2012-03-01
EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution
Performance related issues in distributed database systems
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
The key elements of research performed during the year long effort of this project are: Investigate the effects of heterogeneity in distributed real time systems; Study the requirements to TRAC towards building a heterogeneous database system; Study the effects of performance modeling on distributed database performance; and Experiment with an ORACLE based heterogeneous system.
An XML-Based Protocol for Distributed Event Services
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)
2001-01-01
A recent trend in distributed computing is the construction of high-performance distributed systems called computational grids. One difficulty we have encountered is that there is no standard format for the representation of performance information and no standard protocol for transmitting this information. This limits the types of performance analysis that can be undertaken in complex distributed systems. To address this problem, we present an XML-based protocol for transmitting performance events in distributed systems and evaluate the performance of this protocol.
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Sanderson, A. C.
1994-01-01
Robot coordination and control systems for remote teleoperation applications are by necessity implemented on distributed computers. Modeling and performance analysis of these distributed robotic systems is difficult, but important for economic system design. Performance analysis methods originally developed for conventional distributed computer systems are often unsatisfactory for evaluating real-time systems. The paper introduces a formal model of distributed robotic control systems; and a performance analysis method, based on scheduling theory, which can handle concurrent hard-real-time response specifications. Use of the method is illustrated by a case of remote teleoperation which assesses the effect of communication delays and the allocation of robot control functions on control system hardware requirements.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi; Foudriat, E. C.
1991-01-01
A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
NASA Astrophysics Data System (ADS)
Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng
2018-02-01
Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
Task allocation in a distributed computing system
NASA Technical Reports Server (NTRS)
Seward, Walter D.
1987-01-01
A conceptual framework is examined for task allocation in distributed systems. Application and computing system parameters critical to task allocation decision processes are discussed. Task allocation techniques are addressed which focus on achieving a balance in the load distribution among the system's processors. Equalization of computing load among the processing elements is the goal. Examples of system performance are presented for specific applications. Both static and dynamic allocation of tasks are considered and system performance is evaluated using different task allocation methodologies.
The WorkPlace distributed processing environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Henderson, Scott
1993-01-01
Real time control problems require robust, high performance solutions. Distributed computing can offer high performance through parallelism and robustness through redundancy. Unfortunately, implementing distributed systems with these characteristics places a significant burden on the applications programmers. Goddard Code 522 has developed WorkPlace to alleviate this burden. WorkPlace is a small, portable, embeddable network interface which automates message routing, failure detection, and re-configuration in response to failures in distributed systems. This paper describes the design and use of WorkPlace, and its application in the construction of a distributed blackboard system.
Performance analysis of static locking in replicated distributed database systems
NASA Technical Reports Server (NTRS)
Kuang, Yinghong; Mukkamala, Ravi
1991-01-01
Data replication and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. A technique is used that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed database with both shared and exclusive locks.
NASA Astrophysics Data System (ADS)
Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.
2016-08-01
Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.
Fractional System Identification: An Approach Using Continuous Order-Distributions
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
1999-01-01
This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.
Communication Needs Assessment for Distributed Turbine Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Behbahani, Alireza R.
2008-01-01
Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Optimal placement and sizing of wind / solar based DG sources in distribution system
NASA Astrophysics Data System (ADS)
Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng
2017-06-01
Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.
R&D100: Lightweight Distributed Metric Service
Gentile, Ann; Brandt, Jim; Tucker, Tom; Showerman, Mike
2018-06-12
On today's High Performance Computing platforms, the complexity of applications and configurations makes efficient use of resources difficult. The Lightweight Distributed Metric Service (LDMS) is monitoring software developed by Sandia National Laboratories to provide detailed metrics of system performance. LDMS provides collection, transport, and storage of data from extreme-scale systems at fidelities and timescales to provide understanding of application and system performance with no statistically significant impact on application performance.
R&D100: Lightweight Distributed Metric Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile, Ann; Brandt, Jim; Tucker, Tom
2015-11-19
On today's High Performance Computing platforms, the complexity of applications and configurations makes efficient use of resources difficult. The Lightweight Distributed Metric Service (LDMS) is monitoring software developed by Sandia National Laboratories to provide detailed metrics of system performance. LDMS provides collection, transport, and storage of data from extreme-scale systems at fidelities and timescales to provide understanding of application and system performance with no statistically significant impact on application performance.
Performance analysis of static locking in replicated distributed database systems
NASA Technical Reports Server (NTRS)
Kuang, Yinghong; Mukkamala, Ravi
1991-01-01
Data replications and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. Here, a technique is discussed that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed databases with both shared and exclusive locks.
Model-centric distribution automation: Capacity, reliability, and efficiency
Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...
2016-02-26
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Model-centric distribution automation: Capacity, reliability, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onen, Ahmet; Jung, Jaesung; Dilek, Murat
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
48 CFR 237.7002 - Area of performance and distribution of contracts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Area of performance and distribution of contracts. 237.7002 Section 237.7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Mortuary...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... Production Act of 1993--Cooperative Research Group on Evaluation of Distributed Leak Detection Systems... Institute-- Cooperative Research Group on Evaluation of Distributed Leak Detection Systems--Performance... detection systems for offshore pipelines. Laboratory testing of distributed temperature and distributed...
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
Program Predicts Nonlinear Inverter Performance
NASA Technical Reports Server (NTRS)
Al-Ayoubi, R. R.; Oepomo, T. S.
1985-01-01
Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.
The implementation and use of Ada on distributed systems with high reliability requirements
NASA Technical Reports Server (NTRS)
Knight, J. C.
1988-01-01
The use and implementation of Ada were investigated in distributed environments in which reliability is the primary concern. In particular, the focus was on the possibility that a distributed system may be programmed entirely in Ada so that the individual tasks of the system are unconcerned with which processors are being executed, and that failures may occur in the software and underlying hardware. A secondary interest is in the performance of Ada systems and how that performance can be gauged reliably. Primary activities included: analysis of the original approach to recovery in distributed Ada programs using the Advanced Transport Operating System (ATOPS) example; review and assessment of the original approach which was found to be capable of improvement; development of a refined approach to recovery that was applied to the ATOPS example; and design and development of a performance assessment scheme for Ada programs based on a flexible user-driven benchmarking system.
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
Research Electrical Distribution Bus | Energy Systems Integration Facility
| NREL Research Electrical Distribution Bus Research Electrical Distribution Bus The research electrical distribution bus (REDB) is the heart of the Energy Systems Integration Facility electrical system throughout the laboratories. Photo of a technician performing maintenance on the Research Electrical
Performance Monitoring of Distributed Data Processing Systems
NASA Technical Reports Server (NTRS)
Ojha, Anand K.
2000-01-01
Test and checkout systems are essential components in ensuring safety and reliability of aircraft and related systems for space missions. A variety of systems, developed over several years, are in use at the NASA/KSC. Many of these systems are configured as distributed data processing systems with the functionality spread over several multiprocessor nodes interconnected through networks. To be cost-effective, a system should take the least amount of resource and perform a given testing task in the least amount of time. There are two aspects of performance evaluation: monitoring and benchmarking. While monitoring is valuable to system administrators in operating and maintaining, benchmarking is important in designing and upgrading computer-based systems. These two aspects of performance evaluation are the foci of this project. This paper first discusses various issues related to software, hardware, and hybrid performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test Control and Monitoring System). Next, a comparison of several probing instructions are made to show that the hybrid monitoring technique developed by the NIST (National Institutes for Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed system have been discussed and finally a prescription for developing a micro-benchmark for the TCMS has been provided.
Methods and tools for profiling and control of distributed systems
NASA Astrophysics Data System (ADS)
Sukharev, R.; Lukyanchikov, O.; Nikulchev, E.; Biryukov, D.; Ryadchikov, I.
2018-02-01
This article is devoted to the topic of profiling and control of distributed systems. Distributed systems have a complex architecture, applications are distributed among various computing nodes, and many network operations are performed. Therefore, today it is important to develop methods and tools for profiling distributed systems. The article analyzes and standardizes methods for profiling distributed systems that focus on simulation to conduct experiments and build a graph model of the system. The theory of queueing networks is used for simulation modeling of distributed systems, receiving and processing user requests. To automate the above method of profiling distributed systems the software application was developed with a modular structure and similar to a SCADA-system.
Implementing Access to Data Distributed on Many Processors
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A reference architecture is defined for an object-oriented implementation of domains, arrays, and distributions written in the programming language Chapel. This technology primarily addresses domains that contain arrays that have regular index sets with the low-level implementation details being beyond the scope of this discussion. What is defined is a complete set of object-oriented operators that allows one to perform data distributions for domain arrays involving regular arithmetic index sets. What is unique is that these operators allow for the arbitrary regions of the arrays to be fragmented and distributed across multiple processors with a single point of access giving the programmer the illusion that all the elements are collocated on a single processor. Today's massively parallel High Productivity Computing Systems (HPCS) are characterized by a modular structure, with a large number of processing and memory units connected by a high-speed network. Locality of access as well as load balancing are primary concerns in these systems that are typically used for high-performance scientific computation. Data distributions address these issues by providing a range of methods for spreading large data sets across the components of a system. Over the past two decades, many languages, systems, tools, and libraries have been developed for the support of distributions. Since the performance of data parallel applications is directly influenced by the distribution strategy, users often resort to low-level programming models that allow fine-tuning of the distribution aspects affecting performance, but, at the same time, are tedious and error-prone. This technology presents a reusable design of a data-distribution framework for data parallel high-performance applications. Distributions are a means to express locality in systems composed of large numbers of processor and memory components connected by a network. Since distributions have a great effect on the performance of applications, it is important that the distribution strategy is flexible, so its behavior can change depending on the needs of the application. At the same time, high productivity concerns require that the user be shielded from error-prone, tedious details such as communication and synchronization.
LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM
The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...
Performance prediction of a synchronization link for distributed aerospace wireless systems.
Wang, Wen-Qin; Shao, Huaizong
2013-01-01
For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link.
Visualizing request-flow comparison to aid performance diagnosis in distributed systems.
Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R
2013-12-01
Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.
242A Distributed Control System Year 2000 Acceptance Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEATS, M.C.
1999-08-31
This report documents acceptance test results for the 242-A Evaporator distributive control system upgrade to D/3 version 9.0-2 for year 2000 compliance. This report documents the test results obtained by acceptance testing as directed by procedure HNF-2695. This verification procedure will document the initial testing and evaluation of the potential 242-A Distributed Control System (DCS) operating difficulties across the year 2000 boundary and the calendar adjustments needed for the leap year. Baseline system performance data will be recorded using current, as-is operating system software. Data will also be collected for operating system software that has been modified to correct yearmore » 2000 problems. This verification procedure is intended to be generic such that it may be performed on any D/3{trademark} (GSE Process Solutions, Inc.) distributed control system that runs with the VMSTM (Digital Equipment Corporation) operating system. This test may be run on simulation or production systems depending upon facility status. On production systems, DCS outages will occur nine times throughout performance of the test. These outages are expected to last about 10 minutes each.« less
Systems Measures of Water Distribution System Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole
2015-01-01
Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements tomore » water distribution system modeling tools.« less
Shuttle: Reaction control system. Cryogenic liquid distribution system: Study
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1972-01-01
A cryogenic liquid distribution system suitable for the reaction control system on space shuttles is described. The system thermodynamics, operation, performance and weight analysis are discussed along with the design, maintenance and integration concepts.
THE LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM
The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...
NASA Technical Reports Server (NTRS)
Birman, Kenneth; Cooper, Robert; Marzullo, Keith
1990-01-01
The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported.
Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, C.; Hodge, B. M.
2014-09-01
This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).
A real-time diagnostic and performance monitor for UNIX. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dong, Hongchao
1992-01-01
There are now over one million UNIX sites and the pace at which new installations are added is steadily increasing. Along with this increase, comes a need to develop simple efficient, effective and adaptable ways of simultaneously collecting real-time diagnostic and performance data. This need exists because distributed systems can give rise to complex failure situations that are often un-identifiable with single-machine diagnostic software. The simultaneous collection of error and performance data is also important for research in failure prediction and error/performance studies. This paper introduces a portable method to concurrently collect real-time diagnostic and performance data on a distributed UNIX system. The combined diagnostic/performance data collection is implemented on a distributed multi-computer system using SUN4's as servers. The approach uses existing UNIX system facilities to gather system dependability information such as error and crash reports. In addition, performance data such as CPU utilization, disk usage, I/O transfer rate and network contention is also collected. In the future, the collected data will be used to identify dependability bottlenecks and to analyze the impact of failures on system performance.
NASA Technical Reports Server (NTRS)
Moroh, Marsha
1988-01-01
A methodology for building interfaces of resident database management systems to a heterogeneous distributed database management system under development at NASA, the DAVID system, was developed. The feasibility of that methodology was demonstrated by construction of the software necessary to perform the interface task. The interface terminology developed in the course of this research is presented. The work performed and the results are summarized.
Telerobotic system performance measurement - Motivation and methods
NASA Technical Reports Server (NTRS)
Kondraske, George V.; Khoury, George J.
1992-01-01
A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.
NASA Technical Reports Server (NTRS)
Nussberger, A. A.; Woodcock, G. R.
1980-01-01
SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.
Modeling the Delivery Physiology of Distributed Learning Systems.
ERIC Educational Resources Information Center
Paquette, Gilbert; Rosca, Ioan
2003-01-01
Discusses instructional delivery models and their physiology in distributed learning systems. Highlights include building delivery models; types of delivery models, including distributed classroom, self-training on the Web, online training, communities of practice, and performance support systems; and actors (users) involved, including experts,…
NASA Technical Reports Server (NTRS)
Birman, Kenneth; Cooper, Robert; Marzullo, Keith
1990-01-01
ISIS and META are two distributed systems projects at Cornell University. The ISIS project, has developed a new methodology, virtual synchrony, for writing robust distributed software. This approach is directly supported by the ISIS Toolkit, a programming system that is distributed to over 300 academic and industrial sites. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project, is about distributed control in a soft real time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are presented. This approach to distributed computing, a philosophy that is believed to significantly distinguish the work from that of others in the field, is explained.
High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering
NASA Technical Reports Server (NTRS)
Maly, K.
1998-01-01
Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.
NREL and Panasonic | Energy Systems Integration Facility | NREL
with distribution system modeling for the first time. The tool combines NREL's building energy system distribution system models, and Panasonic will perform cost-benefit analyses. Along with the creation of the
Space station electrical power system availability study
NASA Technical Reports Server (NTRS)
Turnquist, Scott R.; Twombly, Mark A.
1988-01-01
ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.
Assessment of distributed photovoltair electric-power systems
NASA Astrophysics Data System (ADS)
Neal, R. W.; Deduck, P. F.; Marshall, R. N.
1982-10-01
The development of a methodology to assess the potential impacts of distributed photovoltaic (PV) systems on electric utility systems, including subtransmission and distribution networks, and to apply that methodology to several illustrative examples was developed. The investigations focused upon five specific utilities. Impacts upon utility system operations and generation mix were assessed using accepted utility planning methods in combination with models that simulate PV system performance and life cycle economics. Impacts on the utility subtransmission and distribution systems were also investigated. The economic potential of distributed PV systems was investigated for ownership by the utility as well as by the individual utility customer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.
This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.
DG Planning with Amalgamation of Operational and Reliability Considerations
NASA Astrophysics Data System (ADS)
Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan
2016-04-01
Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor
2011-01-21
We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.
GPR-Based Water Leak Models in Water Distribution Systems
Ayala-Cabrera, David; Herrera, Manuel; Izquierdo, Joaquín; Ocaña-Levario, Silvia J.; Pérez-García, Rafael
2013-01-01
This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.
Performance Prediction of a Synchronization Link for Distributed Aerospace Wireless Systems
Shao, Huaizong
2013-01-01
For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link. PMID:23970828
An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis
NASA Technical Reports Server (NTRS)
Bregon, Anibal; Daigle, Matthew J.; Roychoudhury, Indranil
2012-01-01
Diagnosis and prognosis are necessary tasks for system reconfiguration and fault-adaptive control in complex systems. Diagnosis consists of detection, isolation and identification of faults, while prognosis consists of prediction of the remaining useful life of systems. This paper presents a novel integrated framework for model-based distributed diagnosis and prognosis, where system decomposition is used to enable the diagnosis and prognosis tasks to be performed in a distributed way. We show how different submodels can be automatically constructed to solve the local diagnosis and prognosis problems. We illustrate our approach using a simulated four-wheeled rover for different fault scenarios. Our experiments show that our approach correctly performs distributed fault diagnosis and prognosis in an efficient and robust manner.
Stability, performance and sensitivity analysis of I.I.D. jump linear systems
NASA Astrophysics Data System (ADS)
Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven
2018-06-01
This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.
Intelligent Systems for Power Management and Distribution
NASA Technical Reports Server (NTRS)
Button, Robert M.
2002-01-01
The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.
Establishment of key grid-connected performance index system for integrated PV-ES system
NASA Astrophysics Data System (ADS)
Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.
2016-08-01
In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.
48 CFR 225.7203 - Contracting officer distribution of reports.
Code of Federal Regulations, 2012 CFR
2012-10-01
... distribution of reports. 225.7203 Section 225.7203 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Reporting Contract Performance Outside the United States 225.7203 Contracting officer distribution of reports. Follow the...
48 CFR 225.7203 - Contracting officer distribution of reports.
Code of Federal Regulations, 2010 CFR
2010-10-01
... distribution of reports. 225.7203 Section 225.7203 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Reporting Contract Performance Outside the United States 225.7203 Contracting officer distribution of reports. Follow the...
48 CFR 225.7203 - Contracting officer distribution of reports.
Code of Federal Regulations, 2014 CFR
2014-10-01
... distribution of reports. 225.7203 Section 225.7203 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Reporting Contract Performance Outside the United States 225.7203 Contracting officer distribution of reports. Follow the...
48 CFR 225.7203 - Contracting officer distribution of reports.
Code of Federal Regulations, 2013 CFR
2013-10-01
... distribution of reports. 225.7203 Section 225.7203 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Reporting Contract Performance Outside the United States 225.7203 Contracting officer distribution of reports. Follow the...
48 CFR 225.7203 - Contracting officer distribution of reports.
Code of Federal Regulations, 2011 CFR
2011-10-01
... distribution of reports. 225.7203 Section 225.7203 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Reporting Contract Performance Outside the United States 225.7203 Contracting officer distribution of reports. Follow the...
Automatic selection of dynamic data partitioning schemes for distributed memory multicomputers
NASA Technical Reports Server (NTRS)
Palermo, Daniel J.; Banerjee, Prithviraj
1995-01-01
For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given application is crucial to obtaining high performance. This task has traditionally been the user's responsibility, but in recent years much effort has been directed to automating the selection of data partitioning schemes. Several researchers have proposed systems that are able to produce data distributions that remain in effect for the entire execution of an application. For complex programs, however, such static data distributions may be insufficient to obtain acceptable performance. The selection of distributions that dynamically change over the course of a program's execution adds another dimension to the data partitioning problem. In this paper, we present a technique that can be used to automatically determine which partitionings are most beneficial over specific sections of a program while taking into account the added overhead of performing redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler for DIstributed memory General-purpose Multicomputers) project at the University of Illinois. The complete system will provide a fully automated means to parallelize programs written in a serial programming model obtaining high performance on a wide range of distributed-memory multicomputers.
Real-Time Embedded High Performance Computing: Communications Scheduling.
1995-06-01
real - time operating system must explicitly limit the degradation of the timing performance of all processes as the number of processes...adequately supported by a real - time operating system , could compound the development problems encountered in the past. Many experts feel that the... real - time operating system support for an MPP, although they all provide some support for distributed real-time applications. A distributed real
Study of Solid State Drives performance in PROOF distributed analysis system
NASA Astrophysics Data System (ADS)
Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.
2010-04-01
Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.
Performance Evaluation of Communication Software Systems for Distributed Computing
NASA Technical Reports Server (NTRS)
Fatoohi, Rod
1996-01-01
In recent years there has been an increasing interest in object-oriented distributed computing since it is better quipped to deal with complex systems while providing extensibility, maintainability, and reusability. At the same time, several new high-speed network technologies have emerged for local and wide area networks. However, the performance of networking software is not improving as fast as the networking hardware and the workstation microprocessors. This paper gives an overview and evaluates the performance of the Common Object Request Broker Architecture (CORBA) standard in a distributed computing environment at NASA Ames Research Center. The environment consists of two testbeds of SGI workstations connected by four networks: Ethernet, FDDI, HiPPI, and ATM. The performance results for three communication software systems are presented, analyzed and compared. These systems are: BSD socket programming interface, IONA's Orbix, an implementation of the CORBA specification, and the PVM message passing library. The results show that high-level communication interfaces, such as CORBA and PVM, can achieve reasonable performance under certain conditions.
Low-cost high performance distributed data storage for multi-channel observations
NASA Astrophysics Data System (ADS)
Liu, Ying-bo; Wang, Feng; Deng, Hui; Ji, Kai-fan; Dai, Wei; Wei, Shou-lin; Liang, Bo; Zhang, Xiao-li
2015-10-01
The New Vacuum Solar Telescope (NVST) is a 1-m solar telescope that aims to observe the fine structures in both the photosphere and the chromosphere of the Sun. The observational data acquired simultaneously from one channel for the chromosphere and two channels for the photosphere bring great challenges to the data storage of NVST. The multi-channel instruments of NVST, including scientific cameras and multi-band spectrometers, generate at least 3 terabytes data per day and require high access performance while storing massive short-exposure images. It is worth studying and implementing a storage system for NVST which would balance the data availability, access performance and the cost of development. In this paper, we build a distributed data storage system (DDSS) for NVST and then deeply evaluate the availability of real-time data storage on a distributed computing environment. The experimental results show that two factors, i.e., the number of concurrent read/write and the file size, are critically important for improving the performance of data access on a distributed environment. Referring to these two factors, three strategies for storing FITS files are presented and implemented to ensure the access performance of the DDSS under conditions of multi-host write and read simultaneously. The real applications of the DDSS proves that the system is capable of meeting the requirements of NVST real-time high performance observational data storage. Our study on the DDSS is the first attempt for modern astronomical telescope systems to store real-time observational data on a low-cost distributed system. The research results and corresponding techniques of the DDSS provide a new option for designing real-time massive astronomical data storage system and will be a reference for future astronomical data storage.
A cost-effective measurement-device-independent quantum key distribution system for quantum networks
NASA Astrophysics Data System (ADS)
Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2017-12-01
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
A hierarchically distributed architecture for fault isolation expert systems on the space station
NASA Technical Reports Server (NTRS)
Miksell, Steve; Coffer, Sue
1987-01-01
The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-08-01
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-11-14
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Automatic Management of Parallel and Distributed System Resources
NASA Technical Reports Server (NTRS)
Yan, Jerry; Ngai, Tin Fook; Lundstrom, Stephen F.
1990-01-01
Viewgraphs on automatic management of parallel and distributed system resources are presented. Topics covered include: parallel applications; intelligent management of multiprocessing systems; performance evaluation of parallel architecture; dynamic concurrent programs; compiler-directed system approach; lattice gaseous cellular automata; and sparse matrix Cholesky factorization.
5 CFR 9901.342 - Performance payouts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Performance payouts. 9901.342 Section... PERSONNEL SYSTEM (NSPS) Pay and Pay Administration Performance-Based Pay § 9901.342 Performance payouts. (a) Overview. (1) The NSPS pay system will be a performance-based pay system and will result in a distribution...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry A; Boemer, Jens C.; Vittal, Eknath
The response of low voltage networks with high penetration of PV systems to transmission network faults will, in the future, determine the overall power system performance during certain hours of the year. The WECC distributed PV system model (PVD1) is designed to represent small-scale distribution-connected systems. Although default values are provided by WECC for the model parameters, tuning of those parameters seems to become important in order to accurately estimate the partial loss of distributed PV systems for bulk system studies. The objective of this paper is to describe a new methodology to determine the WECC distributed PV system (PVD1)more » model parameters and to derive parameter sets obtained for six distribution circuits of a Californian investor-owned utility with large amounts of distributed PV systems. The results indicate that the parameters for the partial loss of distributed PV systems may differ significantly from the default values provided by WECC.« less
Reliable file sharing in distributed operating system using web RTC
NASA Astrophysics Data System (ADS)
Dukiya, Rajesh
2017-12-01
Since, the evolution of distributed operating system, distributed file system is come out to be important part in operating system. P2P is a reliable way in Distributed Operating System for file sharing. It was introduced in 1999, later it became a high research interest topic. Peer to Peer network is a type of network, where peers share network workload and other load related tasks. A P2P network can be a period of time connection, where a bunch of computers connected by a USB (Universal Serial Bus) port to transfer or enable disk sharing i.e. file sharing. Currently P2P requires special network that should be designed in P2P way. Nowadays, there is a big influence of browsers in our life. In this project we are going to study of file sharing mechanism in distributed operating system in web browsers, where we will try to find performance bottlenecks which our research will going to be an improvement in file sharing by performance and scalability in distributed file systems. Additionally, we will discuss the scope of Web Torrent file sharing and free-riding in peer to peer networks.
Research in Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Mukkamala, R.
1997-01-01
This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.
A Performance Comparison of Tree and Ring Topologies in Distributed System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Min
A distributed system is a collection of computers that are connected via a communication network. Distributed systems have become commonplace due to the wide availability of low-cost, high performance computers and network devices. However, the management infrastructure often does not scale well when distributed systems get very large. Some of the considerations in building a distributed system are the choice of the network topology and the method used to construct the distributed system so as to optimize the scalability and reliability of the system, lower the cost of linking nodes together and minimize the message delay in transmission, and simplifymore » system resource management. We have developed a new distributed management system that is able to handle the dynamic increase of system size, detect and recover the unexpected failure of system services, and manage system resources. The topologies used in the system are the tree-structured network and the ring-structured network. This thesis presents the research background, system components, design, implementation, experiment results and the conclusions of our work. The thesis is organized as follows: the research background is presented in chapter 1. Chapter 2 describes the system components, including the different node types and different connection types used in the system. In chapter 3, we describe the message types and message formats in the system. We discuss the system design and implementation in chapter 4. In chapter 5, we present the test environment and results, Finally, we conclude with a summary and describe our future work in chapter 6.« less
Slow crack growth test method for polyethylene gas pipes. Volume 1. Topical report, December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leis, B.; Ahmad, J.; Forte, T.
1992-12-01
In spite of the excellent performance record of polyethylene (PE) pipes used for gas distribution, a small number of leaks occur in distribution systems each year because of slow growth of cracks through pipe walls. The Slow Crack Growth Test (SCG) has been developed as a key element in a methodology for the assessment of the performance of polyethylene gas distribution systems to resist such leaks. This tropical report describes work conducted in the first part of the research directed at the initial development of the SCG test, including a critical evaluation of the applicability of the SCG test asmore » an element in PE gas pipe system performance methodology. Results of extensive experiments and analysis are reported. The results show that the SCG test should be very useful in performance assessment.« less
NASA Astrophysics Data System (ADS)
Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung
2017-04-01
A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.
Distributed Cognition in Sports Teams: Explaining Successful and Expert Performance
ERIC Educational Resources Information Center
Williamson, Kellie; Cox, Rochelle
2014-01-01
In this article we use a hybrid methodology to better understand the skilful performance of sports teams as an exemplar of distributed cognition. We highlight key differences between a team of individual experts (an aggregate system) and an expert team (an emergent system), and outline the kinds of shared characteristics likely to be found in an…
Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhao, Shang-Hong; Zhao, Wei-Hu; Liu, Yun; Li, Xuan
2017-12-01
This paper presented the performances of asymmetric mixed radio frequency (RF)/free-space optical (FSO) system with the amplify-and-forward relaying scheme. The RF channel undergoes Nakagami- m channel, and the Exponentiated Weibull distribution is adopted for the FSO component. The mathematical formulas for cumulative distribution function (CDF), probability density function (PDF) and moment generating function (MGF) of equivalent signal-to-noise ratio (SNR) are achieved. According to the end-to-end statistical characteristics, the new analytical expressions of outage probability are obtained. Under various modulation techniques, we derive the average bit-error-rate (BER) based on the Meijer's G function. The evaluation and simulation are provided for the system performance, and the aperture average effect is discussed as well.
Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2012-01-10
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2008-01-01
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
1983-07-01
Distributed Computing Systems impact DrnwrR - aehR on Sotwar Quaity. PERFORMING 010. REPORT NUMBER 7. AUTNOW) S. CONTRACT OR GRANT "UMBER(*)IS ThomasY...C31 Application", "Space Systems Network", "Need for Distributed Database Management", and "Adaptive Routing". This is discussed in the last para ...data reduction, buffering, encryption, and error detection and correction functions. Examples of such data streams include imagery data, video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Sigrin, Ben; Gleason, Mike
Net energy metering (NEM) is a billing mechanism that has historically compensated owners of distributed generation systems at retail rates for any electricity that they export back to the grid rather than consume on-site. NEM can significantly enhance the financial performance of distributed generation systems from the owner’s perspective. The following analysis was designed to illustrate the potential impact of NEM policy and tariff changes implemented in early 2016 in Nevada.
Foo, Brian; van der Schaar, Mihaela
2010-11-01
In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.
Performance of Distributed CFAR Processors in Pearson Distributed Clutter
NASA Astrophysics Data System (ADS)
Messali, Zoubeida; Soltani, Faouzi
2006-12-01
This paper deals with the distributed constant false alarm rate (CFAR) radar detection of targets embedded in heavy-tailed Pearson distributed clutter. In particular, we extend the results obtained for the cell averaging (CA), order statistics (OS), and censored mean level CMLD CFAR processors operating in positive alpha-stable (P&S) random variables to more general situations, specifically to the presence of interfering targets and distributed CFAR detectors. The receiver operating characteristics of the greatest of (GO) and the smallest of (SO) CFAR processors are also determined. The performance characteristics of distributed systems are presented and compared in both homogeneous and in presence of interfering targets. We demonstrate, via simulation results, that the distributed systems when the clutter is modelled as positive alpha-stable distribution offer robustness properties against multiple target situations especially when using the "OR" fusion rule.
Effects of distributed database modeling on evaluation of transaction rollbacks
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. The effect is studied of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks, in a partitioned distributed database system. Six probabilistic models and expressions are developed for the numbers of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results so obtained are compared to results from simulation. From here, it is concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughout is also grossly undermined when such models are employed.
Effects of distributed database modeling on evaluation of transaction rollbacks
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. Here, researchers investigate the effect of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks in a partitioned distributed database system. The researchers developed six probabilistic models and expressions for the number of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results obtained are compared to results from simulation. It was concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughput is also grossly undermined when such models are employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiike, S.; Okazaki, Y.
This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
Assessment of sodium conductor distribution cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-06-01
The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)
Performance test for a solar water heater
NASA Technical Reports Server (NTRS)
1979-01-01
Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.
Recommendation System Based On Association Rules For Distributed E-Learning Management Systems
NASA Astrophysics Data System (ADS)
Mihai, Gabroveanu
2015-09-01
Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...
NASA Astrophysics Data System (ADS)
Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.
2013-09-01
A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
Distributed simulation using a real-time shared memory network
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.
1993-01-01
The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.
Distributing Frequency And Time Signals On Optical Fibers
NASA Technical Reports Server (NTRS)
Lutes, George F.
1993-01-01
Paper reports progress in distribution of frequency and time reference signals over optical fibers. Describes current performance at frequencies of 100 MHz, 1 GHz, and 8.4 GHz. Also describes transmitting and receiving equipment and discusses tradeoff between cost and performance. Concludes with discussion of likely future development and effects of developments on systems using distributed frequency reference signals.
The performance of residential micro-cogeneration coupled with thermal and electrical storage
NASA Astrophysics Data System (ADS)
Kopf, John
Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the economic performance for both the end user and local distribution company.
Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.
Fault Tolerant Software Technology for Distributed Computer Systems
1989-03-01
RAY.) &-TR-88-296 I Fin;.’ Technical Report ,r 19,39 i A28 3329 F’ULT TOLERANT SOFTWARE TECHNOLOGY FOR DISTRIBUTED COMPUTER SYSTEMS Georgia Institute...GrfisABN 34-70IiWftlI NO0. IN?3. NO IACCESSION NO. 158 21 7 11. TITLE (Incld security Cassification) FAULT TOLERANT SOFTWARE FOR DISTRIBUTED COMPUTER ...Technology for Distributed Computing Systems," a two year effort performed at Georgia Institute of Technology as part of the Clouds Project. The Clouds
Niaksu, Olegas; Zaptorius, Jonas
2014-01-01
This paper presents the methodology suitable for creation of a performance related remuneration system in healthcare sector, which would meet requirements for efficiency and sustainable quality of healthcare services. Methodology for performance indicators selection, ranking and a posteriori evaluation has been proposed and discussed. Priority Distribution Method is applied for unbiased performance criteria weighting. Data mining methods are proposed to monitor and evaluate the results of motivation system.We developed a method for healthcare specific criteria selection consisting of 8 steps; proposed and demonstrated application of Priority Distribution Method for the selected criteria weighting. Moreover, a set of data mining methods for evaluation of the motivational system outcomes was proposed. The described methodology for calculating performance related payment needs practical approbation. We plan to develop semi-automated tools for institutional and personal performance indicators monitoring. The final step would be approbation of the methodology in a healthcare facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, C.
Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order tomore » give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses.« less
Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong
2013-09-09
In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.
Efficient abstract data type components for distributed and parallel systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastani, F.; Hilal, W.; Iyengar, S.S.
1987-10-01
One way of improving software system's comprehensibility and maintainability is to decompose it into several components, each of which encapsulates some information concerning the system. These components can be classified into four categories, namely, abstract data type, functional, interface, and control components. Such a classfication underscores the need for different specification, implementation, and performance-improvement methods for different types of components. This article focuses on the development of high-performance abstract data type components for distributed and parallel environments.
Distributed Issues for Ada Real-Time Systems
1990-07-23
NUMBERS Distributed Issues for Ada Real - Time Systems MDA 903-87- C- 0056 S. AUTHOR(S) Thomas E. Griest 7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8...considerations. I Adding to the problem of distributed real - time systems is the issue of maintaining a common sense of time among all of the processors...because -omeone is waiting for the final output of a very large set of computations. However in real - time systems , consistent meeting of short-term
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang Y. Lee; Stuart S. Yin; Andre Boheman
2004-12-26
The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatialmore » resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis.« less
Supporting large scale applications on networks of workstations
NASA Technical Reports Server (NTRS)
Cooper, Robert; Birman, Kenneth P.
1989-01-01
Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.
NASA Technical Reports Server (NTRS)
Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary
1996-01-01
We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.
The Real World of Technological Evolution in Broadband Communications.
ERIC Educational Resources Information Center
Schlafly, Hubert J.
The current state (in 1970) of cable television systems is discussed under headings of head end, distribution, home terminals, system performance and standards with close attention paid to the technology involved. In summing up new system planning, the review considers channel expansion, channel reuse, two way cable, local distribution services…
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
Largo hot water system long range thermal performance test report, addendum
NASA Technical Reports Server (NTRS)
1978-01-01
The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.
Cooperating Expert Systems For Space Station Power Distribution Management
NASA Astrophysics Data System (ADS)
Nguyen, T. A.; Chiou, W. C.
1987-02-01
In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.
Optimal planning and design of a renewable energy based supply system for microgrids
Hafez, Omar; Bhattacharya, Kankar
2012-03-03
This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less
Research on Three-phase Four-wire Inverter
NASA Astrophysics Data System (ADS)
Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.
2017-05-01
The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.
Human Systems Integration (HSI) Tradeoff Model
2014-03-01
Distribution A: Approved for public release; distribution is unlimited. AIR FORCE RESEARCH LABORATORY 711TH HUMAN PERFORMANCE WING HUMAN SYSTEMS...This report was cleared for public release by the 88th Air Base Wing Public Affairs Office and is available to the general public , including...BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. //SIGNATURE// ANTHONY P
2015-04-17
AFRL-OSR-VA-TR-2015-0094 AKAMAI INTERNSHIP PROGRAM Lisa Hunter UNIVERSITY OF HAWAII SYSTEMS Final Report 04/17/2015 DISTRIBUTION A: Distribution...NUMBER n/a 5f. WORK UNIT NUMBER n/a 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii Systems 2530 Dole St. SAK D-200...Honolulu, HI 96822-2309 8. PERFORMING ORGANIZATION REPORT NUMBER n/a 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) University of
M855A1 Enhanced Performance Round (EPR) Media Day
2011-05-04
Distribution is unlimited. Other requests shall be referred to the Office of the Project Manager for Maneuver Ammunition Systems, ATTN: SFAE-AMO-MAS- SETI ... SETI ,Picatinny,NJ,07806-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...the Project Manager for Maneuver Ammunition Systems, ATTN: SFAE- AMO-MAS- SETI , Picatinny, NJ Distribution Statement A: Approved for Public Release
Shen, L; Levine, S H; Catchen, G L
1987-07-01
This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.
Integrating security in a group oriented distributed system
NASA Technical Reports Server (NTRS)
Reiter, Michael; Birman, Kenneth; Gong, LI
1992-01-01
A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized.
NASA Astrophysics Data System (ADS)
Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish
2012-06-01
Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
NASA Astrophysics Data System (ADS)
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
High performance frame synchronization for continuous variable quantum key distribution systems.
Lin, Dakai; Huang, Peng; Huang, Duan; Wang, Chao; Peng, Jinye; Zeng, Guihua
2015-08-24
Considering a practical continuous variable quantum key distribution(CVQKD) system, synchronization is of significant importance as it is hardly possible to extract secret keys from unsynchronized strings. In this paper, we proposed a high performance frame synchronization method for CVQKD systems which is capable to operate under low signal-to-noise(SNR) ratios and is compatible with random phase shift induced by quantum channel. A practical implementation of this method with low complexity is presented and its performance is analysed. By adjusting the length of synchronization frame, this method can work well with large range of SNR values which paves the way for longer distance CVQKD.
Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam
2012-01-01
A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Water Best Management Practice #3 Fact Seet: Outlines how a leak detection and repair program helped Kirtland Air Force Base perform distribution system audits, leak detection, and repair to conserve water site-wide.
Recent Technology Advances in Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis
2017-01-01
This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.
Performance of Radiant Heating Systems of Low-Energy Buildings
NASA Astrophysics Data System (ADS)
Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel
2017-10-01
After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.
Evaluation of the Performance of the Distributed Phased-MIMO Sonar.
Pan, Xiang; Jiang, Jingning; Wang, Nan
2017-01-11
A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments.
Evaluation of the Performance of the Distributed Phased-MIMO Sonar
Pan, Xiang; Jiang, Jingning; Wang, Nan
2017-01-01
A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments. PMID:28085071
NASA Technical Reports Server (NTRS)
Bahrami, K. A.; Kirkham, H.; Rahman, S.
1986-01-01
In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented.
Study on Walking Training System using High-Performance Shoes constructed with Rubber Elements
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Kawanaka, S.; Kanezaki, K.; Doi, S.
2016-09-01
The number of accidental falls has been increasing among the elderly as society has aged. The main factor is a deteriorating center of balance due to declining physical performance. Another major factor is that the elderly tend to have bowlegged walking and their center of gravity position of the body tend to swing from side to side during walking. To find ways to counteract falls among the elderly, we developed walking training system to treat the gap in the center of balance. We also designed High-Performance Shoes that showed the status of a person's balance while walking. We also produced walk assistance from the insole in which insole stiffness corresponded to human sole distribution could be changed to correct the person's walking status. We constructed our High- Performances Shoes to detect pressure distribution during walking. Comparing normal sole distribution patterns and corrected ones, we confirmed that our assistance system helped change the user's posture, thereby reducing falls among the elderly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercier, C.W.
The Network File System (NFS) will be the user interface to a High-Performance Data System (HPDS) being developed at Los Alamos National Laboratory (LANL). HPDS will manage high-capacity, high-performance storage systems connected directly to a high-speed network from distributed workstations. NFS will be modified to maximize performance and to manage massive amounts of data. 6 refs., 3 figs.
Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Minh
2002-03-31
This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet}more » Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed« less
Power System Information Delivering System Based on Distributed Object
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuji; Tsuchiya, Takehiko; Tamura, Setsuo; Seki, Tomomichi; Kubota, Kenji
In recent years, improvement in computer performance and development of computer network technology or the distributed information processing technology has a remarkable thing. Moreover, the deregulation is starting and will be spreading in the electric power industry in Japan. Consequently, power suppliers are required to supply low cost power with high quality services to customers. Corresponding to these movements the authors have been proposed SCOPE (System Configuration Of PowEr control system) architecture for distributed EMS/SCADA (Energy Management Systems / Supervisory Control and Data Acquisition) system based on distributed object technology, which offers the flexibility and expandability adapting those movements. In this paper, the authors introduce a prototype of the power system information delivering system, which was developed based on SCOPE architecture. This paper describes the architecture and the evaluation results of this prototype system. The power system information delivering system supplies useful power systems information such as electric power failures to the customers using Internet and distributed object technology. This system is new type of SCADA system which monitors failure of power transmission system and power distribution system with geographic information integrated way.
RF-based power distribution system for optogenetic experiments
NASA Astrophysics Data System (ADS)
Filipek, Tomasz A.; Kasprowicz, Grzegorz H.
2017-08-01
In this paper, the wireless power distribution system for optogenetic experiment was demonstrated. The design and the analysis of the power transfer system development is described in details. The architecture is outlined in the context of performance requirements that had to be met. We show how to design a wireless power transfer system using resonant coupling circuits which consist of a number of receivers and one transmitter covering the entire cage area with a specific power density. The transmitter design with the full automated protection stage is described with detailed consideration of the specification and the construction of the transmitting loop antenna. In addition, the design of the receiver is described, including simplification of implementation and the minimization of the impact of component tolerances on the performance of the distribution system. The conducted analysis has been confirmed by calculations and measurement results. The presented distribution system was designed to provide 100 mW power supply to each of the ten possible receivers in a limited 490 x 350 mm cage space while using a single transmitter working at the coupling resonant frequency of 27 MHz.
Data on the no-load performance analysis of a tomato postharvest storage system.
Ayomide, Orhewere B; Ajayi, Oluseyi O; Banjo, Solomon O; Ajayi, Adesola A
2017-08-01
In this present investigation, an original and detailed empirical data on the transfer of heat in a tomato postharvest storage system was presented. No-load tests were performed for a period of 96 h. The heat distribution at different locations, namely the top, middle and bottom of the system was acquired, at a time interval of 30 min for the test period. The humidity inside the system was taken into consideration. Thus, No-load tests with or without introduction of humidity were carried out and data showing the effect of a rise in humidity level, on temperature distribution were acquired. The temperatures at the external mechanical cooling components were acquired and could be used for showing the performance analysis of the storage system.
System performance predictions for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.
1993-01-01
Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
2017-05-26
Mathematical psychology. In APA Handbook of Research Methods in Psychology, Vol. 2: Research Designs: Quantitative , Qualitative, DISTRIBUTION A: Distribution...AFRL-AFOSR-VA-TR-2017-0108 A Proposal to Perform New Theoretical and Experimental Research on Human Efficiency Through Developments Within Systems...release. AF Office Of Scientific Research (AFOSR)/ RTA2 Arlington, Virginia 22203 Air Force Research Laboratory Air Force Materiel Command a. REPORT
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Distributed dynamic simulations of networked control and building performance applications
Yahiaoui, Azzedine
2017-01-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135
Lightning protection of distribution lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, T.E.; Short, T.A.; Anderson, J.G.
1994-01-01
This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines.
A failure management prototype: DR/Rx
NASA Technical Reports Server (NTRS)
Hammen, David G.; Baker, Carolyn G.; Kelly, Christine M.; Marsh, Christopher A.
1991-01-01
This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.
Efficient High Performance Collective Communication for Distributed Memory Environments
ERIC Educational Resources Information Center
Ali, Qasim
2009-01-01
Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…
System and Method for Monitoring Distributed Asset Data
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry (Inventor)
2015-01-01
A computer-based monitoring system and monitoring method implemented in computer software for detecting, estimating, and reporting the condition states, their changes, and anomalies for many assets. The assets are of same type, are operated over a period of time, and outfitted with data collection systems. The proposed monitoring method accounts for variability of working conditions for each asset by using regression model that characterizes asset performance. The assets are of the same type but not identical. The proposed monitoring method accounts for asset-to-asset variability; it also accounts for drifts and trends in the asset condition and data. The proposed monitoring system can perform distributed processing of massive amounts of historical data without discarding any useful information where moving all the asset data into one central computing system might be infeasible. The overall processing is includes distributed preprocessing data records from each asset to produce compressed data.
Theory of single-photon detectors employing smart strategies of detection
NASA Astrophysics Data System (ADS)
Silva, João Batista Rosa; Ramos, Rubens Viana
2005-11-01
Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.
Study of data I/O performance on distributed disk system in mask data preparation
NASA Astrophysics Data System (ADS)
Ohara, Shuichiro; Odaira, Hiroyuki; Chikanaga, Tomoyuki; Hamaji, Masakazu; Yoshioka, Yasuharu
2010-09-01
Data volume is getting larger every day in Mask Data Preparation (MDP). In the meantime, faster data handling is always required. MDP flow typically introduces Distributed Processing (DP) system to realize the demand because using hundreds of CPU is a reasonable solution. However, even if the number of CPU were increased, the throughput might be saturated because hard disk I/O and network speeds could be bottlenecks. So, MDP needs to invest a lot of money to not only hundreds of CPU but also storage and a network device which make the throughput faster. NCS would like to introduce new distributed processing system which is called "NDE". NDE could be a distributed disk system which makes the throughput faster without investing a lot of money because it is designed to use multiple conventional hard drives appropriately over network. NCS studies I/O performance with OASIS® data format on NDE which contributes to realize the high throughput in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.
The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less
Performance Analysis of Distributed Object-Oriented Applications
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1998-01-01
The purpose of this research was to evaluate the efficiency of a distributed simulation architecture which creates individual modules which are made self-scheduling through the use of a message-based communication system used for requesting input data from another module which is the source of that data. To make the architecture as general as possible, the message-based communication architecture was implemented using standard remote object architectures (Common Object Request Broker Architecture (CORBA) and/or Distributed Component Object Model (DCOM)). A series of experiments were run in which different systems are distributed in a variety of ways across multiple computers and the performance evaluated. The experiments were duplicated in each case so that the overhead due to message communication and data transmission can be separated from the time required to actually perform the computational update of a module each iteration. The software used to distribute the modules across multiple computers was developed in the first year of the current grant and was modified considerably to add a message-based communication scheme supported by the DCOM distributed object architecture. The resulting performance was analyzed using a model created during the first year of this grant which predicts the overhead due to CORBA and DCOM remote procedure calls and includes the effects of data passed to and from the remote objects. A report covering the distributed simulation software and the results of the performance experiments has been submitted separately. The above report also discusses possible future work to apply the methodology to dynamically distribute the simulation modules so as to minimize overall computation time.
NASA Astrophysics Data System (ADS)
Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong
2017-04-01
A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.
Automated distribution system management for multichannel space power systems
NASA Technical Reports Server (NTRS)
Fleck, G. W.; Decker, D. K.; Graves, J.
1983-01-01
A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, R.
1992-01-01
The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems.
RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid
NASA Astrophysics Data System (ADS)
Taylor, Zachariah David
In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.
Autonomic Management in a Distributed Storage System
NASA Astrophysics Data System (ADS)
Tauber, Markus
2010-07-01
This thesis investigates the application of autonomic management to a distributed storage system. Effects on performance and resource consumption were measured in experiments, which were carried out in a local area test-bed. The experiments were conducted with components of one specific distributed storage system, but seek to be applicable to a wide range of such systems, in particular those exposed to varying conditions. The perceived characteristics of distributed storage systems depend on their configuration parameters and on various dynamic conditions. For a given set of conditions, one specific configuration may be better than another with respect to measures such as resource consumption and performance. Here, configuration parameter values were set dynamically and the results compared with a static configuration. It was hypothesised that under non-changing conditions this would allow the system to converge on a configuration that was more suitable than any that could be set a priori. Furthermore, the system could react to a change in conditions by adopting a more appropriate configuration. Autonomic management was applied to the peer-to-peer (P2P) and data retrieval components of ASA, a distributed storage system. The effects were measured experimentally for various workload and churn patterns. The management policies and mechanisms were implemented using a generic autonomic management framework developed during this work. The experimental evaluations of autonomic management show promising results, and suggest several future research topics. The findings of this thesis could be exploited in building other distributed storage systems that focus on harnessing storage on user workstations, since these are particularly likely to be exposed to varying, unpredictable conditions.
A comparison of decentralized, distributed, and centralized vibro-acoustic control.
Frampton, Kenneth D; Baumann, Oliver N; Gardonio, Paolo
2010-11-01
Direct velocity feedback control of structures is well known to increase structural damping and thus reduce vibration. In multi-channel systems the way in which the velocity signals are used to inform the actuators ranges from decentralized control, through distributed or clustered control to fully centralized control. The objective of distributed controllers is to exploit the anticipated performance advantage of the centralized control while maintaining the scalability, ease of implementation, and robustness of decentralized control. However, and in seeming contradiction, some investigations have concluded that decentralized control performs as well as distributed and centralized control, while other results have indicated that distributed control has significant performance advantages over decentralized control. The purpose of this work is to explain this seeming contradiction in results, to explore the effectiveness of decentralized, distributed, and centralized vibro-acoustic control, and to expand the concept of distributed control to include the distribution of the optimization process and the cost function employed.
Application of new type of distributed multimedia databases to networked electronic museum
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1999-01-01
Recently, various kinds of multimedia application systems have actively been developed based on the achievement of advanced high sped communication networks, computer processing technologies, and digital contents-handling technologies. Under this background, this paper proposed a new distributed multimedia database system which can effectively perform a new function of cooperative retrieval among distributed databases. The proposed system introduces a new concept of 'Retrieval manager' which functions as an intelligent controller so that the user can recognize a set of distributed databases as one logical database. The logical database dynamically generates and performs a preferred combination of retrieving parameters on the basis of both directory data and the system environment. Moreover, a concept of 'domain' is defined in the system as a managing unit of retrieval. The retrieval can effectively be performed by cooperation of processing among multiple domains. Communication language and protocols are also defined in the system. These are used in every action for communications in the system. A language interpreter in each machine translates a communication language into an internal language used in each machine. Using the language interpreter, internal processing, such internal modules as DBMS and user interface modules can freely be selected. A concept of 'content-set' is also introduced. A content-set is defined as a package of contents. Contents in the content-set are related to each other. The system handles a content-set as one object. The user terminal can effectively control the displaying of retrieved contents, referring to data indicating the relation of the contents in the content- set. In order to verify the function of the proposed system, a networked electronic museum was experimentally built. The results of this experiment indicate that the proposed system can effectively retrieve the objective contents under the control to a number of distributed domains. The result also indicate that the system can effectively work even if the system becomes large.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Zhang, Kai; Xiong, Jian
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
Wang, Cheng; Zhang, Kai; Xiong, Jian; ...
2017-09-26
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
Stability Analysis of Distributed Engine Control Systems Under Communication Packet Drop (Postprint)
2008-07-01
use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Currently, Full Authority Digital Engine Control ( FADEC ...based on a centralized architecture framework is being widely used for gas turbine engine control. However, current FADEC is not able to meet the...system (DEC). FADEC based on Distributed Control Systems (DCS) offers modularity, improved control systems prognostics and fault tolerance along with
Utilitiesman 3 and 2. Rate Training Manual. Revised 1973.
ERIC Educational Resources Information Center
Naval Training Command, Pensacola, FL.
This Rate Training Manual provides the technical knowledge and skill requirements necessary to prepare Utilitiesmen to perform tasks involved in the installation, maintenance, and repair of plumbing, heating, steam, fuel storage and distribution systems, water treatment and distribution systems, air conditioning and refrigeration equipment, and…
The description of microorganisms inhabiting drinking water distribution systems has commonly been performed using techniques that are biased towards easy to culture bacterial populations. As most environmental microorganisms cannot be grown on artificial media, our understanding...
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui
2017-10-01
To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.
Distributed metadata in a high performance computing environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Zhang, Zhenhua
A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination thatmore » a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.« less
A Software Rejuvenation Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chau, Savio
2009-01-01
A performability-oriented conceptual framework for software rejuvenation has been constructed as a means of increasing levels of reliability and performance in distributed stateful computing. As used here, performability-oriented signifies that the construction of the framework is guided by the concept of analyzing the ability of a given computing system to deliver services with gracefully degradable performance. The framework is especially intended to support applications that involve stateful replicas of server computers.
Application of total distributed control system in car-body inspection
NASA Astrophysics Data System (ADS)
Yang, Xueyou; Ren, Dahai; Wang, Zhong; Ye, Shenghua; Lu, Hongbo; Duan, Jilin
1996-08-01
An application of distributed control system in Autocar-body Visual Inspection Station is presented in the paper, a distributed control system using PC as the host processor and single-chip microcomputer as the slave controller is proposed. In this paper, the physical interface of the control network and the relevant hardware are introduced. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.
Experiment and application of soft x-ray grazing incidence optical scattering phenomena
NASA Astrophysics Data System (ADS)
Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun
2017-08-01
For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.
Parallel/distributed direct method for solving linear systems
NASA Technical Reports Server (NTRS)
Lin, Avi
1990-01-01
A new family of parallel schemes for directly solving linear systems is presented and analyzed. It is shown that these schemes exhibit a near optimal performance and enjoy several important features: (1) For large enough linear systems, the design of the appropriate paralleled algorithm is insensitive to the number of processors as its performance grows monotonically with them; (2) It is especially good for large matrices, with dimensions large relative to the number of processors in the system; (3) It can be used in both distributed parallel computing environments and tightly coupled parallel computing systems; and (4) This set of algorithms can be mapped onto any parallel architecture without any major programming difficulties or algorithmical changes.
Communication and control in an integrated manufacturing system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Throne, Robert D.; Muthuswamy, Yogesh K.
1987-01-01
Typically, components in a manufacturing system are all centrally controlled. Due to possible communication bottlenecking, unreliability, and inflexibility caused by using a centralized controller, a new concept of system integration called an Integrated Multi-Robot System (IMRS) was developed. The IMRS can be viewed as a distributed real time system. Some of the current research issues being examined to extend the framework of the IMRS to meet its performance goals are presented. These issues include the use of communication coprocessors to enhance performance, the distribution of tasks and the methods of providing fault tolerance in the IMRS. An application example of real time collision detection, as it relates to the IMRS concept, is also presented and discussed.
Distributed-current-feed and distributed-energy-store railguns
NASA Astrophysics Data System (ADS)
Holland, L. D.
1984-03-01
In connection with advances in railgun technology evolution toward the development of systems for specific applications, investigations are being conducted regarding a wide variety of power supply and railgun systems. The present study is concerned with the development of the distributed railguns and the introduction of a new type of railgun system specifically designed for applications requiring long accelerators. It is found that the distributed railguns offer a solution to the limits on performance of the breech-fed railguns as the length of the rails becomes large. Attention is given to the pulse-forming network and breech-fed railgun, the breech-fed railgun with parallel pulse-forming network, a distributed-energy-store railgun, a distributed-current-feed (DCF) railgun, and a DCF railgun launcher.
The research tasks included: an inventory of cases where dual systems have been implemented; formulation of a protocol to identify claimed benefits, costs, and risks; collection of data (quantitative and anecdotal) to assess performance; display of data in the form of performance...
The U.S. EPA’s Technology Testing and Evaluation Program has been charged by EPA to evaluate the performance of commercially available water security-related technologies. Multi-parameter water monitors for distributions systems have been evaluated as such a water security techn...
Cometabolism of Monochloramine by Nitrosomonas europaea under Distribution System Conditions
Batch kinetic experiments were carried out with a pure culture of N. europaea to characterize the kinetics of NH2Cl cometabolism. Nitrite, nitrate, NH2Cl, ammonia and pH were measured. The experiments were performed at a variety of conditions relevant to distribution system nitri...
Comparative evaluation of distributed-collector solar thermal electric power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.
1978-01-01
Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.
Investigating the Impact of Wind Turbines on Distribution System Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Rishabh; Zhang, Yingchen; Hodge, Bri-Mathias
Modern wind turbines utilize power electronic converters to regulate their output and optimize their performance. Their impact on the distribution system is not as well understood as for transmission system. The novelty of this work is in studying the impact of wind turbines given its proximity to faults or severe voltage events, and the influence on system stability given its location relative to the substation (representing the conventional grid). This paper presents the frequency and voltage swing plots for various study scenarios. The responses are analyzed two fold - Steady state operation, and performance given a fault or voltage eventsmore » occurs in the system. The findings are presented, with crucial differences from transmission systems highlighted.« less
NASA Astrophysics Data System (ADS)
Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.
2007-07-01
The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression
NASA Astrophysics Data System (ADS)
Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan
2018-06-01
In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.
Web-Based Distributed Simulation of Aeronautical Propulsion System
NASA Technical Reports Server (NTRS)
Zheng, Desheng; Follen, Gregory J.; Pavlik, William R.; Kim, Chan M.; Liu, Xianyou; Blaser, Tammy M.; Lopez, Isaac
2001-01-01
An application was developed to allow users to run and view the Numerical Propulsion System Simulation (NPSS) engine simulations from web browsers. Simulations were performed on multiple INFORMATION POWER GRID (IPG) test beds. The Common Object Request Broker Architecture (CORBA) was used for brokering data exchange among machines and IPG/Globus for job scheduling and remote process invocation. Web server scripting was performed by JavaServer Pages (JSP). This application has proven to be an effective and efficient way to couple heterogeneous distributed components.
Coherent attacking continuous-variable quantum key distribution with entanglement in the middle
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyuan; Shi, Ronghua; Zeng, Guihua; Guo, Ying
2018-06-01
We suggest an approach on the coherent attack of continuous-variable quantum key distribution (CVQKD) with an untrusted entangled source in the middle. The coherent attack strategy can be performed on the double links of quantum system, enabling the eavesdropper to steal more information from the proposed scheme using the entanglement correlation. Numeric simulation results show the improved performance of the attacked CVQKD system in terms of the derived secret key rate with the controllable parameters maximizing the stolen information.
Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian
2014-07-01
This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. For systems that are ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and ILU(O) preconditioned CG (PCG) using different programming paradigms and architectures. Results show that for this class of applications: ordering significantly improves overall performance on both distributed and distributed shared-memory systems, that cache reuse may be more important than reducing communication, that it is possible to achieve message-passing performance using shared-memory constructs through careful data ordering and distribution, and that a hybrid MPI+OpenMP paradigm increases programming complexity with little performance gains. A implementation of CG on the Cray MTA does not require special ordering or partitioning to obtain high efficiency and scalability, giving it a distinct advantage for adaptive applications; however, it shows limited scalability for PCG due to a lack of thread level parallelism.
Langeveld, J G; de Haan, C; Klootwijk, M; Schilperoort, R P S
2012-01-01
Storm water separating manifolds in house connections have been introduced as a cost effective solution to disconnect impervious areas from combined sewers. Such manifolds have been applied by the municipality of Breda, the Netherlands. In order to investigate the performance of the manifolds, a monitoring technique (distributed temperature sensing or DTS) using fiber optic cables has been applied in the sewer system of Breda. This paper describes the application of DTS as a research tool in sewer systems. DTS proves to be a powerful tool to monitor the performance of (parts of) a sewer system in time and space. The research project showed that DTS is capable of monitoring the performance of house connections and identifying locations of inflow of both sewage and storm runoff. The research results show that the performance of storm water separating manifolds varies over time, thus making them unreliable.
Distributed Leadership: Friend or Foe?
ERIC Educational Resources Information Center
Harris, Alma
2013-01-01
Distributed leadership is now widely known and variously enacted in schools and school systems. Distributed leadership implies a fundamental re-conceptualisation of leadership as practice and challenges conventional wisdom about the relationship between formal leadership and organisational performance. There has been much debate, speculation and…
A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care
NASA Astrophysics Data System (ADS)
Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.
This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.
NASA Astrophysics Data System (ADS)
Aguila, Alexander; Wilson, Jorge
2017-07-01
This paper develops a methodology to assess a group of measures of electrical improvements in distribution systems, starting from the complementation of technical and economic criteria. In order to solve the problem of energy losses in distribution systems, technical and economic analysis was performed based on a mathematical model to establish a direct relationship between the energy saved by way of minimized losses and the costs of implementing the proposed measures. This paper aims at analysing the feasibility of reducing energy losses in distribution systems, by changing existing network conductors by larger crosssection conductors and distribution voltage change at higher levels. The impact of this methodology provides a highly efficient mathematical tool for analysing the feasibility of implementing improvement projects based on their costs which is a very useful tool for the distribution companies that will serve as a starting point to the analysis for this type of projects in distribution systems.
Colen, Hadewig B; Neef, Cees; Schuring, Roel W
2003-06-01
Worldwide patient safety has become a major social policy problem for healthcare organisations. As in other organisations, the patients in our hospital also suffer from an inadequate distribution process, as becomes clear from incident reports involving medication errors. Medisch Spectrum Twente is a top primary-care, clinical, teaching hospital. The hospital pharmacy takes care of 1070 internal beds and 1120 beds in an affiliated psychiatric hospital and nursing homes. In the beginning of 1999, our pharmacy group started a large interdisciplinary research project to develop a safe, effective and efficient drug distribution system by using systematic process redesign. The process redesign includes both organisational and technological components. This article describes the identification and verification of critical performance dimensions for the design of drug distribution processes in hospitals (phase 1 of the systematic process redesign of drug distribution). Based on reported errors and related causes, we suggested six generic performance domains. To assess the role of the performance dimensions, we used three approaches: flowcharts, interviews with stakeholders and review of the existing performance using time studies and medication error studies. We were able to set targets for costs, quality of information, responsiveness, employee satisfaction, and degree of innovation. We still have to establish what drug distribution system, in respect of quality and cost-effectiveness, represents the best and most cost-effective way of preventing medication errors. We intend to develop an evaluation model, using the critical performance dimensions as a starting point. This model can be used as a simulation template to compare different drug distribution concepts in order to define the differences in quality and cost-effectiveness.
Distributing Leadership to Make Schools Smarter: Taking the Ego out of the System
ERIC Educational Resources Information Center
Leithwood, Kenneth; Mascall, Blair; Strauss, Tiiu; Sacks, Robin; Memon, Nadeem; Yashkina, Anna
2007-01-01
In this study, we inquired about patterns of leadership distribution, as well as which leadership functions were performed by whom, the characteristics of nonadministrative leaders, and the factors promoting and inhibiting the distribution of leadership functions. We consider our account of distributed leadership in this district to be a probable…
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler
NASA Astrophysics Data System (ADS)
Li, Wei; Zhang, Jian
2018-06-01
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
NASA Astrophysics Data System (ADS)
Morant, Maria; Llorente, Roberto
2017-01-01
In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).
Continuous high speed coherent one-way quantum key distribution.
Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo
2009-08-03
Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43 dB-loss (150 km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5 bps.
Closed-form solutions of performability. [in computer systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1982-01-01
It is noted that if computing system performance is degradable then system evaluation must deal simultaneously with aspects of both performance and reliability. One approach is the evaluation of a system's performability which, relative to a specified performance variable Y, generally requires solution of the probability distribution function of Y. The feasibility of closed-form solutions of performability when Y is continuous are examined. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. Employing an approximate decomposition of the model, it is shown that a closed-form solution can indeed be obtained.
Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback
NASA Astrophysics Data System (ADS)
Schwarz, Stefan; Heath, Robert W.; Rupp, Markus
2013-12-01
This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.
Description of the SSF PMAD DC testbed control system data acquisition function
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Mackin, Michael; Wright, Theodore
1992-01-01
The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Low cost management of replicated data in fault-tolerant distributed systems
NASA Technical Reports Server (NTRS)
Joseph, Thomas A.; Birman, Kenneth P.
1990-01-01
Many distributed systems replicate data for fault tolerance or availability. In such systems, a logical update on a data item results in a physical update on a number of copies. The synchronization and communication required to keep the copies of replicated data consistent introduce a delay when operations are performed. A technique is described that relaxes the usual degree of synchronization, permitting replicated data items to be updated concurrently with other operations, while at the same time ensuring that correctness is not violated. The additional concurrency thus obtained results in better response time when performing operations on replicated data. How this technique performs in conjunction with a roll-back and a roll-forward failure recovery mechanism is also discussed.
NASA Astrophysics Data System (ADS)
Kumar Sharma, A.; Murty, V. V. S. N.
2014-12-01
The distribution system is the final link between bulk power system and consumer end. A distinctive load flow solution method is used for analysis of the load flow of radial and weakly meshed network based on Kirchhoff's Current Law (KCL) and KVL. This method has excellent convergence characteristics for both radial as well as weakly meshed structure and is based on bus injection to branch current and branch-current to bus-voltage matrix. The main contribution of the paper is: (i) an analysis has been carried out for a weekly mesh network considering number of loops addition and its impact on the losses, kW and kVAr requirements from a system, and voltage profile, (ii) different load models, realistic ZIP load model and load growth impact on losses, voltage profile, kVA and kVAr requirements, (iii) impact of addition of loops on losses, voltage profile, kVA and kVAr requirements from substation, and (iv) comparison of system performance with radial distribution system. Voltage stability is a major concern in planning and operation of power systems. This paper also includes identifying the closeness critical bus which is the most sensitive to the voltage collapse in radial distribution networks. Node having minimum value of voltage stability index is the most sensitive node. Voltage stability index values are computed for meshed network with number of loops added in the system. The results have been obtained for IEEE 33 and 69 bus test system. The results have also been obtained for radial distribution system for comparison.
Real time testing of intelligent relays for synchronous distributed generation islanding detection
NASA Astrophysics Data System (ADS)
Zhuang, Davy
As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.
NASA Astrophysics Data System (ADS)
Bokhari, Abdullah
Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.
NASA Astrophysics Data System (ADS)
Wang, Cong; Gai, Guosheng; Yang, Yufen
2018-03-01
Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.
Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki
2014-12-01
As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.
NASA Astrophysics Data System (ADS)
Li, Hanshan
2016-04-01
To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.
Measuring the mass distribution in stellar systems
NASA Astrophysics Data System (ADS)
Tremaine, Scott
2018-06-01
One of the fundamental tasks of dynamical astronomy is to infer the distribution of mass in a stellar system from a snapshot of the positions and velocities of its stars. The usual approach to this task (e.g. Schwarzschild's method) involves fitting parametrized forms of the gravitational potential and the phase-space distribution to the data. We review the practical and conceptual difficulties in this approach and describe a novel statistical method for determining the mass distribution that does not require determining the phase-space distribution of the stars. We show that this new estimator out-performs other distribution-free estimators for the harmonic and Kepler potentials.
A Distributed Computing Network for Real-Time Systems.
1980-11-03
7 ) AU2 o NAVA TUNDEWATER SY$TEMS CENTER NEWPORT RI F/G 9/2 UIS RIBUT E 0 COMPUTIN G N LTWORK FOR REAL - TIME SYSTEMS .(U) UASSIFIED NOV Al 6 1...MORAIS - UT 92 dLEVEL c A Distributed Computing Network for Real - Time Systems . 11 -1 Gordon E/Morson I7 y tm- ,r - t "en t As J 2 -p .. - 7 I’ cNaval...NUMBER TD 5932 / N 4. TITLE mand SubotI. S. TYPE OF REPORT & PERIOD COVERED A DISTRIBUTED COMPUTING NETWORK FOR REAL - TIME SYSTEMS 6. PERFORMING ORG
Geographically distributed real-time digital simulations using linear prediction
Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...
2016-07-04
Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less
Geographically distributed real-time digital simulations using linear prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank
Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less
The role of order in distributed programs
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.; Marzullo, Keith
1989-01-01
The role of order in building distributed systems is discussed. It is the belief that a principle of event ordering underlies the wide range of operating systems mechanisms that were put forward for building robust distributed software. Stated concisely, this principle achieves correct distributed behavior by ordering classes of distributed events that conflict with one another. By focusing on order, simplified descriptions can be obtained and convincingly correct solutions to problems that might otherwise have looked extremely complex. Moreover, it is observed that there are a limited number of ways to obtain order, and that the choice made impacts greatly on performance.
Vascular system modeling in parallel environment - distributed and shared memory approaches
Jurczuk, Krzysztof; Kretowski, Marek; Bezy-Wendling, Johanne
2011-01-01
The paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages and therefore this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multi-core machines, show that both algorithms provide a significant speedup. PMID:21550891
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Poerschke, R. Beach, T. Begg
IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.
Vo, T D; Dwyer, G; Szeto, H H
1986-04-01
A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.
Final Report for DOE Award ER25756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesselman, Carl
2014-11-17
The SciDAC-funded Center for Enabling Distributed Petascale Science (CEDPS) was established to address technical challenges that arise due to the frequent geographic distribution of data producers (in particular, supercomputers and scientific instruments) and data consumers (people and computers) within the DOE laboratory system. Its goal is to produce technical innovations that meet DOE end-user needs for (a) rapid and dependable placement of large quantities of data within a distributed high-performance environment, and (b) the convenient construction of scalable science services that provide for the reliable and high-performance processing of computation and data analysis requests from many remote clients. The Centermore » is also addressing (c) the important problem of troubleshooting these and other related ultra-high-performance distributed activities from the perspective of both performance and functionality« less
Product Distribution Theory for Control of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
A performability solution method for degradable nonrepairable systems
NASA Technical Reports Server (NTRS)
Furchtgott, D. G.; Meyer, J. F.
1984-01-01
The present performability model-solving algorithm identifies performance with 'reward', representing the state behavior of a system S by a finite-state stochastic process and determining reward by means of reward rates that are associated with the states of the base model. A general method is obtained for determining the probability distribution function of the performance (reward) variable, and therefore the performability, of the corresponding system. This is done for bounded utilization periods, and the result is an integral expression which is either analytically or numerically solvable.
ERIC Educational Resources Information Center
da Silveira, Pedro Rodrigo Castro
2014-01-01
This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring
Gharavi, Hamid; Hu, Bin
2018-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.
Gharavi, Hamid; Hu, Bin
2017-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.
Tools to manage the enterprise-wide picture archiving and communications system environment.
Lannum, L M; Gumpf, S; Piraino, D
2001-06-01
The presentation will focus on the implementation and utilization of a central picture archiving and communications system (PACS) network-monitoring tool that allows for enterprise-wide operations management and support of the image distribution network. The MagicWatch (Siemens, Iselin, NJ) PACS/radiology information system (RIS) monitoring station from Siemens has allowed our organization to create a service support structure that has given us proactive control of our environment and has allowed us to meet the service level performance expectations of the users. The Radiology Help Desk has used the MagicWatch PACS monitoring station as an applications support tool that has allowed the group to monitor network activity and individual systems performance at each node. Fast and timely recognition of the effects of single events within the PACS/RIS environment has allowed the group to proactively recognize possible performance issues and resolve problems. The PACS/operations group performs network management control, image storage management, and software distribution management from a single, central point in the enterprise. The MagicWatch station allows for the complete automation of software distribution, installation, and configuration process across all the nodes in the system. The tool has allowed for the standardization of the workstations and provides a central configuration control for the establishment and maintenance of the system standards. This report will describe the PACS management and operation prior to the implementation of the MagicWatch PACS monitoring station and will highlight the operational benefits of a centralized network and system-monitoring tool.
Two coupled, driven Ising spin systems working as an engine.
Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
Two coupled, driven Ising spin systems working as an engine
NASA Astrophysics Data System (ADS)
Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
NASA Astrophysics Data System (ADS)
Wang, Rui
It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well as the dynamics of the closed-loop system. In this dissertation, theoretical tools are presented to analyze the relationship between the design choices for a class of distributed recoverable computing platforms and the tracking performance degradation of a digital flight control system implemented on such a platform while operating in a HIRF environment. Specifically, a tractable hybrid performance model is developed for a digital flight control system implemented on a computing platform inspired largely by the NASA family of fault-tolerant, reconfigurable computer architectures known as SPIDER (scalable processor-independent design for enhanced reliability). The focus will be on the SPIDER implementation, which uses the computer communication system known as ROBUS-2 (reliable optical bus). A physical HIRF experiment was conducted at the NASA Langley Research Center in order to validate the theoretical tracking performance degradation predictions for a distributed Boeing 747 flight control system subject to a HIRF environment. An extrapolation of these results for scenarios that could not be physically tested is also presented.
1990-05-01
CLASSIFICATION AUTPOVITY 3. DISTRIBUTION IAVAILABILITY OF REPORT 2b. P OCLASSIFICATION/OOWNGRADING SC14DULE Approved for public release; distribution 4...in the Red Book should obtain a copy of the Engineering Design Handbook, Army Weapon System Analysis, Part One, DARCOM- P 706-101, November 1977; a...companion volume: Army Weapon System Analysis, Part Two, DARCOM- P 706-102, October 1979, also makes worthwhile study. Both of these documents, written by
Energy loss analysis of an integrated space power distribution system
NASA Technical Reports Server (NTRS)
Kankam, M. D.; Ribeiro, P. F.
1992-01-01
The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.
Control and Communication for a Secure and Reconfigurable Power Distribution System
NASA Astrophysics Data System (ADS)
Giacomoni, Anthony Michael
A major transformation is taking place throughout the electric power industry to overlay existing electric infrastructure with advanced sensing, communications, and control system technologies. This transformation to a smart grid promises to enhance system efficiency, increase system reliability, support the electrification of transportation, and provide customers with greater control over their electricity consumption. Upgrading control and communication systems for the end-to-end electric power grid, however, will present many new security challenges that must be dealt with before extensive deployment and implementation of these technologies can begin. In this dissertation, a comprehensive systems approach is taken to minimize and prevent cyber-physical disturbances to electric power distribution systems using sensing, communications, and control system technologies. To accomplish this task, an intelligent distributed secure control (IDSC) architecture is presented and validated in silico for distribution systems to provide greater adaptive protection, with the ability to proactively reconfigure, and rapidly respond to disturbances. Detailed descriptions of functionalities at each layer of the architecture as well as the whole system are provided. To compare the performance of the IDSC architecture with that of other control architectures, an original simulation methodology is developed. The simulation model integrates aspects of cyber-physical security, dynamic price and demand response, sensing, communications, intermittent distributed energy resources (DERs), and dynamic optimization and reconfiguration. Applying this comprehensive systems approach, performance results for the IEEE 123 node test feeder are simulated and analyzed. The results show the trade-offs between system reliability, operational constraints, and costs for several control architectures and optimization algorithms. Additional simulation results are also provided. In particular, the advantages of an IDSC architecture are highlighted when an intermittent DER is present on the system.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo
2018-06-01
The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.
FALCON: A distributed scheduler for MIMD architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimshaw, A.S.; Vivas, V.E. Jr.
1991-01-01
This paper describes FALCON (Fully Automatic Load COordinator for Networks), the scheduler for the Mentat parallel processing system. FALCON has a modular structure and is designed for systems that use a task scheduling mechanism. FALCON is distributed, stable, supports system heterogeneities, and employs a sender-initiated adaptive load sharing policy with static task assignment. FALCON is parameterizable and is implemented in Mentat, a working distributed system. We present the design and implementation of FALCON as well as a brief introduction to those features of the Mentat run-time system that influence FALCON. Performance measures under different scheduler configurations are also presented andmore » analyzed with respect to the system parameters. 36 refs., 8 figs.« less
Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon
2013-11-12
A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
NASA Technical Reports Server (NTRS)
1980-01-01
Twenty-four functional requirements were prepared under six categories and serve to indicate how to integrate dispersed storage generation (DSG) systems with the distribution and other portions of the electric utility system. Results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication is required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 KW to 30 MW means that a variety of remote monitoring and control may be required. Increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.
Double density dynamics: realizing a joint distribution of a physical system and a parameter system
NASA Astrophysics Data System (ADS)
Fukuda, Ikuo; Moritsugu, Kei
2015-11-01
To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, F.; Harrington, C.; Moskovitz, D.
Distributed resources can provide cost-effective reliability and energy services - in many cases, obviating the need for more expensive investments in wires and central station electricity generating facilities. Given the unique features of distributed resources, the challenge facing policymakers today is how to restructure wholesale markets for electricity and related services so as to reveal the full value that distributed resources can provide to the electric power system (utility grid). This report looks at the functions that distributed resources can perform and examines the barriers to them. It then identifies a series of policy and operational approaches to promoting DRmore » in wholesale markets. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Distributed Resource Distribution Credit Pilot Programs - Revealing the Value to Consumers and Vendors, NREL/SR-560-32499; (2) Distributed Resources and Electric System Reliability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501« less
A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design
NASA Technical Reports Server (NTRS)
Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming
2006-01-01
As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.
Benchmarking distributed data warehouse solutions for storing genomic variant information
Wiewiórka, Marek S.; Wysakowicz, Dawid P.; Okoniewski, Michał J.
2017-01-01
Abstract Genomic-based personalized medicine encompasses storing, analysing and interpreting genomic variants as its central issues. At a time when thousands of patientss sequenced exomes and genomes are becoming available, there is a growing need for efficient database storage and querying. The answer could be the application of modern distributed storage systems and query engines. However, the application of large genomic variant databases to this problem has not been sufficiently far explored so far in the literature. To investigate the effectiveness of modern columnar storage [column-oriented Database Management System (DBMS)] and query engines, we have developed a prototypic genomic variant data warehouse, populated with large generated content of genomic variants and phenotypic data. Next, we have benchmarked performance of a number of combinations of distributed storages and query engines on a set of SQL queries that address biological questions essential for both research and medical applications. In addition, a non-distributed, analytical database (MonetDB) has been used as a baseline. Comparison of query execution times confirms that distributed data warehousing solutions outperform classic relational DBMSs. Moreover, pre-aggregation and further denormalization of data, which reduce the number of distributed join operations, significantly improve query performance by several orders of magnitude. Most of distributed back-ends offer a good performance for complex analytical queries, while the Optimized Row Columnar (ORC) format paired with Presto and Parquet with Spark 2 query engines provide, on average, the lowest execution times. Apache Kudu on the other hand, is the only solution that guarantees a sub-second performance for simple genome range queries returning a small subset of data, where low-latency response is expected, while still offering decent performance for running analytical queries. In summary, research and clinical applications that require the storage and analysis of variants from thousands of samples can benefit from the scalability and performance of distributed data warehouse solutions. Database URL: https://github.com/ZSI-Bio/variantsdwh PMID:29220442
Neuroergonomics - Analyzing Brain Function to Enhance Human Performance in Complex Systems
2008-12-02
NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) George Mason...University 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR...MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES See
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
A formation control strategy with coupling weights for the multi-robot system
NASA Astrophysics Data System (ADS)
Liang, Xudong; Wang, Siming; Li, Weijie
2017-12-01
The distributed formation problem of the multi-robot system with general linear dynamic characteristics and directed communication topology is discussed. In order to avoid that the multi-robot system can not maintain the desired formation in the complex communication environment, the distributed cooperative algorithm with coupling weights based on zipf distribution is designed. The asymptotic stability condition for the formation of the multi-robot system is given, and the theory of the graph and the Lyapunov theory are used to prove that the formation can converge to the desired geometry formation and the desired motion rules of the virtual leader under this condition. Nontrivial simulations are performed to validate the effectiveness of the distributed cooperative algorithm with coupling weights.
Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George
2001-01-01
The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran
2014-01-01
Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform.
Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran
2014-01-01
Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform. PMID:25162062
Distributed Control with Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Wheeler, Kevin R.; Tumer, Kagan
1998-01-01
We consider systems of interacting reinforcement learning (RL) algorithms that do not work at cross purposes , in that their collective behavior maximizes a global utility function. We call such systems COllective INtelligences (COINs). We present the theory of designing COINs. Then we present experiments validating that theory in the context of two distributed control problems: We show that COINs perform near-optimally in a difficult variant of Arthur's bar problem [Arthur] (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance in the master-slave problem.
Open-source framework for power system transmission and distribution dynamics co-simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Fan, Rui; Daily, Jeff
The promise of the smart grid entails more interactions between the transmission and distribution networks, and there is an immediate need for tools to provide the comprehensive modelling and simulation required to integrate operations at both transmission and distribution levels. Existing electromagnetic transient simulators can perform simulations with integration of transmission and distribution systems, but the computational burden is high for large-scale system analysis. For transient stability analysis, currently there are only separate tools for simulating transient dynamics of the transmission and distribution systems. In this paper, we introduce an open source co-simulation framework “Framework for Network Co-Simulation” (FNCS), togethermore » with the decoupled simulation approach that links existing transmission and distribution dynamic simulators through FNCS. FNCS is a middleware interface and framework that manages the interaction and synchronization of the transmission and distribution simulators. Preliminary testing results show the validity and capability of the proposed open-source co-simulation framework and the decoupled co-simulation methodology.« less
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149
Optimization of tomographic reconstruction workflows on geographically distributed resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
Illustration of distributed generation effects on protection system coordination
NASA Astrophysics Data System (ADS)
Alawami, Hussain Adnan
Environmental concerns, market forces, and emergence of new technologies have recently resulted in restructuring electric utility from vertically integrated networks to competitive deregulated entities. Distributed generation (DG) is playing a major role in such deregulated markets. When they are installed in small amounts and small sizes, their impacts on the system may be negligible. When their penetration levels increase as well as their sizes, however, they may start affecting the system performance from more than one aspect. Power system protection needs to be re-assessed after the emergence of DG. This thesis attempts to illustrate the impact of DG on the power system protection coordination. It will study the operation of the impedance relays, fuses, reclosers and overcurrent relays when a DG is added to the distribution network. Different DG sizes, distances from the network and locations within the distribution system will be considered. Power system protection coordination is very sensitive to the DG size where it is not for the DG distance. DG location has direct impact on the operation of the protective devices especially when it is inserted in the middle point of the distribution system. Key Words, Distributed Generation, Impedance relay, fuses, reclosers, overcurrent relays, power system protection coordination.
Developing an Integration Infrastructure for Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan
2014-01-01
Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
Software techniques for a distributed real-time processing system. [for spacecraft
NASA Technical Reports Server (NTRS)
Lesh, F.; Lecoq, P.
1976-01-01
The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.
“Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, B. M.
The electric utility industry is undergoing significant transformations in its operation model, including a greater emphasis on automation, monitoring technologies, and distributed energy resource management systems (DERMS). With these changes and new technologies, while driving greater efficiencies and reliability, these new models may introduce new vectors of cyber attack. The appropriate cybersecurity controls to address and mitigate these newly introduced attack vectors and potential vulnerabilities are still widely unknown and performance of the control is difficult to vet. This proposal argues that modeling and simulation (M&S) is a necessary tool to address and better understand these problems introduced by emergingmore » technologies for the grid. M&S will provide electric utilities a platform to model its transmission and distribution systems and run various simulations against the model to better understand the operational impact and performance of cybersecurity controls.« less
Optimal pattern distributions in Rete-based production systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1994-01-01
Since its introduction into the AI community in the early 1980's, the Rete algorithm has been widely used. This algorithm has formed the basis for many AI tools, including NASA's CLIPS. One drawback of Rete-based implementation, however, is that the network structures used internally by the Rete algorithm make it sensitive to the arrangement of individual patterns within rules. Thus while rules may be more or less arbitrarily placed within source files, the distribution of individual patterns within these rules can significantly affect the overall system performance. Some heuristics have been proposed to optimize pattern placement, however, these suggestions can be conflicting. This paper describes a systematic effort to measure the effect of pattern distribution on production system performance. An overview of the Rete algorithm is presented to provide context. A description of the methods used to explore the pattern ordering problem area are presented, using internal production system metrics such as the number of partial matches, and coarse-grained operating system data such as memory usage and time. The results of this study should be of interest to those developing and optimizing software for Rete-based production systems.
Model Predictive Control-based Optimal Coordination of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming
2013-01-07
Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less
Model Predictive Control-based Optimal Coordination of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming
2013-04-03
Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Dall'Anese, Emiliano
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- frommore » advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.« less
Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.
Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar
2017-03-01
We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.
Simulation of a data archival and distribution system at GSFC
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Dwyer, AL; Hariharan, P. C.; Berbert, John; Kobler, Ben; Pease, Phil
1993-01-01
A version-0 of a Data Archive and Distribution System (DADS) is being developed at GSFC to support existing and pre-EOS Earth science datasets and test Earth Observing System Data and Information System (EOSDIS) concepts. The performance of DADS is predicted using a discrete event simulation model. The goals of the simulation were to estimate the amount of disk space needed and the time required to fulfill the DADS requirements for ingestion (14 GB/day) and distribution (48 GB/day). The model has demonstrated that 4 mm and 8 mm stackers can play a critical role in improving the performance of the DADS, since it takes, on average, 3 minutes to manually mount/dismount tapes compared to less than a minute with stackers. With two 4 mm stackers and two 8 mm stackers, and a single operator per shift, the DADS requirements can be met within 16 hours using a total of 9 GB of disk space. When the DADS has no stacker, and the DADS depends entirely on operators to handle the distribution tapes, the simulation has shown that the DADS requirements can still be met within 16 hours, but a minimum of 4 operators per shift were required. The compression/decompression of data sets is very CPU intensive, and relatively slow when performed in software, thereby contributing to an increase in the amount of disk space needed.
Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin.
Xu, Wen-Ke; Jiang, Hui; Yang, Kui; Wang, Ya-Qin; Zhang, Qian; Zuo, Jian
2017-03-01
α-Mangostin (MG) is a versatile bioactive compound isolated from mangosteen and possesses significant pharmacokinetic shortages. To augment the potential clinical efficacy, MG-loaded self-microemulsion (MG-SME) was designed and prepared in this study, and its potential as a drug loading system was evaluated based on the pharmacokinetic performance and tissue distribution feature. The formula of MG-SME was optimized by an orthogonal test under the guidance of ternary phase diagram, and the prepared MG-SME was characterized by encapsulation efficiency, size distribution, and morphology. Optimized high performance liquid chromatography method was employed to determine concentrations of MG and characterize the pharmacokinetic and tissue distribution features of MG in rodents. It was found that diluted MG-SME was characterized as spherical particles with a mean diameter of 24.6 nm and an encapsulation efficiency of 87.26%. The delivery system enhanced the area under the curve of MG by 4.75 times and increased the distribution in lymphatic organs. These findings suggested that SME as a nano-sized delivery system efficiently promoted the digestive tract absorption of MG and modified its distribution in tissues. The targeting feature and high oral bioavailability of MG-SME promised a good clinical efficacy, especially for immune diseases. Copyright © 2017. Published by Elsevier Taiwan.
A distributed scheduling algorithm for heterogeneous real-time systems
NASA Technical Reports Server (NTRS)
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
Programming distributed memory architectures using Kali
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Vanrosendale, John
1990-01-01
Programming nonshared memory systems is more difficult than programming shared memory systems, in part because of the relatively low level of current programming environments for such machines. A new programming environment is presented, Kali, which provides a global name space and allows direct access to remote data values. In order to retain efficiency, Kali provides a system on annotations, allowing the user to control those aspects of the program critical to performance, such as data distribution and load balancing. The primitives and constructs provided by the language is described, and some of the issues raised in translating a Kali program for execution on distributed memory systems are also discussed.
NASA Astrophysics Data System (ADS)
Onuma, Takashi; Otani, Yukitoshi
2014-03-01
A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
NASA Astrophysics Data System (ADS)
Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.
Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.
Performance Appraisals: How to Make Them Work.
1987-03-01
Choice....................8 Rank Order...................... Forced Distribution.................9 Management by Objectives.............10 Assessment... management today. Next, the many sources and causes of shortcomings with evaluation systems are explored in detail. Considerations in system design are...the response of others when I’ve evaluated them. A good performance system can be a tremendous management tool when trying to develop others
Performance of the Mayo-IBM PAC system
NASA Astrophysics Data System (ADS)
Persons, Kenneth R.; Reardon, Frank J.; Gehring, Dale G.; Hangiandreou, Nicholas J.
1994-05-01
The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archived system for use with Mayo's MRI and CT imaging modalities. This PACS is made up of over 50 computers that work cooperatively to provide archival, retrieval and image distribution services for Mayo's Department of Radiology. This paper will examine the performance characteristics of the system.
Digital Troposcatter Performance Model
1983-12-01
Dist Speia DIIBUTON STATEMR AO Approved tot public relemg ** - DistributionUnlimited __________ Communications. Control and Information Systems ...for digital troposcatter communication system design is described. Propagation and modem performance *are modeled. These include Path Loss and RSL...designing digital troposcatter systems . A User’s Manual Report discusses the use of the computer program TROPO. The description of the structure and logical
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry
1998-01-01
This paper presents a model to evaluate the performance and overhead of parallelizing sequential code using compiler directives for multiprocessing on distributed shared memory (DSM) systems. With increasing popularity of shared address space architectures, it is essential to understand their performance impact on programs that benefit from shared memory multiprocessing. We present a simple model to characterize the performance of programs that are parallelized using compiler directives for shared memory multiprocessing. We parallelized the sequential implementation of NAS benchmarks using native Fortran77 compiler directives for an Origin2000, which is a DSM system based on a cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report measurement based performance of these parallelized benchmarks from four perspectives: efficacy of parallelization process; scalability; parallelization overhead; and comparison with hand-parallelized and -optimized version of the same benchmarks. Our results indicate that sequential programs can conveniently be parallelized for DSM systems using compiler directives but realizing performance gains as predicted by the performance model depends primarily on minimizing architecture-specific data locality overhead.
Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator
NASA Technical Reports Server (NTRS)
Bents, D. J.
1982-01-01
A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.
An integrated logit model for contamination event detection in water distribution systems.
Housh, Mashor; Ostfeld, Avi
2015-05-15
The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Langley Research Center's distributed mass storage system
NASA Technical Reports Server (NTRS)
Pao, Juliet Z.; Humes, D. Creig
1993-01-01
There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.
Detecting Abnormal Machine Characteristics in Cloud Infrastructures
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.
2011-01-01
In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.
Real-time high speed generator system emulation with hardware-in-the-loop application
NASA Astrophysics Data System (ADS)
Stroupe, Nicholas
The emerging emphasis and benefits of distributed generation on smaller scale networks has prompted much attention and focus to research in this field. Much of the research that has grown in distributed generation has also stimulated the development of simulation software and techniques. Testing and verification of these distributed power networks is a complex task and real hardware testing is often desired. This is where simulation methods such as hardware-in-the-loop become important in which an actual hardware unit can be interfaced with a software simulated environment to verify proper functionality. In this thesis, a simulation technique is taken one step further by utilizing a hardware-in-the-loop technique to emulate the output voltage of a generator system interfaced to a scaled hardware distributed power system for testing. The purpose of this thesis is to demonstrate a new method of testing a virtually simulated generation system supplying a scaled distributed power system in hardware. This task is performed by using the Non-Linear Loads Test Bed developed by the Energy Conversion and Integration Thrust at the Center for Advanced Power Systems. This test bed consists of a series of real hardware developed converters consistent with the Navy's All-Electric-Ship proposed power system to perform various tests on controls and stability under the expected non-linear load environment of the Navy weaponry. This test bed can also explore other distributed power system research topics and serves as a flexible hardware unit for a variety of tests. In this thesis, the test bed will be utilized to perform and validate this newly developed method of generator system emulation. In this thesis, the dynamics of a high speed permanent magnet generator directly coupled with a micro turbine are virtually simulated on an FPGA in real-time. The calculated output stator voltage will then serve as a reference for a controllable three phase inverter at the input of the test bed that will emulate and reproduce these voltages on real hardware. The output of the inverter is then connected with the rest of the test bed and can consist of a variety of distributed system topologies for many testing scenarios. The idea is that the distributed power system under test in hardware can also integrate real generator system dynamics without physically involving an actual generator system. The benefits of successful generator system emulation are vast and lead to much more detailed system studies without the draw backs of needing physical generator units. Some of these advantages are safety, reduced costs, and the ability of scaling while still preserving the appropriate system dynamics. This thesis will introduce the ideas behind generator emulation and explain the process and necessary steps to obtaining such an objective. It will also demonstrate real results and verification of numerical values in real-time. The final goal of this thesis is to introduce this new idea and show that it is in fact obtainable and can prove to be a highly useful tool in the simulation and verification of distributed power systems.
Alonge, O; Lin, S; Igusa, T; Peters, D H
2017-12-01
System dynamics methods were used to explore effective implementation pathways for improving health systems performance through pay-for-performance (P4P) schemes. A causal loop diagram was developed to delineate primary causal relationships for service delivery within primary health facilities. A quantitative stock-and-flow model was developed next. The stock-and-flow model was then used to simulate the impact of various P4P implementation scenarios on quality and volume of services. Data from the Afghanistan national facility survey in 2012 was used to calibrate the model. The models show that P4P bonuses could increase health workers' motivation leading to higher levels of quality and volume of services. Gaming could reduce or even reverse this desired effect, leading to levels of quality and volume of services that are below baseline levels. Implementation issues, such as delays in the disbursement of P4P bonuses and low levels of P4P bonuses, also reduce the desired effect of P4P on quality and volume, but they do not cause the outputs to fall below baseline levels. Optimal effect of P4P on quality and volume of services is obtained when P4P bonuses are distributed per the health workers' contributions to the services that triggered the payments. Other distribution algorithms such as equal allocation or allocations proportionate to salaries resulted in quality and volume levels that were substantially lower, sometimes below baseline. The system dynamics models served to inform, with quantitative results, the theory of change underlying P4P intervention. Specific implementation strategies, such as prompt disbursement of adequate levels of performance bonus distributed per health workers' contribution to service, increase the likelihood of P4P success. Poorly designed P4P schemes, such as those without an optimal algorithm for distributing performance bonuses and adequate safeguards for gaming, can have a negative overall impact on health service delivery systems. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
A Comprehensive Comparison of Current Operating Reserve Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krad, Ibrahim; Ibanez, Eduardo; Gao, Wenzhong
Electric power systems are currently experiencing a paradigm shift from a traditionally static system to a system that is becoming increasingly more dynamic and variable. Emerging technologies are forcing power system operators to adapt to their performance characteristics. These technologies, such as distributed generation and energy storage systems, have changed the traditional idea of a distribution system with power flowing in one direction into a distribution system with bidirectional flows. Variable generation, in the form of wind and solar generation, also increases the variability and uncertainty in the system. As such, power system operators are revisiting the ways in whichmore » they treat this evolving power system, namely by modifying their operating reserve methodologies. This paper intends to show an in-depth analysis on different operating reserve methodologies and investigate their impacts on power system reliability and economic efficiency.« less
The NATO III 5 MHz Distribution System
NASA Technical Reports Server (NTRS)
Vulcan, A.; Bloch, M.
1981-01-01
A high performance 5 MHz distribution system is described which has extremely low phase noise and jitter characteristics and provides multiple buffered outputs. The system is completely redundant with automatic switchover and is self-testing. Since the 5 MHz reference signals distributed by the NATO III distribution system are used for up-conversion and multiplicative functions, a high degree of phase stability and isolation between outputs is necessary. Unique circuit design and packaging concepts insure that the isolation between outputs is sufficient to quarantee a phase perturbation of less than 0.0016 deg when other outputs are open circuited, short circuited or terminated in 50 ohms. Circuit design techniques include high isolation cascode amplifiers. Negative feedback stabilizes system gain and minimizes circuit phase noise contributions. Balanced lines, in lieu of single ended coaxial transmission media, minimize pickup.
Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secchi, Simone; Tumeo, Antonino; Villa, Oreste
Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy inmore » reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.« less
Distributed Prognostics based on Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.
2014-01-01
Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS
NATIONAL WATER INFORMATION SYSTEM OF THE U. S. GEOLOGICAL SURVEY.
Edwards, Melvin D.
1985-01-01
National Water Information System (NWIS) has been designed as an interactive, distributed data system. It will integrate the existing, diverse data-processing systems into a common system. It will also provide easier, more flexible use as well as more convenient access and expanded computing, dissemination, and data-analysis capabilities. The NWIS is being implemented as part of a Distributed Information System (DIS) being developed by the Survey's Water Resources Division. The NWIS will be implemented on each node of the distributed network for the local processing, storage, and dissemination of hydrologic data collected within the node's area of responsibility. The processor at each node will also be used to perform hydrologic modeling, statistical data analysis, text editing, and some administrative work.
Suboptimal distributed control and estimation: application to a four coupled tanks system
NASA Astrophysics Data System (ADS)
Orihuela, Luis; Millán, Pablo; Vivas, Carlos; Rubio, Francisco R.
2016-06-01
The paper proposes an innovative estimation and control scheme that enables the distributed monitoring and control of large-scale processes. The proposed approach considers a discrete linear time-invariant process controlled by a network of agents that may both collect information about the evolution of the plant and apply control actions to drive its behaviour. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals. Additionally, to reduce agents bandwidth requirements and power consumption, an event-based communication policy is studied. The design procedure guarantees system stability, allowing the designer to trade-off performance, control effort and communication requirements. The obtained controllers and observers are implemented in a fully distributed fashion. To illustrate the performance of the proposed technique, experimental results on a quadruple-tank process are provided.
Validation and performance of the LHC cryogenic system through commissioning of the first sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serio, L.; Bouillot, A.; Casas-Cubillos, J.
2007-12-01
The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less
The role of the host in a cooperating mainframe and workstation environment, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Kusmanoff, Antone; Martin, Nancy L.
1989-01-01
In recent years, advancements made in computer systems have prompted a move from centralized computing based on timesharing a large mainframe computer to distributed computing based on a connected set of engineering workstations. A major factor in this advancement is the increased performance and lower cost of engineering workstations. The shift to distributed computing from centralized computing has led to challenges associated with the residency of application programs within the system. In a combined system of multiple engineering workstations attached to a mainframe host, the question arises as to how does a system designer assign applications between the larger mainframe host and the smaller, yet powerful, workstation. The concepts related to real time data processing are analyzed and systems are displayed which use a host mainframe and a number of engineering workstations interconnected by a local area network. In most cases, distributed systems can be classified as having a single function or multiple functions and as executing programs in real time or nonreal time. In a system of multiple computers, the degree of autonomy of the computers is important; a system with one master control computer generally differs in reliability, performance, and complexity from a system in which all computers share the control. This research is concerned with generating general criteria principles for software residency decisions (host or workstation) for a diverse yet coupled group of users (the clustered workstations) which may need the use of a shared resource (the mainframe) to perform their functions.
Survey of aircraft electrical power systems
NASA Technical Reports Server (NTRS)
Lee, C. H.; Brandner, J. J.
1972-01-01
Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.
Introducing high performance distributed logging service for ACS
NASA Astrophysics Data System (ADS)
Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca
2010-07-01
The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.
Distributed computing feasibility in a non-dedicated homogeneous distributed system
NASA Technical Reports Server (NTRS)
Leutenegger, Scott T.; Sun, Xian-He
1993-01-01
The low cost and availability of clusters of workstations have lead researchers to re-explore distributed computing using independent workstations. This approach may provide better cost/performance than tightly coupled multiprocessors. In practice, this approach often utilizes wasted cycles to run parallel jobs. The feasibility of such a non-dedicated parallel processing environment assuming workstation processes have preemptive priority over parallel tasks is addressed. An analytical model is developed to predict parallel job response times. Our model provides insight into how significantly workstation owner interference degrades parallel program performance. A new term task ratio, which relates the parallel task demand to the mean service demand of nonparallel workstation processes, is introduced. It was proposed that task ratio is a useful metric for determining how large the demand of a parallel applications must be in order to make efficient use of a non-dedicated distributed system.
NASA Technical Reports Server (NTRS)
Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.
2007-01-01
The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.
Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.
2017-10-01
With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.
Project W-320 acceptance test report for AY-farm electrical distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, R.R.
1998-04-02
This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the AY-Farm Electrical Distribution System functions as required by the design criteria. This test is divided into three parts to support the planned construction schedule; Section 8 tests Mini-Power Pane AY102-PPI and the EES; Section 9 tests the SSS support systems; Section 10 tests the SSS and the Multi-Pak Group Control Panel. This test does not include the operation of end-use components (loads) supplied from the distribution system. Tests of the end-use components (loads) will be performed by other W-320 ATPs.
Experimental study of low-cost fiber optic distributed temperature sensor system performance
NASA Astrophysics Data System (ADS)
Dashkov, Michael V.; Zharkov, Alexander D.
2016-03-01
The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.
Distributed computing environments for future space control systems
NASA Technical Reports Server (NTRS)
Viallefont, Pierre
1993-01-01
The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.
Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
DOE Office of Scientific and Technical Information (OSTI.GOV)
DallAnese, Emiliano; Baker, Kyri; Summers, Tyler
This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less
Present and future free-space quantum key distribution
NASA Astrophysics Data System (ADS)
Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.; Peterson, C. Glen; Wipf, Christopher C.
2002-04-01
Free-space quantum key distribution (QKD), more popularly know as quantum cryptography, uses single-photon free-space optical communications to distribute the secret keys required for secure communications. At Los Alamos National Laboratory we have demonstrated a fully automated system that is capable of operations at any time of day over a horizontal range of several kilometers. This has proven the technology is capable of operation from a spacecraft to the ground, opening up the possibility of QKD between any group of users anywhere on Earth. This system, the prototyping of a new system for use on a spacecraft, and the techniques required for world-wide quantum key distribution will be described. The operational parameters and performance of a system designed to operate between low earth orbit (LEO) and the ground will also be discussed.
NASA Astrophysics Data System (ADS)
Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.
2005-12-01
We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
Techniques and Tools for Performance Tuning of Parallel and Distributed Scientific Applications
NASA Technical Reports Server (NTRS)
Sarukkai, Sekhar R.; VanderWijngaart, Rob F.; Castagnera, Karen (Technical Monitor)
1994-01-01
Performance degradation in scientific computing on parallel and distributed computer systems can be caused by numerous factors. In this half-day tutorial we explain what are the important methodological issues involved in obtaining codes that have good performance potential. Then we discuss what are the possible obstacles in realizing that potential on contemporary hardware platforms, and give an overview of the software tools currently available for identifying the performance bottlenecks. Finally, some realistic examples are used to illustrate the actual use and utility of such tools.
A Performance Support Tool for Cisco Training Program Managers
ERIC Educational Resources Information Center
Benson, Angela D.; Bothra, Jashoda; Sharma, Priya
2004-01-01
Performance support systems can play an important role in corporations by managing and allowing distribution of information more easily. These systems run the gamut from simple paper job aids to sophisticated computer- and web-based software applications that support the entire corporate supply chain. According to Gery (1991), a performance…
A modular multiple use system for precise time and frequency measurement and distribution
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Adams, W. S.; Lee, G. M.; Bush, R. L.
1978-01-01
A modular CAMAC based system is described which was developed to meet a variety of precise time and frequency measurement and distribution needs. The system was based on a generalization of the dual mixer concept. By using a 16 channel 100 ns event clock, the system can intercompare the phase of 16 frequency standards with subpicosecond resolution. The system has a noise floor of 26 fs and a long term stability on the order of 1 ps or better. The system also used a digitally controlled crystal oscillator in a control loop to provide an offsettable 5 MHz output with subpicosecond phase tracking capability. A detailed description of the system is given including theory of operation and performance. A method to improve the performance of the dual mixer technique is discussed when phase balancing of the two input ports cannot be accomplished.
Design distributed simulation platform for vehicle management system
NASA Astrophysics Data System (ADS)
Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua
2006-11-01
Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.
NASA Astrophysics Data System (ADS)
Walker, Ernest; Chen, Xinjia; Cooper, Reginald L.
2010-04-01
An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.
Exploiting Virtual Synchrony in Distributed Systems
1987-02-01
for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes
Abiotic Supramolecular Systems
2011-05-02
REPORT Abiotic Supramolecular Systems 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this research project was to develop new concepts for the...decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited UU...9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Peter; Jiang, Wei; Winiarski, David W.
2009-03-31
this paper develops component and subsystem models used to evaluat4e the performance of a low-lift cooling system with an air-colled chiller optimized for variable-speed and low-pressure-ratio operation, a hydronic radient distribution system, variable-speed transport miotor controls, and peak-shifting controls.
NASA Astrophysics Data System (ADS)
Valerio Testa, Paolo; Klein, Bernhard; Hahnel, Ronny; Plettemeier, Dirk; Carta, Corrado; Ellinger, Frank
2017-09-01
This paper presents an overview of the research work currently being performed within the frame of project DAAB and its successor DAAB-TX towards the integration of ultra-wideband transceivers operating at mm-wave frequencies and capable of data rates up to 100 Gbits-1. Two basic system architectures are being considered: integrating a broadband antenna with a distributed amplifier and integrate antennas centered at adjacent frequencies with broadband active combiners or dividers. The paper discusses in detail the design of such systems and their components, from the distributed amplifiers and combiners, to the broadband silicon antennas and their single-chip integration. All components are designed for fabrication in a commercially available SiGe:C BiCMOS technology. The presented results represent the state of the art in their respective areas: 170 GHz is the highest reported bandwidth for distributed amplifiers integrated in Silicon; 89 GHz is the widest reported bandwidth for integrated-system antennas; the simulated performance of the two antenna integrated receiver spans 105 GHz centered at 148GHz, which would improve the state of the art by a factor in excess of 4 even against III-V implementations, if confirmed by measurements.
Design of distributed PID-type dynamic matrix controller for fractional-order systems
NASA Astrophysics Data System (ADS)
Wang, Dawei; Zhang, Ridong
2018-01-01
With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.
Work Measurement as a Generalized Quantum Measurement
NASA Astrophysics Data System (ADS)
Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo
2014-12-01
We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.
Hyperswitch communication network
NASA Technical Reports Server (NTRS)
Peterson, J.; Pniel, M.; Upchurch, E.
1991-01-01
The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.
Performance Based Logistics: Optimizing Total System Availability and Reducing Program Cost
2011-03-14
MONITOR’S REPORT Dr. Paul C. Jussel NUMBER(S) U.S. Army War College 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution Statement A...Colonel David M. Kaczmarski United States Army Dr. Paul C. Jussel Project Adviser This CRP is submitted in...8911927-1.html# (accessed 10 November 2010) 2 Hurst, Dana . Performance Based Logistics – A Bridge Between Acquisition Reform and Logistics Supply
The Case for Distributed Engine Control in Turbo-Shaft Engine Systems
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.
2009-01-01
The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadika, Zacharia; Dede, Elif; Govindaraju, Madhusudhan
MapReduce is increasingly becoming a popular framework, and a potent programming model. The most popular open source implementation of MapReduce, Hadoop, is based on the Hadoop Distributed File System (HDFS). However, as HDFS is not POSIX compliant, it cannot be fully leveraged by applications running on a majority of existing HPC environments such as Teragrid and NERSC. These HPC environments typicallysupport globally shared file systems such as NFS and GPFS. On such resourceful HPC infrastructures, the use of Hadoop not only creates compatibility issues, but also affects overall performance due to the added overhead of the HDFS. This paper notmore » only presents a MapReduce implementation directly suitable for HPC environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPCenvironments, but also allows for better performance in such settings. This paper shows the applicability and high performance of the MapReduce paradigm through MARIANE, an implementation designed for clustered and shared-disk file systems and as such not dedicated to a specific MapReduce solution. The paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in distributed environments over Apache Hadoop in a data intensive setting, on the Magellan testbed at the National Energy Research Scientific Computing Center (NERSC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianhui
2015-09-01
Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less
NASA Astrophysics Data System (ADS)
Han, H. J.; Kang, J. H.
2016-12-01
Since Jul. 2015, KIAPS (Korea Institute of Atmospheric Prediction Systems) has been performing the semi real-time forecast system to assess the performance of their forecast system as a NWP model. KPOP (KIAPS Protocol for Observation Processing) is a part of KIAPS data assimilation system and has been performing well in KIAPS semi real-time forecast system. In this study, due to the fact that KPOP would be able to treat the scatterometer wind data, we analyze the effect of scatterometer wind (ASCAT-A/B) on KIAPS semi real-time forecast system. O-B global distribution and statistics of scatterometer wind give use two information which are the difference between background field and observation is not too large and KPOP processed the scatterometer wind data well. The changes of analysis increment because of O-B global distribution appear remarkably at the bottom of atmospheric field. It also shows that scatterometer wind data cover wide ocean where data would be able to short. Performance of scatterometer wind data can be checked through the vertical error reduction against IFS between background and analysis field and vertical statistics of O-A. By these analysis result, we can notice that scatterometer wind data will influence the positive effect on lower level performance of semi real-time forecast system at KIAPS. After, long-term result based on effect of scatterometer wind data will be analyzed.
Predictors of Interpersonal Trust in Virtual Distributed Teams
2008-09-01
understand systems that are very complex in nature . Such understanding is essential to facilitate building or maintaining operators’ mental models of the...a significant impact on overall system performance. Specifically, the level of automation that combined human generation of options with computer...and/or computer servers had a significant impact on automated system performance. Additionally, Parasuraman, Sheridan, & Wickens (2000) proposed
Performance prediction evaluation of ceramic materials in point-focusing solar receivers
NASA Technical Reports Server (NTRS)
Ewing, J.; Zwissler, J.
1979-01-01
A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.
NASA Astrophysics Data System (ADS)
Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke
2013-09-01
Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System
NASA Astrophysics Data System (ADS)
Singh, Bhim; Arya, Sabha Raj
2014-01-01
This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.
DATMAN: A reliability data analysis program using Bayesian updating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, M.; Feltus, M.A.
1996-12-31
Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, whichmore » can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately.« less
Middleware for big data processing: test results
NASA Astrophysics Data System (ADS)
Gankevich, I.; Gaiduchok, V.; Korkhov, V.; Degtyarev, A.; Bogdanov, A.
2017-12-01
Dealing with large volumes of data is resource-consuming work which is more and more often delegated not only to a single computer but also to a whole distributed computing system at once. As the number of computers in a distributed system increases, the amount of effort put into effective management of the system grows. When the system reaches some critical size, much effort should be put into improving its fault tolerance. It is difficult to estimate when some particular distributed system needs such facilities for a given workload, so instead they should be implemented in a middleware which works efficiently with a distributed system of any size. It is also difficult to estimate whether a volume of data is large or not, so the middleware should also work with data of any volume. In other words, the purpose of the middleware is to provide facilities that adapt distributed computing system for a given workload. In this paper we introduce such middleware appliance. Tests show that this middleware is well-suited for typical HPC and big data workloads and its performance is comparable with well-known alternatives.
A concurrent distributed system for aircraft tactical decision generation
NASA Technical Reports Server (NTRS)
Mcmanus, John W.
1990-01-01
A research program investigating the use of AI techniques to aid in the development of a tactical decision generator (TDG) for within visual range (WVR) air combat engagements is discussed. The application of AI programming and problem-solving methods in the development and implementation of a concurrent version of the computerized logic for air-to-air warfare simulations (CLAWS) program, a second-generation TDG, is presented. Concurrent computing environments and programming approaches are discussed, and the design and performance of prototype concurrent TDG system (Cube CLAWS) are presented. It is concluded that the Cube CLAWS has provided a useful testbed to evaluate the development of a distributed blackboard system. The project has shown that the complexity of developing specialized software on a distributed, message-passing architecture such as the Hypercube is not overwhelming, and that reasonable speedups and processor efficiency can be achieved by a distributed blackboard system. The project has also highlighted some of the costs of using a distributed approach to designing a blackboard system.
Stability and performance analysis of a jump linear control system subject to digital upsets
NASA Astrophysics Data System (ADS)
Wang, Rui; Sun, Hui; Ma, Zhen-Yang
2015-04-01
This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61403395), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC39000), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China (Grant No. 104003020106), and the Fund for Scholars of Civil Aviation University of China (Grant No. 2012QD21x).
Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.
Douterelo, I; Husband, S; Loza, V; Boxall, J
2016-07-15
The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.
Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems
Husband, S.; Loza, V.; Boxall, J.
2016-01-01
ABSTRACT The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. IMPORTANCE This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. PMID:27208119
Reusable and Extensible High Level Data Distributions
NASA Technical Reports Server (NTRS)
Diaconescu, Roxana E.; Chamberlain, Bradford; James, Mark L.; Zima, Hans P.
2005-01-01
This paper presents a reusable design of a data distribution framework for data parallel high performance applications. We are implementing the design in the context of the Chapel high productivity programming language. Distributions in Chapel are a means to express locality in systems composed of large numbers of processor and memory components connected by a network. Since distributions have a great effect on,the performance of applications, it is important that the distribution strategy can be chosen by a user. At the same time, high productivity concerns require that the user is shielded from error-prone, tedious details such as communication and synchronization. We propose an approach to distributions that enables the user to refine a language-provided distribution type and adjust it to optimize the performance of the application. Additionally, we conceal from the user low-level communication and synchronization details to increase productivity. To emphasize the generality of our distribution machinery, we present its abstract design in the form of a design pattern, which is independent of a concrete implementation. To illustrate the applicability of our distribution framework design, we outline the implementation of data distributions in terms of the Chapel language.
2015-12-01
Manual D-A-1). APAs are “Performance attributes of a system not important enough to be considered KPPs or KSAs, but still appropriate to include in...the CDD or CPD are designated as APAs ” (JCIDS Manual D-A-1). The requirements are expressed using Thresholds (T) and Objectives (O). “Performance...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA SYSTEMS ENGINEERING CAPSTONE PROJECT REPORT Approved for public release; distribution is
Responsive systems - The challenge for the nineties
NASA Technical Reports Server (NTRS)
Malek, Miroslaw
1990-01-01
A concept of responsive computer systems will be introduced. The emerging responsive systems demand fault-tolerant and real-time performance in parallel and distributed computing environments. The design methodologies for fault-tolerant, real time and responsive systems will be presented. Novel techniques of introducing redundancy for improved performance and dependability will be illustrated. The methods of system responsiveness evaluation will be proposed. The issues of determinism, closed and open systems will also be discussed from the perspective of responsive systems design.
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
Communication Optimizations for a Wireless Distributed Prognostic Framework
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Saha, Bhaskar; Goebel, Kai
2009-01-01
Distributed architecture for prognostics is an essential step in prognostic research in order to enable feasible real-time system health management. Communication overhead is an important design problem for such systems. In this paper we focus on communication issues faced in the distributed implementation of an important class of algorithms for prognostics - particle filters. In spite of being computation and memory intensive, particle filters lend well to distributed implementation except for one significant step - resampling. We propose new resampling scheme called parameterized resampling that attempts to reduce communication between collaborating nodes in a distributed wireless sensor network. Analysis and comparison with relevant resampling schemes is also presented. A battery health management system is used as a target application. A new resampling scheme for distributed implementation of particle filters has been discussed in this paper. Analysis and comparison of this new scheme with existing resampling schemes in the context for minimizing communication overhead have also been discussed. Our proposed new resampling scheme performs significantly better compared to other schemes by attempting to reduce both the communication message length as well as number total communication messages exchanged while not compromising prediction accuracy and precision. Future work will explore the effects of the new resampling scheme in the overall computational performance of the whole system as well as full implementation of the new schemes on the Sun SPOT devices. Exploring different network architectures for efficient communication is an importance future research direction as well.
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.
2017-06-01
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.
A fractal approach to dynamic inference and distribution analysis
van Rooij, Marieke M. J. W.; Nash, Bertha A.; Rajaraman, Srinivasan; Holden, John G.
2013-01-01
Event-distributions inform scientists about the variability and dispersion of repeated measurements. This dispersion can be understood from a complex systems perspective, and quantified in terms of fractal geometry. The key premise is that a distribution's shape reveals information about the governing dynamics of the system that gave rise to the distribution. Two categories of characteristic dynamics are distinguished: additive systems governed by component-dominant dynamics and multiplicative or interdependent systems governed by interaction-dominant dynamics. A logic by which systems governed by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse power-law samples is discussed. These mixtures are described by a so-called cocktail model of response times derived from human cognitive performances. The overarching goals of this article are twofold: First, to offer readers an introduction to this theoretical perspective and second, to offer an overview of the related statistical methods. PMID:23372552
NASA Astrophysics Data System (ADS)
Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei
2018-01-01
In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.
The implementation and use of Ada on distributed systems with high reliability requirements
NASA Technical Reports Server (NTRS)
Knight, J. C.
1987-01-01
Performance analysis was begin on the Ada implementations. The goal is to supply the system designer with tools that will allow a rational decision to be made about whether a particular implementation can support a given application early in the design cycle. Primary activities were: analysis of the original approach to recovery in distributed Ada programs using the Advanced Transport Operating System (ATOPS) example; review and assessment of the original approach which was found to be capable of improvement; preparation and presentation of a paper at the 1987 Washington DC Ada Symposium; development of a refined approach to recovery that is presently being applied to the ATOPS example; and design and development of a performance assessment scheme for Ada programs based on a flexible user-driven benchmarking system.
NASA Astrophysics Data System (ADS)
Aktas, Metin; Maral, Hakan; Akgun, Toygar
2018-02-01
Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.
[Design of a miniaturized blood temperature-varying system based on computer distributed control].
Xu, Qiang; Zhou, Zhaoying; Peng, Jiegang; Zhu, Junhua
2007-10-01
Blood temperature-varying has been widely applied in clinical practice such as extracorporeal circulation for whole-body perfusion hyperthermia (WBPH), body rewarming and blood temperature-varying in organ transplantation. This paper reports a novel DCS (Computer distributed control)-based blood temperature-varying system which includes therapy management function and whose hardware and software can be extended easily. Simulation results illustrate that this system provides precise temperature control with good performance in various operation conditions.
NASA Technical Reports Server (NTRS)
Burns, Richard D.; Davis, George; Cary, Everett; Higinbotham, John; Hogie, Keith
2003-01-01
A mission simulation prototype for Distributed Space Systems has been constructed using existing developmental hardware and software testbeds at NASA s Goddard Space Flight Center. A locally distributed ensemble of testbeds, connected through the local area network, operates in real time and demonstrates the potential to assess the impact of subsystem level modifications on system level performance and, ultimately, on the quality and quantity of the end product science data.
Data Analytics in Procurement Fraud Prevention
2014-05-30
Certified Fraud Examiners CAC common access card COR contracting officer’s representative CPAR Contractor Performance Assessment Reporting System DCAA...using analytics to predict patterns occurring in known credit card fraud investigations to prevent future schemes before they happen. The goal of...or iTunes . 4. Distributional Analytics Distributional analytics are used to detect anomalies within data. Through the use of distributional
Framework and Method for Controlling a Robotic System Using a Distributed Computer Network
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Strawser, Philip A. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor)
2015-01-01
A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.
Networking and AI systems: Requirements and benefits
NASA Technical Reports Server (NTRS)
1988-01-01
The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei
2015-01-01
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288
Dynamic measurement of fluorescent proteins spectral distribution on virus infected cells
NASA Astrophysics Data System (ADS)
Lee, Ja-Yun; Wu, Ming-Xiu; Kao, Chia-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen
2006-09-01
We constructed a dynamic spectroscopy system that can simultaneously measure the intensity and spectral distributions of samples with multi-fluorophores in a single scan. The system was used to monitor the fluorescence distribution of cells infected by the virus, which is constructed by a recombinant baculoviruses, vAcD-Rhir-E, containing the red and green fluorescent protein gene that can simultaneously produce dual fluorescence in recombinant virus-infected Spodoptera frugiperda 21 cells (Sf21) under the control of a polyhedrin promoter. The system was composed of an excitation light source, a scanning system and a spectrometer. We also developed an algorithm and fitting process to analyze the pattern of fluorescence distribution of the dual fluorescence produced in the recombinant virus-infected cells. All the algorithm and calculation are automatically processed in a visualized scanning program and can monitor the specific region of sample by calculating its intensity distribution. The spectral measurement of each pixel was performed at millisecond range and the two dimensional distribution of full spectrum was recorded within several seconds. We have constructed a dynamic spectroscopy system to monitor the process of virus-infection of cells. The distributions of the dual fluorescence were simultaneously measured at micrometer resolution.
A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design
NASA Technical Reports Server (NTRS)
Kopasakis, George; Brinson, Thomas; Credle, Sydni
2008-01-01
As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.
NASA Astrophysics Data System (ADS)
Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad
2018-03-01
Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.
Phase transitions in distributed control systems with multiplicative noise
NASA Astrophysics Data System (ADS)
Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément
2018-01-01
Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.
Understanding I/O workload characteristics of a Peta-scale storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Gunasekaran, Raghul
2015-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less
A new communication protocol family for a distributed spacecraft control system
NASA Technical Reports Server (NTRS)
Baldi, Andrea; Pace, Marco
1994-01-01
In this paper we describe the concepts behind and architecture of a communication protocol family, which was designed to fulfill the communication requirements of ESOC's new distributed spacecraft control system SCOS 2. A distributed spacecraft control system needs a data delivery subsystem to be used for telemetry (TLM) distribution, telecommand (TLC) dispatch and inter-application communication, characterized by the following properties: reliability, so that any operational workstation is guaranteed to receive the data it needs to accomplish its role; efficiency, so that the telemetry distribution, even for missions with high telemetry rates, does not cause a degradation of the overall control system performance; scalability, so that the network is not the bottleneck both in terms of bandwidth and reconfiguration; flexibility, so that it can be efficiently used in many different situations. The new protocol family which satisfies the above requirements is built on top of widely used communication protocols (UDP and TCP), provides reliable point-to-point and broadcast communication (UDP+) and is implemented in C++. Reliability is achieved using a retransmission mechanism based on a sequence numbering scheme. Such a scheme allows to have cost-effective performances compared to the traditional protocols, because retransmission is only triggered by applications which explicitly need reliability. This flexibility enables applications with different profiles to take advantage of the available protocols, so that the best rate between sped and reliability can be achieved case by case.
Human resource management in post-conflict health systems: review of research and knowledge gaps.
Roome, Edward; Raven, Joanna; Martineau, Tim
2014-01-01
In post-conflict settings, severe disruption to health systems invariably leaves populations at high risk of disease and in greater need of health provision than more stable resource-poor countries. The health workforce is often a direct victim of conflict. Effective human resource management (HRM) strategies and policies are critical to addressing the systemic effects of conflict on the health workforce such as flight of human capital, mismatches between skills and service needs, breakdown of pre-service training, and lack of human resource data. This paper reviews published literatures across three functional areas of HRM in post-conflict settings: workforce supply, workforce distribution, and workforce performance. We searched published literatures for articles published in English between 2003 and 2013. The search used context-specific keywords (e.g. post-conflict, reconstruction) in combination with topic-related keywords based on an analytical framework containing the three functional areas of HRM (supply, distribution, and performance) and several corresponding HRM topic areas under these. In addition, the framework includes a number of cross-cutting topics such as leadership and governance, finance, and gender. The literature is growing but still limited. Many publications have focused on health workforce supply issues, including pre-service education and training, pay, and recruitment. Less is known about workforce distribution, especially governance and administrative systems for deployment and incentive policies to redress geographical workforce imbalances. Apart from in-service training, workforce performance is particularly under-researched in the areas of performance-based incentives, management and supervision, work organisation and job design, and performance appraisal. Research is largely on HRM in the early post-conflict period and has relied on secondary data. More primary research is needed across the areas of workforce supply, workforce distribution, and workforce performance. However, this should apply a longer-term focus throughout the different post-conflict phases, while paying attention to key cross-cutting themes such as leadership and governance, gender equity, and task shifting. The research gaps identified should enable future studies to examine how HRM could be used to meet both short and long term objectives for rebuilding health workforces and thereby contribute to achieving more equitable and sustainable health systems outcomes after conflict.
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa
2000-01-01
The Affordable High Performance Computing (AHPC) project demonstrated that high-performance computing based on a distributed network of computer workstations is a cost-effective alternative to vector supercomputers for running CPU and memory intensive design and analysis tools. The AHPC project created an integrated system called a Network Supercomputer. By connecting computer work-stations through a network and utilizing the workstations when they are idle, the resulting distributed-workstation environment has the same performance and reliability levels as the Cray C90 vector Supercomputer at less than 25 percent of the C90 cost. In fact, the cost comparison between a Cray C90 Supercomputer and Sun workstations showed that the number of distributed networked workstations equivalent to a C90 costs approximately 8 percent of the C90.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2018-01-23
Deploying an ADMS or looking to optimize its value? NREL offers a low-cost, low-risk evaluation platform for assessing ADMS performance. The National Renewable Energy Laboratory (NREL) has developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and is expanding its capabilities. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate realworld conditions for the most accurate ADMS evaluation and experimentation.
The Need and Challenges for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.
2013-01-01
The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.
2011-06-01
the Behavioral and Social Sciences Approved for public release; distribution is unlimited. U.S. Army Research Institute...for the Behavioral and Social Sciences Department of the Army Deputy Chief of Staff, G1 Authorized and approved for distribution...Institute for the Behavioral and Social Sciences, Attn: DAPE-ARI-ZXM, 2511 Jefferson Davis Highway, Arlington, Virginia 22202-3926. FINAL
2012-04-25
Virginia Tech VAL. Because of the excellent performance of the Trimble-based systems that were tested in the past, the Trimble subsidy Applanix was...initially contacted for available systems. The lowest cost, turnkey Trimble/ Applanix the POS LV 210 far exceeded the performance requirements of the
Financial performance of a mobile pyrolysis system used to produce biochar from sawmill residues
Dongyeob Kim; Nathaniel McLean Anderson; Woodam Chung
2015-01-01
Primary wood products manufacturers generate significant amounts of woody biomass residues that can be used as feedstocks for distributed-scale thermochemical conversion systems that produce valuable bioenergy and bioproducts. However, private investment in these technologies is driven primarily by financial performance, which is often unknown for new technologies with...
2017-12-01
2-89) Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for public release. Distribution is unlimited. COST ...from the scope of this demonstration due to time constraints. Further study of this software would benefit similar cost , schedule, and performance...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA SYSTEMS ENGINEERING CAPSTONE PROJECT REPORT Approved for public release. Distribution
2016-12-01
based complementary filter developed at the Naval Postgraduate School, is developed. The performance of a consumer-grade nine-degrees-of-freedom IMU...measurement unit, complementary filter , gait phase detection, zero velocity update, MEMS, IMU, AHRS, GPS denied, distributed sensor, virtual sensor...algorithm and quaternion-based complementary filter developed at the Naval Postgraduate School, is developed. The performance of a consumer-grade nine
2012-09-01
as potential tools for large area detection coverage while being moderately inexpensive (Wettergren, Performance of Search via Track - Before - Detect for...via Track - Before - Detect for Distribute 34 Sensor Networks, 2008). These statements highlight three specific needs to further sensor network research...Bay hydrography. Journal of Marine Systems, 12, 221–236. Wettergren, T. A. (2008). Performance of search via track - before - detect for distributed
Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses
NASA Technical Reports Server (NTRS)
1979-01-01
A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.
ETICS: the international software engineering service for the grid
NASA Astrophysics Data System (ADS)
Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.
2008-07-01
The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.
NASA Astrophysics Data System (ADS)
Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand
2010-07-01
This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI),
Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion
NASA Technical Reports Server (NTRS)
Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael
2013-01-01
In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and safety issues. This paper presents some of the features and issues associated with the turboelectric distributed propulsion system and summarizes the recent study results, including the high electric power distribution, in the analysis of the N3-X vehicle.
Robust Architectures for Complex Multi-Agent Heterogeneous Systems
2014-07-23
establish the tradeoff between the control performance and the QoS of the communications network . We also derived the performance bound on the difference...accomplished within this time period leveraged the prior accomplishments in the area of networked multi-agent systems. The past work (prior to 2011...distributed control of uncertain networked systems [3]. Additionally, a preliminary collision avoidance algorithm has been developed for a team of
Impact of Arsenic Treatment Systems on Distribution System Water
Under the USEPA Arsenic Demonstration Program, 50 arsenic removal treatment systems were installed and their performance evaluated over a period of one to three years. The program was limited to small systems whose population served were less than 10,000. Ten of the systems were ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias
2016-08-11
This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less
Performance issues in management of the Space Station Information System
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1988-01-01
The onboard segment of the Space Station Information System (SSIS), called the Data Management System (DMS), will consist of a Fiber Distributed Data Interface (FDDI) token-ring network. The performance of the DMS in scenarios involving two kinds of network management is analyzed. In the first scenario, how the transmission of routine management messages impacts performance of the DMS is examined. In the second scenario, techniques for ensuring low latency of real-time control messages in an emergency are examined.
Fission meter and neutron detection using poisson distribution comparison
Rowland, Mark S; Snyderman, Neal J
2014-11-18
A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
Evaluating Models of Human Performance: Safety-Critical Systems Applications
NASA Technical Reports Server (NTRS)
Feary, Michael S.
2012-01-01
This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.
NASA Technical Reports Server (NTRS)
Chung, William W.; Linse, Dennis J.; Alaverdi, Omeed; Ifarraguerri, Carlos; Seifert, Scott C.; Salvano, Dan; Calender, Dale
2012-01-01
This study investigates the effects of two technical enablers: Automatic Dependent Surveillance - Broadcast (ADS-B) and digital datalink communication, of the Federal Aviation Administration s Next Generation Air Transportation System (NextGen) under two separation assurance (SA) system architectures: ground-based SA and airborne SA, on overall separation assurance performance. Datalink performance such as successful reception probability in both surveillance and communication messages, and surveillance accuracy are examined in various operational conditions. Required SA performance is evaluated as a function of subsystem performance, using availability, continuity, and integrity metrics to establish overall required separation assurance performance, under normal and off-nominal conditions.
The Joint Distribution Process Analysis Center (JDPAC): Background and Current Capability
2007-06-12
Systems Integration and Data Management JDDE Analysis/Global Distribution Performance Assessment Futures/Transformation Analysis Balancing Operational Art ... Science JDPAC “101” USTRANSCOM Future Operations Center SDDC – TEA Army SES (Dual Hat) • Transportability Engineering • Other Title 10
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin
2013-01-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
System Analysis for the Huntsville Operation Support Center, Distributed Computer System
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Massey, D.
1985-01-01
HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.
NASA Astrophysics Data System (ADS)
Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko
We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.
A Simple XML Producer-Consumer Protocol
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)
2001-01-01
There are many different projects from government, academia, and industry that provide services for delivering events in distributed environments. The problem with these event services is that they are not general enough to support all uses and they speak different protocols so that they cannot interoperate. We require such interoperability when we, for example, wish to analyze the performance of an application in a distributed environment. Such an analysis might require performance information from the application, computer systems, networks, and scientific instruments. In this work we propose and evaluate a standard XML-based protocol for the transmission of events in distributed systems. One recent trend in government and academic research is the development and deployment of computational grids. Computational grids are large-scale distributed systems that typically consist of high-performance compute, storage, and networking resources. Examples of such computational grids are the DOE Science Grid, the NASA Information Power Grid (IPG), and the NSF Partnerships for Advanced Computing Infrastructure (PACIs). The major effort to deploy these grids is in the area of developing the software services to allow users to execute applications on these large and diverse sets of resources. These services include security, execution of remote applications, managing remote data, access to information about resources and services, and so on. There are several toolkits for providing these services such as Globus, Legion, and Condor. As part of these efforts to develop computational grids, the Global Grid Forum is working to standardize the protocols and APIs used by various grid services. This standardization will allow interoperability between the client and server software of the toolkits that are providing the grid services. The goal of the Performance Working Group of the Grid Forum is to standardize protocols and representations related to the storage and distribution of performance data. These standard protocols and representations must support tasks such as profiling parallel applications, monitoring the status of computers and networks, and monitoring the performance of services provided by a computational grid. This paper describes a proposed protocol and data representation for the exchange of events in a distributed system. The protocol exchanges messages formatted in XML and it can be layered atop any low-level communication protocol such as TCP or UDP Further, we describe Java and C++ implementations of this protocol and discuss their performance. The next section will provide some further background information. Section 3 describes the main communication patterns of our protocol. Section 4 describes how we represent events and related information using XML. Section 5 describes our protocol and Section 6 discusses the performance of two implementations of the protocol. Finally, an appendix provides the XML Schema definition of our protocol and event information.
Investigation of Near Shannon Limit Coding Schemes
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Kim, J.; Mo, Fan
1999-01-01
Turbo codes can deliver performance that is very close to the Shannon limit. This report investigates algorithms for convolutional turbo codes and block turbo codes. Both coding schemes can achieve performance near Shannon limit. The performance of the schemes is obtained using computer simulations. There are three sections in this report. First section is the introduction. The fundamental knowledge about coding, block coding and convolutional coding is discussed. In the second section, the basic concepts of convolutional turbo codes are introduced and the performance of turbo codes, especially high rate turbo codes, is provided from the simulation results. After introducing all the parameters that help turbo codes achieve such a good performance, it is concluded that output weight distribution should be the main consideration in designing turbo codes. Based on the output weight distribution, the performance bounds for turbo codes are given. Then, the relationships between the output weight distribution and the factors like generator polynomial, interleaver and puncturing pattern are examined. The criterion for the best selection of system components is provided. The puncturing pattern algorithm is discussed in detail. Different puncturing patterns are compared for each high rate. For most of the high rate codes, the puncturing pattern does not show any significant effect on the code performance if pseudo - random interleaver is used in the system. For some special rate codes with poor performance, an alternative puncturing algorithm is designed which restores their performance close to the Shannon limit. Finally, in section three, for iterative decoding of block codes, the method of building trellis for block codes, the structure of the iterative decoding system and the calculation of extrinsic values are discussed.
FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.
Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora
2013-09-01
In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.
Hydronic radiant cooling: Overview and preliminary performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1993-05-01
A significant amount of electrical energy used to cool non-residential buildings is drawn by the fans used to transport the cool air through the thermal distribution system. Hydronic systems reduce the amount of air transported through the building by separating ventilation and thermal conditioning. Due to the physical properties of water, hydronic distribution systems can transport a given amount of thermal energy using less than 5% of the otherwise necessary fan energy. This savings alone significantly reduces the energy consumption and especially the peak power requirement This survey clearly shows advantages for radiant cooling in combination with hydronic thermal distributionmore » systems in comparison with the All-Air Systems commonly used in California. The report describes a literature survey on the system`s development, thermal comfort issues, and cooling performance. The cooling power potential and the cooling power requirement are investigated for several California climates. Peak-power requirement is compared for hydronic radiant cooling and conventional All-Air-Systems.« less
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems.
Whitacre, James M; Bender, Axel
2010-06-15
A generic mechanism--networked buffering--is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems.
Environmental Control and Life Support Systems
NASA Technical Reports Server (NTRS)
Engel, Joshua Allen
2017-01-01
The Environmental Control System provides a controlled air purge to Orion and SLS. The ECS performs this function by processing 100% ambient air while simultaneously controlling temperature, pressure, humidity, cleanliness and purge distribution.
Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting
NASA Astrophysics Data System (ADS)
Biondi, D.; De Luca, D. L.
2013-02-01
SummaryThe paper evaluates, for a number of flood events, the performance of a Bayesian Forecasting System (BFS), with the aim of evaluating total uncertainty in real-time flood forecasting. The predictive uncertainty of future streamflow is estimated through the Bayesian integration of two separate processors. The former evaluates the propagation of input uncertainty on simulated river discharge, the latter computes the hydrological uncertainty of actual river discharge associated with all other possible sources of error. A stochastic model and a distributed rainfall-runoff model were assumed, respectively, for rainfall and hydrological response simulations. A case study was carried out for a small basin in the Calabria region (southern Italy). The performance assessment of the BFS was performed with adequate verification tools suited for probabilistic forecasts of continuous variables such as streamflow. Graphical tools and scalar metrics were used to evaluate several attributes of the forecast quality of the entire time-varying predictive distributions: calibration, sharpness, accuracy, and continuous ranked probability score (CRPS). Besides the overall system, which incorporates both sources of uncertainty, other hypotheses resulting from the BFS properties were examined, corresponding to (i) a perfect hydrological model; (ii) a non-informative rainfall forecast for predicting streamflow; and (iii) a perfect input forecast. The results emphasize the importance of using different diagnostic approaches to perform comprehensive analyses of predictive distributions, to arrive at a multifaceted view of the attributes of the prediction. For the case study, the selected criteria revealed the interaction of the different sources of error, in particular the crucial role of the hydrological uncertainty processor when compensating, at the cost of wider forecast intervals, for the unreliable and biased predictive distribution resulting from the Precipitation Uncertainty Processor.
Scheduling based on a dynamic resource connection
NASA Astrophysics Data System (ADS)
Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.
2017-02-01
The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.
Distributed electromechanical actuation system design for a morphing trailing edge wing
NASA Astrophysics Data System (ADS)
Dimino, I.; Diodati, G.; Concilio, A.; Volovick, A.; Zivan, L.
2016-04-01
Next-generation flight control actuation technology will be based on "more electric" concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple "direct-drive" actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.
NASA Technical Reports Server (NTRS)
Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven
2010-01-01
Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.
Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.
Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen
2015-01-01
Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.
Sun, Xiaobo; Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng; Qin, Zhaohui S
2018-06-01
Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.
Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng
2018-01-01
Abstract Background Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems. PMID:29762754
New architectural paradigms for multi-petabyte distributed storage systems
NASA Technical Reports Server (NTRS)
Lee, Richard R.
1994-01-01
In the not too distant future, programs such as NASA's Earth Observing System, NSF/ARPA/NASA's Digital Libraries Initiative and Intelligence Community's (NSA, CIA, NRO, etc.) mass storage system upgrades will all require multi-petabyte (petabyte: 1015 bytes of bitfile data) (or larger) distributed storage solutions. None of these requirements, as currently defined, will meet their objectives utilizing either today's architectural paradigms or storage solutions. Radically new approaches will be required to not only store and manage veritable 'mountain ranges of data', but to make the cost of ownership affordable, much less practical in today's (and certainly the future's) austere budget environment! Within this paper we will explore new architectural paradigms and project systems performance benefits and dollars per petabyte of information stored. We will discuss essential 'top down' approaches to achieving an overall systems level performance capability sufficient to meet the challenges of these major programs.
NASA Astrophysics Data System (ADS)
Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-10-01
A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.
Hybrid Communication Architectures for Distributed Smart Grid Applications
Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin; ...
2018-04-09
Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less
Application Agreement and Integration Services
NASA Technical Reports Server (NTRS)
Driscoll, Kevin R.; Hall, Brendan; Schweiker, Kevin
2013-01-01
Application agreement and integration services are required by distributed, fault-tolerant, safety critical systems to assure required performance. An analysis of distributed and hierarchical agreement strategies are developed against the backdrop of observed agreement failures in fielded systems. The documented work was performed under NASA Task Order NNL10AB32T, Validation And Verification of Safety-Critical Integrated Distributed Systems Area 2. This document is intended to satisfy the requirements for deliverable 5.2.11 under Task 4.2.2.3. This report discusses the challenges of maintaining application agreement and integration services. A literature search is presented that documents previous work in the area of replica determinism. Sources of non-deterministic behavior are identified and examples are presented where system level agreement failed to be achieved. We then explore how TTEthernet services can be extended to supply some interesting application agreement frameworks. This document assumes that the reader is familiar with the TTEthernet protocol. The reader is advised to read the TTEthernet protocol standard [1] before reading this document. This document does not re-iterate the content of the standard.
Hybrid Communication Architectures for Distributed Smart Grid Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin
Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less
Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos
2017-11-01
In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.
Multi-kw dc power distribution system study program
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1974-01-01
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.
A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications
NASA Astrophysics Data System (ADS)
Gaspar, M.; Pedrozzi, M.; Ferreira, L. F. R.; Garvey, T.
2011-05-01
We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.
Distributed Accounting on the Grid
NASA Technical Reports Server (NTRS)
Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.
2001-01-01
By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.
Assess program: Interactive data management systems for airborne research
NASA Technical Reports Server (NTRS)
Munoz, R. M.; Reller, J. O., Jr.
1974-01-01
Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
Distributed rendering for multiview parallax displays
NASA Astrophysics Data System (ADS)
Annen, T.; Matusik, W.; Pfister, H.; Seidel, H.-P.; Zwicker, M.
2006-02-01
3D display technology holds great promise for the future of television, virtual reality, entertainment, and visualization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple projectors, and multiview screens. The main challenge is to render various perspective views of the scene and assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering on multiview parallax displays.
Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.
1984-11-01
constructed, calibrated, and successfully applied. Our efforts to verify the performance and accuracy of this diagnostic led to a parallel research...array will not be an acceptable detection system for size distribution measurements by this method. VI. Conclusions This study has led to the following...radiation is also useful particle size analysis by ensemble multiangle scattering. One problem for all multiwavelength or multiaricle diagnostics for
Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barley, C. D.; Anderson, R.; Hendron, B.
2007-12-01
This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.
Performance Efficiency of a Crash Energy Management System
DOT National Transportation Integrated Search
2007-03-13
Previous work has led to the development of a crash energy : management (CEM) system designed to distribute crush : throughout unoccupied areas of a passenger train in a collision : event. This CEM system is comprised of crush zones at the : front an...
Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoder, Karl; Langston, James; Hauer, John
2015-10-01
The National Renewable Energy Laboratory (NREL) teamed with Southern California Edison (SCE), Clean Power Research (CPR), Quanta Technology (QT), and Electrical Distribution Design (EDD) to conduct a U.S. Department of Energy (DOE) and California Public Utility Commission (CPUC) California Solar Initiative (CSI)-funded research project investigating the impacts of integrating high-penetration levels of photovoltaics (PV) onto the California distribution grid. One topic researched in the context of high-penetration PV integration onto the distribution system is the ability of PV inverters to (1) detect islanding conditions (i.e., when the distribution system to which the PV inverter is connected becomes disconnected from themore » utility power connection) and (2) disconnect from the islanded system within the time specified in the performance specifications outlined in IEEE Standard 1547. This condition may cause damage to other connected equipment due to insufficient power quality (e.g., over-and under-voltages) and may also be a safety hazard to personnel that may be working on feeder sections to restore service. NREL teamed with the Florida State University (FSU) Center for Advanced Power Systems (CAPS) to investigate a new way of testing PV inverters for IEEE Standard 1547 unintentional islanding performance specifications using power hardware-in-loop (PHIL) laboratory testing techniques.« less
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...
2016-01-01
This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less
Assessment of air velocity sensors for use in animal produciton facilities
USDA-ARS?s Scientific Manuscript database
Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...
A multidisciplinary approach to the development of low-cost high-performance lightwave networks
NASA Technical Reports Server (NTRS)
Maitan, Jacek; Harwit, Alex
1991-01-01
Our research focuses on high-speed distributed systems. We anticipate that our results will allow the fabrication of low-cost networks employing multi-gigabit-per-second data links for space and military applications. The recent development of high-speed low-cost photonic components and new generations of microprocessors creates an opportunity to develop advanced large-scale distributed information systems. These systems currently involve hundreds of thousands of nodes and are made up of components and communications links that may fail during operation. In order to realize these systems, research is needed into technologies that foster adaptability and scaleability. Self-organizing mechanisms are needed to integrate a working fabric of large-scale distributed systems. The challenge is to fuse theory, technology, and development methodologies to construct a cost-effective, efficient, large-scale system.
Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph
Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less
Centralized versus distributed propulsion
NASA Technical Reports Server (NTRS)
Clark, J. P.
1982-01-01
The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.
The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Valentin; Fischer, Nils Leif; Guo, Yuyi
The CMS experiment at the CERN LHC developed the Workflow Management Archive system to persistently store unstructured framework job report documents produced by distributed workflow management agents. In this paper we present its architecture, implementation, deployment, and integration with the CMS and CERN computing infrastructures, such as central HDFS and Hadoop Spark cluster. The system leverages modern technologies such as a document oriented database and the Hadoop eco-system to provide the necessary flexibility to reliably process, store, and aggregatemore » $$\\mathcal{O}$$(1M) documents on a daily basis. We describe the data transformation, the short and long term storage layers, the query language, along with the aggregation pipeline developed to visualize various performance metrics to assist CMS data operators in assessing the performance of the CMS computing system.« less
The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC
Kuznetsov, Valentin; Fischer, Nils Leif; Guo, Yuyi
2018-03-19
The CMS experiment at the CERN LHC developed the Workflow Management Archive system to persistently store unstructured framework job report documents produced by distributed workflow management agents. In this paper we present its architecture, implementation, deployment, and integration with the CMS and CERN computing infrastructures, such as central HDFS and Hadoop Spark cluster. The system leverages modern technologies such as a document oriented database and the Hadoop eco-system to provide the necessary flexibility to reliably process, store, and aggregatemore » $$\\mathcal{O}$$(1M) documents on a daily basis. We describe the data transformation, the short and long term storage layers, the query language, along with the aggregation pipeline developed to visualize various performance metrics to assist CMS data operators in assessing the performance of the CMS computing system.« less
Thermal performance and heat transport in aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.
2014-01-01
Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.
NASA Astrophysics Data System (ADS)
Krishnanathan, Kirubhakaran; Anderson, Sean R.; Billings, Stephen A.; Kadirkamanathan, Visakan
2016-11-01
In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation.
Enabling NVM for Data-Intensive Scientific Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carns, Philip; Jenkins, John; Seo, Sangmin
Specialized, transient data services are playing an increasingly prominent role in data-intensive scientific computing. These services offer flexible, on-demand pairing of applications with storage hardware using semantics that are optimized for the problem domain. Concurrent with this trend, upcoming scientific computing and big data systems will be deployed with emerging NVM technology to achieve the highest possible price/productivity ratio. Clearly, therefore, we must develop techniques to facilitate the confluence of specialized data services and NVM technology. In this work we explore how to enable the composition of NVM resources within transient distributed services while still retaining their essential performance characteristics.more » Our approach involves eschewing the conventional distributed file system model and instead projecting NVM devices as remote microservices that leverage user-level threads, RPC services, RMA-enabled network transports, and persistent memory libraries in order to maximize performance. We describe a prototype system that incorporates these concepts, evaluate its performance for key workloads on an exemplar system, and discuss how the system can be leveraged as a component of future data-intensive architectures.« less
On the impact of `smart tyres' on existing ABS/EBD control systems
NASA Astrophysics Data System (ADS)
Cheli, Federico; Leo, Elisbetta; Melzi, Stefano; Sabbioni, Edoardo
2010-12-01
The paper focuses on the possibility of enhancing the performances of the ABS (Antilock Braking System)/EBD (electronic braking distribution) control system by using the additional information provided by 'smart tyres' (i.e. tyres with embedded sensors and digital-computing capability). In particular, on the basis of previous works [Braghin et al., Future car active controls through the measurement of contact forces and patch features, Veh. Syst. Dyn. 44 (2006), pp. 3-13], the authors assumed that these components should be able to provide estimates for the normal loads acting on the four wheels and for the tyre-road friction coefficient. The benefits produced by the introduction of these additional channels into the existing ABS/EBD control logic were evaluated through simulations carried out with a validated 14 degrees of freedom (dofs) vehicle + ABS/EBD control logic numerical model. The performance of the ABS control system was evaluated through a series of braking manoeuvres on straight track focusing the attention on μ -jump conditions, while the performance of the EBD control system was assessed by means of braking manoeuvres carried out considering several weight distributions.
NASA Astrophysics Data System (ADS)
Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua
2018-02-01
For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.
CompatPM: enabling energy efficient multimedia workloads for distributed mobile platforms
NASA Astrophysics Data System (ADS)
Nathuji, Ripal; O'Hara, Keith J.; Schwan, Karsten; Balch, Tucker
2007-01-01
The computation and communication abilities of modern platforms are enabling increasingly capable cooperative distributed mobile systems. An example is distributed multimedia processing of sensor data in robots deployed for search and rescue, where a system manager can exploit the application's cooperative nature to optimize the distribution of roles and tasks in order to successfully accomplish the mission. Because of limited battery capacities, a critical task a manager must perform is online energy management. While support for power management has become common for the components that populate mobile platforms, what is lacking is integration and explicit coordination across the different management actions performed in a variety of system layers. This papers develops an integration approach for distributed multimedia applications, where a global manager specifies both a power operating point and a workload for a node to execute. Surprisingly, when jointly considering power and QoS, experimental evaluations show that using a simple deadline-driven approach to assigning frequencies can be non-optimal. These trends are further affected by certain characteristics of underlying power management mechanisms, which in our research, are identified as groupings that classify component power management as "compatible" (VFC) or "incompatible" (VFI) with voltage and frequency scaling. We build on these findings to develop CompatPM, a vertically integrated control strategy for power management in distributed mobile systems. Experimental evaluations of CompatPM indicate average energy improvements of 8% when platform resources are managed jointly rather than independently, demonstrating that previous attempts to maximize battery life by simply minimizing frequency are inappropriate from a platform-level perspective.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN
NASA Astrophysics Data System (ADS)
Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.
2015-12-01
In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.
Distributed energy storage systems on the basis of electric-vehicle fleets
NASA Astrophysics Data System (ADS)
Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.
2015-01-01
Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).
Hydronic radiant cooling: Overview and preliminary performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1993-05-01
A significant amount of electrical energy used to cool non-residential buildings is drawn by the fans used to transport the cool air through the thermal distribution system. Hydronic systems reduce the amount of air transported through the building by separating ventilation and thermal conditioning. Due to the physical properties of water, hydronic distribution systems can transport a given amount of thermal energy using less than 5% of the otherwise necessary fan energy. This savings alone significantly reduces the energy consumption and especially the peak power requirement This survey clearly shows advantages for radiant cooling in combination with hydronic thermal distributionmore » systems in comparison with the All-Air Systems commonly used in California. The report describes a literature survey on the system's development, thermal comfort issues, and cooling performance. The cooling power potential and the cooling power requirement are investigated for several California climates. Peak-power requirement is compared for hydronic radiant cooling and conventional All-Air-Systems.« less
A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.
Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L
2003-01-01
Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.
Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.
Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J
2016-05-26
There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.
Distributed and parallel approach for handle and perform huge datasets
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
Big Data refers to the dynamic, large and disparate volumes of data comes from many different sources (tools, machines, sensors, mobile devices) uncorrelated with each others. It requires new, innovative and scalable technology to collect, host and analytically process the vast amount of data. Proper architecture of the system that perform huge data sets is needed. In this paper, the comparison of distributed and parallel system architecture is presented on the example of MapReduce (MR) Hadoop platform and parallel database platform (DBMS). This paper also analyzes the problem of performing and handling valuable information from petabytes of data. The both paradigms: MapReduce and parallel DBMS are described and compared. The hybrid architecture approach is also proposed and could be used to solve the analyzed problem of storing and processing Big Data.
Distributed state-space generation of discrete-state stochastic models
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David
1995-01-01
High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.
Optimal service distribution in WSN service system subject to data security constraints.
Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong
2014-08-04
Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm.
Optimal Service Distribution in WSN Service System Subject to Data Security Constraints
Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong
2014-01-01
Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm. PMID:25093346
NASA Astrophysics Data System (ADS)
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
In a practical continuous-variable quantum key distribution (CVQKD) system, real-time shot-noise measurement (RTSNM) is an essential procedure for preventing the eavesdropper exploiting the practical security loopholes. However, the performance of this procedure itself is not analyzed under the real-world condition. Therefore, we indicate the RTSNM practical performance and investigate its effects on the CVQKD system. In particular, due to the finite-size effect, the shot-noise measurement at the receiver's side may decrease the precision of parameter estimation and consequently result in a tight security bound. To mitigate that, we optimize the block size for RTSNM under the ensemble size limitation to maximize the secure key rate. Moreover, the effect of finite dynamics of amplitude modulator in this scheme is studied and its mitigation method is also proposed. Our work indicates the practical performance of RTSNM and provides the real secret key rate under it.
Sequential data access with Oracle and Hadoop: a performance comparison
NASA Astrophysics Data System (ADS)
Baranowski, Zbigniew; Canali, Luca; Grancher, Eric
2014-06-01
The Hadoop framework has proven to be an effective and popular approach for dealing with "Big Data" and, thanks to its scaling ability and optimised storage access, Hadoop Distributed File System-based projects such as MapReduce or HBase are seen as candidates to replace traditional relational database management systems whenever scalable speed of data processing is a priority. But do these projects deliver in practice? Does migrating to Hadoop's "shared nothing" architecture really improve data access throughput? And, if so, at what cost? Authors answer these questions-addressing cost/performance as well as raw performance- based on a performance comparison between an Oracle-based relational database and Hadoop's distributed solutions like MapReduce or HBase for sequential data access. A key feature of our approach is the use of an unbiased data model as certain data models can significantly favour one of the technologies tested.
NASA Astrophysics Data System (ADS)
Hering, Julian; Waller, Erik H.; von Freymann, Georg
2017-02-01
Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF's quality is crucial for the application's performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1-3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. of Microscopy 216(1), 32-48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). 3. A. Jesacher and M. J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction," Opt. Express 18(20), 21090-21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35(2), 237-246 (1972).
Seismic Retrofit for Electric Power Systems
Romero, Natalia; Nozick, Linda K.; Dobson, Ian; ...
2015-05-01
Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less
Replication Strategy for Spatiotemporal Data Based on Distributed Caching System
Xiong, Lian; Tao, Yang; Xu, Juan; Zhao, Lun
2018-01-01
The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay. PMID:29342897
NASA Technical Reports Server (NTRS)
Smith, Phillip J.; Billings, Charles; McCoy, C. Elaine; Orasanu, Judith
1999-01-01
The air traffic management system in the United States is an example of a distributed problem solving system. It has elements of both cooperative and competitive problem-solving. This system includes complex organizations such as Airline Operations Centers (AOCs), the FAA Air Traffic Control Systems Command Center (ATCSCC), and traffic management units (TMUs) at enroute centers and TRACONs, all of which have a major focus on strategic decision-making. It also includes individuals concerned more with tactical decisions (such as air traffic controllers and pilots). The architecture for this system has evolved over time to rely heavily on the distribution of tasks and control authority in order to keep cognitive complexity manageable for any one individual operator, and to provide redundancy (both human and technological) to serve as a safety net to catch the slips or mistakes that any one person or entity might make. Currently, major changes are being considered for this architecture, especially with respect to the locus of control, in an effort to improve efficiency and safety. This paper uses a series of case studies to help evaluate some of these changes from the perspective of system complexity, and to point out possible alternative approaches that might be taken to improve system performance. The paper illustrates the need to maintain a clear understanding of what is required to assure a high level of performance when alternative system architectures and decompositions are developed.
Modeling and evaluating the performance of Brillouin distributed optical fiber sensors.
Soto, Marcelo A; Thévenaz, Luc
2013-12-16
A thorough analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors is presented. An analytical expression is derived to estimate the error on the determination of the Brillouin peak gain frequency, based for the first time on real experimental conditions. This expression is experimentally validated, and describes how this frequency uncertainty depends on measurement parameters, such as Brillouin gain linewidth, frequency scanning step and signal-to-noise ratio. Based on the model leading to this expression and considering the limitations imposed by nonlinear effects and pump depletion, a figure-of-merit is proposed to fairly compare the performance of Brillouin distributed sensing systems. This figure-of-merit offers to the research community and to potential users the possibility to evaluate with an objective metric the real performance gain resulting from any proposed configuration.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-06-08
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less
Performance management system enhancement and maintenance
NASA Technical Reports Server (NTRS)
Cleaver, T. G.; Ahour, R.; Johnson, B. R.
1984-01-01
The research described in this report concludes a two-year effort to develop a Performance Management System (PMS) for the NCC computers. PMS provides semi-automated monthly reports to NASA and contractor management on the status and performance of the NCC computers in the TDRSS program. Throughout 1984, PMS was tested, debugged, extended, and enhanced. Regular PMS monthly reports were produced and distributed. PMS continues to operate at the NCC under control of Bendix Corp. personnel.
NASA Astrophysics Data System (ADS)
Chao, Woodrew; Ho, Bruce K. T.; Chao, John T.; Sadri, Reza M.; Huang, Lu J.; Taira, Ricky K.
1995-05-01
Our tele-medicine/PACS archive system is based on a three-tier distributed hierarchical architecture, including magnetic disk farms, optical jukebox, and tape jukebox sub-systems. The hierarchical storage management (HSM) architecture, built around a low cost high performance platform [personal computers (PC) and Microsoft Windows NT], presents a very scaleable and distributed solution ideal for meeting the needs of client/server environments such as tele-medicine, tele-radiology, and PACS. These image based systems typically require storage capacities mirroring those of film based technology (multi-terabyte with 10+ years storage) and patient data retrieval times at near on-line performance as demanded by radiologists. With the scaleable architecture, storage requirements can be easily configured to meet the needs of the small clinic (multi-gigabyte) to those of a major hospital (multi-terabyte). The patient data retrieval performance requirement was achieved by employing system intelligence to manage migration and caching of archived data. Relevant information from HIS/RIS triggers prefetching of data whenever possible based on simple rules. System intelligence embedded in the migration manger allows the clustering of patient data onto a single tape during data migration from optical to tape medium. Clustering of patient data on the same tape eliminates multiple tape loading and associated seek time during patient data retrieval. Optimal tape performance can then be achieved by utilizing the tape drives high performance data streaming capabilities thereby reducing typical data retrieval delays associated with streaming tape devices.
NASA Astrophysics Data System (ADS)
Vasil'ev, E. N.
2018-04-01
Numerical simulation is performed for heat transfer in a heat distributer of a thermoelectric cooling system, which is located between the heat-loaded element and the thermoelectric module, for matching their sizes and for heat flux equalization. The dependences of the characteristic values of temperature and thermal resistance of the copper and aluminum heat distributer on its thickness and on the size of the heatloaded element. Comparative analysis is carried out for determining the effect of the thermal conductivity of the material and geometrical parameters on the heat resistance. The optimal thickness of the heat distributer depending on the size of the heat-loaded element is determined.
An Ephemeral Burst-Buffer File System for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Teng; Moody, Adam; Yu, Weikuan
BurstFS is a distributed file system for node-local burst buffers on high performance computing systems. BurstFS presents a shared file system space across the burst buffers so that applications that use shared files can access the highly-scalable burst buffers without changing their applications.
Efficient Use of Distributed Systems for Scientific Applications
NASA Technical Reports Server (NTRS)
Taylor, Valerie; Chen, Jian; Canfield, Thomas; Richard, Jacques
2000-01-01
Distributed computing has been regarded as the future of high performance computing. Nationwide high speed networks such as vBNS are becoming widely available to interconnect high-speed computers, virtual environments, scientific instruments and large data sets. One of the major issues to be addressed with distributed systems is the development of computational tools that facilitate the efficient execution of parallel applications on such systems. These tools must exploit the heterogeneous resources (networks and compute nodes) in distributed systems. This paper presents a tool, called PART, which addresses this issue for mesh partitioning. PART takes advantage of the following heterogeneous system features: (1) processor speed; (2) number of processors; (3) local network performance; and (4) wide area network performance. Further, different finite element applications under consideration may have different computational complexities, different communication patterns, and different element types, which also must be taken into consideration when partitioning. PART uses parallel simulated annealing to partition the domain, taking into consideration network and processor heterogeneity. The results of using PART for an explicit finite element application executing on two IBM SPs (located at Argonne National Laboratory and the San Diego Supercomputer Center) indicate an increase in efficiency by up to 36% as compared to METIS, a widely used mesh partitioning tool. The input to METIS was modified to take into consideration heterogeneous processor performance; METIS does not take into consideration heterogeneous networks. The execution times for these applications were reduced by up to 30% as compared to METIS. These results are given in Figure 1 for four irregular meshes with number of elements ranging from 30,269 elements for the Barth5 mesh to 11,451 elements for the Barth4 mesh. Future work with PART entails using the tool with an integrated application requiring distributed systems. In particular this application, illustrated in the document entails an integration of finite element and fluid dynamic simulations to address the cooling of turbine blades of a gas turbine engine design. It is not uncommon to encounter high-temperature, film-cooled turbine airfoils with 1,000,000s of degrees of freedom. This results because of the complexity of the various components of the airfoils, requiring fine-grain meshing for accuracy. Additional information is contained in the original.
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed intelligent control and status networking
NASA Technical Reports Server (NTRS)
Fortin, Andre; Patel, Manoj
1993-01-01
Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.
Approach Considerations in Aircraft with High-Lift Propeller Systems
NASA Technical Reports Server (NTRS)
Patterson, Michael D.; Borer, Nicholas K.
2017-01-01
NASA's research into distributed electric propulsion (DEP) includes the design and development of the X-57 Maxwell aircraft. This aircraft has two distinct types of DEP: wingtip propellers and high-lift propellers. This paper focuses on the unique opportunities and challenges that the high-lift propellers--i.e., the small diameter propellers distributed upstream of the wing leading edge to augment lift at low speeds--bring to the aircraft performance in approach conditions. Recent changes to the regulations related to certifying small aircraft (14 CFR x23) and these new regulations' implications on the certification of aircraft with high-lift propellers are discussed. Recommendations about control systems for high-lift propeller systems are made, and performance estimates for the X-57 aircraft with high-lift propellers operating are presented.
McKenna, Matthew T.; Wang, Shijun; Nguyen, Tan B.; Burns, Joseph E.; Petrick, Nicholas; Summers, Ronald M.
2012-01-01
Computer-aided detection (CAD) systems have been shown to improve the diagnostic performance of CT colonography (CTC) in the detection of premalignant colorectal polyps. Despite the improvement, the overall system is not optimal. CAD annotations on true lesions are incorrectly dismissed, and false positives are misinterpreted as true polyps. Here, we conduct an observer performance study utilizing distributed human intelligence in the form of anonymous knowledge workers (KWs) to investigate human performance in classifying polyp candidates under different presentation strategies. We evaluated 600 polyp candidates from 50 patients, each case having at least one polyp • 6 mm, from a large database of CTC studies. Each polyp candidate was labeled independently as a true or false polyp by 20 KWs and an expert radiologist. We asked each labeler to determine whether the candidate was a true polyp after looking at a single 3D-rendered image of the candidate and after watching a video fly-around of the candidate. We found that distributed human intelligence improved significantly when presented with the additional information in the video fly-around. We noted that performance degraded with increasing interpretation time and increasing difficulty, but distributed human intelligence performed better than our CAD classifier for “easy” and “moderate” polyp candidates. Further, we observed numerous parallels between the expert radiologist and the KWs. Both showed similar improvement in classification moving from single-image to video interpretation. Additionally, difficulty estimates obtained from the KWs using an expectation maximization algorithm correlated well with the difficulty rating assigned by the expert radiologist. Our results suggest that distributed human intelligence is a powerful tool that will aid in the development of CAD for CTC. PMID:22705287
McKenna, Matthew T; Wang, Shijun; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Summers, Ronald M
2012-08-01
Computer-aided detection (CAD) systems have been shown to improve the diagnostic performance of CT colonography (CTC) in the detection of premalignant colorectal polyps. Despite the improvement, the overall system is not optimal. CAD annotations on true lesions are incorrectly dismissed, and false positives are misinterpreted as true polyps. Here, we conduct an observer performance study utilizing distributed human intelligence in the form of anonymous knowledge workers (KWs) to investigate human performance in classifying polyp candidates under different presentation strategies. We evaluated 600 polyp candidates from 50 patients, each case having at least one polyp ≥6 mm, from a large database of CTC studies. Each polyp candidate was labeled independently as a true or false polyp by 20 KWs and an expert radiologist. We asked each labeler to determine whether the candidate was a true polyp after looking at a single 3D-rendered image of the candidate and after watching a video fly-around of the candidate. We found that distributed human intelligence improved significantly when presented with the additional information in the video fly-around. We noted that performance degraded with increasing interpretation time and increasing difficulty, but distributed human intelligence performed better than our CAD classifier for "easy" and "moderate" polyp candidates. Further, we observed numerous parallels between the expert radiologist and the KWs. Both showed similar improvement in classification moving from single-image to video interpretation. Additionally, difficulty estimates obtained from the KWs using an expectation maximization algorithm correlated well with the difficulty rating assigned by the expert radiologist. Our results suggest that distributed human intelligence is a powerful tool that will aid in the development of CAD for CTC. Copyright © 2012. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Xianjun
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
Operation of remote mobile sensors for security of drinking water distribution systems.
Perelman, By Lina; Ostfeld, Avi
2013-09-01
The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.
2002-01-01
PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) New...Horizons Diagnostics, Columbia, MD 21045 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR...MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution
PrismTech Data Distribution Service Java API Evaluation
NASA Technical Reports Server (NTRS)
Riggs, Cortney
2008-01-01
My internship duties with Launch Control Systems required me to start performance testing of an Object Management Group's (OMG) Data Distribution Service (DDS) specification implementation by PrismTech Limited through the Java programming language application programming interface (API). DDS is a networking middleware for Real-Time Data Distribution. The performance testing involves latency, redundant publishers, extended duration, redundant failover, and read performance. Time constraints allowed only for a data throughput test. I have designed the testing applications to perform all performance tests when time is allowed. Performance evaluation data such as megabits per second and central processing unit (CPU) time consumption were not easily attainable through the Java programming language; they required new methods and classes created in the test applications. Evaluation of this product showed the rate that data can be sent across the network. Performance rates are better on Linux platforms than AIX and Sun platforms. Compared to previous C++ programming language API, the performance evaluation also shows the language differences for the implementation. The Java API of the DDS has a lower throughput performance than the C++ API.
Integrating labview into a distributed computing environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasemir, K. U.; Pieck, M.; Dalesio, L. R.
2001-01-01
Being easy to learn and well suited for a selfcontained desktop laboratory setup, many casual programmers prefer to use the National Instruments Lab-VIEW environment to develop their logic. An ActiveX interface is presented that allows integration into a plant-wide distributed environment based on the Experimental Physics and Industrial Control System (EPICS). This paper discusses the design decisions and provides performance information, especially considering requirements for the Spallation Neutron Source (SNS) diagnostics system.
A Comparison of Capability Assessment Using the LOGRAM and Dyna-METRIC Computer Models.
1983-09-01
identified by the weapons system manager as critical for the F-16’s war mission ( 18 ). The DFAC- EROT output was in the proper format for...public release; distribution unlimited :07. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, It different from Report) 18 . SUPPLEMENTARY...various war plans (15: 18 ). LOGRAM does not evaluate weapons system performance in this manner, but by estimating the proportion of spares assets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duro, Francisco Rodrigo; Garcia Blas, Javier; Isaila, Florin
This paper explores novel techniques for improving the performance of many-task workflows based on the Swift scripting language. We propose novel programmer options for automated distributed data placement and task scheduling. These options trigger a data placement mechanism used for distributing intermediate workflow data over the servers of Hercules, a distributed key-value store that can be used to cache file system data. We demonstrate that these new mechanisms can significantly improve the aggregated throughput of many-task workflows with up to 86x, reduce the contention on the shared file system, exploit the data locality, and trade off locality and load balance.
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
LCP- LIFETIME COST AND PERFORMANCE MODEL FOR DISTRIBUTED PHOTOVOLTAIC SYSTEMS
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
The Lifetime Cost and Performance (LCP) Model was developed to assist in the assessment of Photovoltaic (PV) system design options. LCP is a simulation of the performance, cost, and revenue streams associated with distributed PV power systems. LCP provides the user with substantial flexibility in specifying the technical and economic environment of the PV application. User-specified input parameters are available to describe PV system characteristics, site climatic conditions, utility purchase and sellback rate structures, discount and escalation rates, construction timing, and lifetime of the system. Such details as PV array orientation and tilt angle, PV module and balance-of-system performance attributes, and the mode of utility interconnection are user-specified. LCP assumes that the distributed PV system is utility grid interactive without dedicated electrical storage. In combination with a suitable economic model, LCP can provide an estimate of the expected net present worth of a PV system to the owner, as compared to electricity purchased from a utility grid. Similarly, LCP might be used to perform sensitivity analyses to identify those PV system parameters having significant impact on net worth. The user describes the PV system configuration to LCP via the basic electrical components. The module is the smallest entity in the PV system which is modeled. A PV module is defined in the simulation by its short circuit current, which varies over the system lifetime due to degradation and failure. Modules are wired in series to form a branch circuit. Bypass diodes are allowed between modules in the branch circuits. Branch circuits are then connected in parallel to form a bus. A collection of buses is connected in parallel to form an increment to capacity of the system. By choosing the appropriate series-parallel wiring design, the user can specify the current, voltage, and reliability characteristics of the system. LCP simulation of system performance is site-specific and follows a three-step procedure. First the hourly power produced by the PV system is computed using a selected year's insolation and temperature profile. For this step it is assumed that there are no module failures or degradation. Next, the monthly simulation is performed involving a month to month progression through the lifetime of the system. In this step, the effects of degradation, failure, dirt accumulation and operations/maintenance efforts on PV system performance over time are used to compute the monthly power capability fraction. The resulting monthly power capability fractions are applied to the hourly power matrix from the first step, giving the anticipated hourly energy output over the lifetime of the system. PV system energy output is compared with the PV system owner's electricity demand for each hour. The amount of energy to be purchased from or sold to the utility grid is then determined. Monthly expenditures on the PV system and the purchase of electricity from the utility grid are also calculated. LCP generates output reports pertaining to the performance of the PV system, and system costs and revenues. The LCP model, written in SIMSCRIPT 2.5 for batch execution on an IBM 370 series computer, was developed in 1981.
Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.
Design of material management system of mining group based on Hadoop
NASA Astrophysics Data System (ADS)
Xia, Zhiyuan; Tan, Zhuoying; Qi, Kuan; Li, Wen
2018-01-01
Under the background of persistent slowdown in mining market at present, improving the management level in mining group has become the key link to improve the economic benefit of the mine. According to the practical material management in mining group, three core components of Hadoop are applied: distributed file system HDFS, distributed computing framework Map/Reduce and distributed database HBase. Material management system of mining group based on Hadoop is constructed with the three core components of Hadoop and SSH framework technology. This system was found to strengthen collaboration between mining group and affiliated companies, and then the problems such as inefficient management, server pressure, hardware equipment performance deficiencies that exist in traditional mining material-management system are solved, and then mining group materials management is optimized, the cost of mining management is saved, the enterprise profit is increased.
Fiacco, P. A.; Rice, W. H.
1991-01-01
Computerized medical record systems require structured database architectures for information processing. However, the data must be able to be transferred across heterogeneous platform and software systems. Client-Server architecture allows for distributive processing of information among networked computers and provides the flexibility needed to link diverse systems together effectively. We have incorporated this client-server model with a graphical user interface into an outpatient medical record system, known as SuperChart, for the Department of Family Medicine at SUNY Health Science Center at Syracuse. SuperChart was developed using SuperCard and Oracle SuperCard uses modern object-oriented programming to support a hypermedia environment. Oracle is a powerful relational database management system that incorporates a client-server architecture. This provides both a distributed database and distributed processing which improves performance. PMID:1807732
An operating system for future aerospace vehicle computer systems
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.
1984-01-01
The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.
Study of Aggregation of Janus Ellipsoids
NASA Astrophysics Data System (ADS)
Ruth, Donovan; Li, Wei; Khadka, Shreeya; Rickman, Jeffrey; Gunton, James
2013-03-01
We perform numerical simulations of a quasi-square well potential model of one-patch colloidal particles to investigate the collective structure of a system of Janus ellipsoids. We show that for Janus ellipsoids such that one half is an attractive patch, while the entire ellipsoid has a hardcore repulsion, the system organizes into a distribution of orientationally ordered micelles and vesicles. We analyze the cluster distribution at several temperatures and low densities and show that below certain temperatures the system is populated by stable clusters and depending on temperature and density the system is populated by either vesicles or micelle structures.
Time evolution of pore system in lime - Pozzolana composites
NASA Astrophysics Data System (ADS)
Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin
2017-11-01
The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.
Solar simulator for concentrator photovoltaic systems.
Domínguez, César; Antón, Ignacio; Sala, Gabriel
2008-09-15
A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.
1989-12-15
Missile Systems Company 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER McDonnell Douglas Missile Systems...SEQUENCE NO. B008 MCDONNELL DOUGLAS McDonnefl Douglas Missile Systems Company St. Louis, Missouri 63166-0516 (314) 232-0232 91-02815 Distribution nt pm rt...Systems Company 7.1- 1 2. TASK ORDER NO. 1 PROCESS CHARACTERIZATION The brake assembly subunit is responsible for the assembly of brakes. Brakes enter
System for Performing Single Query Searches of Heterogeneous and Dispersed Databases
NASA Technical Reports Server (NTRS)
Maluf, David A. (Inventor); Okimura, Takeshi (Inventor); Gurram, Mohana M. (Inventor); Tran, Vu Hoang (Inventor); Knight, Christopher D. (Inventor); Trinh, Anh Ngoc (Inventor)
2017-01-01
The present invention is a distributed computer system of heterogeneous databases joined in an information grid and configured with an Application Programming Interface hardware which includes a search engine component for performing user-structured queries on multiple heterogeneous databases in real time. This invention reduces overhead associated with the impedance mismatch that commonly occurs in heterogeneous database queries.
Work distributions for random sudden quantum quenches
NASA Astrophysics Data System (ADS)
Łobejko, Marcin; Łuczka, Jerzy; Talkner, Peter
2017-05-01
The statistics of work performed on a system by a sudden random quench is investigated. Considering systems with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and final Hamiltonians.
Aesthetic coatings for concrete bridge components
NASA Astrophysics Data System (ADS)
Kriha, Brent R.
This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.
NASA Astrophysics Data System (ADS)
Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin
2016-10-01
Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-10-01
In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity andmore » stability, respectively.« less
Qualitative Description of Electric Power System Future States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Trevor D.; Corbin, Charles D.
The simulation and evaluation of transactive systems depends to a large extent on the context in which those efforts are performed. Assumptions regarding the composition of the electric power system, the regulatory and policy environment, the distribution of renewable and other distributed energy resources (DERs), technological advances, and consumer engagement all contribute to, and affect, the evaluation of any given transactive system, regardless of its design. It is our position that the assumptions made about the state of the future power grid will determine, to some extent, the systems ultimately deployed, and that the transactive system itself may play anmore » important role in the evolution of the power system.« less
Performance of device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhao, Qi; Ma, Xiongfeng
2016-07-01
Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .
NASA Technical Reports Server (NTRS)
Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond
2001-01-01
The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.
Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen
2017-05-17
A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severemore » voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.« less
NASA Technical Reports Server (NTRS)
Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond; Schkolnik, Gerald (Technical Monitor)
1998-01-01
The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a commercial off-the-shelf (COTS)-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.
Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy
NASA Astrophysics Data System (ADS)
Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao
2018-01-01
Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
The 18/30 GHz fixed communications system service demand assessment. Volume 2: Main text
NASA Technical Reports Server (NTRS)
Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.
1979-01-01
The total demand for communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is assessed. The services are voice, video, and data services. Traffic demand, by service, is distributed by geographical regions, population density, and distance between serving points. Further distribution of traffic is made among four major end user groups: business, government, institutions and private individuals. A traffic demand analysis is performed on a typical metropolitan city to examine service distribution trends. The projected cost of C and Ku band satellite systems are compared on an individual service basis to projected terrestrial rates. Separation of traffic between transmission systems, including 18/30 GHz systems, is based on cost, user, and technical considerations.
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Sucurovic, Snezana; Milutinovic, Veljko
2008-01-01
The Internet based distributed large scale information systems implements attribute based access control (ABAC) rather than Role Based Access Control (RBAC). The reason is that the Internet is identity less and that ABAC scales better. EXtensible Access Control Markup Language is standardized language for writing access control policies, access control requests and access control responses in ABAC. XACML can provide decentralized administration and credentials distribution. In year 2002 version of CEN ENV 13 606 attributes have been attached to EHCR components and in such a system ABAC and XACML have been easy to implement. This paper presents writing XACML policies in the case when attributes are in hierarchical structure. It is presented two possible solutions to write XACML policy in that case and that the solution when set functions are used is more compact and provides 10% better performances.
NASA Technical Reports Server (NTRS)
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
A computer simulation code was employed to evaluate several generic types of solar power systems (up to 10 MWe). Details of the simulation methodology, and the solar plant concepts are given along with cost and performance results. The Solar Energy Simulation computer code (SESII) was used, which optimizes the size of the collector field and energy storage subsystem for given engine-generator and energy-transport characteristics. Nine plant types were examined which employed combinations of different technology options, such as: distributed or central receivers with one- or two-axis tracking or no tracking; point- or line-focusing concentrator; central or distributed power conversion; Rankin, Brayton, or Stirling thermodynamic cycles; and thermal or electrical storage. Optimal cost curves were plotted as a function of levelized busbar energy cost and annualized plant capacity. Point-focusing distributed receiver systems were found to be most efficient (17-26 percent).
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
A salient region detection model combining background distribution measure for indoor robots.
Li, Na; Xu, Hui; Wang, Zhenhua; Sun, Lining; Chen, Guodong
2017-01-01
Vision system plays an important role in the field of indoor robot. Saliency detection methods, capturing regions that are perceived as important, are used to improve the performance of visual perception system. Most of state-of-the-art methods for saliency detection, performing outstandingly in natural images, cannot work in complicated indoor environment. Therefore, we propose a new method comprised of graph-based RGB-D segmentation, primary saliency measure, background distribution measure, and combination. Besides, region roundness is proposed to describe the compactness of a region to measure background distribution more robustly. To validate the proposed approach, eleven influential methods are compared on the DSD and ECSSD dataset. Moreover, we build a mobile robot platform for application in an actual environment, and design three different kinds of experimental constructions that are different viewpoints, illumination variations and partial occlusions. Experimental results demonstrate that our model outperforms existing methods and is useful for indoor mobile robots.
Simulation of robotic courier deliveries in hospital distribution services.
Rossetti, M D; Felder, R A; Kumar, A
2000-06-01
Flexible automation in the form of robotic couriers holds the potential for decreasing operating costs while improving delivery performance in hospital delivery systems. This paper discusses the use of simulation modeling to analyze the costs, benefits, and performance tradeoffs related to the installation and use of a fleet of robotic couriers within hospital facilities. The results of this study enable a better understanding of the delivery and transportation requirements of hospitals. Specifically, we examine how a fleet of robotic couriers can meet the performance requirements of the system while maintaining cost efficiency. We show that for clinical laboratory and pharmaceutical deliveries a fleet of six robotic couriers can achieve significant performance gains in terms of turn-around time and delivery variability over the current system of three human couriers per shift or 13 FTEs. Specifically, the simulation results indicate that using robotic couriers to perform both clinical laboratory and pharmaceutical deliveries would result in a 34% decrease in turn-around time, and a 38% decrease in delivery variability. In addition, a break-even analysis indicated that a positive net present value occurs if nine or more FTEs are eliminated with a resulting ROI of 12%. This analysis demonstrates that simulation can be a valuable tool for examining health care distribution services and indicates that a robotic courier system may yield significant benefits over a traditional courier system in this application.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
...) Not to exceed 3000 positions that require unique cyber security skills and knowledge to perform cyber..., distributed control systems security, cyber incident response, cyber exercise facilitation and management, cyber vulnerability detection and assessment, network and systems engineering, enterprise architecture...
The Role of Time and Frequency in Future Systems
NASA Technical Reports Server (NTRS)
Stein, Samuel R.; Gifford, Al; Celano, Tom
1996-01-01
Over the past twenty years, the Global Positioning System (GPS) has revolutionized the performance and the geographical availability of time and frequency discrimination, while at the same time reducing the cost to the individual user. This paper examines the question of what comes next for time and frequency dissemination. The question has two motivations: How can improved performance be achieved in the future, and how can redundant sources of time and frequency be provided to critical systems? A model is developed for time and frequency dissemination based on the time management performed in GPS. Several candidate systems for future time and frequency distribution are identified. One system - SONET telecommunications - is discussed in detail. Performance requirements and hardware implementation are presented.
Guest Editor's Introduction: Special section on dependable distributed systems
NASA Astrophysics Data System (ADS)
Fetzer, Christof
1999-09-01
We rely more and more on computers. For example, the Internet reshapes the way we do business. A `computer outage' can cost a company a substantial amount of money. Not only with respect to the business lost during an outage, but also with respect to the negative publicity the company receives. This is especially true for Internet companies. After recent computer outages of Internet companies, we have seen a drastic fall of the shares of the affected companies. There are multiple causes for computer outages. Although computer hardware becomes more reliable, hardware related outages remain an important issue. For example, some of the recent computer outages of companies were caused by failed memory and system boards, and even by crashed disks - a failure type which can easily be masked using disk mirroring. Transient hardware failures might also look like software failures and, hence, might be incorrectly classified as such. However, many outages are software related. Faulty system software, middleware, and application software can crash a system. Dependable computing systems are systems we can rely on. Dependable systems are, by definition, reliable, available, safe and secure [3]. This special section focuses on issues related to dependable distributed systems. Distributed systems have the potential to be more dependable than a single computer because the probability that all computers in a distributed system fail is smaller than the probability that a single computer fails. However, if a distributed system is not built well, it is potentially less dependable than a single computer since the probability that at least one computer in a distributed system fails is higher than the probability that one computer fails. For example, if the crash of any computer in a distributed system can bring the complete system to a halt, the system is less dependable than a single-computer system. Building dependable distributed systems is an extremely difficult task. There is no silver bullet solution. Instead one has to apply a variety of engineering techniques [2]: fault-avoidance (minimize the occurrence of faults, e.g. by using a proper design process), fault-removal (remove faults before they occur, e.g. by testing), fault-evasion (predict faults by monitoring and reconfigure the system before failures occur), and fault-tolerance (mask and/or contain failures). Building a system from scratch is an expensive and time consuming effort. To reduce the cost of building dependable distributed systems, one would choose to use commercial off-the-shelf (COTS) components whenever possible. The usage of COTS components has several potential advantages beyond minimizing costs. For example, through the widespread usage of a COTS component, design failures might be detected and fixed before the component is used in a dependable system. Custom-designed components have to mature without the widespread in-field testing of COTS components. COTS components have various potential disadvantages when used in dependable systems. For example, minimizing the time to market might lead to the release of components with inherent design faults (e.g. use of `shortcuts' that only work most of the time). In addition, the components might be more complex than needed and, hence, potentially have more design faults than simpler components. However, given economic constraints and the ability to cope with some of the problems using fault-evasion and fault-tolerance, only for a small percentage of systems can one justify not using COTS components. Distributed systems built from current COTS components are asynchronous systems in the sense that there exists no a priori known bound on the transmission delay of messages or the execution time of processes. When designing a distributed algorithm, one would like to make sure (e.g. by testing or verification) that it is correct, i.e. satisfies its specification. Many distributed algorithms make use of consensus (eventually all non-crashed processes have to agree on a value), leader election (a crashed leader is eventually replaced by a new leader, but at any time there is at most one leader) or a group membership detection service (a crashed process is eventually suspected to have crashed but only crashed processes are suspected). From a theoretical point of view, the service specifications given for such services are not implementable in asynchronous systems. In particular, for each implementation one can derive a counter example in which the service violates its specification. From a practical point of view, the consensus, the leader election, and the membership detection problem are solvable in asynchronous distributed systems. In this special section, Raynal and Tronel show how to bridge this difference by showing how to implement the group membership detection problem with a negligible probability [1] to fail in an asynchronous system. The group membership detection problem is specified by a liveness condition (L) and a safety property (S): (L) if a process p crashes, then eventually every non-crashed process q has to suspect that p has crashed; and (S) if a process q suspects p, then p has indeed crashed. One can show that either (L) or (S) is implementable, but one cannot implement both (L) and (S) at the same time in an asynchronous system. In practice, one only needs to implement (L) and (S) such that the probability that (L) or (S) is violated becomes negligible. Raynal and Tronel propose and analyse a protocol that implements (L) with certainty and that can be tuned such that the probability that (S) is violated becomes negligible. Designing and implementing distributed fault-tolerant protocols for asynchronous systems is a difficult but not an impossible task. A fault-tolerant protocol has to detect and mask certain failure classes, e.g. crash failures and message omission failures. There is a trade-off between the performance of a fault-tolerant protocol and the failure classes the protocol can tolerate. One wants to tolerate as many failure classes as needed to satisfy the stochastic requirements of the protocol [1] while still maintaining a sufficient performance. Since clients of a protocol have different requirements with respect to the performance/fault-tolerance trade-off, one would like to be able to customize protocols such that one can select an appropriate performance/fault-tolerance trade-off. In this special section Hiltunen et al describe how one can compose protocols from micro-protocols in their Cactus system. They show how a group RPC system can be tailored to the needs of a client. In particular, they show how considering additional failure classes affects the performance of a group RPC system. References [1] Cristian F 1991 Understanding fault-tolerant distributed systems Communications of ACM 34 (2) 56-78 [2] Heimerdinger W L and Weinstock C B 1992 A conceptual framework for system fault tolerance Technical Report 92-TR-33, CMU/SEI [3] Laprie J C (ed) 1992 Dependability: Basic Concepts and Terminology (Vienna: Springer)
On Per-Phase Topology Control and Switching in Emerging Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mousavi, Mirrasoul J.
This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less
Design of special purpose database for credit cooperation bank business processing network system
NASA Astrophysics Data System (ADS)
Yu, Yongling; Zong, Sisheng; Shi, Jinfa
2011-12-01
With the popularization of e-finance in the city, the construction of e-finance is transfering to the vast rural market, and quickly to develop in depth. Developing the business processing network system suitable for the rural credit cooperative Banks can make business processing conveniently, and have a good application prospect. In this paper, We analyse the necessity of adopting special purpose distributed database in Credit Cooperation Band System, give corresponding distributed database system structure , design the specical purpose database and interface technology . The application in Tongbai Rural Credit Cooperatives has shown that system has better performance and higher efficiency.