 g condition and also during the microgravity and hypergravity periods of parabolic flight, using the electromagnetic scleral search coil technique. With the head still, the direction and magnitude of torsion that occurred in response to microgravity and hypergravity differed substantially from one individual to another, but there was a significant difference in torsional magnitude between the microgravity and hypergravity periods, for all static head positions including the upright position. Under normal 1 g conditions, counterrolling compensated for about 16% of (voluntary) static head roll, while dynamic counterroll was much larger, up to 36% of head roll at 0.55 Hz. With increasing frequency of head oscillation between 0.33 Hz and 0.55 Hz, the gain of counterrolling increased and there was no change in the phase relationship. The gain of dynamic counterroll (in response to voluntary head rolling) was not significantly less in hypogravity, suggesting that on the ground at these frequencies the contribution of gravity and gravity receptors to this reflex is redundant: this reflex is probably driven by the semicircular canals. In some subjects, the torsional displacement in microgravity is accompanied by micro-torsional oscillatory motion.
Neuromuscular control of lumbar instability following static work of various loads.
Le, Brook; Davidson, Bradley; Solomonow, Deborah; Zhou, Bing He; Lu, Yun; Patel, Vikas; Solomonow, Moshe
2009-01-01
Neuromuscular control of lumbar stability following exposure to prolonged static work, under low and high loads, was assessed in the in vivo feline model. Six sessions of 10 min work at 20N with 10 min between rest was compared to a group subjected to the same protocol but carrying high loads of 60N. Displacement and tension developed in the spine at the instant the multifidus muscles applied stabilizing contractions, and their amplitudes were obtained from their electromyogram (EMG). Significant (P < 0.001) laxity developed in the various viscoelastic tissues of the lumbar spine that did not recover during and up to 7 h of rest postwork. Simultaneously, there was a significant (P < 0.001) decrease in muscular activity in the 3-4 h immediately postwork under low load but only during the first hour in the high load group. After that period the musculature compensated for the laxity of the viscoelastic tissues by a significant (P < 0.001) increase in activity in the high-load group and a nonsignificant increase in the low group. It was concluded that during 1-3 h immediately poststatic work a significant decrease in the stabilizing function of viscoelastic tissues together with a significant decrease in muscular activity is present, and they render the spine unstable and exposed to high risk of injury. Performance of prolonged static work under low loads, while not harmful during the work, cannot be designated as a "no-risk" condition, as it may result in injury postwork.
Advanced linear and nonlinear compensations for 16QAM SC-400G unrepeatered transmission system
NASA Astrophysics Data System (ADS)
Zhang, Junwen; Yu, Jianjun; Chien, Hung-Chang
2018-02-01
Digital signal processing (DSP) with both linear equalization and nonlinear compensations are studied in this paper for the single-carrier 400G system based on 65-GBaud 16-quadrature amplitude modulation (QAM) signals. The 16-QAM signals are generated and pre-processed with pre-equalization (Pre-EQ) and Look-up-Table (LUT) based pre-distortion (Pre-DT) at the transmitter (Tx)-side. The implementation principle of training-based equalization and pre-distortion are presented here in this paper with experimental studies. At the receiver (Rx)-side, fiber-nonlinearity compensation based on digital backward propagation (DBP) are also utilized to further improve the transmission performances. With joint LUT-based Pre-DT and DBP-based post-compensation to mitigate the opto-electronic components and fiber nonlinearity impairments, we demonstrate the unrepeatered transmission of 1.6Tb/s based on 4-lane 400G single-carrier PDM-16QAM over 205-km SSMF without distributed amplifier.
Yamauchi, Takashi; Sasaki, Takeshi; Yoshikawa, Toru; Matsumoto, Shun; Takahashi, Masaya; Suka, Machi; Yanagisawa, Hiroyuki
2018-04-01
This study aimed to clarify whether work-related adverse events in cases involving compensation for mental disorders and suicide differ by sex and industry using a database containing all relevant cases reported from 2010 to 2014 in Japan. A total of 1362 eligible cases involving compensation for mental disorders (422 females and 940 males) were analyzed. Among males, 55.7% of cases were attributed to "long working hours." In both sexes, the frequencies of cases attributed to "long working hours" and other events differed significantly by industry. Among cases involving compensation for suicide, 71.4% were attributed to "long working hours." The frequency distribution of work-related adverse events differed significantly by sex and industry. These differences should be taken into consideration in the development of industry-specific preventive measures for occupational mental disorders.
Kim, Kyoo Sang
2010-01-01
Occupational asthma (OA) is the leading occupational respiratory disease. Cases compensated as OA by the Korea Workers' Compensation and Welfare Service (COMWEL) (218 cases), cases reported by a surveillance system (286 cases), case reports by related scientific journals and cases confirmed by the Occupational Safety and Health Research Institute (OSHRI) over 15 yr from 1992 to 2006 were analyzed. Annual mean incidence rate was 1.6 by compensation and 3.5 by surveillance system, respectively. The trend appeared to increase according to the surveillance system. Incidence was very low compared with other countries. The most frequently reported causative agent was isocyanate followed by reactive dye in dyeing factories. Other chemicals, metals and dust were also found as causative agents. OA was underreported according to compensation and surveillance system data. In conclusion, a more effective surveillance system is needed to evaluate OA causes and distribution, and to effectively prevent newly developing OA. PMID:21258586
El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony
1992-01-01
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.
El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.
1992-07-28
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.
Static shape control for flexible structures
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.
The education, role, distribution, and compensation of physician assistants in orthopedic surgery.
Chalupa, Robyn L; Hooker, Roderick S
2016-05-01
Physician assistants (PAs) have worked alongside surgeons since the 1970s, yet little is known about their postgraduate education, roles, distribution, and compensation. In 2015, an estimated 8,900 PAs were employed in orthopedics (9.4% of all clinically active PAs in the United States). This study analyzed surveys undertaken by Physician Assistants in Orthopaedic Surgery (PAOS) from 2009 to 2015 and found that most PAs working in orthopedics (85%) reported regularly assisting in surgery. Demand for PAs in orthopedics is expected to grow because of population growth, increasing incidence of musculoskeletal conditions, shortages of surgeons, and changing technology. Improved data acquisition and more detailed analyses are needed to better understand the nature of this specialized workforce.
Using ultrasound CBE imaging without echo shift compensation for temperature estimation.
Tsui, Po-Hsiang; Chien, Yu-Ting; Liu, Hao-Li; Shu, Yu-Chen; Chen, Wen-Shiang
2012-09-01
Clinical trials have demonstrated that hyperthermia improves cancer treatments. Previous studies developed ultrasound temperature imaging methods, based on the changes in backscattered energy (CBE), to monitor temperature variations during hyperthermia. Echo shift, induced by increasing temperature, contaminates the CBE image, and its tracking and compensation should normally ensure that estimations of CBE at each pixel are correct. To obtain a simplified algorithm that would allow real-time computation of CBE images, this study evaluated the usefulness of CBE imaging without echo shift compensation in detecting distributions in temperature. Experiments on phantoms, using different scatterer concentrations, and porcine livers were conducted to acquire raw backscattered data at temperatures ranging from 37°C to 45°C. Tissue samples of pork tenderloin were ablated in vitro by microwave irradiation to evaluate the feasibility of using the CBE image without compensation to monitor tissue ablation. CBE image construction was based on a ratio map obtained from the envelope image divided by the reference envelope image at 37°C. The experimental results demonstrated that the CBE image obtained without echo shift compensation has the ability to estimate temperature variations induced during uniform heating or tissue ablation. The magnitude of the CBE as a function of temperature obtained without compensation is stronger than that with compensation, implying that the CBE image without compensation has a better sensitivity to detect temperature. These findings suggest that echo shift tracking and compensation may be unnecessary in practice, thus simplifying the algorithm required to implement real-time CBE imaging. Copyright © 2012 Elsevier B.V. All rights reserved.
SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, E; Lucas, D
Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less
The Effect of Framework Design on Stress Distribution in Implant-Supported FPDs: A 3-D FEM Study
Eraslan, Oguz; Inan, Ozgur; Secilmis, Asli
2010-01-01
Objectives: The biomechanical behavior of the superstructure plays an important role in the functional longevity of dental implants. However, information about the influence of framework design on stresses transmitted to the implants and supporting tissues is limited. The purpose of this study was to evaluate the effects of framework designs on stress distribution at the supporting bone and supporting implants. Methods: In this study, the three-dimensional (3D) finite element stress analysis method was used. Three types of 3D mathematical models simulating three different framework designs for implant-supported 3-unit posterior fixed partial dentures were prepared with supporting structures. Convex (1), concave (2), and conventional (3) pontic framework designs were simulated. A 300-N static vertical occlusal load was applied on the node at the center of occlusal surface of the pontic to calculate the stress distributions. As a second condition, frameworks were directly loaded to evaluate the effect of the framework design clearly. The Solidworks/Cosmosworks structural analysis programs were used for finite element modeling/analysis. Results: The analysis of the von Mises stress values revealed that maximum stress concentrations were located at the loading areas for all models. The pontic side marginal edges of restorations and the necks of implants were other stress concentration regions. There was no clear difference among models when the restorations were loaded at occlusal surfaces. When the veneering porcelain was removed, and load was applied directly to the framework, there was a clear increase in stress concentration with a concave design on supporting implants and bone structure. Conclusions: The present study showed that the use of a concave design in the pontic frameworks of fixed partial dentures increases the von Mises stress levels on implant abutments and supporting bone structure. However, the veneering porcelain element reduces the effect of the framework and compensates for design weaknesses. PMID:20922156
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ning; Gombos, Gergely; Mousavi, Mirrasoul J.
A new fault location algorithm for two-end series-compensated double-circuit transmission lines utilizing unsynchronized two-terminal current phasors and local voltage phasors is presented in this paper. The distributed parameter line model is adopted to take into account the shunt capacitance of the lines. The mutual coupling between the parallel lines in the zero-sequence network is also considered. The boundary conditions under different fault types are used to derive the fault location formulation. The developed algorithm directly uses the local voltage phasors on the line side of series compensation (SC) and metal oxide varistor (MOV). However, when potential transformers are not installedmore » on the line side of SC and MOVs for the local terminal, these measurements can be calculated from the local terminal bus voltage and currents by estimating the voltages across the SC and MOVs. MATLAB SimPowerSystems is used to generate cases under diverse fault conditions to evaluating accuracy. The simulation results show that the proposed algorithm is qualified for practical implementation.« less
Enhanced power quality based single phase photovoltaic distributed generation system
NASA Astrophysics Data System (ADS)
Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.
2016-08-01
This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.
NASA Astrophysics Data System (ADS)
Baek, Tae Hyun
Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.
NASA Astrophysics Data System (ADS)
Nishiyama, Randall T.; Bedard, Alfred J., Jr.
1991-09-01
There are many areas of need for accurate measurements of atmospheric static pressure. These include observations of surface meteorology, airport altimeter settings, pressure distributions around buildings, moving measurement platforms, as well as basic measurements of fluctuating pressures in turbulence. Most of these observations require long-term observations in adverse environments (e.g., rain, dust, or snow). Currently, many pressure measurements are made, of necessity, within buildings, thus involving potential errors of several millibars in mean pressure during moderate winds, accompanied by large fluctuating pressures induced by the structure. In response to these needs, a 'Quad-Disk' pressure probe for continuous, outdoor monitoring purposes was designed which is inherently weather-protected. This Quad-Disk probe has the desirable features of omnidirectional response and small error in pitch. A review of past static pressure probes contrasts design approaches and capabilities.
Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk
NASA Astrophysics Data System (ADS)
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul
2014-01-01
We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.
Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources
NASA Astrophysics Data System (ADS)
Chavan, Govind Sahadeo
This thesis focuses on some of the problems caused by large scale penetration of Renewable Energy Resources within EHV transmission networks, and investigates some approaches in resolving these problems. In chapter 4, a reduced-order model of the 500 kV WECC transmission system is developed by estimating its key parameters from phasor measurement unit (PMU) data. The model was then implemented in RTDS and was investigated for its accuracy with respect to the PMU data. Finally it was tested for observing the effects of various contingencies like transmission line loss, generation loss and large scale penetration of wind farms on EHV transmission systems. Chapter 5 introduces Static Series Synchronous Compensators (SSSC) which are seriesconnected converters that can control real power flow along a transmission line. A new application of SSSCs in mitigating Ferranti effect on unloaded transmission lines was demonstrated on PSCAD. A new control scheme for SSSCs based on the Cascaded H-bridge (CHB) converter configuration was proposed and was demonstrated using PSCAD and RTDS. A new centralized controller was developed for the distributed SSSCs based on some of the concepts used in the CHB-based SSSC. The controller's efficacy was demonstrated using RTDS. Finally chapter 6 introduces the problem of power oscillations induced by renewable sources in a transmission network. A power oscillation damping (POD) controller is designed using distributed SSSCs in NYPA's 345 kV three-bus AC system and its efficacy is demonstrated in PSCAD. A similar POD controller is then designed for the CHB-based SSSC in the IEEE 14 bus system in PSCAD. Both controllers were noted to have significantly damped power oscillations in the transmission networks.
Iorizzo, Dana B.; Riley, Meghan E.; Hayhoe, Mary; Huxlin, Krystel R.
2011-01-01
The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ~80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ~90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. PMID:21414339
Iorizzo, Dana B; Riley, Meghan E; Hayhoe, Mary; Huxlin, Krystel R
2011-05-25
The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tunable multiphoton Rabi oscillations in an electronic spin system
NASA Astrophysics Data System (ADS)
Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.
2011-10-01
We report on multiphoton Rabi oscillations and controlled tuning of a multilevel system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasiharmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, e.g., the six-level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by compensating for the cubic anisotropy with either a precise static-field orientation or a microwave field intensity. Using the rotating-frame approximation, the experiments are explained very well by both an analytical model and a generalized numerical model. The calculated multiphoton Rabi frequencies are in excellent agreement with the experimental data.
Dynamic Characteristics of The DSI-Type Constant-Flow Valves
NASA Astrophysics Data System (ADS)
Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han
Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.
Adaptable Diffraction Gratings With Wavefront Transformation
NASA Technical Reports Server (NTRS)
Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.
2010-01-01
Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.
NASA Technical Reports Server (NTRS)
Elder, D. J.
1975-01-01
An experimental aerodynamic investigation was conducted in the AEDC-VKF Hypervelocity Wind Tunnel (Tunnel F) at a nomial Mach number of 19 to determine hypersonic viscous interaction effects on the space shuttle orbiter. The tests were conducted at an angle of attack of 30 degrees over a free-stream Reynolds number (based on fuselage length) variation from 0.1 to 0.4 million. Viscous interaction parameter was varied from 0.02 to 0.06. Six component static stability force and moment data were measured by an internally compensated internal strain gage balance. Resulting data are presented.
Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems
NASA Technical Reports Server (NTRS)
Marshall, Kenneth L. (Inventor)
2009-01-01
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems
Marshall, Kenneth L [Rochester, NY
2009-02-17
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
A parametric LQ approach to multiobjective control system design
NASA Technical Reports Server (NTRS)
Kyr, Douglas E.; Buchner, Marc
1988-01-01
The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.
Wu, Hong-Zhang; Huang, Wei-Qiu; Yang, Guang; Zhao, Chen-Lu; Wang, Ying-Xia; Cai, Dao-Fei
2013-12-01
Internal floating roof tank has the advantages of external floating roof tank and fixed roof tank and has its own evaporation loss properties. The influences of volatile organic compounds (VOCs) distribution gradient, molecular diffusion, thermal diffusion and forced convection on the evaporation loss of oil were studied in the space of the homemade platform of an internal floating roof tank. The results showed that thermal diffusion with temperature change was the main cause for the static loss in the internal floating roof tank. On this basis, there were some measures for reduction of the evaporation loss and formulas to calculate the evaporation loss of the internal floating roof tank in this research.
Numerical analyses of a rocket engine turbine and comparison with air test data
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.
1992-01-01
The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.
Why and how to compensate living organ donors: ethical implications of the new Australian scheme.
Giubilini, Alberto
2015-05-01
The Australian Federal Government has announced a two-year trial scheme to compensate living organ donors. The compensation will be the equivalent of six weeks paid leave at the rate of the national minimum wage. In this article I analyse the ethics of compensating living organ donors taking the Australian scheme as a reference point. Considering the long waiting lists for organ transplantations and the related costs on the healthcare system of treating patients waiting for an organ, the 1.3 million AUD the Australian Government has committed might represent a very worthwhile investment. I argue that a scheme like the Australian one is sufficiently well designed to avoid all the ethical problems traditionally associated with attaching a monetary value to the human body or to parts of it, namely commodification, inducement, exploitation, and equality issues. Therefore, I suggest that the Australian scheme, if cost-effective, should represent a model for other countries to follow. Nonetheless, although I endorse this scheme, I will also argue that this kind of scheme raises issues of justice in regard to the distribution of organs. Thus, I propose that other policies would be needed to supplement the scheme in order to guarantee not only a higher number of organs available, but also a fair distribution. © 2014 John Wiley & Sons Ltd.
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
NASA Astrophysics Data System (ADS)
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Distributed-effect optical fiber sensors for trusses and plates
NASA Technical Reports Server (NTRS)
Reichard, Karl; Lindner, Douglas K.
1991-01-01
Modal domain optical fiber sensors, or distributed effect sensors, for active vibration suppression in flexible structures are considered. Preliminary modeling results indicate that these sensors can be used to sense vibrations in a flexible beam and the signal can be used to damp vibrations in the beam. Weighted distributed-effect sensors can be used to implement high order compensators with low order functional observers.
Investigation of Shock Diffusers at Mach Number 1.85. 2 - Projecting Double-Shock Cones
1947-06-17
pitot - static rake located as shown in figure 1(a). Total-pressure recoveries were measured for a series of tip projections varied in minimum steps...is shown. The position of the pitot -static rake with which these distributions were .measured is shown in figure 1(a). The data points correspond...Schroeder SUMMARY An Investigation has "been undertaken in the Cleveland 18- by 18-Inch, supersonic tunnel to determine the total-pressure
NASA Astrophysics Data System (ADS)
Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei
2018-04-01
Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity matching condition to achieve cumulative second harmonic generation. This nature also enables the primary Lamb waves excited at a low center frequency to generate static component used for inspecting large-scale structures with micro-scale damages.
Performance analysis of static locking in replicated distributed database systems
NASA Technical Reports Server (NTRS)
Kuang, Yinghong; Mukkamala, Ravi
1991-01-01
Data replication and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. A technique is used that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed database with both shared and exclusive locks.
Rodhouse, Thomas J.; Ormsbee, Patricia C.; Irvine, Kathryn M.; Vierling, Lee A.; Szewczak, Joseph M.; Vierling, Kerri T.
2015-01-01
Landscape keystone structures associated with roosting habitat emerged as regionally important predictors of bat distributions. The challenges of bat monitoring have constrained previous species distribution modelling efforts to temporally static presence-only approaches. Our approach extends to broader spatial and temporal scales than has been possible in the past for bats, making a substantial increase in capacity for bat conservation.
Combining correlative and mechanistic habitat suitability models to improve ecological compensation.
Meineri, Eric; Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Béchet, Arnaud
2015-02-01
Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes on potential species' distributions should provide rigorous science-based tools for compensation planning. Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic models. We show how these models can be used alone or synoptically to improve compensation planning. While correlative models are easier to implement, they tend to ignore underlying ecological processes and lack accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more field data compared to correlative models. Hence we present two approaches which combine both methods for compensation planning, especially in relation to the spatial scale considered. We show how the availability of biological databases and software enabling fast and accurate population projections could be advantageously used to assess ecological compensation requirement efficiently in environmental impact assessments. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles
2016-01-01
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Failure mechanics in low-velocity impacts on thin composite plates
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.
ERIC Educational Resources Information Center
Mitchell, Marlon R.
This research utilizes a survey to gather data about faculty motivation toward distributive education (DE), focusing on the three innermost rings of Don Olcott's Institutional Support Framework: faculty; promotion and tenure, compensation, training, and release time; and faculty senate, deans, president/provost, and chairs. The sample for the…
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
Parise, M.
2018-05-18
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, Vladmir; Backhaus, Scott N.; Chertkov, Michael
Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal Power Flow (OPF), for placement and sizing of Flexible Alternating Current Transmission System (FACTS) devices of the Series Compensation (SC) and Static VAR Compensation (SVC) type. One use of these devices is in resolving the case when the AC OPF solution does not exist because of congestion. Another application is developing a long-term investment strategy for placement and sizing of the SC and SVC devices to reduce operational cost and improve power system operation. SC and SVCmore » devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs devices for multiple scenarios and optimal settings for each scenario simultaneously. Our solution of the nonlinear and nonconvex generalized AC-OPF consists of building a convergent sequence of convex optimizations containing only linear constraints and shows good computational scaling to larger systems. The approach is illustrated on single- and multi-scenario examples of the Matpower case-30 model.« less
FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets
NASA Astrophysics Data System (ADS)
Sharma, Ashwani Kumar; Mittapalli, Ram Kumar; Pal, Yash
2016-09-01
In future electricity markets, flexible alternating current transmission system (FACTS) devices will play key role for providing ancillary services. Since huge cost is involved for the FACTS devices placement in the power system, the cost invested has to be recovered in their life time for the replacement of these devices. The FACTS devices in future electricity markets can act as an ancillary services provider and have to be remunerated. The main contributions of the paper are: (1) investment recovery of FACTS devices during congestion management such as static VAR compensator and unified power flow controller along with thyristor controlled series compensator using non-linear bid curves, (2) the impact of ZIP load model on the FACTS cost recovery of the devices, (3) the comparison of results obtained without ZIP load model for both pool and hybrid market model, (4) secure bilateral transactions incorporation in hybrid market model. An optimal power flow based approach has been developed for maximizing social welfare including FACTS devices cost. The optimal placement of the FACTS devices have been obtained based on maximum social welfare. The results have been obtained for both pool and hybrid electricity market for IEEE 24-bus RTS.
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
NASA Astrophysics Data System (ADS)
Parise, M.
2018-05-01
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.
Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
2018-04-23
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
NASA Astrophysics Data System (ADS)
Jamróz, Paweł; Ligęza, Paweł; Socha, Katarzyna
2012-12-01
The use of measurement apparatus under conditions which differ significantly from those under which the apparatus was adjusted carries the risk of altering the previously determined measurement characteristics. This is of special concern in the case of apparatus which is sensitive to external measurement conditions. Advanced measurement systems are equipped with algorithms which allow the negative effect of unstable environmental conditions on their static characteristics to be compensated for. Meanwhile, the problem of altered dynamic properties of such systems is often neglected. This paper presents a model study in which the effect of variable operational conditions on dynamic response of hot-wire anemometric measurement system in the case of simulated mine flows was investigated. A mathematical model of measurement system able to compensate the negative effect of changes in flow velocity and configuration of measurement apparatus itself on its dynamic properties was developed and investigated. Based on conducted experiments, we have developed an automatic regulation algorithm enabling the transmission band of measurement apparatus to be optimized for measurement conditions prevailing in mine environment.
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.
2015-01-01
Digital holography is technique which includes recording of interference pattern with digital photosensor, processing of obtained holographic data and reconstruction of object wavefront. Increase of signal-to-noise ratio (SNR) of reconstructed digital holograms is especially important in such fields as image encryption, pattern recognition, static and dynamic display of 3D scenes, and etc. In this paper compensation of photosensor light spatial noise portrait (LSNP) for increase of SNR of reconstructed digital holograms is proposed. To verify the proposed method, numerical experiments with computer generated Fresnel holograms with resolution equal to 512×512 elements were performed. Simulation of shots registration with digital camera Canon EOS 400D was performed. It is shown that solo use of the averaging over frames method allows to increase SNR only up to 4 times, and further increase of SNR is limited by spatial noise. Application of the LSNP compensation method in conjunction with the averaging over frames method allows for 10 times SNR increase. This value was obtained for LSNP measured with 20 % error. In case of using more accurate LSNP, SNR can be increased up to 20 times.
Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration
NASA Astrophysics Data System (ADS)
Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.
2018-01-01
Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.
NASA Astrophysics Data System (ADS)
Nandi, N.; Chowdhury, Roy; Dutta, S. C.
2018-02-01
The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC) method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.
Freitas, S; Walz, A; Merkle, H P; Gander, B
2003-01-01
The potential of a static micromixer for the production of protein-loaded biodegradable polymeric microspheres by a modified solvent extraction process was examined. The mixer consists of an array of microchannels and features a simple set-up, consumes only very small space, lacks moving parts and offers simple control of the microsphere size. Scale-up from lab bench to industrial production is easily feasible through parallel installation of a sufficient number of micromixers ('number-up'). Poly(lactic-co-glycolic acid) microspheres loaded with a model protein, bovine serum albumin (BSA), were prepared. The influence of various process and formulation parameters on the characteristics of the microspheres was examined with special focus on particle size distribution. Microspheres with monomodal size distributions having mean diameters of 5-30 micro m were produced with excellent reproducibility. Particle size distributions were largely unaffected by polymer solution concentration, polymer type and nominal BSA load, but depended on the polymer solvent. Moreover, particle mean diameters could be varied in a considerable range by modulating the flow rates of the mixed fluids. BSA encapsulation efficiencies were mostly in the region of 75-85% and product yields ranged from 90-100%. Because of its simple set-up and its suitability for continuous production, static micromixing is suggested for the automated and aseptic production of protein-loaded microspheres.
NASA Technical Reports Server (NTRS)
Boswinkle, Robert W JR; Keith, Arvid L JR
1948-01-01
A method for calculating the flow fields of axially symmetric bodies from their pressure distributions is reported in NACA RM No. L8I17. In order to facilitate application of this method to the important case of the cowling-spinner combination, for use in the design of propellers, the present paper presents static-pressure distributions on the tops of 79 high-critical-speed NACA 1-series cowling-spinner combinations over wide ranges of inlet-velocity ratio at angles of attack of 0 degrees, 2 degrees, 4 degrees, and 6 degrees. Static-pressure distributions around the nose sections of several cowlings are given in greater detail to aid in estimating the pressures near the stagnation points and to show the effect of changes in the internal lip shape. The effects of the operation of a typical propeller on the surface pressures on the cowling are shown for one configuration. The pressure distributions over the nine NACA 1-series nose inlets used as the basic components of these combinations are also presented ro supplement the existing open-nose-cowling data of NACA ACR No. L5F30a which are applicable to the case of the rotating cowling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balderson, Michael, E-mail: michael.balderson@rmp.uhn.ca; Brown, Derek; Johnson, Patricia
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for themore » different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.« less
Injury Compensation Process Delays Prompt Payment of Benefits to Federal Workers.
1981-09-25
Prompt Payment 9f Benefits 0 Federal Workers , "fem of benefits under the Federal Employees ’ Compen- , m Act am not being made on time a measured by the...A worker may also appeal adverse decisions to the Employees ’ Compensation Appeals Board. The Board is a quasi-judicial board of three members...agencies to distribute these pamphlets to workers . Similar instruc- tions are contained on Poster CA-10 "What a Federal Employee Should Do When
Flux tubes in the SU(3) vacuum
NASA Astrophysics Data System (ADS)
Cardaci, M. S.; Cea, P.; Cosmai, L.; Falcone, R.; Papa, A.
We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.
Hamzehpour, Hossein; Rasaei, M Reza; Sahimi, Muhammad
2007-05-01
We describe a method for the development of the optimal spatial distributions of the porosity phi and permeability k of a large-scale porous medium. The optimal distributions are constrained by static and dynamic data. The static data that we utilize are limited data for phi and k, which the method honors in the optimal model and utilizes their correlation functions in the optimization process. The dynamic data include the first-arrival (FA) times, at a number of receivers, of seismic waves that have propagated in the porous medium, and the time-dependent production rates of a fluid that flows in the medium. The method combines the simulated-annealing method with a simulator that solves numerically the three-dimensional (3D) acoustic wave equation and computes the FA times, and a second simulator that solves the 3D governing equation for the fluid's pressure as a function of time. To our knowledge, this is the first time that an optimization method has been developed to determine simultaneously the global minima of two distinct total energy functions. As a stringent test of the method's accuracy, we solve for flow of two immiscible fluids in the same porous medium, without using any data for the two-phase flow problem in the optimization process. We show that the optimal model, in addition to honoring the data, also yields accurate spatial distributions of phi and k, as well as providing accurate quantitative predictions for the single- and two-phase flow problems. The efficiency of the computations is discussed in detail.
Lacefield, James C; Pilkington, Wayne C; Waag, Robert C
2004-12-01
The effects of aberration, time-shift compensation, and spatial compounding on the discrimination of positive-contrast lesions in ultrasound b-scan images are investigated using a two-dimensional (2-D) array system and tissue-mimicking phantoms. Images were acquired within an 8.8 x 12-mm2 field of view centered on one of four statistically similar 4-mm diameter spherical lesions. Each lesion was imaged in four planes offset by successive 45 degree rotations about the central scan line. Images of the lesions were acquired using conventional geometric focusing through a water path, geometric focusing through a 35-mm thick distributed aberration phantom, and time-shift compensated transmit and receive focusing through the aberration phantom. The views of each lesion were averaged to form sets of water path, aberrated, and time-shift compensated 4:1 compound images and 16:1 compound images. The contrast ratio and detectability index of each image were computed to assess lesion differentiation. In the presence of aberration representative of breast or abdominal wall tissue, time-shift compensation provided statistically significant improvements of contrast ratio but did not consistently affect the detectability index, and spatial compounding significantly increased the detectability index but did not alter the contrast ratio. Time-shift compensation and spatial compounding thus provide complementary benefits to lesion detection.
DeBoy, John M; Boulton, Matthew L; Carpenter, David F
2013-01-01
The public health, environmental, and agricultural laboratory (PHEAL) workforce is a key component of the public health infrastructure. The national laboratory workforce faces an ongoing challenge of recruitment and retention of workers often related to pay and other compensation issues. To collect information on laboratory salaries and laboratory compensation practices using a national compensation survey targeting the PHEAL workforce. Seventy-three of 109 (67%) PHEAL directors in the 50 states and District of Columbia collectively employ 3723/4830 (77%) PHEAL employees in the United States. A standardized survey was developed and administered in 2010. Compensation data were compiled by job classification, geographic region, laboratory gross operating budget size, laboratory staff size, and laboratory type. Laboratory staff size ranged from 3 to 327 individuals (mean = 74 and median = 51). Median base salaries were lowest in the Southwest and South and highest in the Mountain and Pacific regions. Mean and median laboratory gross operating budgets for all participating PHEALs were $8 609 238 and $5 671 500, respectively. Extra cash compensation, used by 8 of 60 (13.3%) PHEALs, was more likely to go to a scientist-manager or scientist-supervisor. In 2010, a standardized national compensation survey of technical and scientific public health employees working in 73 PHEALs was effective in collecting previously unavailable data about laboratory salaries, laboratory budgets, and payroll practices. Laboratory salaries varied by geographic region and there was an uneven distribution of extra cash compensation among job classifications. The compensation data collected may be useful in characterizing and improving laboratory salary structures and practices to better support workforce recruitment and retention.
Performance analysis of static locking in replicated distributed database systems
NASA Technical Reports Server (NTRS)
Kuang, Yinghong; Mukkamala, Ravi
1991-01-01
Data replications and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. Here, a technique is discussed that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed databases with both shared and exclusive locks.
Contagion processes on the static and activity-driven coupling networks
NASA Astrophysics Data System (ADS)
Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming
2016-03-01
The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.
The role of root distribution in eco-hydrological modeling in semi-arid regions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bras, R. L.
2010-12-01
In semi arid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Niche separation, through rooting strategies, is one manner in which different species coexist. At present, land surface models prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. These models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings and therefore tend to underestimate the resilience of many of these ecosystems. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable allocation of assimilated carbon at any depth within the root zone in order to minimize the soil moisture-induced stress on the vegetation. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semi-arid Walnut Gulch Experimental Watershed in Arizona. For the static root distribution scheme, a series of simulations were carried out varying the shape of the rooting profile. The optimal distribution for the simulation was defined as the root distribution with the maximum mean transpiration over a 200 year period. This optimal distribution was determined for 5 soil textures and using 2 plant functional types, and the results varied from case to case. The dynamic rooting simulations allow vegetation the freedom to adjust the allocation of assimilated carbon to different rooting depths in response to changes in stress caused by the redistribution and uptake of soil moisture. The results obtained from these experiments elucidate the strong link between plant functional type, soil texture and climate and highlight the potential errors in the modeling of hydrologic fluxes from imposing a static root profile.
Evaluation of substitution monopole models for tire noise sound synthesis
NASA Astrophysics Data System (ADS)
Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.
2010-01-01
Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.
Exploratory tests of two strut fuel injectors for supersonic combustion
NASA Technical Reports Server (NTRS)
Anderson, G. Y.; Gooderum, P. B.
1974-01-01
Results of supersonic mixing and combustion tests performed with two simple strut injector configurations, one with parallel injectors and one with perpendicular injectors, are presented and analyzed. Good agreement is obtained between static pressure measured on the duct wall downstream of the strut injectors and distributions obtained from one-dimensional calculations. Measured duct heat load agrees with results of the one-dimensional calculations for moderate amounts of reaction, but is underestimated when large separated regions occur near the injection location. For the parallel injection strut, good agreement is obtained between the shape of the injected fuel distribution inferred from gas sample measurements at the duct exit and the distribution calculated with a multiple-jet mixing theory. The overall fraction of injected fuel reacted in the multiple-jet calculation closely matches the amount of fuel reaction necessary to match static pressure with the one-dimensional calculation. Gas sample measurements with the perpendicular injection strut also give results consistent with the amount of fuel reaction in the one-dimensional calculation.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gapinski, Jacek, E-mail: gapinski@amu.edu.pl; Patkowski, Adam; NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań
Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shownmore » to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.« less
An Autonomous Distributed Fault-Tolerant Local Positioning System
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2017-01-01
We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi; Foudriat, E. C.
1991-01-01
A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
NASA Astrophysics Data System (ADS)
Li, Shuai; Gao, Wenxiu; Li, Zhen; Cheng, Haoran; Lin, Jinxia; Cheng, Qijin
2017-05-01
N-type compensated silicon shows unusual distribution of resistivity as crystal grows compared to the n-type uncompensated silicon. In this paper, evolutions of resistivities with varied concentrations of boron and varied starting resistivities of the n-type silicon are intensively calculated. Moreover, reduction of carrier mobility is taken into account by Schindler’s modified model of carrier mobility for the calculation of resistivity of the compensated silicon. As for substrates of solar cells, optimized starting resistivity and corresponding concentration of boron are suggested for better uniformity of resistivity and higher yield (fraction with ρ >0.5 ~ Ω \\centerdot \\text{cm} ) of the n-type compensated Cz crystal rod. A two-step growth method is investigated to obtain better uniformity of resistivity of crystal rod, and this method is very practical especially for the n-type compensated silicon. Regarding the carrier lifetime, the recombination by shallow energy-level dopants is taken into account for the compensated silicon, and evolution of carrier lifetime is simulated by considering all main recombination centers which agrees well with our measured carrier lifetimes as crystal grows. The n-type compensated silicon shows a larger reduction of carrier lifetime compared to the uncompensated silicon at the beginning of crystal growth, and recombination with a oxygen-related deep defect is sufficient to describe the reduction of degraded lifetime. Finally, standard heterojunction with intrinsic thin-layer (HIT) solar cells are made with substrates from the n-type compensated silicon rod, and a high efficiency of 22.1% is obtained with a high concentration (0.8× {{10}16}~\\text{c}{{\\text{m}}-3} ) of boron in the n-type compensated silicon feedstock. However, experimental efficiencies of HIT solar cells based on the n-type compensated silicon show an average reduction of 4% along with the crystal length compared to the uncompensated silicon. The obtained results enrich our knowledge on the n-type compensated silicon and contribute to the development of n-type compensated silicon-based solar cells for commercial application.
Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.
Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339
Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V
2012-01-31
Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less
Static and dynamic factors in an information-based multi-asset artificial stock market
NASA Astrophysics Data System (ADS)
Ponta, Linda; Pastore, Stefano; Cincotti, Silvano
2018-02-01
An information-based multi-asset artificial stock market characterized by different types of stocks and populated by heterogeneous agents is presented. In the market, agents trade risky assets in exchange for cash. Beside the amount of cash and of stocks owned, each agent is characterized by sentiments and agents share their sentiments by means of interactions that are determined by sparsely connected networks. A central market maker (clearing house mechanism) determines the price processes for each stock at the intersection of the demand and the supply curves. Single stock price processes exhibit volatility clustering and fat-tailed distribution of returns whereas multivariate price process exhibits both static and dynamic stylized facts, i.e., the presence of static factors and common trends. Static factors are studied making reference to the cross-correlation of returns of different stocks. The common trends are investigated considering the variance-covariance matrix of prices. Results point out that the probability distribution of eigenvalues of the cross-correlation matrix of returns shows the presence of sectors, similar to those observed on real empirical data. As regarding the dynamic factors, the variance-covariance matrix of prices point out a limited number of assets prices series that are independent integrated processes, in close agreement with the empirical evidence of asset price time series of real stock markets. These results remarks the crucial dependence of statistical properties of multi-assets stock market on the agents' interaction structure.
Parallel Logic Programming Architecture
1990-04-01
Section 3.1. 3.1. A STATIC ALLOCATION SCHEME (SAS) Methods that have been used for decomposing distributed problems in artificial intelligence...multiple agents, knowledge organization and allocation, and cooperative parallel execution. These difficulties are common to distributed artificial ...for the following reasons. First, intellegent backtracking requires much more bookkeeping and is therefore more costly during consult-time and during
Cascaded optical fiber link using the internet network for remote clocks comparison.
Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier
2015-12-28
We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10(-16) at 1-s measurement time and 1x10(-19) at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.
Suppression of fixed pattern noise for infrared image system
NASA Astrophysics Data System (ADS)
Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon
2008-04-01
In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.
Defining Compensable Injury in Biomedical Research.
Larkin, Megan E
2015-01-01
Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury” that is tailored to the biomedical research context. Using this definition, it argues for the development of a first-of- its-kind no-fault compensation system in the United States.
Chan, H L; Lin, J L; Huang, H H; Wu, C P
1997-09-01
A new technique for interference-term suppression in Wigner-Ville distribution (WVD) is proposed for the signal with 1/f spectrum shape. The spectral characteristic of the signal is altered by f alpha filtering before time-frequency analysis and compensated after analysis. With the utilization of the proposed technique in smoothed pseudo Wigner-Ville distribution, an excellent suppression of interference component can be achieved.
NASA Astrophysics Data System (ADS)
Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.
2017-11-01
The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.
Solution Concepts for Distributed Decision-Making without Coordination
NASA Technical Reports Server (NTRS)
Beling, Peter A.; Patek, Stephen D.
2005-01-01
Consider a single-stage problem in which we have a group N agents who are attempting to minimize the expected cost of their joint actions, without the benefit of communication or a pre-established protocol but with complete knowledge of the expected cost of any joint set of actions for the group. We call this situation a static coordination problem. The central issue in defining an appropriate solution concept for static coordination problems is considering how to deal with the fact that if the agents axe faced with a set of multiple (mixed) strategies that are equally attractive in terms of cost, a failure of coordination may lead to an expected cost value that is worse than that of any of the strategies in the set. In this proposal, we describe the notion of a general coordination problem, describe initial efforts at developing a solution concept for static coordination problems, and then outline a research agenda that centers on activities that will be basis for obtaining a complete understanding of solutions to static coordination problems.
Stylized facts in social networks: Community-based static modeling
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo
2018-06-01
The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.
Results from flight and simulator studies of a Mach 3 cruise longitudinal autopilot
NASA Technical Reports Server (NTRS)
Gilyard, G. B.; Smith, J. W.
1978-01-01
At Mach numbers of approximately 3.0 and altitudes greater than 21,300 meters, the original altitude and Mach hold modes of the YF-12 autopilot produced aircraft excursions that were erratic or divergent, or both. Flight data analysis and simulator studies showed that the sensitivity of the static pressure port to angle of attack had a detrimental effect on the performance of the altitude and Mach hold modes. Good altitude hold performance was obtained when a high passed pitch rate feedback was added to compensate for angle of attack sensitivity and the altitude error and integral altitude gains were reduced. Good Mach hold performance was obtained when the angle of attack sensitivity was removed; however, the ride qualities remained poor.
An accurate reactive power control study in virtual flux droop control
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Zhang, Jia
2017-12-01
This paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.
Noise evaluation of a point autofocus surface topography measuring instrument
NASA Astrophysics Data System (ADS)
Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard
2018-06-01
In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.
Three-Level 48-Pulse STATCOM with Pulse Width Modulation
NASA Astrophysics Data System (ADS)
Singh, Bhim; Srinivas, Kadagala Venkata
2016-03-01
In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance
NASA Astrophysics Data System (ADS)
Khuntia, Swasti R.; Panda, Sidhartha
2011-06-01
In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
Chroma-preserved luma controlling technique using YCbCr color space
NASA Astrophysics Data System (ADS)
Lee, Sooyeon; Kwak, Youngshin; Kim, Youn Jin
2013-02-01
YCbCr color space composed of luma and chominance components is preferred for its ease of image processing. However the non-orthogonality between YCbCr components induces unwanted perceived chroma change as controlling luma values. In this study, a new method was designed for the unwanted chroma change compensation generated by luma change. For six different YCC_hue angles, data points named `Original data' generated with uniformly distributed luma and Cb, Cr values. Then the weight values were applied to luma values of `Original data' set resulting in `Test data' set followed by `new YCC_chroma' calculation having miminum CIECAM02 ΔC between original and test data for `Test data' set. Finally mathematical model is developed to predict amount of YCC_chroma values to compensate CIECAM02 chroma changes. This model implemented for luma controlling algorithm having constant perceived chroma. The performance was tested numerically using data points and images. After compensation the result is improved 51.69% than that before compensation when CIECAM02 Δ C between `Original data' and `Test data' after compensation is compared. When new model is applied to test images, there is 32.03% improvement.
Evaporative cooling in a compensated optical lattice
NASA Astrophysics Data System (ADS)
Duarte, P. M.; Hart, R.; Yang, T. L.; Liu, X.; Hulet, R. G.
2014-03-01
We present experimental results of evaporative cooling in a three-dimensional, red-detuned optical lattice. The lattice is compensated by the addition of three blue-detuned gaussian beams which overlap each of the lattice laser beams, but are not retro-reflected. The intensity of the compensating beams can be used to control the difference between the chemical potential in the lattice and the threshold for evaporation. We start with a two spin component degenerate Fermi gas of 6Li atoms at a temperature < 0 . 05TF in a dimple potential, which is obtained by rotating the polarization of the lattice retro beams to prevent the formation of standing waves. The temperature of the cloud is measured by releasing it from the dimple and fitting the momentum distribution to a Thomas-Fermi profile. We perform round-trip measurements into, and out of the lattice to study the adiabaticity of the loading as well as the effect of the compensating beams. Using the compensated lattice potential, we have reached temperatures low enough to produce antiferromagnetic spin correlations, which we detect via Bragg scattering of light. Supported by NSF, ONR, DARPA/ARO, and the Welch Foundation.
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-04-27
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
Kumagai, M; Mori, S; Yamamoto, N
2015-06-01
When using a fixed irradiation port, treatment couch rotation is necessary to increase beam angle selection. We evaluated dose variations associated with positional morphological changes to organs. We retrospectively chose the data sets of ten patients with lung cancer who underwent respiratory-gated CT at three different couch rotation angles (0°, 20° and -20°). The respective CT data sets are referred to as CT0, CT20 and CT-20. Three treatment plans were generated as follows: in Plan 1, all compensating bolus designs and dose distributions were calculated using CT0. To evaluate the rotation effect without considering morphology changes, in Plan 2, the compensating boli designed using CT0 were applied to the CT±20 images. Plan 3 involved compensating boli designed using the CT±20 images. The accumulated dose distributions were calculated using deformable image registration (DIR). A sufficient prescribed dose was calculated for the planning target volume (PTV) in Plan 1 [minimum dose received by a volume ≥95% (D95) > 95.8%]. By contrast, Plan 2 showed degraded dose conformation to the PTV (D95 > 90%) owing to mismatch of the bolus design to the morphological positional changes in the respective CT. The dose assessment results of Plan 3 were very close to those of Plan 1. Dose distribution is significantly affected by whether or not positional organ morphology changes are factored into dose planning. In treatment planning using multiple CT scans with different couch positions, it is mandatory to calculate the accumulated dose using DIR.
NASA Astrophysics Data System (ADS)
Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo
2009-10-01
Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.
Energy sweep compensation of induction accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J
1990-09-12
The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less
Wysocki, Tim; Brosig, Cheryl L.; Hilliard, Marisa E.
2016-01-01
There are few detailed workforce studies of specialty fields within professional psychology, and none have been reported for pediatric psychology since 2006. Availability of such data could facilitate more-informed decision making by students and trainees, psychologists pursuing employment opportunities, and psychologists involved in employment or compensation negotiations. This article describes the work of a task force of the American Psychological Association (APA) Division 54 (Society of Pediatric Psychology) in the design, construction, pretesting, distribution, and data management for the Society of Pediatric Psychology (SPP) Workforce Survey. The 18-member task force was established to design and implement a workforce survey that balanced needs for breadth, clarity, brevity, and protection of confidentiality. The survey solicits information about demographic characteristics; training, licensure and certifications; employment settings, responsibilities, and productivity metrics; compensation; and employment satisfaction. A survey link was distributed via e-mail to full members of the SPP in June 2015. A total of 404 members (32.3% return rate) completed the survey. This article focuses on the development, methodology, and respondent characteristics for this 1st administration of the workforce survey. Separate articles will report detailed analyses of the survey results such as compensation and work satisfaction. Future distributions of the survey will enable compilation of a longitudinal database to track changes in the profession. SPP members and others may propose additional analyses of these data. This work may provide guidance to other groups of specialized psychologists who may wish to implement similar initiatives. PMID:28066693
Wald, D.J.; Graves, R.W.
2001-01-01
Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.
Resistivity dependence on Zn concentration in semi-insulating (Cd,Zn)Te
NASA Astrophysics Data System (ADS)
Fiederle, Michael; Fauler, Alex; Babentsov, Vladimir N.; Franc, Jan; Benz, Klaus Werner
2003-01-01
The resistivity dependence on Zn concentration had been investigated in semi-insulating (Cd,Zn)Te crystals grown by the vertical Bridgman method. A coorelation between the zinc concentration and the resistivity distribution could be found. The obtained resistivity was in the interval of 2 ×109-1010 Ω cm as expected from the model of compensation. The main deep compensating levels detected by Photo Induced Current Transient Spectroscopy (PICTS) were at 0.64 +/- 0.02 eV and close the middle of the band gap at 0.80 +/- 0.02 eV.
Calibration of marginal oscillator sensitivity for use in ICR spectrometry
NASA Technical Reports Server (NTRS)
Anicich, V. G.; Huntress, W. T., Jr.
1977-01-01
A constant-reference load is utilized as Q-spoiler in calibrations of relative sensitivity variations of a marginal oscillator with frequency. Frequency-dependent effects troublesome in earlier Q-spoilers are compensated by employing a pure resistive calibration load with compensation for the small distributed capacitance of large resistors. The validity of the approach is demonstrated for a 2:1 mass ratio range, and validity for a mass ratio range greater than 10:1 is claimed. The circuit and technique were developed for use in ion cyclotron resonance (ICR) spectrometric practice.
Huylmans, Ann Kathrin; Macon, Ariana; Vicoso, Beatriz
2017-01-01
Abstract While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera. PMID:28957502
ERIC Educational Resources Information Center
Science and Children, 1989
1989-01-01
Provides a poster which focuses on how electricity is made, distributed, and used by the community. Includes a vocabulary list with definitions, additional information, and illustrations on topics such as thermoelectricity, static electricity, and electric current. (RT)
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Praytor, E. B.
1972-01-01
Theoretical studies are made of three dimensional turbulent boundary layer behavior on fixed grounds and on moving grounds of the type used in wind tunnel tests. It is shown that, for several widely-varying STOL configurations, the ground static pressure distributions possess a remarkable degree of fore-aft symmetry about the center of lift. At low Renolds number, corresponding to small-tunnel testing, the boundary layer displacement surface reflects to a large degree the symmetry of the pressure distribution. For this reason, induced incidence at the model is small for unseparated ground flow. At high Reynolds number, the displacement thickness decrease aft of the static pressure maximum is noticeably more rapid than the corresponding rise. This is attributed to trailing-vortex-induced spanwise pumping within the boundary layer.
NASA Astrophysics Data System (ADS)
Ko, Dae-Eun; Shin, Sang-Hoon
2017-11-01
Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.
The effect of solid interaction forces on pneumatic handling of sorbent powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.J.; Fan, L.S.
1993-06-01
This study shows that a comparison of powder characteristics--particle morphologies, particle size distributions, and static dielectric and Hamaker constants--can be used to interpret differences in dispersion and transport behavior between powders. These differences are attributed to the relative values of the solid-solid interaction forces experience by each powder in the process. The static dielectric constants of the powders are used as the material properties related to the relative magnitudes of the electrostatic forces. Similarly, the Hamaker constants are the material properties used to indicate the relative magnitudes of the van der Waals forces. The effects of differences in particle morphologiesmore » and size distributions are used to evaluate the dispersibility and efficiency of transport of four calcium-based powder materials used as sorbents in flue-gas desulfurization.« less
Stolwijk, Niki M.; Duysens, Jacques; Louwerens, Jan Willem K.; van de Ven, Yvonne HM.; Keijsers, Noël LW.
2013-01-01
In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints. PMID:23468936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Wiser, Ryan
2010-03-30
Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods aremore » under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.« less
Enhanced vaccine control of epidemics in adaptive networks
NASA Astrophysics Data System (ADS)
Shaw, Leah B.; Schwartz, Ira B.
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
Enhanced vaccine control of epidemics in adaptive networks.
Shaw, Leah B; Schwartz, Ira B
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Mariappan, Leo; Hu, Gang; He, Bin
2014-01-01
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649
A system for measuring the pulse height distribution of ultrafast photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.
1977-01-01
A system for measuring the pulse height distribution of gigahertz bandwidth photomultipliers was developed. This system uses a sampling oscilloscope as a sample-hold circuit and has a bandwidth of 12 gigahertz. Test results are given for a static crossed-filed photomultiplier tested with a demonstration system. Calculations on system amplitude resolution capabilities are included for currently available system components.
NASA Astrophysics Data System (ADS)
Chalise, Santosh
Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.
Belowground adaptation and resilience to drought conditions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Gentine, P.; Bras, R. L.
2012-12-01
The most expansive drought in 50 years stretched across the Midwest in 2012. In light of predicted increases in the variability of climate, this type of event can no longer be considered extreme. Understanding the resilience of both managed and natural vegetation and how these systems may adapt to this new climate reality is critical in predicting changes to the global carbon, energy and water balance. An eco-hydrological model (tRIBS+VEGGIE) was employed to model the sensitivity of vegetation to varying drought intensities. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable root carbon allocation scheme. A stochastic climate generator was used to create a series of synthetic climate realizations varying the drought characteristics - in particular the interstorm period. This change in the seasonal distribution of precipitation impacts the spatial (soil layers) and temporal distribution of soil moisture which directly impacts the water resource niche for vegetation. This change in resource niche is reflected in a shift in the optimal static rooting strategy further highlighting the need for the incorporation of a dynamic scheme that responds to local conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry
The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less
Testing models of parental investment strategy and offspring size in ants.
Gilboa, Smadar; Nonacs, Peter
2006-01-01
Parental investment strategies can be fixed or flexible. A fixed strategy predicts making all offspring a single 'optimal' size. Dynamic models predict flexible strategies with more than one optimal size of offspring. Patterns in the distribution of offspring sizes may thus reveal the investment strategy. Static strategies should produce normal distributions. Dynamic strategies should often result in non-normal distributions. Furthermore, variance in morphological traits should be positively correlated with the length of developmental time the traits are exposed to environmental influences. Finally, the type of deviation from normality (i.e., skewed left or right, or platykurtic) should be correlated with the average offspring size. To test the latter prediction, we used simulations to detect significant departures from normality and categorize distribution types. Data from three species of ants strongly support the predicted patterns for dynamic parental investment. Offspring size distributions are often significantly non-normal. Traits fixed earlier in development, such as head width, are less variable than final body weight. The type of distribution observed correlates with mean female dry weight. The overall support for a dynamic parental investment model has implications for life history theory. Predicted conflicts over parental effort, sex investment ratios, and reproductive skew in cooperative breeders follow from assumptions of static parental investment strategies and omnipresent resource limitations. By contrast, with flexible investment strategies such conflicts can be either absent or maladaptive.
NASA Astrophysics Data System (ADS)
Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.
2015-05-01
Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.
Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A
2015-05-07
Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.
Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A
2015-01-01
Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery. PMID:25884892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.
Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of smallmore » field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... probes would be recorded by collaborating fishermen, along with information on location, depth fished... probes to gain information about fish distribution. Compensation fishing for this research would occur...
Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.
Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N
2007-05-01
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
Mathew, L; Castillo, R; Castillo, E; Yaremko, B; Rodrigues, G; Etemad-Rezai, R; Guerrero, T; Parraga, G
2012-07-01
Dynamic imaging methods such as four-dimensional computed tomography (4DCT) and static imaging methods such as noble gas magnetic resonance imaging (MRI) deliver direct and regional measurements of lung function even in lung cancer patients in whom global lung function measurements are dominated by tumour burden. The purpose of this study was to directly compare quantitative measurements of gas distribution from static hyperpolarized 3 He MRI and dynamic 4DCT in a small group of lung cancer patients. MRI and 4DCT were performed in 11 subjects prior to radiation therapy. MRI was performed at 3.0T in breath-hold after inhalation 1L of hyperpolarized 3 He gas. Gas distribution in 3 He MRI was quantified using a semi-automated segmentation algorithm to generate percent-ventilated volume (PVV), reflecting the volume of gas in the lung normalized to the thoracic cavity volume. 4DCT pulmonary function maps were generated using deformable image registration of six expiratory phase images. The correspondence between identical tissue elements at inspiratory and expiratory phases was used to estimate regional gas distribution and PVV was quantified from these images. After accounting for differences in lung volumes between 3 He MRI (1.9±0.5L ipsilateral, 2.3±0.7 contralateral) and 4DCT (1.2±0.3L ipsilateral, 1.3±0.4L contralateral) during image acquisition, there was no statistically significant difference in PVV between 3 He MRI (72±11% ipsilateral, 79±12% contralateral) and 4DCT (74±3% ipsilateral, 75±4% contralateral). Our results indicate quantitative agreement in the regional distribution of inhaled gas in both static and dynamic imaging methods. PVV may be considered as a regional surrogate measurement of lung function or ventilation. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Bergmann, Peter; Yang, Can; Lüth, Stefan; Juhlin, Christopher; Cosma, Calin
2011-09-01
The Ketzin project provides an experimental pilot test site for the geological storage of CO2. Seismic monitoring of the Ketzin site comprises 2D and 3D time-lapse experiments with baseline experiments in 2005. The first repeat 2D survey was acquired in 2009 after 22 kt of CO2 had been injected into the Stuttgart Formation at approximately 630 m depth. Main objectives of the 2D seismic surveys were the imaging of geological structures, detection of injected CO2, and comparison with the 3D surveys. Time-lapse processing highlighted the importance of detailed static corrections to account for travel time delays, which are attributed to different near-surface velocities during the survey periods. Compensation for these delays has been performed using both pre-stack static corrections and post-stack static corrections. The pre-stack method decomposes the travel time delays of baseline and repeat datasets in a surface consistent manner, while the latter cross-aligns baseline and repeat stacked sections along a reference horizon. Application of the static corrections improves the S/N ratio of the time-lapse sections significantly. Based on our results, it is recommended to apply a combination of both corrections when time-lapse processing faces considerable near-surface velocity changes. Processing of the datasets demonstrates that the decomposed solution of the pre-stack static corrections can be used for interpretation of changes in near-surface velocities. In particular, the long-wavelength part of the solution indicates an increase in soil moisture or a shallower groundwater table in the repeat survey. Comparison with the processing results of 2D and 3D surveys shows that both image the subsurface, but with local variations which are mainly associated to differences in the acquisition geometry and source types used. Interpretation of baseline and repeat stacks shows that no CO2 related time-lapse signature is observable where the 2D lines allow monitoring of the reservoir. This finding is consistent with the time-lapse results of the 3D surveys, which show an increase in reflection amplitude centered around the injection well. To further investigate any potential CO2 signature, an amplitude versus offset (AVO) analysis was performed. The time-lapse analysis of the AVO does not indicate the presence of CO2, as expected, but shows signs of a pressure response in the repeat data.
Low-cost, distributed, sensor-based weigh-in-motion systems.
DOT National Transportation Integrated Search
2009-12-01
Monitoring truck weights is essential for traffic operations, roadway design, traffic safety, and regulations. : Traditional roadside static truck weighing stations have many operational shortcomings, and so there have : been ongoing efforts to devel...
Code of Federal Regulations, 2013 CFR
2013-01-01
... static ground reaction corresponding to the critical center of gravity; and (3) A load on nose wheel... gravity and exerts a force of 1.0 g downward and 0.25 g forward, the reactions being distributed to the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... static ground reaction corresponding to the critical center of gravity; and (3) A load on nose wheel... gravity and exerts a force of 1.0 g downward and 0.25 g forward, the reactions being distributed to the...
Research on Three-phase Four-wire Inverter
NASA Astrophysics Data System (ADS)
Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.
2017-05-01
The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.
Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael
2011-06-01
The aim of this study was to optimize culture conditions for human mesenchymal stem cells (hMSCs) in β-tricalcium phosphate ceramics with large interconnected channels. Fully interconnected macrochannels comprising pore diameters of 750 µm and 1400 µm were inserted into microporous β-tricalcium phosphate (β-TCP) scaffolds by milling. Human bone marrow-derived MSCs were seeded into the scaffolds and cultivated for up to 3 weeks in both static and perfusion culture in the presence of osteogenic supplements (dexamethasone, β-glycerophosphate, ascorbate). It was confirmed by scanning electron microscopic investigations and histological staining that the perfusion culture resulted in uniform distribution of cells inside the whole channel network, whereas the statically cultivated cells were primarily found at the surface of the ceramic samples. It was also determined that perfusion with standard medium containing 10% fetal calf serum (FCS) led to a strong increase (seven-fold) of cell numbers compared with static cultivation observed after 3 weeks. Perfusion with low-serum medium (2% FCS) resulted in moderate proliferation rates which were comparable to those achieved in static culture, although the specific alkaline phosphatase (ALP) activity increased by a factor of more than 3 compared to static cultivation. Gene expression analysis of the ALP gene also revealed higher levels of ALP mRNA in low-serum perfused samples compared to statically cultivated constructs. In contrast, gene expression of the late osteogenic marker bone sialoprotein II (BSPII) was decreased for perfused samples compared to statically cultivated samples. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Brown, M. R. M.; Ge, S.
2017-12-01
Increased pore pressure decreasing the effective stress on a critically stressed fault has been the accepted mechanism for injection-induced seismicity. This, however, is an over simplified approach that does not take into account the coupled hydro-mechanical effects. In addition, this approach leaves out a possible key stressor in the system, the earthquakes. Earthquakes are known to interact with each other by Coulomb static stress transfer, the process of permanent stress change caused by movement on a fault. In areas of induced seismicity, many small to moderate earthquakes can occur adding to the stress in the system via Coulomb static stress transfer. Here we ask: Is the Coulomb static stress transfer from the earthquakes as important as the pore pressure increase or stress changes caused by coupled hydro-mechanical processes? Is there a point where the Coulomb static stress transfer from the earthquakes becomes the controlling process for inducing future earthquakes? How does the effect of many small earthquakes compare to a few larger events in terms of Coulomb static stress transfer? In this study, we use hydrologic and coupled hydro-mechanical models and USGS Coulomb 3 to assess the importance of induced earthquakes in terms of the stress change in the system. Realistic scenarios of wastewater injection and earthquake magnitude-frequency distributions are used to develop generic models. Model variables and data are varied to evaluate the range of possible outcomes. Preliminary results show that the stress change associated with injection is of the same order of magnitude as the cumulative Coulomb static stress change of a series of small (1
Moving beyond the total sea ice extent in gauging model biases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.
Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less
Moving beyond the total sea ice extent in gauging model biases
Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...
2016-11-29
Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less
Remembering forward: Neural correlates of memory and prediction in human motor adaptation
Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia
2011-01-01
We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405
NASA Astrophysics Data System (ADS)
Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian
2018-05-01
Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.
InGaN stress compensation layers in InGaN/GaN blue LEDs with step graded electron injectors
NASA Astrophysics Data System (ADS)
Sheremet, V.; Gheshlaghi, N.; Sözen, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-04-01
We investigate the effect of InGaN stress compensation layer on the properties of light emitting diodes based on InGaN/GaN multiple quantum well (MQW) structures with step-graded electron injectors. Insertion of an InGaN stress compensation layer between n-GaN and the step graded electron injector provides, among others, strain reduction in the MQW region and as a result improves epitaxial quality that can be observed by 15-fold decrease of V-pit density. We observed more uniform distribution of In between quantum wells in MQW region from results of electro- and photoluminescence measurement. These structural improvements lead to increasing of radiant intensity by a factor of 1.7-2.0 and enhancement of LED efficiency by 40%.
The beta distribution: A statistical model for world cloud cover
NASA Technical Reports Server (NTRS)
Falls, L. W.
1973-01-01
Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.
Nobre, G. P. A.; Palumbo, A.; Herman, M.; ...
2015-02-25
The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
Xu, Yidong
2015-01-01
This paper describes the non-uniform corrosion characteristics and mechanical properties of reinforcement under coupled action of carbonation and static loading. The two parameters, namely area-box (AB) value and arithmetical mean deviation (Ra), are adopted to characterize the corrosion morphology and pitting distribution from experimental observations. The results show that the static loading affects the corrosion characteristics of reinforcement. Local stress concentration in corroded reinforcement caused by tensile stress drives the corrosion pit pattern to be more irregular. The orthogonal test results from finite element simulations show that pit shape and pit depth are the two significant factors affecting the tensile behavior of reinforcement. Under the condition of similar corrosion mass loss ratio, the maximum plastic strain of corroded reinforcement increases with the increase of Ra and load time-history significantly. PMID:28793729
Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload
NASA Astrophysics Data System (ADS)
Lee, Minwoo; Kim, Jongun; Chang, Jin-Soo; Kang, Myung-Seok
2016-09-01
SpaceEye-1 earth observation satellite, developed by Satrec Initiative Co. Ltd., is a 300 kg scale spacecraft with high resolution electro-optical payload (EOS-D) which performs 1 m GSD, 12 km swath in low earth orbit. Metering structure of EOS-D is manufactured with Carbon Fiber Reinforced Plastic (CFRP). Due to the moisture emission from CFRP metering structure, this spaceborne electro-optical payload undergoes shrinkage after orbit insertion. The shrinkage of metering structure causes change of the distance between primary and secondary mirror. In order to compensate the moisture shrinkage effect, two types of thermal refocusing mechanism were developed, analyzed and applied to EOS-D. Thermal analysis simulating in-orbit thermal condition and thermo-elastic displacement analysis was conducted to calculate the performance of refocusing mechanism. For each EOS-D telescope, analytical refocusing range (displacement change between primary and secondary mirror) was 2.5 um and 3.6 um. Thus, the refocusing mechanism can compensate the dimensional instability of metering structure caused by moisture emission. Furthermore, modal, static and wavefront error analysis was conducted in order to evaluate natural frequency, structural stability and optical performance. As a result, it can be concluded that the refocusing system of EOS-D payload can perform its function in orbit.
NASA Astrophysics Data System (ADS)
Liu, Lei; Guo, Rui; Wu, Jun-an
2017-02-01
Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.
An experimental study on digital predistortion for radio-over-fiber links
NASA Astrophysics Data System (ADS)
Vieira, Luis C.; Gomes, Nathan J.; Nkansah, Anthony
2010-12-01
Radio-over-fiber (RoF) has been proposed as an enabling technology for broadband networks, such as WiMAX and WiFi. Besides the inherent high bandwidth and reliability of RoF systems, they also allow the reduction of installation and maintenance cost of the remote antenna units (RAUs) and improvement in the coverage area of the base station/access point. However, the nonlinear distortion of the optical link, which stems mainly from the laser diode, may impose serious limitations on the system performance, especially when high PAPR, wideband signals are used. Thus, distortion compensation is a key issue in order to facilitate the application of the RoF technology for broadband networks. In this work, digital predistortion for directly modulated RoF links is experimentally investigated. A memory-polynomial- based predistorter model is identified from measurements of the baseband OFDM input-output signals and through the use of an indirect learning architecture. Then, a predistorted signal is generated and fed to the RoF link for comparing its output with that of the non-predistorted one. As a result of this compensation technique, an improvement of the static link linearity and the output constellation diagram has been found, with an EVM reduction of 1.73 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Urazuka, Y.; Chen, H.
2014-05-07
We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less