Sample records for distribution type uncertainty

  1. Evaluation of measurement uncertainty of glucose in clinical chemistry.

    PubMed

    Berçik Inal, B; Koldas, M; Inal, H; Coskun, C; Gümüs, A; Döventas, Y

    2007-04-01

    The definition of the uncertainty of measurement used in the International Vocabulary of Basic and General Terms in Metrology (VIM) is a parameter associated with the result of a measurement, which characterizes the dispersion of the values that could reasonably be attributed to the measurand. Uncertainty of measurement comprises many components. In addition to every parameter, the measurement uncertainty is that a value should be given by all institutions that have been accredited. This value shows reliability of the measurement. GUM, published by NIST, contains uncertainty directions. Eurachem/CITAC Guide CG4 was also published by Eurachem/CITAC Working Group in the year 2000. Both of them offer a mathematical model, for uncertainty can be calculated. There are two types of uncertainty in measurement. Type A is the evaluation of uncertainty through the statistical analysis and type B is the evaluation of uncertainty through other means, for example, certificate reference material. Eurachem Guide uses four types of distribution functions: (1) rectangular distribution that gives limits without specifying a level of confidence (u(x)=a/ radical3) to a certificate; (2) triangular distribution that values near to the same point (u(x)=a/ radical6); (3) normal distribution in which an uncertainty is given in the form of a standard deviation s, a relative standard deviation s/ radicaln, or a coefficient of variance CV% without specifying the distribution (a = certificate value, u = standard uncertainty); and (4) confidence interval.

  2. Informative Bayesian Type A uncertainty evaluation, especially applicable to a small number of observations

    NASA Astrophysics Data System (ADS)

    Cox, M.; Shirono, K.

    2017-10-01

    A criticism levelled at the Guide to the Expression of Uncertainty in Measurement (GUM) is that it is based on a mixture of frequentist and Bayesian thinking. In particular, the GUM’s Type A (statistical) uncertainty evaluations are frequentist, whereas the Type B evaluations, using state-of-knowledge distributions, are Bayesian. In contrast, making the GUM fully Bayesian implies, among other things, that a conventional objective Bayesian approach to Type A uncertainty evaluation for a number n of observations leads to the impractical consequence that n must be at least equal to 4, thus presenting a difficulty for many metrologists. This paper presents a Bayesian analysis of Type A uncertainty evaluation that applies for all n ≥slant 2 , as in the frequentist analysis in the current GUM. The analysis is based on assuming that the observations are drawn from a normal distribution (as in the conventional objective Bayesian analysis), but uses an informative prior based on lower and upper bounds for the standard deviation of the sampling distribution for the quantity under consideration. The main outcome of the analysis is a closed-form mathematical expression for the factor by which the standard deviation of the mean observation should be multiplied to calculate the required standard uncertainty. Metrological examples are used to illustrate the approach, which is straightforward to apply using a formula or look-up table.

  3. Examples of measurement uncertainty evaluations in accordance with the revised GUM

    NASA Astrophysics Data System (ADS)

    Runje, B.; Horvatic, A.; Alar, V.; Medic, S.; Bosnjakovic, A.

    2016-11-01

    The paper presents examples of the evaluation of uncertainty components in accordance with the current and revised Guide to the expression of uncertainty in measurement (GUM). In accordance with the proposed revision of the GUM a Bayesian approach was conducted for both type A and type B evaluations.The law of propagation of uncertainty (LPU) and the law of propagation of distribution applied through the Monte Carlo method, (MCM) were used to evaluate associated standard uncertainties, expanded uncertainties and coverage intervals. Furthermore, the influence of the non-Gaussian dominant input quantity and asymmetric distribution of the output quantity y on the evaluation of measurement uncertainty was analyzed. In the case when the probabilistically coverage interval is not symmetric, the coverage interval for the probability P is estimated from the experimental probability density function using the Monte Carlo method. Key highlights of the proposed revision of the GUM were analyzed through a set of examples.

  4. Aerosol-type retrieval and uncertainty quantification from OMI data

    NASA Astrophysics Data System (ADS)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.

  5. Incorporating uncertainty in predictive species distribution modelling.

    PubMed

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  6. A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Samrat; Tipireddy, Ramakrishna; Oster, Matthew R.

    Quantification and propagation of uncertainties in cyber attacker payoffs is a key aspect within multiplayer, stochastic security games. These payoffs may represent penalties or rewards associated with player actions and are subject to various sources of uncertainty, including: (1) cyber-system state, (2) attacker type, (3) choice of player actions, and (4) cyber-system state transitions over time. Past research has primarily focused on representing defender beliefs about attacker payoffs as point utility estimates. More recently, within the physical security domain, attacker payoff uncertainties have been represented as Uniform and Gaussian probability distributions, and mathematical intervals. For cyber-systems, probability distributions may helpmore » address statistical (aleatory) uncertainties where the defender may assume inherent variability or randomness in the factors contributing to the attacker payoffs. However, systematic (epistemic) uncertainties may exist, where the defender may not have sufficient knowledge or there is insufficient information about the attacker’s payoff generation mechanism. Such epistemic uncertainties are more suitably represented as generalizations of probability boxes. This paper explores the mathematical treatment of such mixed payoff uncertainties. A conditional probabilistic reasoning approach is adopted to organize the dependencies between a cyber-system’s state, attacker type, player actions, and state transitions. This also enables the application of probabilistic theories to propagate various uncertainties in the attacker payoffs. An example implementation of this probabilistic framework and resulting attacker payoff distributions are discussed. A goal of this paper is also to highlight this uncertainty quantification problem space to the cyber security research community and encourage further advancements in this area.« less

  7. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  8. Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities

    USGS Publications Warehouse

    Asquith, William H.; Kiang, Julie E.; Cohn, Timothy A.

    2017-07-17

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Nuclear Regulatory Commission, has investigated statistical methods for probabilistic flood hazard assessment to provide guidance on very low annual exceedance probability (AEP) estimation of peak-streamflow frequency and the quantification of corresponding uncertainties using streamgage-specific data. The term “very low AEP” implies exceptionally rare events defined as those having AEPs less than about 0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). Such low AEPs are of great interest to those involved with peak-streamflow frequency analyses for critical infrastructure, such as nuclear power plants. Flood frequency analyses at streamgages are most commonly based on annual instantaneous peak streamflow data and a probability distribution fit to these data. The fitted distribution provides a means to extrapolate to very low AEPs. Within the United States, the Pearson type III probability distribution, when fit to the base-10 logarithms of streamflow, is widely used, but other distribution choices exist. The USGS-PeakFQ software, implementing the Pearson type III within the Federal agency guidelines of Bulletin 17B (method of moments) and updates to the expected moments algorithm (EMA), was specially adapted for an “Extended Output” user option to provide estimates at selected AEPs from 10–3 to 10–6. Parameter estimation methods, in addition to product moments and EMA, include L-moments, maximum likelihood, and maximum product of spacings (maximum spacing estimation). This study comprehensively investigates multiple distributions and parameter estimation methods for two USGS streamgages (01400500 Raritan River at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland). The results of this study specifically involve the four methods for parameter estimation and up to nine probability distributions, including the generalized extreme value, generalized log-normal, generalized Pareto, and Weibull. Uncertainties in streamflow estimates for corresponding AEP are depicted and quantified as two primary forms: quantile (aleatoric [random sampling] uncertainty) and distribution-choice (epistemic [model] uncertainty). Sampling uncertainties of a given distribution are relatively straightforward to compute from analytical or Monte Carlo-based approaches. Distribution-choice uncertainty stems from choices of potentially applicable probability distributions for which divergence among the choices increases as AEP decreases. Conventional goodness-of-fit statistics, such as Cramér-von Mises, and L-moment ratio diagrams are demonstrated in order to hone distribution choice. The results generally show that distribution choice uncertainty is larger than sampling uncertainty for very low AEP values.

  9. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, J. Wesley; Upadhyaya, Belle; Sharp, Michael

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning ofmore » component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for RUL predictions, with as little uncertainty as possible. From a reliability and maintenance standpoint, there would be improved safety by avoiding all failures. Calculated risk would decrease, saving money by avoiding unnecessary maintenance. One major bottleneck for data-driven prognostics is the availability of run-to-failure degradation data. Without enough degradation data leading to failure, prognostic models can yield RUL distributions with large uncertainty or mathematically unsound predictions. To address these issues a "Lifecycle Prognostics" method was developed to create RUL distributions from Beginning of Life (BOL) to End of Life (EOL). This employs established Type I, II, and III prognostic methods, and Bayesian transitioning between each Type. Bayesian methods, as opposed to classical frequency statistics, show how an expected value, a priori, changes with new data to form a posterior distribution. For example, when you purchase a component you have a prior belief, or estimation, of how long it will operate before failing. As you operate it, you may collect information related to its condition that will allow you to update your estimated failure time. Bayesian methods are best used when limited data are available. The use of a prior also means that information is conserved when new data are available. The weightings of the prior belief and information contained in the sampled data are dependent on the variance (uncertainty) of the prior, the variance (uncertainty) of the data, and the amount of measured data (number of samples). If the variance of the prior is small compared to the uncertainty of the data, the prior will be weighed more heavily. However, as more data are collected, the data will be weighted more heavily and will eventually swamp out the prior in calculating the posterior distribution of model parameters. Fundamentally Bayesian analysis updates a prior belief with new data to get a posterior belief. The general approach to applying the Bayesian method to lifecycle prognostics consisted of identifying the prior, which is the RUL estimate and uncertainty from the previous prognostics type, and combining it with observational data related to the newer prognostics type. The resulting lifecycle prognostics algorithm uses all available information throughout the component lifecycle.« less

  10. Niches, models, and climate change: Assessing the assumptions and uncertainties

    PubMed Central

    Wiens, John A.; Stralberg, Diana; Jongsomjit, Dennis; Howell, Christine A.; Snyder, Mark A.

    2009-01-01

    As the rate and magnitude of climate change accelerate, understanding the consequences becomes increasingly important. Species distribution models (SDMs) based on current ecological niche constraints are used to project future species distributions. These models contain assumptions that add to the uncertainty in model projections stemming from the structure of the models, the algorithms used to translate niche associations into distributional probabilities, the quality and quantity of data, and mismatches between the scales of modeling and data. We illustrate the application of SDMs using two climate models and two distributional algorithms, together with information on distributional shifts in vegetation types, to project fine-scale future distributions of 60 California landbird species. Most species are projected to decrease in distribution by 2070. Changes in total species richness vary over the state, with large losses of species in some “hotspots” of vulnerability. Differences in distributional shifts among species will change species co-occurrences, creating spatial variation in similarities between current and future assemblages. We use these analyses to consider how assumptions can be addressed and uncertainties reduced. SDMs can provide a useful way to incorporate future conditions into conservation and management practices and decisions, but the uncertainties of model projections must be balanced with the risks of taking the wrong actions or the costs of inaction. Doing this will require that the sources and magnitudes of uncertainty are documented, and that conservationists and resource managers be willing to act despite the uncertainties. The alternative, of ignoring the future, is not an option. PMID:19822750

  11. On the Bayesian Nonparametric Generalization of IRT-Type Models

    ERIC Educational Resources Information Center

    San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel

    2011-01-01

    We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…

  12. Uncertainty in hydrological signatures for gauged and ungauged catchments

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  13. Uncertainty analysis of accident notification time and emergency medical service response time in work zone traffic accidents.

    PubMed

    Meng, Qiang; Weng, Jinxian

    2013-01-01

    Taking into account the uncertainty caused by exogenous factors, the accident notification time (ANT) and emergency medical service (EMS) response time were modeled as 2 random variables following the lognormal distribution. Their mean values and standard deviations were respectively formulated as the functions of environmental variables including crash time, road type, weekend, holiday, light condition, weather, and work zone type. Work zone traffic accident data from the Fatality Analysis Report System between 2002 and 2009 were utilized to determine the distributions of the ANT and the EMS arrival time in the United States. A mixed logistic regression model, taking into account the uncertainty associated with the ANT and the EMS response time, was developed to estimate the risk of death. The results showed that the uncertainty of the ANT was primarily influenced by crash time and road type, whereas the uncertainty of EMS response time is greatly affected by road type, weather, and light conditions. In addition, work zone accidents occurring during a holiday and in poor light conditions were found to be statistically associated with a longer mean ANT and longer EMS response time. The results also show that shortening the ANT was a more effective approach in reducing the risk of death than the EMS response time in work zones. To shorten the ANT and the EMS response time, work zone activities are suggested to be undertaken during non-holidays, during the daytime, and in good weather and light conditions.

  14. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling

    NASA Astrophysics Data System (ADS)

    Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2017-11-01

    Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with the use of a statistical law with two parameters (here generalised extreme value Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due to the rainfall generator because of the progressive saturation of the hydrological model.

  15. A unified approach for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie

    2017-09-01

    Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.

  16. Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification

    PubMed Central

    Pham, Tuan D.

    2014-01-01

    The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744

  17. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  18. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data.

    PubMed

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-12

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  19. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-01

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  20. A fuzzy chance-constrained programming model with type 1 and type 2 fuzzy sets for solid waste management under uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei

    2017-06-01

    Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.

  1. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    2014-01-01

    A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertaintiesmore » with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organic and inorganic contaminants in subsurface sediments.« less

  2. HZETRN radiation transport validation using balloon-based experimental data

    NASA Astrophysics Data System (ADS)

    Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.

    2018-05-01

    The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that improvements to the light ion production cross sections in HZETRN should be investigated.

  3. Visualizing Uncertainty of Point Phenomena by Redesigned Error Ellipses

    NASA Astrophysics Data System (ADS)

    Murphy, Christian E.

    2018-05-01

    Visualizing uncertainty remains one of the great challenges in modern cartography. There is no overarching strategy to display the nature of uncertainty, as an effective and efficient visualization depends, besides on the spatial data feature type, heavily on the type of uncertainty. This work presents a design strategy to visualize uncertainty con-nected to point features. The error ellipse, well-known from mathematical statistics, is adapted to display the uncer-tainty of point information originating from spatial generalization. Modified designs of the error ellipse show the po-tential of quantitative and qualitative symbolization and simultaneous point based uncertainty symbolization. The user can intuitively depict the centers of gravity, the major orientation of the point arrays as well as estimate the ex-tents and possible spatial distributions of multiple point phenomena. The error ellipse represents uncertainty in an intuitive way, particularly suitable for laymen. Furthermore it is shown how applicable an adapted design of the er-ror ellipse is to display the uncertainty of point features originating from incomplete data. The suitability of the error ellipse to display the uncertainty of point information is demonstrated within two showcases: (1) the analysis of formations of association football players, and (2) uncertain positioning of events on maps for the media.

  4. Propagation of the velocity model uncertainties to the seismic event location

    NASA Astrophysics Data System (ADS)

    Gesret, A.; Desassis, N.; Noble, M.; Romary, T.; Maisons, C.

    2015-01-01

    Earthquake hypocentre locations are crucial in many domains of application (academic and industrial) as seismic event location maps are commonly used to delineate faults or fractures. The interpretation of these maps depends on location accuracy and on the reliability of the associated uncertainties. The largest contribution to location and uncertainty errors is due to the fact that the velocity model errors are usually not correctly taken into account. We propose a new Bayesian formulation that integrates properly the knowledge on the velocity model into the formulation of the probabilistic earthquake location. In this work, the velocity model uncertainties are first estimated with a Bayesian tomography of active shot data. We implement a sampling Monte Carlo type algorithm to generate velocity models distributed according to the posterior distribution. In a second step, we propagate the velocity model uncertainties to the seismic event location in a probabilistic framework. This enables to obtain more reliable hypocentre locations as well as their associated uncertainties accounting for picking and velocity model uncertainties. We illustrate the tomography results and the gain in accuracy of earthquake location for two synthetic examples and one real data case study in the context of induced microseismicity.

  5. Estimation of Confidence Intervals for Multiplication and Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J

    2009-07-17

    Helium-3 tubes are used to detect thermal neutrons by charge collection using the {sup 3}He(n,p) reaction. By analyzing the time sequence of neutrons detected by these tubes, one can determine important features about the constitution of a measured object: Some materials such as Cf-252 emit several neutrons simultaneously, while others such as uranium and plutonium isotopes multiply the number of neutrons to form bursts. This translates into unmistakable signatures. To determine the type of materials measured, one compares the measured count distribution with the one generated by a theoretical fission chain model. When the neutron background is negligible, the theoreticalmore » count distributions can be completely characterized by a pair of parameters, the multiplication M and the detection efficiency {var_epsilon}. While the optimal pair of M and {var_epsilon} can be determined by existing codes such as BigFit, the uncertainty on these parameters has not yet been fully studied. The purpose of this work is to precisely compute the uncertainties on the parameters M and {var_epsilon}, given the uncertainties in the count distribution. By considering different lengths of time tagged data, we will determine how the uncertainties on M and {var_epsilon} vary with the different count distributions.« less

  6. Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites

    NASA Astrophysics Data System (ADS)

    Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.

    2012-09-01

    Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.

  7. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  8. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  9. Where do uncertainties reside within environmental risk assessments? Expert opinion on uncertainty distributions for pesticide risks to surface water organisms.

    PubMed

    Skinner, Daniel J C; Rocks, Sophie A; Pollard, Simon J T

    2016-12-01

    A reliable characterisation of uncertainties can aid uncertainty identification during environmental risk assessments (ERAs). However, typologies can be implemented inconsistently, causing uncertainties to go unidentified. We present an approach based on nine structured elicitations, in which subject-matter experts, for pesticide risks to surface water organisms, validate and assess three dimensions of uncertainty: its level (the severity of uncertainty, ranging from determinism to ignorance); nature (whether the uncertainty is epistemic or aleatory); and location (the data source or area in which the uncertainty arises). Risk characterisation contains the highest median levels of uncertainty, associated with estimating, aggregating and evaluating the magnitude of risks. Regarding the locations in which uncertainty is manifest, data uncertainty is dominant in problem formulation, exposure assessment and effects assessment. The comprehensive description of uncertainty described will enable risk analysts to prioritise the required phases, groups of tasks, or individual tasks within a risk analysis according to the highest levels of uncertainty, the potential for uncertainty to be reduced or quantified, or the types of location-based uncertainty, thus aiding uncertainty prioritisation during environmental risk assessments. In turn, it is expected to inform investment in uncertainty reduction or targeted risk management action. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A Bayesian geostatistical approach for evaluating the uncertainty of contaminant mass discharges from point sources

    NASA Astrophysics Data System (ADS)

    Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. Tests show that the decoupled approach is both efficient and able to provide accurate uncertainty estimates. The method is demonstrated on a Danish field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the co-simulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.

  11. Site factor variations and responses in temporary forest types in northern Idaho

    Treesearch

    J. A. Larsen

    1940-01-01

    The object of the study was to analyze and evaluate the environmental factors which govern the progressional stages of the secondary forest succession in northern Idaho. \\When this study began much uncertainty existed regarding the distribution of trees and forest types in relation to temperature, precipitation, and evaporation and regarding their soil moisture and...

  12. A generalized Kruskal-Wallis test incorporating group uncertainty with application to genetic association studies.

    PubMed

    Acar, Elif F; Sun, Lei

    2013-06-01

    Motivated by genetic association studies of SNPs with genotype uncertainty, we propose a generalization of the Kruskal-Wallis test that incorporates group uncertainty when comparing k samples. The extended test statistic is based on probability-weighted rank-sums and follows an asymptotic chi-square distribution with k - 1 degrees of freedom under the null hypothesis. Simulation studies confirm the validity and robustness of the proposed test in finite samples. Application to a genome-wide association study of type 1 diabetic complications further demonstrates the utilities of this generalized Kruskal-Wallis test for studies with group uncertainty. The method has been implemented as an open-resource R program, GKW. © 2013, The International Biometric Society.

  13. Fire and the distribution and uncertainty of carbon sequestered as above-ground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks

    USGS Publications Warehouse

    Lutz, James A.; Matchett, John R.; Tarnay, Leland W.; Smith, Douglas F.; Becker, Kendall M.L.; Furniss, Tucker J.; Brooks, Matthew L.

    2017-01-01

    Fire is one of the principal agents changing forest carbon stocks and landscape level distributions of carbon, but few studies have addressed how accurate carbon accounting of fire-killed trees is or can be. We used a large number of forested plots (1646), detailed selection of species-specific and location-specific allometric equations, vegetation type maps with high levels of accuracy, and Monte Carlo simulation to model the amount and uncertainty of aboveground tree carbon present in tree species (hereafter, carbon) within Yosemite and Sequoia & Kings Canyon National Parks. We estimated aboveground carbon in trees within Yosemite National Park to be 25 Tg of carbon (C) (confidence interval (CI): 23–27 Tg C), and in Sequoia & Kings Canyon National Park to be 20 Tg C (CI: 18–21 Tg C). Low-severity and moderate-severity fire had little or no effect on the amount of carbon sequestered in trees at the landscape scale, and high-severity fire did not immediately consume much carbon. Although many of our data inputs were more accurate than those used in similar studies in other locations, the total uncertainty of carbon estimates was still greater than ±10%, mostly due to potential uncertainties in landscape-scale vegetation type mismatches and trees larger than the ranges of existing allometric equations. If carbon inventories are to be meaningfully used in policy, there is an urgent need for more accurate landscape classification methods, improvement in allometric equations for tree species, and better understanding of the uncertainties inherent in existing carbon accounting methods.

  14. Calibration of Predictor Models Using Multiple Validation Experiments

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2015-01-01

    This paper presents a framework for calibrating computational models using data from several and possibly dissimilar validation experiments. The offset between model predictions and observations, which might be caused by measurement noise, model-form uncertainty, and numerical error, drives the process by which uncertainty in the models parameters is characterized. The resulting description of uncertainty along with the computational model constitute a predictor model. Two types of predictor models are studied: Interval Predictor Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncertainty, whereas RPMs use random vectors. The propagation of a set through a model makes the response an interval valued function of the state, whereas the propagation of a random vector yields a random process. Optimization-based strategies for calculating both types of predictor models are proposed. Whereas the formulations used to calculate IPMs target solutions leading to the interval value function of minimal spread containing all observations, those for RPMs seek to maximize the models' ability to reproduce the distribution of observations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment of probability to points in the parameter space) solely dependent on the prediction error. As such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor is it expected to asymptotically converge to a fixed value, but instead it casts the model's ability to reproduce the experimental data. This framework enables evaluating the spread and distribution of the predicted response of target applications depending on the same parameters beyond the validation domain.

  15. Uncertainty of Polarized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Hirai, M.; Goto, Y.; Horaguchi, T.; Kobayashi, H.; Kumano, S.; Miyama, M.; Saito, N.; Shibata, T.-A.

    Polarized parton distribution functions are determined by a χ2 analysis of polarized deep inelastic experimental data. In this paper, uncertainty of obtained distribution functions is investigated by a Hessian method. We find that the uncertainty of the polarized gluon distribution is fairly large. Then, we estimate the gluon uncertainty by including the fake data which are generated from prompt photon process at RHIC. We observed that the uncertainty could be reduced with these data.

  16. Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bowen; Maroukis, Spencer D.; Lin, Yashen

    2016-11-21

    Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less

  17. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  18. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    NASA Astrophysics Data System (ADS)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  19. Uncertainties in the projection of species distributions related to general circulation models

    PubMed Central

    Goberville, Eric; Beaugrand, Grégory; Hautekèete, Nina-Coralie; Piquot, Yves; Luczak, Christophe

    2015-01-01

    Ecological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM-based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi-GCM and multi-emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between-GCM variability was greater than the between-RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi-GCM and multi-RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between-GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species spatial distributions are examined, we propose to use a large number of GCMs and RCPs to better anticipate potential trajectories and quantify uncertainties. PMID:25798227

  20. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011

    NASA Astrophysics Data System (ADS)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2015-02-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the young-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in the plume dilution rates.

  1. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    NASA Astrophysics Data System (ADS)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model. This complex model then serves as the basis to compare simpler model structures. Through this approach, predictive uncertainty can be quantified relative to a known reference solution.

  2. Reliability of stiffened structural panels: Two examples

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-01-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  3. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.

    PubMed

    Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik

    2017-12-15

    Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.

  4. Estimation and impact assessment of input and parameter uncertainty in predicting groundwater flow with a fully distributed model

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke

    2017-04-01

    Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.

  5. A classification scheme for edge-localized modes based on their probability distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.

    We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less

  6. Bayesian alternative to the ISO-GUM's use of the Welch Satterthwaite formula

    NASA Astrophysics Data System (ADS)

    Kacker, Raghu N.

    2006-02-01

    In certain disciplines, uncertainty is traditionally expressed as an interval about an estimate for the value of the measurand. Development of such uncertainty intervals with a stated coverage probability based on the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) requires a description of the probability distribution for the value of the measurand. The ISO-GUM propagates the estimates and their associated standard uncertainties for various input quantities through a linear approximation of the measurement equation to determine an estimate and its associated standard uncertainty for the value of the measurand. This procedure does not yield a probability distribution for the value of the measurand. The ISO-GUM suggests that under certain conditions motivated by the central limit theorem the distribution for the value of the measurand may be approximated by a scaled-and-shifted t-distribution with effective degrees of freedom obtained from the Welch-Satterthwaite (W-S) formula. The approximate t-distribution may then be used to develop an uncertainty interval with a stated coverage probability for the value of the measurand. We propose an approximate normal distribution based on a Bayesian uncertainty as an alternative to the t-distribution based on the W-S formula. A benefit of the approximate normal distribution based on a Bayesian uncertainty is that it greatly simplifies the expression of uncertainty by eliminating altogether the need for calculating effective degrees of freedom from the W-S formula. In the special case where the measurand is the difference between two means, each evaluated from statistical analyses of independent normally distributed measurements with unknown and possibly unequal variances, the probability distribution for the value of the measurand is known to be a Behrens-Fisher distribution. We compare the performance of the approximate normal distribution based on a Bayesian uncertainty and the approximate t-distribution based on the W-S formula with respect to the Behrens-Fisher distribution. The approximate normal distribution is simpler and better in this case. A thorough investigation of the relative performance of the two approximate distributions would require comparison for a range of measurement equations by numerical methods.

  7. Evaluation of a Class of Simple and Effective Uncertainty Methods for Sparse Samples of Random Variables and Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Vicente; Bonney, Matthew; Schroeder, Benjamin

    When very few samples of a random quantity are available from a source distribution of unknown shape, it is usually not possible to accurately infer the exact distribution from which the data samples come. Under-estimation of important quantities such as response variance and failure probabilities can result. For many engineering purposes, including design and risk analysis, we attempt to avoid under-estimation with a strategy to conservatively estimate (bound) these types of quantities -- without being overly conservative -- when only a few samples of a random quantity are available from model predictions or replicate experiments. This report examines a classmore » of related sparse-data uncertainty representation and inference approaches that are relatively simple, inexpensive, and effective. Tradeoffs between the methods' conservatism, reliability, and risk versus number of data samples (cost) are quantified with multi-attribute metrics use d to assess method performance for conservative estimation of two representative quantities: central 95% of response; and 10 -4 probability of exceeding a response threshold in a tail of the distribution. Each method's performance is characterized with 10,000 random trials on a large number of diverse and challenging distributions. The best method and number of samples to use in a given circumstance depends on the uncertainty quantity to be estimated, the PDF character, and the desired reliability of bounding the true value. On the basis of this large data base and study, a strategy is proposed for selecting the method and number of samples for attaining reasonable credibility levels in bounding these types of quantities when sparse samples of random variables or functions are available from experiments or simulations.« less

  8. The longevity of lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Ogburn, Sarah E.; Calder, Eliza S.

    2016-02-01

    Understanding the duration of past, ongoing, and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of ongoing and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding, we show that probability distributions for dome eruption durations are both heavy tailed and composition dependent. We construct objective Bayesian statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and ongoing eruptions that depend on both eruption duration to date and composition. Our Bayesian predictive distributions reflect both uncertainty about model parameter values (epistemic uncertainty) and the natural variability of the geologic processes (aleatoric uncertainty). The results are illustrated by presenting likely trajectories for 14 dome-building eruptions ongoing in 2015. Full representation of the uncertainty is presented for two key eruptions, Soufriére Hills Volcano in Montserrat (10-139 years, median 35 years) and Sinabung, Indonesia (1-17 years, median 4 years). Uncertainties are high but, importantly, quantifiable. This work provides for the first time a quantitative and transferable method and rationale on which to base long-term planning decisions for lava dome-forming volcanoes, with wide potential use and transferability to forecasts of other types of eruptions and other adverse events across the geohazard spectrum.

  9. Using raindrop size distributions from different types of disdrometer to establish weather radar algorithms

    NASA Astrophysics Data System (ADS)

    Baldini, Luca; Adirosi, Elisa; Roberto, Nicoletta; Vulpiani, Gianfranco; Russo, Fabio; Napolitano, Francesco

    2015-04-01

    Radar precipitation retrieval uses several relationships that parameterize precipitation properties (like rainfall rate and liquid water content and attenuation (in case of radars at attenuated frequencies such as those at C- and X- band) as a function of combinations of radar measurements. The uncertainty in such relations highly affects the uncertainty precipitation and attenuation estimates. A commonly used method to derive such relationships is to apply regression methods to precipitation measurements and radar observables simulated from datasets of drop size distributions (DSD) using microphysical and electromagnetic assumptions. DSD datasets are determined both by theoretical considerations (i.e. based on the assumption that the radar always samples raindrops whose sizes follow a gamma distribution) or from experimental measurements collected throughout the years by disdrometers. In principle, using long-term disdrometer measurements provide parameterizations more representative of a specific climatology. However, instrumental errors, specific of a disdrometer, can affect the results. In this study, different weather radar algorithms resulting from DSDs collected by diverse types of disdrometers, namely 2D video disdrometer, first and second generation of OTT Parsivel laser disdrometer, and Thies Clima laser disdrometer, in the area of Rome (Italy) are presented and discussed to establish at what extent dual-polarization radar algorithms derived from experimental DSD datasets are influenced by the different error structure of the different type of disdrometers used to collect the data.

  10. Predictions of space radiation fatality risk for exploration missions

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. population. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits.

  11. Distress Due to Prognostic Uncertainty in Palliative Care: Frequency, Distribution, and Outcomes among Hospitalized Patients with Advanced Cancer.

    PubMed

    Gramling, Robert; Stanek, Susan; Han, Paul K J; Duberstein, Paul; Quill, Tim E; Temel, Jennifer S; Alexander, Stewart C; Anderson, Wendy G; Ladwig, Susan; Norton, Sally A

    2018-03-01

    Prognostic uncertainty is common in advanced cancer and frequently addressed during palliative care consultation, yet we know little about its impact on quality of life (QOL). We describe the prevalence and distribution of distress due to prognostic uncertainty among hospitalized patients with advanced cancer before palliative care consultation. We evaluate the association between this type of distress and overall QOL before and after palliative care consultation. Observational cohort study. Hospitalized patients with advanced cancer who receive a palliative care consultation at two geographically distant academic medical centers. At the time of enrollment, before palliative care consultation, we asked participants: "Over the past two days, how much have you been bothered by uncertainty about what to expect from the course of your illness?" (Not at all/Slightly/Moderately/Quite a Bit/Extremely). We defined responses of "Quite a bit" and "Extremely" to be indicative of substantial distress. Two hundred thirty-six participants completed the baseline assessment. Seventy-seven percent reported being at least moderately bothered by prognostic uncertainty and half reported substantial distress. Compared with others, those who were distressed by prognostic uncertainty (118/236) reported poorer overall QOL before palliative care consultation (mean QOL 3.8 out of 10 vs. 5.3 out of 10, p = < 0.001) and greater improvement in QOL following consultation (Adjusted difference in mean QOL change = 1.1; 95% confidence interval = 0.2, 2.0). Prognostic uncertainty is a prevalent source of distress among hospitalized patients with advanced cancer at the time of initial palliative care consultation. Distress from prognostic uncertainty is associated with lower levels of preconsultation QOL and with greater pre-post consultation improvement in the QOL.

  12. Benchmarking observational uncertainties for hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Krueger, T.; Freer, J. E.; Westerberg, I.

    2013-12-01

    There is a pressing need for authoritative and concise information on the expected error distributions and magnitudes in hydrological data, to understand its information content. Many studies have discussed how to incorporate uncertainty information into model calibration and implementation, and shown how model results can be biased if uncertainty is not appropriately characterised. However, it is not always possible (for example due to financial or time constraints) to make detailed studies of uncertainty for every research study. Instead, we propose that the hydrological community could benefit greatly from sharing information on likely uncertainty characteristics and the main factors that control the resulting magnitude. In this presentation, we review the current knowledge of uncertainty for a number of key hydrological variables: rainfall, flow and water quality (suspended solids, nitrogen, phosphorus). We collated information on the specifics of the data measurement (data type, temporal and spatial resolution), error characteristics measured (e.g. standard error, confidence bounds) and error magnitude. Our results were primarily split by data type. Rainfall uncertainty was controlled most strongly by spatial scale, flow uncertainty was controlled by flow state (low, high) and gauging method. Water quality presented a more complex picture with many component errors. For all variables, it was easy to find examples where relative error magnitude exceeded 40%. We discuss some of the recent developments in hydrology which increase the need for guidance on typical error magnitudes, in particular when doing comparative/regionalisation and multi-objective analysis. Increased sharing of data, comparisons between multiple catchments, and storage in national/international databases can mean that data-users are far removed from data collection, but require good uncertainty information to reduce bias in comparisons or catchment regionalisation studies. Recently it has become more common for hydrologists to use multiple data types and sources within a single study. This may be driven by complex water management questions which integrate water quantity, quality and ecology; or by recognition of the value of auxiliary data to understand hydrological processes. We discuss briefly the impact of data uncertainty on the increasingly popular use of diagnostic signatures for hydrological process understanding and model development.

  13. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change

    Treesearch

    Seth J. Wenger; Nicholas A. Som; Daniel C. Dauwalter; Daniel J. Isaak; Helen M. Neville; Charles H. Luce; Jason B. Dunham; Michael K. Young; Kurt D. Fausch; Bruce E. Rieman

    2013-01-01

    Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing...

  14. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change

    USGS Publications Warehouse

    Wenger, Seth J.; Som, Nicholas A.; Dauwalter, Daniel C.; Isaak, Daniel J.; Neville, Helen M.; Luce, Charles H.; Dunham, Jason B.; Young, Michael K.; Fausch, Kurt D.; Rieman, Bruce E.

    2013-01-01

    Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site-specific frequency distributions of occurrence probabilities across a species’ range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1–42.5 thousand km; this was predicted to decline to 0.5–7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.

  15. Error Analysis of CM Data Products Sources of Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Brian D.; Eckert-Gallup, Aubrey Celia; Cochran, Lainy Dromgoole

    This goal of this project is to address the current inability to assess the overall error and uncertainty of data products developed and distributed by DOE’s Consequence Management (CM) Program. This is a widely recognized shortfall, the resolution of which would provide a great deal of value and defensibility to the analysis results, data products, and the decision making process that follows this work. A global approach to this problem is necessary because multiple sources of error and uncertainty contribute to the ultimate production of CM data products. Therefore, this project will require collaboration with subject matter experts across amore » wide range of FRMAC skill sets in order to quantify the types of uncertainty that each area of the CM process might contain and to understand how variations in these uncertainty sources contribute to the aggregated uncertainty present in CM data products. The ultimate goal of this project is to quantify the confidence level of CM products to ensure that appropriate public and worker protections decisions are supported by defensible analysis.« less

  16. Methodology for quantifying uncertainty in coal assessments with an application to a Texas lignite deposit

    USGS Publications Warehouse

    Olea, R.A.; Luppens, J.A.; Tewalt, S.J.

    2011-01-01

    A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.

  17. Made-to-measure modelling of observed galaxy dynamics

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Kawata, Daisuke; Hunt, Jason A. S.

    2018-01-01

    Amongst dynamical modelling techniques, the made-to-measure (M2M) method for modelling steady-state systems is amongst the most flexible, allowing non-parametric distribution functions in complex gravitational potentials to be modelled efficiently using N-body particles. Here, we propose and test various improvements to the standard M2M method for modelling observed data, illustrated using the simple set-up of a one-dimensional harmonic oscillator. We demonstrate that nuisance parameters describing the modelled system's orientation with respect to the observer - e.g. an external galaxy's inclination or the Sun's position in the Milky Way - as well as the parameters of an external gravitational field can be optimized simultaneously with the particle weights. We develop a method for sampling from the high-dimensional uncertainty distribution of the particle weights. We combine this in a Gibbs sampler with samplers for the nuisance and potential parameters to explore the uncertainty distribution of the full set of parameters. We illustrate our M2M improvements by modelling the vertical density and kinematics of F-type stars in Gaia DR1. The novel M2M method proposed here allows full probabilistic modelling of steady-state dynamical systems, allowing uncertainties on the non-parametric distribution function and on nuisance parameters to be taken into account when constraining the dark and baryonic masses of stellar systems.

  18. Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications

    USGS Publications Warehouse

    Lucas, L.V.; Cloern, J.E.; Thompson, J.K.; Monsen, N.E.

    2002-01-01

    We have now entered an era of large-scale attempts to restore ecological functions and biological communities in impaired ecosystems. Our knowledge base of complex ecosystems and interrelated functions is limited, so the outcomes of specific restoration actions are highly uncertain. One approach for exploring that uncertainty and anticipating the range of possible restoration outcomes is comparative study of existing habitats similar to future habitats slated for construction. Here we compare two examples of one habitat type targeted for restoration in the Sacramento-San Joaquin River Delta. We compare one critical ecological function provided by these shallow tidal habitats - production and distribution of phytoplankton biomass as the food supply to pelagic consumers. We measured spatial and short-term temporal variability of phytoplankton biomass and growth rate and quantified the hydrodynamic and biological processes governing that variability. Results show that the production and distribution of phytoplankton biomass can be highly variable within and between nearby habitats of the same type, due to variations in phytoplankton sources, sinks, and transport. Therefore, superficially similar, geographically proximate habitats can function very differently, and that functional variability introduces large uncertainties into the restoration process. Comparative study of existing habitats is one way ecosystem science can elucidate and potentially minimize restoration uncertainties, by identifying processes shaping habitat functionality, including those that can be controlled in the restoration design.

  19. Advanced probabilistic methods for quantifying the effects of various uncertainties in structural response

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.

    1988-01-01

    The effects of actual variations, also called uncertainties, in geometry and material properties on the structural response of a space shuttle main engine turbopump blade are evaluated. A normal distribution was assumed to represent the uncertainties statistically. Uncertainties were assumed to be totally random, partially correlated, and fully correlated. The magnitude of these uncertainties were represented in terms of mean and variance. Blade responses, recorded in terms of displacements, natural frequencies, and maximum stress, was evaluated and plotted in the form of probabilistic distributions under combined uncertainties. These distributions provide an estimate of the range of magnitudes of the response and probability of occurrence of a given response. Most importantly, these distributions provide the information needed to estimate quantitatively the risk in a structural design.

  20. Position uncertainty distribution for articulated arm coordinate measuring machine based on simplified definite integration

    NASA Astrophysics Data System (ADS)

    You, Xu; Zhi-jian, Zong; Qun, Gao

    2018-07-01

    This paper describes a methodology for the position uncertainty distribution of an articulated arm coordinate measuring machine (AACMM). First, a model of the structural parameter uncertainties was established by statistical method. Second, the position uncertainty space volume of the AACMM in a certain configuration was expressed using a simplified definite integration method based on the structural parameter uncertainties; it was then used to evaluate the position accuracy of the AACMM in a certain configuration. Third, the configurations of a certain working point were calculated by an inverse solution, and the position uncertainty distribution of a certain working point was determined; working point uncertainty can be evaluated by the weighting method. Lastly, the position uncertainty distribution in the workspace of the ACCMM was described by a map. A single-point contrast test of a 6-joint AACMM was carried out to verify the effectiveness of the proposed method, and it was shown that the method can describe the position uncertainty of the AACMM and it was used to guide the calibration of the AACMM and the choice of AACMM’s accuracy area.

  1. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  2. Conclusions on measurement uncertainty in microbiology.

    PubMed

    Forster, Lynne I

    2009-01-01

    Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.

  3. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.

    PubMed

    Vanderborght, Jan; Tiktak, Aaldrik; Boesten, Jos J T I; Vereecken, Harry

    2011-03-01

    For the registration of pesticides in the European Union, model simulations for worst-case scenarios are used to demonstrate that leaching concentrations to groundwater do not exceed a critical threshold. A worst-case scenario is a combination of soil and climate properties for which predicted leaching concentrations are higher than a certain percentile of the spatial concentration distribution within a region. The derivation of scenarios is complicated by uncertainty about soil and pesticide fate parameters. As the ranking of climate and soil property combinations according to predicted leaching concentrations is different for different pesticides, the worst-case scenario for one pesticide may misrepresent the worst case for another pesticide, which leads to 'scenario uncertainty'. Pesticide fate parameter uncertainty led to higher concentrations in the higher percentiles of spatial concentration distributions, especially for distributions in smaller and more homogeneous regions. The effect of pesticide fate parameter uncertainty on the spatial concentration distribution was small when compared with the uncertainty of local concentration predictions and with the scenario uncertainty. Uncertainty in pesticide fate parameters and scenario uncertainty can be accounted for using higher percentiles of spatial concentration distributions and considering a range of pesticides for the scenario selection. Copyright © 2010 Society of Chemical Industry.

  4. Uncertainty in Land Cover observations and its impact on near surface climate

    NASA Astrophysics Data System (ADS)

    Georgievski, Goran; Hagemann, Stefan

    2017-04-01

    Land Cover (LC) and its bio-geo-physical feedbacks are important for the understanding of climate and its vulnerability to changes on the surface of the Earth. Recently ESA has published a new LC map derived by combining remotely sensed surface reflectance and ground-truth observations. For each grid-box at 300m resolution, an estimate of confidence is provided. This LC data set can be used in climate modelling to derive land surface boundary parameters for the respective Land Surface Model (LSM). However, the ESA LC classes are not directly suitable for LSMs, therefore they need to be converted into the model specific surface presentations. Due to different design and processes implemented in various climate models they might differ in the treatment of artificial, water bodies, ice, bare or vegetated surfaces. Nevertheless, usually vegetation distribution in models is presented by means of plant functional types (PFT), which is a classification system used to simplify vegetation representation and group different vegetation types according to their biophysical characteristics. The method of LC conversion into PFT is also called "cross-walking" (CW) procedure. The CW procedure is another source of uncertainty, since it depends on model design and processes implemented and resolved by LSMs. These two sources of uncertainty, (i) due to surface reflectance conversion into LC classes, (ii) due to CW procedure, have been studied by Hartley et al (2016) to investigate their impact on LSM state variables (albedo, evapotranspiration (ET) and primary productivity) by using three standalone LSMs. The present study is a follow up to that work and aims at quantifying the impact of these two uncertainties on climate simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) using prescribed sea surface temperature and sea ice. The main focus is on the terrestrial water cycle, but the impacts on surface albedo, wind patterns, 2m temperatures, as well as plant productivity are also examined. The analysis of vegetation covered area indicates that the range of uncertainty might be about the same order of magnitude as the estimated historical anthropogenic LC change. For example, the area covered with managed grasses (crops and pasture in MPI-ESM PFT classification) varies from 17 to 26 million km2, and area covered with trees ranges from 15 million km2 up to 51 million km2. These uncertainties in vegetation distribution lead to noticeable variations in atmospheric temperature, humidity, cloud cover, circulation, and precipitation as well as local, regional and global climate forcing. For example, the amount of terrestrial ET ranges from 73 to 77 × 103 km3yr-1in MPI-ESM simulations and this range has about the same order of magnitude as the current estimate of the reduction of annual ET due to recent anthropogenic LC change. This and more impacts of LC uncertainty on the near surface climate will be presented and discussed in the context of LC change. Hartley, A.J., MacBean, N., Georgievski, G., Bontemps, S.: Uncertainty in plant functional type distributions and its impact on land surface models (in review with Remote Sensing of Environment Special Issue)

  5. Entropy uncertainty relations and stability of phase-temporal quantum cryptography with finite-length transmitted strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-12-15

    Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less

  6. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model.

    PubMed

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-03-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45(o)N and polewards) for the period 1900-2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of the 21st century. In contrast, the area of temperate trees would increase, especially under the most extreme A1FI scenario. As the warming continues, the northward greenness expansion in the Arctic region could continue.

  7. Standardization of Broadband UV Measurements for 365 nm LED Sources

    PubMed Central

    Eppeldauer, George P.

    2012-01-01

    Broadband UV measurements are evaluated when UV-A irradiance meters measure optical radiation from 365 nm UV sources. The CIE standardized rectangular-shape UV-A function can be realized only with large spectral mismatch errors. The spectral power-distribution of the 365 nm excitation source is not standardized. Accordingly, the readings made with different types of UV meters, even if they measure the same UV source, can be very different. Available UV detectors and UV meters were measured and evaluated for spectral responsivity. The spectral product of the source-distribution and the meter’s spectral-responsivity were calculated for different combinations to estimate broad-band signal-measurement errors. Standardization of both the UV source-distribution and the meter spectral-responsivity is recommended here to perform uniform broad-band measurements with low uncertainty. It is shown what spectral responsivity function(s) is needed for new and existing UV irradiance meters to perform low-uncertainty broadband 365 nm measurements. PMID:26900516

  8. Evaluation of kinetic uncertainty in numerical models of petroleum generation

    USGS Publications Warehouse

    Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.

    2006-01-01

    Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted-average method that combines kinetics for samples from different locations in the source rock unit by giving the activation energy distribution for each sample a weight proportional to its Rock-Eval pyrolysis S2 yield (hydrocarbons generated by pyrolytic degradation of organic matter). Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  9. Exact Scheffé-type confidence intervals for output from groundwater flow models: 1. Use of hydrogeologic information

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.

  10. Dealing with unquantifiable uncertainties in landslide modelling for urban risk reduction in developing countries

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2016-04-01

    Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. Slope stability assessment can be used to guide decisions about the management of landslide risk, but its usefulness can be challenged by high levels of uncertainty in predicting landslide occurrence. Prediction uncertainty may be associated with the choice of model that is used to assess slope stability, the quality of the available input data, or a lack of knowledge of how future climatic and socio-economic changes may affect future landslide risk. While some of these uncertainties can be characterised by relatively well-defined probability distributions, for other uncertainties, such as those linked to climate change, no probability distribution is available to characterise them. This latter type of uncertainty, often referred to as deep uncertainty, means that robust policies need to be developed that are expected to perform acceptably well over a wide range of future conditions. In our study the impact of deep uncertainty on slope stability predictions is assessed in a quantitative and structured manner using Global Sensitivity Analysis (GSA) and the Combined Hydrology and Stability Model (CHASM). In particular, we use several GSA methods including the Method of Morris, Regional Sensitivity Analysis and Classification and Regression Trees (CART), as well as advanced visualization tools, to assess the combination of conditions that may lead to slope failure. Our example application is a slope in the Caribbean, an area that is naturally susceptible to landslides due to a combination of high rainfall rates during the hurricane season, steep slopes, and highly weathered residual soils. Rapid unplanned urbanisation and changing climate may further exacerbate landslide risk in the future. Our example shows how we can gain useful information in the presence of deep uncertainty by combining physically based models with GSA in a scenario discovery framework.

  11. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  12. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    PubMed

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael

    2017-01-01

    Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.

  13. Model uncertainties do not affect observed patterns of species richness in the Amazon

    PubMed Central

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503

  14. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.

  15. Statistical interpretation of pollution data from satellites. [for levels distribution over metropolitan area

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Green, R. N.; Young, G. R.

    1974-01-01

    The NIMBUS-G environmental monitoring satellite has an instrument (a gas correlation spectrometer) onboard for measuring the mass of a given pollutant within a gas volume. The present paper treats the problem: How can this type measurement be used to estimate the distribution of pollutant levels in a metropolitan area. Estimation methods are used to develop this distribution. The pollution concentration caused by a point source is modeled as a Gaussian plume. The uncertainty in the measurements is used to determine the accuracy of estimating the source strength, the wind velocity, diffusion coefficients and source location.

  16. Incorporating uncertainty in RADTRAN 6.0 input files.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John

    Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine ismore » required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.« less

  17. A data assimilation technique to account for the nonlinear dependence of scattering microwave observations of precipitation

    NASA Astrophysics Data System (ADS)

    Haddad, Z. S.; Steward, J. L.; Tseng, H.-C.; Vukicevic, T.; Chen, S.-H.; Hristova-Veleva, S.

    2015-06-01

    Satellite microwave observations of rain, whether from radar or passive radiometers, depend in a very crucial way on the vertical distribution of the condensed water mass and on the types and sizes of the hydrometeors in the volume resolved by the instrument. This crucial dependence is nonlinear, with different types and orders of nonlinearity that are due to differences in the absorption/emission and scattering signatures at the different instrument frequencies. Because it is not monotone as a function of the underlying condensed water mass, the nonlinearity requires great care in its representation in the observation operator, as the inevitable uncertainties in the numerous precipitation variables are not directly convertible into an additive white uncertainty in the forward calculated observations. In particular, when attempting to assimilate such data into a cloud-permitting model, special care needs to be applied to describe and quantify the expected uncertainty in the observations operator in order not to turn the implicit white additive uncertainty on the input values into complicated biases in the calculated radiances. One approach would be to calculate the means and covariances of the nonlinearly calculated radiances given an a priori joint distribution for the input variables. This would be a very resource-intensive proposal if performed in real time. We propose a representation of the observation operator based on performing this moment calculation off line, with a dimensionality reduction step to allow for the effective calculation of the observation operator and the associated covariance in real time during the assimilation. The approach is applicable to other remotely sensed observations that depend nonlinearly on model variables, including wind vector fields. The approach has been successfully applied to the case of tropical cyclones, where the organization of the system helps in identifying the dimensionality-reducing variables.

  18. Combining uncertainty factors in deriving human exposure levels of noncarcinogenic toxicants.

    PubMed

    Kodell, R L; Gaylor, D W

    1999-01-01

    Acceptable levels of human exposure to noncarcinogenic toxicants in environmental and occupational settings generally are derived by reducing experimental no-observed-adverse-effect levels (NOAELs) or benchmark doses (BDs) by a product of uncertainty factors (Barnes and Dourson, Ref. 1). These factors are presumed to ensure safety by accounting for uncertainty in dose extrapolation, uncertainty in duration extrapolation, differential sensitivity between humans and animals, and differential sensitivity among humans. The common default value for each uncertainty factor is 10. This paper shows how estimates of means and standard deviations of the approximately log-normal distributions of individual uncertainty factors can be used to estimate percentiles of the distribution of the product of uncertainty factors. An appropriately selected upper percentile, for example, 95th or 99th, of the distribution of the product can be used as a combined uncertainty factor to replace the conventional product of default factors.

  19. Percentiles of the product of uncertainty factors for establishing probabilistic reference doses.

    PubMed

    Gaylor, D W; Kodell, R L

    2000-04-01

    Exposure guidelines for potentially toxic substances are often based on a reference dose (RfD) that is determined by dividing a no-observed-adverse-effect-level (NOAEL), lowest-observed-adverse-effect-level (LOAEL), or benchmark dose (BD) corresponding to a low level of risk, by a product of uncertainty factors. The uncertainty factors for animal to human extrapolation, variable sensitivities among humans, extrapolation from measured subchronic effects to unknown results for chronic exposures, and extrapolation from a LOAEL to a NOAEL can be thought of as random variables that vary from chemical to chemical. Selected databases are examined that provide distributions across chemicals of inter- and intraspecies effects, ratios of LOAELs to NOAELs, and differences in acute and chronic effects, to illustrate the determination of percentiles for uncertainty factors. The distributions of uncertainty factors tend to be approximately lognormally distributed. The logarithm of the product of independent uncertainty factors is approximately distributed as the sum of normally distributed variables, making it possible to estimate percentiles for the product. Hence, the size of the products of uncertainty factors can be selected to provide adequate safety for a large percentage (e.g., approximately 95%) of RfDs. For the databases used to describe the distributions of uncertainty factors, using values of 10 appear to be reasonable and conservative. For the databases examined the following simple "Rule of 3s" is suggested that exceeds the estimated 95th percentile of the product of uncertainty factors: If only a single uncertainty factor is required use 33, for any two uncertainty factors use 3 x 33 approximately 100, for any three uncertainty factors use a combined factor of 3 x 100 = 300, and if all four uncertainty factors are needed use a total factor of 3 x 300 = 900. If near the 99th percentile is desired use another factor of 3. An additional factor may be needed for inadequate data or a modifying factor for other uncertainties (e.g., different routes of exposure) not covered above.

  20. Proton therapy - Present and future.

    PubMed

    Mohan, Radhe; Grosshans, David

    2017-01-15

    In principle, proton therapy offers a substantial clinical advantage over conventional photon therapy. This is because of the unique depth-dose characteristics of protons, which can be exploited to achieve significant reductions in normal tissue doses proximal and distal to the target volume. These may, in turn, allow escalation of tumor doses and greater sparing of normal tissues, thus potentially improving local control and survival while at the same time reducing toxicity and improving quality of life. Protons, accelerated to therapeutic energies ranging from 70 to 250MeV, typically with a cyclotron or a synchrotron, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initial thin beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanical means to treat the patients with "passively-scattered proton therapy" (PSPT) or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique can be used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton modality. Despite the high potential of proton therapy, the clinical evidence supporting the broad use of protons is mixed. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Although promising results have been and continue to be reported for many other types of cancers, they are based on small studies. Considering the high cost of establishing and operating proton therapy centers, questions have been raised about their cost effectiveness. General consensus is that there is a need to conduct randomized trials and/or collect outcomes data in multi-institutional registries to unequivocally demonstrate the advantage of protons. Treatment planning and plan evaluation of PSPT and IMPT require special considerations compared to the processes used for photon treatment planning. The differences in techniques arise from the unique physical properties of protons but are also necessary because of the greater vulnerability of protons to uncertainties, especially from inter- and intra-fractional variations in anatomy. These factors must be considered in designing as well as evaluating treatment plans. In addition to anatomy variations, other sources of uncertainty in dose delivered to the patient include the approximations and assumptions of models used for computing dose distributions for planning of treatments. Furthermore, the relative biological effectiveness (RBE) of protons is simplistically assumed to have a constant value of 1.1. In reality, the RBE is variable and a complex function of the energy of protons, dose per fraction, tissue and cell type, end point, etc. These uncertainties, approximations and current technological limitations of proton therapy may limit the achievement of its true potential. Ongoing research is aimed at better understanding the consequences of the various uncertainties on proton therapy and reducing the uncertainties through image-guidance, adaptive radiotherapy, further study of biological properties of protons and the development of novel dose computation and optimization methods. However, residual uncertainties will remain in spite of the best efforts. To increase the resilience of dose distributions in the face of uncertainties and improve our confidence in dose distributions seen on treatment plans, robust optimization techniques are being developed and implemented. We assert that, with such research, proton therapy will be a commonly applied radiotherapy modality for most types of solid cancers in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    NASA Astrophysics Data System (ADS)

    Kim, A. G.

    2011-02-01

    I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.

  2. Modeling Radioactive Decay Chains with Branching Fraction Uncertainties

    DTIC Science & Technology

    2013-03-01

    moments methods with transmutation matrices. Uncertainty from both half-lives and branching fractions is carried through these calculations by Monte...moment methods, method for sampling from normal distributions for half- life uncertainty, and use of transmutation matrices were leveraged. This...distributions for half-life and branching fraction uncertainties, building decay chains and generating the transmutation matrix (T-matrix

  3. Uncertainty of the potential curve minimum for diatomic molecules extrapolated from Dunham type coefficients

    NASA Astrophysics Data System (ADS)

    Ilieva, T.; Iliev, I.; Pashov, A.

    2016-12-01

    In the traditional description of electronic states of diatomic molecules by means of molecular constants or Dunham coefficients, one of the important fitting parameters is the value of the zero point energy - the minimum of the potential curve or the energy of the lowest vibrational-rotational level - E00 . Their values are almost always the result of an extrapolation and it may be difficult to estimate their uncertainties, because they are connected not only with the uncertainty of the experimental data, but also with the distribution of experimentally observed energy levels and the particular realization of set of Dunham coefficients. This paper presents a comprehensive analysis based on Monte Carlo simulations, which aims to demonstrate the influence of all these factors on the uncertainty of the extrapolated minimum of the potential energy curve U (Re) and the value of E00 . The very good extrapolation properties of the Dunham coefficients are quantitatively confirmed and it is shown that for a proper estimate of the uncertainties, the ambiguity in the composition of the Dunham coefficients should be taken into account.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Appel, Gordon John

    Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014) and Hadgu et al. (2015). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the currentmore » analysis. One floating license of GoldSim with Versions 9.60.300, 10.5 and 11.1.6 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The current tasks included verification of the TSPA-LA uncertainty and sensitivity analyses, and preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 11.1. All the TSPA-LA uncertainty and sensitivity analyses modeling cases were successfully tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). The uncertainty and sensitivity analyses used TSPA-LA modeling cases output generated in FY15 based on GoldSim Version 9.60.300 documented in Hadgu et al. (2015). The model upgrade task successfully converted the Nominal Modeling case to GoldSim Version 11.1. Upgrade of the remaining of the modeling cases and distributed processing tasks will continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less

  5. Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination

    NASA Astrophysics Data System (ADS)

    Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Kessler, R.; Rest, A.; Kirshner, R. P.; Berger, E.; Ortega, C. A.; Foley, R. J.; Chornock, R.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2017-07-01

    The Pan-STARRS (PS1) Medium Deep Survey discovered over 5000 likely supernovae (SNe) but obtained spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3147 of these likely SNe and estimate that ˜1000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for a cosmological analysis. We use these data with simulations to determine the impact of core-collapse SN (CC SN) contamination on measurements of the dark energy equation of state parameter, w. Using the method of Bayesian Estimation Applied to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CC SN distribution are simultaneously determined. We test light-curve-based SN classification priors for BEAMS as well as a new classification method that relies upon host galaxy spectra and the association of SN type with host type. By testing several SN classification methods and CC SN parameterizations on large SN simulations, we estimate that CC SN contamination gives a systematic error on w ({σ }w{CC}) of 0.014, 29% of the statistical uncertainty. Our best method gives {σ }w{CC}=0.004, just 8% of the statistical uncertainty, but could be affected by incomplete knowledge of the CC SN distribution. This method determines the SALT2 color and shape coefficients, α and β, with ˜3% bias. However, we find that some variants require α and β to be fixed to known values for BEAMS to yield accurate measurements of w. Finally, the inferred abundance of bright CC SNe in our sample is greater than expected based on measured CC SN rates and luminosity functions.

  6. Predictions of space radiation fatality risk for exploration missions.

    PubMed

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  8. A new UK fission yield evaluation UKFY3.7

    NASA Astrophysics Data System (ADS)

    Mills, Robert William

    2017-09-01

    The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.

  9. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    NASA Astrophysics Data System (ADS)

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  10. Entropy of hydrological systems under small samples: Uncertainty and variability

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua

    2016-01-01

    Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.

  11. Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Weitzel, Nils; Hense, Andreas; Ohlwein, Christian

    2017-04-01

    Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, J.K.; Smith, C.L.

    The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more thanmore » one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.« less

  13. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  14. General statistics of stochastic process of gene expression in eukaryotic cells.

    PubMed Central

    Kuznetsov, V A; Knott, G D; Bonner, R F

    2002-01-01

    Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations. PMID:12136033

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornibrook, E.R.C.; Longstaffe, F.J.; Fyfe, W.S.

    Two types of distribution for {alpha}{sub c} values are observed in anaerobic environments when {delta}{sup 13}C-{Sigma}CO{sub 2} and {delta}{sub 13}C-CH{sub 4} values are measured across gradients of depth or age of organic debris. The type-I distribution involves a systematic increase in {alpha}{sub c} values with depth as a result of decreasing {delta}{sup 13}C-CH{sub 4} and increasing {delta}{sup 13}C-{Sigma}CO{sub 2} values. This behavior corresponds to a progressive increase in the prevalence of methanogenesis by the CO{sub 2} reduction pathway relative to acetate fermentation. Utilization of autotrophically formed acetate by methanogens would also cause an increase in {alpha}{sub c} values. The type-IImore » distribution occurs when both {delta}{sup 13}C-CH{sub 4} and {delta}{sup 13}C-{Sigma}CO{sub 2} values decrease with depth, resulting in approximately constant {alpha}{sub c} values. This condition corresponds with a strong dependence of methanogens on porewater {Sigma}CO{sub 2} as a carbon source by way of either the CO{sub 2} reduction pathway or utilization of autotrophically formed acetate. Freshwater wetlands possess both types of {alpha}{sub c} value distribution. Defining the type of {alpha}{sub c} distributions in different wetlands could reduce uncertainty in estimating the {delta}{sup 13}C value of CH{sub 4} emissions. Hence, the prevalence of type-I vs. type-II {alpha}{sub c} distributions in wetlands may have practical importance for the refinement of global CH{sub 4} budgets that rely on {sup 13}C/{sup 12}C ratios for mass balance.« less

  16. Setting the top 10 research priorities to improve the health of people with Type 2 diabetes: a Diabetes UK-James Lind Alliance Priority Setting Partnership.

    PubMed

    Finer, S; Robb, P; Cowan, K; Daly, A; Shah, K; Farmer, A

    2018-07-01

    To describe processes and outcomes of a priority setting partnership to identify the 'top 10 research priorities' in Type 2 diabetes, involving people living with the condition, their carers, and healthcare professionals. We followed the four-step James Lind Alliance Priority Setting Partnership process which involved: gathering uncertainties using a questionnaire survey distributed to 70 000 people living with Type 2 diabetes and their carers, and healthcare professionals; organizing the uncertainties; interim priority setting by resampling of participants with a second survey; and final priority setting in an independent group of participants, using the nominal group technique. At each step the steering group closely monitored and guided the process. In the first survey, 8227 uncertainties were proposed by 2587 participants, of whom 18% were from black, Asian and minority ethnic groups. Uncertainties were formatted and collated into 114 indicative questions. A total of 1506 people contributed to a second survey, generating a shortlist of 24 questions equally weighted to the contributions of people living with diabetes and their carers and those of healthcare professionals. In the final step the 'top 10 research priorities' were selected, including questions on cure and reversal, risk identification and prevention, and self-management approaches in Type 2 diabetes. Systematic and transparent methodology was used to identify research priorities in a large and genuine partnership of people with lived and professional experience of Type 2 diabetes. The top 10 questions represent consensus areas of research priority to guide future research, deliver responsive and strategic allocation of research resources, and improve the future health and well-being of people living with, and at risk of, Type 2 diabetes. © 2018 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  17. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model

    PubMed Central

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-01-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45oN and polewards) for the period 1900–2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of the 21st century. In contrast, the area of temperate trees would increase, especially under the most extreme A1FI scenario. As the warming continues, the northward greenness expansion in the Arctic region could continue. PMID:22822437

  18. Rain measurements from space using a modified Seasat-type radar altimeter

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.; Walsh, E. J.

    1982-01-01

    The incorporation in the 13.5 GHz Seasat-type radar altimeter of a mode to measure rain rate is investigated. Specifically, an algorithm is developed relating the echo power at the various range bins, to the rain rate taking into consideration Mie scattering and path attenuation. The dependence of the algorithm on rain drop size distribution and nonuniform rain structure are examined and associated uncertainties defined. A technique for obtaining drop size distribution through the measurements of power at the top of the raincell and power difference through the cell also is investigated together with an associated error analysis. A description of the minor hardware modifications to the basic Seasat design is given for implementing the rain measurements.

  19. Forward and backward uncertainty propagation: an oxidation ditch modelling example.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G

    2003-01-01

    In the field of water technology, forward uncertainty propagation is frequently used, whereas backward uncertainty propagation is rarely used. In forward uncertainty analysis, one moves from a given (or assumed) parameter subspace towards the corresponding distribution of the output or objective function. However, in the backward uncertainty propagation, one moves in the reverse direction, from the distribution function towards the parameter subspace. Backward uncertainty propagation, which is a generalisation of parameter estimation error analysis, gives information essential for designing experimental or monitoring programmes, and for tighter bounding of parameter uncertainty intervals. The procedure of carrying out backward uncertainty propagation is illustrated in this technical note by working example for an oxidation ditch wastewater treatment plant. Results obtained have demonstrated that essential information can be achieved by carrying out backward uncertainty propagation analysis.

  20. Managing uncertainty in collaborative robotics engineering projects: The influence of task structure and peer interaction

    NASA Astrophysics Data System (ADS)

    Jordan, Michelle

    Uncertainty is ubiquitous in life, and learning is an activity particularly likely to be fraught with uncertainty. Previous research suggests that students and teachers struggle in their attempts to manage the psychological experience of uncertainty and that students often fail to experience uncertainty when uncertainty may be warranted. Yet, few educational researchers have explicitly and systematically observed what students do, their behaviors and strategies, as they attempt to manage the uncertainty they experience during academic tasks. In this study I investigated how students in one fifth grade class managed uncertainty they experienced while engaged in collaborative robotics engineering projects, focusing particularly on how uncertainty management was influenced by task structure and students' interactions with their peer collaborators. The study was initiated at the beginning of instruction related to robotics engineering and preceded through the completion of several long-term collaborative robotics projects, one of which was a design project. I relied primarily on naturalistic observation of group sessions, semi-structured interviews, and collection of artifacts. My data analysis was inductive and interpretive, using qualitative discourse analysis techniques and methods of grounded theory. Three theoretical frameworks influenced the conception and design of this study: community of practice, distributed cognition, and complex adaptive systems theory. Uncertainty was a pervasive experience for the students collaborating in this instructional context. Students experienced uncertainty related to the project activity and uncertainty related to the social system as they collaborated to fulfill the requirements of their robotics engineering projects. They managed their uncertainty through a diverse set of tactics for reducing, ignoring, maintaining, and increasing uncertainty. Students experienced uncertainty from more different sources and used more and different types of uncertainty management strategies in the less structured task setting than in the more structured task setting. Peer interaction was influential because students relied on supportive social response to enact most of their uncertainty management strategies. When students could not garner socially supportive response from their peers, their options for managing uncertainty were greatly reduced.

  1. Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.

    2008-01-01

    This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.

  2. Probabilistic biosphere modeling for the long-term safety assessment of geological disposal facilities for radioactive waste using first- and second-order Monte Carlo simulation.

    PubMed

    Ciecior, Willy; Röhlig, Klaus-Jürgen; Kirchner, Gerald

    2018-10-01

    In the present paper, deterministic as well as first- and second-order probabilistic biosphere modeling approaches are compared. Furthermore, the sensitivity of the influence of the probability distribution function shape (empirical distribution functions and fitted lognormal probability functions) representing the aleatory uncertainty (also called variability) of a radioecological model parameter as well as the role of interacting parameters are studied. Differences in the shape of the output distributions for the biosphere dose conversion factor from first-order Monte Carlo uncertainty analysis using empirical and fitted lognormal distribution functions for input parameters suggest that a lognormal approximation is possibly not always an adequate representation of the aleatory uncertainty of a radioecological parameter. Concerning the comparison of the impact of aleatory and epistemic parameter uncertainty on the biosphere dose conversion factor, the latter here is described using uncertain moments (mean, variance) while the distribution itself represents the aleatory uncertainty of the parameter. From the results obtained, the solution space of second-order Monte Carlo simulation is much larger than that from first-order Monte Carlo simulation. Therefore, the influence of epistemic uncertainty of a radioecological parameter on the output result is much larger than that one caused by its aleatory uncertainty. Parameter interactions are only of significant influence in the upper percentiles of the distribution of results as well as only in the region of the upper percentiles of the model parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Uncertainties in Galactic Chemical Evolution Models

    DOE PAGES

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...

    2016-06-15

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less

  4. Evaluating the uncertainty of input quantities in measurement models

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in uncertainty propagation exercises. In this we deviate markedly and emphatically from the GUM Supplement 1, which gives pride of place to the Principle of Maximum Entropy as a means to assign probability distributions to input quantities.

  5. Uncertainty in gridded CO 2 emissions estimates

    DOE PAGES

    Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...

    2016-05-19

    We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less

  6. The critical role of uncertainty in projections of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Meresa, Hadush K.; Romanowicz, Renata J.

    2017-08-01

    This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.

  7. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system

    NASA Astrophysics Data System (ADS)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál

    2018-01-01

    In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.

  8. Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

    NASA Astrophysics Data System (ADS)

    Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark

    2018-04-01

    Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.

  9. A single-loop optimization method for reliability analysis with second order uncertainty

    NASA Astrophysics Data System (ADS)

    Xie, Shaojun; Pan, Baisong; Du, Xiaoping

    2015-08-01

    Reliability analysis may involve random variables and interval variables. In addition, some of the random variables may have interval distribution parameters owing to limited information. This kind of uncertainty is called second order uncertainty. This article develops an efficient reliability method for problems involving the three aforementioned types of uncertain input variables. The analysis produces the maximum and minimum reliability and is computationally demanding because two loops are needed: a reliability analysis loop with respect to random variables and an interval analysis loop for extreme responses with respect to interval variables. The first order reliability method and nonlinear optimization are used for the two loops, respectively. For computational efficiency, the two loops are combined into a single loop by treating the Karush-Kuhn-Tucker (KKT) optimal conditions of the interval analysis as constraints. Three examples are presented to demonstrate the proposed method.

  10. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    NASA Astrophysics Data System (ADS)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground motion uncertainties. The approach is designed to integrate loss distribution functions with different degrees of correlation for portfolio analysis. The analysis is based on USGS 2002 regional seismicity model.

  11. Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution.

    PubMed

    Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr

    2012-01-01

    Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifried, J E; Fratoni, M; Kramer, K J

    A primary purpose of computational models is to inform design decisions and, in order to make those decisions reliably, the confidence in the results of such models must be estimated. Monte Carlo neutron transport models are common tools for reactor designers. These types of models contain several sources of uncertainty that propagate onto the model predictions. Two uncertainties worthy of note are (1) experimental and evaluation uncertainties of nuclear data that inform all neutron transport models and (2) statistical counting precision, which all results of a Monte Carlo codes contain. Adjoint-based implicit uncertainty analyses allow for the consideration of anymore » number of uncertain input quantities and their effects upon the confidence of figures of merit with only a handful of forward and adjoint transport calculations. When considering a rich set of uncertain inputs, adjoint-based methods remain hundreds of times more computationally efficient than Direct Monte-Carlo methods. The LIFE (Laser Inertial Fusion Energy) engine is a concept being developed at Lawrence Livermore National Laboratory. Various options exist for the LIFE blanket, depending on the mission of the design. The depleted uranium hybrid LIFE blanket design strives to close the fission fuel cycle without enrichment or reprocessing, while simultaneously achieving high discharge burnups with reduced proliferation concerns. Neutron transport results that are central to the operation of the design are tritium production for fusion fuel, fission of fissile isotopes for energy multiplication, and production of fissile isotopes for sustained power. In previous work, explicit cross-sectional uncertainty analyses were performed for reaction rates related to the figures of merit for the depleted uranium hybrid LIFE blanket. Counting precision was also quantified for both the figures of merit themselves and the cross-sectional uncertainty estimates to gauge the validity of the analysis. All cross-sectional uncertainties were small (0.1-0.8%), bounded counting uncertainties, and were precise with regard to counting precision. Adjoint/importance distributions were generated for the same reaction rates. The current work leverages those adjoint distributions to transition from explicit sensitivities, in which the neutron flux is constrained, to implicit sensitivities, in which the neutron flux responds to input perturbations. This treatment vastly expands the set of data that contribute to uncertainties to produce larger, more physically accurate uncertainty estimates.« less

  13. Improving Forecasts Through Realistic Uncertainty Estimates: A Novel Data Driven Method for Model Uncertainty Quantification in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S. D.; Moradkhani, H.; Marshall, L. A.; Sharma, A.; Geenens, G.

    2016-12-01

    Effective combination of model simulations and observations through Data Assimilation (DA) depends heavily on uncertainty characterisation. Many traditional methods for quantifying model uncertainty in DA require some level of subjectivity (by way of tuning parameters or by assuming Gaussian statistics). Furthermore, the focus is typically on only estimating the first and second moments. We propose a data-driven methodology to estimate the full distributional form of model uncertainty, i.e. the transition density p(xt|xt-1). All sources of uncertainty associated with the model simulations are considered collectively, without needing to devise stochastic perturbations for individual components (such as model input, parameter and structural uncertainty). A training period is used to derive the distribution of errors in observed variables conditioned on hidden states. Errors in hidden states are estimated from the conditional distribution of observed variables using non-linear optimization. The theory behind the framework and case study applications are discussed in detail. Results demonstrate improved predictions and more realistic uncertainty bounds compared to a standard perturbation approach.

  14. Information-Based Analysis of Data Assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Gupta, H. V.; Crow, W. T.; Gong, W.

    2013-12-01

    Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation methods make the application of Bayes' law tractable either by employing assumptions about the prior, posterior and likelihood distributions (e.g., the Kalman family of filters) or by using resampling methods (e.g., bootstrap filter). We propose to quantify the efficiency of these approximations in an OSSE setting using information theory and, in an OSSE or real-world validation setting, to measure the amount - and more importantly, the quality - of information extracted from observations during data assimilation. To analyze DA assumptions, uncertainty is quantified as the Shannon-type entropy of a discretized probability distribution. The maximum amount of information that can be extracted from observations about model states is the mutual information between states and observations, which is equal to the reduction in entropy in our estimate of the state due to Bayesian filtering. The difference between this potential and the actual reduction in entropy due to Kalman (or other type of) filtering measures the inefficiency of the filter assumptions. Residual uncertainty in DA posterior state estimates can be attributed to three sources: (i) non-injectivity of the observation operator, (ii) noise in the observations, and (iii) filter approximations. The contribution of each of these sources is measurable in an OSSE setting. The amount of information extracted from observations by data assimilation (or system identification, including parameter estimation) can also be measured by Shannon's theory. Since practical filters are approximations of Bayes' law, it is important to know whether the information that is extracted form observations by a filter is reliable. We define information as either good or bad, and propose to measure these two types of information using partial Kullback-Leibler divergences. Defined this way, good and bad information sum to total information. This segregation of information into good and bad components requires a validation target distribution; in a DA OSSE setting, this can be the true Bayesian posterior, but in a real-world setting the validation target might be determined by a set of in situ observations.

  15. A Bottom-up Vulnerability Analysis of Water Systems with Decentralized Decision Making and Demographic Shifts- the Case of Jordan.

    NASA Astrophysics Data System (ADS)

    Lachaut, T.; Yoon, J.; Klassert, C. J. A.; Talozi, S.; Mustafa, D.; Knox, S.; Selby, P. D.; Haddad, Y.; Gorelick, S.; Tilmant, A.

    2016-12-01

    Probabilistic approaches to uncertainty in water systems management can face challenges of several types: non stationary climate, sudden shocks such as conflict-driven migrations, or the internal complexity and dynamics of large systems. There has been a rising trend in the development of bottom-up methods that place focus on the decision side instead of probability distributions and climate scenarios. These approaches are based on defining acceptability thresholds for the decision makers and considering the entire range of possibilities over which such thresholds are crossed. We aim at improving the knowledge on the applicability and relevance of this approach by enlarging its scope beyond climate uncertainty and single decision makers; thus including demographic shifts, internal system dynamics, and multiple stakeholders at different scales. This vulnerability analysis is part of the Jordan Water Project and makes use of an ambitious multi-agent model developed by its teams with the extensive cooperation of the Ministry of Water and Irrigation of Jordan. The case of Jordan is a relevant example for migration spikes, rapid social changes, resource depletion and climate change impacts. The multi-agent modeling framework used provides a consistent structure to assess the vulnerability of complex water resources systems with distributed acceptability thresholds and stakeholder interaction. A proof of concept and preliminary results are presented for a non-probabilistic vulnerability analysis that involves different types of stakeholders, uncertainties other than climatic and the integration of threshold-based indicators. For each stakeholder (agent) a vulnerability matrix is constructed over a multi-dimensional domain, which includes various hydrologic and/or demographic variables.

  16. Estimating the spatial distribution of wintering little brown bat populations in the eastern United States

    USGS Publications Warehouse

    Russell, Robin E.; Tinsley, Karl; Erickson, Richard A.; Thogmartin, Wayne E.; Jennifer A. Szymanski,

    2014-01-01

    Depicting the spatial distribution of wildlife species is an important first step in developing management and conservation programs for particular species. Accurate representation of a species distribution is important for predicting the effects of climate change, land-use change, management activities, disease, and other landscape-level processes on wildlife populations. We developed models to estimate the spatial distribution of little brown bat (Myotis lucifugus) wintering populations in the United States east of the 100th meridian, based on known hibernacula locations. From this data, we developed several scenarios of wintering population counts per county that incorporated uncertainty in the spatial distribution of the hibernacula as well as uncertainty in the size of the current little brown bat population. We assessed the variability in our results resulting from effects of uncertainty. Despite considerable uncertainty in the known locations of overwintering little brown bats in the eastern United States, we believe that models accurately depicting the effects of the uncertainty are useful for making management decisions as these models are a coherent organization of the best available information.

  17. Value assignment and uncertainty evaluation for single-element reference solutions

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha; Butler, Therese A.; Molloy, John L.; Winchester, Michael R.

    2018-06-01

    A Bayesian statistical procedure is proposed for value assignment and uncertainty evaluation for the mass fraction of the elemental analytes in single-element solutions distributed as NIST standard reference materials. The principal novelty that we describe is the use of information about relative differences observed historically between the measured values obtained via gravimetry and via high-performance inductively coupled plasma optical emission spectrometry, to quantify the uncertainty component attributable to between-method differences. This information is encapsulated in a prior probability distribution for the between-method uncertainty component, and it is then used, together with the information provided by current measurement data, to produce a probability distribution for the value of the measurand from which an estimate and evaluation of uncertainty are extracted using established statistical procedures.

  18. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of severe internal exposure, the causation probability of a deterministic health effect can be derived from the dose distribution, and a high statistical value ( e.g., the 95th percentile of the distribution) can be used to determine the appropriate intervention. The distribution-based sensitivity analysis can also be used to quantify the contribution of each factor to the dose uncertainty, which is essential information for reducing and optimizing the uncertainty in the internal dose assessment. Therefore, the present study can contribute to retrospective dose assessment for accidental internal exposure scenarios, as well as to internal dose monitoring optimization and uncertainty reduction.

  19. Estimate of uncertainties in polarized parton distributions

    NASA Astrophysics Data System (ADS)

    Miyama, M.; Goto, Y.; Hirai, M.; Kobayashi, H.; Kumano, S.; Morii, T.; Saito, N.; Shibata, T.-A.; Yamanishi, T.

    2001-10-01

    From \\chi^2 analysis of polarized deep inelastic scattering data, we determined polarized parton distribution functions (Y. Goto et al. (AAC), Phys. Rev. D 62, 34017 (2000).). In order to clarify the reliability of the obtained distributions, we should estimate uncertainties of the distributions. In this talk, we discuss the pol-PDF uncertainties by using a Hessian method. A Hessian matrix H_ij is given by second derivatives of the \\chi^2, and the error matrix \\varepsilon_ij is defined as the inverse matrix of H_ij. Using the error matrix, we calculate the error of a function F by (δ F)^2 = sum_i,j fracpartial Fpartial ai \\varepsilon_ij fracpartial Fpartial aj , where a_i,j are the parameters in the \\chi^2 analysis. Using this method, we show the uncertainties of the pol-PDF, structure functions g_1, and spin asymmetries A_1. Furthermore, we show a role of future experiments such as the RHIC-Spin. An important purpose of planned experiments in the near future is to determine the polarized gluon distribution function Δ g (x) in detail. We reanalyze the pol-PDF uncertainties including the gluon fake data which are expected to be given by the upcoming experiments. From this analysis, we discuss how much the uncertainties of Δ g (x) can be improved by such measurements.

  20. Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Haruko; Chen, X.; Hahn, Melanie S.

    2010-10-21

    This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are itsmore » ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.« less

  1. Task uncertainty and communication during nursing shift handovers.

    PubMed

    Mayor, Eric; Bangerter, Adrian; Aribot, Myriam

    2012-09-01

    We explore variations in handover duration and communication in nursing units. We hypothesize that duration per patient is higher in units facing high task uncertainty. We expect both topics and functions of communication to vary depending on task uncertainty. Handovers are changing in modern healthcare organizations, where standardized procedures are increasingly advocated for efficiency and reliability reasons. However, redesign of handover should take environmental contingencies of different clinical unit types into account. An important contingency in institutions is task uncertainty, which may affect how communicative routines like handover are accomplished. Nurse unit managers of 80 care units in 18 hospitals were interviewed in 2008 about topics and functions of handover communication and duration in their unit. Interviews were content-analysed. Clinical units were classified into a theory-based typology (unit type) that gradually increases on task uncertainty. Quantitative analyses were performed. Unit type affected resource allocation. Unit types facing higher uncertainty had higher handover duration per patient. As expected, unit type also affected communication content. Clinical units facing higher uncertainty discussed fewer topics, discussing treatment and care and organization of work less frequently. Finally, unit type affected functions of handover: sharing emotions was less often mentioned in unit types facing higher uncertainty. Task uncertainty and its relationship with functions and topics of handover should be taken into account during the design of handover procedures. © 2011 Blackwell Publishing Ltd.

  2. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  3. Exact Scheffé-type confidence intervals for output from groundwater flow models: 2. Combined use of hydrogeologic information and calibration data

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    Calibration data (observed values corresponding to model-computed values of dependent variables) are incorporated into a general method of computing exact Scheffé-type confidence intervals analogous to the confidence intervals developed in part 1 (Cooley, this issue) for a function of parameters derived from a groundwater flow model. Parameter uncertainty is specified by a distribution of parameters conditioned on the calibration data. This distribution was obtained as a posterior distribution by applying Bayes' theorem to the hydrogeologically derived prior distribution of parameters from part 1 and a distribution of differences between the calibration data and corresponding model-computed dependent variables. Tests show that the new confidence intervals can be much smaller than the intervals of part 1 because the prior parameter variance-covariance structure is altered so that combinations of parameters that give poor model fit to the data are unlikely. The confidence intervals of part 1 and the new confidence intervals can be effectively employed in a sequential method of model construction whereby new information is used to reduce confidence interval widths at each stage.

  4. Investigation of hydrometeor classification uncertainties through the POLARRIS polarimetric radar simulator

    NASA Astrophysics Data System (ADS)

    Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.

    2017-12-01

    POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With these uncertainties and algorithm improvements, cases of convection are studied in a continental (Oklahoma) and maritime (Darwin, Australia) regime. Observations from C-band polarimetric data in both locations are compared to CRM simulations from NU-WRF using the POLARRIS framework.

  5. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales-review and recommendations.

    PubMed

    Vanguelova, E I; Bonifacio, E; De Vos, B; Hoosbeek, M R; Berger, T W; Vesterdal, L; Armolaitis, K; Celi, L; Dinca, L; Kjønaas, O J; Pavlenda, P; Pumpanen, J; Püttsepp, Ü; Reidy, B; Simončič, P; Tobin, B; Zhiyanski, M

    2016-11-01

    Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales-sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.

  6. Constraining global dry deposition of ozone: observations and modeling

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.

    2016-12-01

    Ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. Current estimates are that nearly 25% of all surface ozone is destroyed through dry deposition, and billions of dollars are lost annually due to losses of ecosystem services and agricultural yield associated with ozone damage. However there are still substantial uncertainties regarding the spatial distribution and magnitude of the global depositional flux. As land cover change continues throughout this century, dry deposition of ozone will change in ways that are yet still poorly understood. Nearly every major atmospheric chemistry model uses a variation of the "resistor in series parameterization" for the calculation of dry deposition. By far the most commonly implemented parameterization is of the form presented in Wesely (1989), and is dependent on many variables, including land type look up tables, solar radiation, leaf area index, temperature, and more. The uncertainties contained within the various parts of this parameterization have to date not been fully explored. A lack of understanding of these uncertainties, coupled with a dearth of routine measurements of ozone deposition, ultimately challenges our ability to understand the impacts of land cover change on surface ozone. In this work, we use a suite of globally-distributed observations from the past two decades and the GEOS-Chem chemical transport model to constrain global dry deposition, improve our understanding of these uncertainties, and contextualize the impact of land cover change on ozone concentrations.

  7. Validation of the thermal challenge problem using Bayesian Belief Networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, John; Swiler, Laura Painton

    The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context ofmore » the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less

  9. Benefit-cost estimation for alternative drinking water maximum contaminant levels

    NASA Astrophysics Data System (ADS)

    Gurian, Patrick L.; Small, Mitchell J.; Lockwood, John R.; Schervish, Mark J.

    2001-08-01

    A simulation model for estimating compliance behavior and resulting costs at U.S. Community Water Suppliers is developed and applied to the evaluation of a more stringent maximum contaminant level (MCL) for arsenic. Probability distributions of source water arsenic concentrations are simulated using a statistical model conditioned on system location (state) and source water type (surface water or groundwater). This model is fit to two recent national surveys of source waters, then applied with the model explanatory variables for the population of U.S. Community Water Suppliers. Existing treatment types and arsenic removal efficiencies are also simulated. Utilities with finished water arsenic concentrations above the proposed MCL are assumed to select the least cost option compatible with their existing treatment from among 21 available compliance strategies and processes for meeting the standard. Estimated costs and arsenic exposure reductions at individual suppliers are aggregated to estimate the national compliance cost, arsenic exposure reduction, and resulting bladder cancer risk reduction. Uncertainties in the estimates are characterized based on uncertainties in the occurrence model parameters, existing treatment types, treatment removal efficiencies, costs, and the bladder cancer dose-response function for arsenic.

  10. A Bayesian Uncertainty Framework for Conceptual Snowmelt and Hydrologic Models Applied to the Tenderfoot Creek Experimental Forest

    NASA Astrophysics Data System (ADS)

    Smith, T.; Marshall, L.

    2007-12-01

    In many mountainous regions, the single most important parameter in forecasting the controls on regional water resources is snowpack (Williams et al., 1999). In an effort to bridge the gap between theoretical understanding and functional modeling of snow-driven watersheds, a flexible hydrologic modeling framework is being developed. The aim is to create a suite of models that move from parsimonious structures, concentrated on aggregated watershed response, to those focused on representing finer scale processes and distributed response. This framework will operate as a tool to investigate the link between hydrologic model predictive performance, uncertainty, model complexity, and observable hydrologic processes. Bayesian methods, and particularly Markov chain Monte Carlo (MCMC) techniques, are extremely useful in uncertainty assessment and parameter estimation of hydrologic models. However, these methods have some difficulties in implementation. In a traditional Bayesian setting, it can be difficult to reconcile multiple data types, particularly those offering different spatial and temporal coverage, depending on the model type. These difficulties are also exacerbated by sensitivity of MCMC algorithms to model initialization and complex parameter interdependencies. As a way of circumnavigating some of the computational complications, adaptive MCMC algorithms have been developed to take advantage of the information gained from each successive iteration. Two adaptive algorithms are compared is this study, the Adaptive Metropolis (AM) algorithm, developed by Haario et al (2001), and the Delayed Rejection Adaptive Metropolis (DRAM) algorithm, developed by Haario et al (2006). While neither algorithm is truly Markovian, it has been proven that each satisfies the desired ergodicity and stationarity properties of Markov chains. Both algorithms were implemented as the uncertainty and parameter estimation framework for a conceptual rainfall-runoff model based on the Probability Distributed Model (PDM), developed by Moore (1985). We implement the modeling framework in Stringer Creek watershed in the Tenderfoot Creek Experimental Forest (TCEF), Montana. The snowmelt-driven watershed offers that additional challenge of modeling snow accumulation and melt and current efforts are aimed at developing a temperature- and radiation-index snowmelt model. Auxiliary data available from within TCEF's watersheds are used to support in the understanding of information value as it relates to predictive performance. Because the model is based on lumped parameters, auxiliary data are hard to incorporate directly. However, these additional data offer benefits through the ability to inform prior distributions of the lumped, model parameters. By incorporating data offering different information into the uncertainty assessment process, a cross-validation technique is engaged to better ensure that modeled results reflect real process complexity.

  11. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, F.T.; Young, M.L.; Miller, L.A.

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulatedmore » jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.« less

  12. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    DOE PAGES

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-05

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less

  13. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less

  14. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    NASA Astrophysics Data System (ADS)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-01

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.

  15. The distribution and amount of carbon in the largest peatland complex in Amazonia

    NASA Astrophysics Data System (ADS)

    Draper, Frederick C.; Roucoux, Katherine H.; Lawson, Ian T.; Mitchard, Edward T. A.; Honorio Coronado, Euridice N.; Lähteenoja, Outi; Torres Montenegro, Luis; Valderrama Sandoval, Elvis; Zaráte, Ricardo; Baker, Timothy R.

    2014-12-01

    Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44-8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha-1). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems.

  16. Probabilistic Space Weather Forecasting: a Bayesian Perspective

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Chandorkar, M.; Borovsky, J.; Care', A.

    2017-12-01

    Most of the Space Weather forecasts, both at operational and research level, are not probabilistic in nature. Unfortunately, a prediction that does not provide a confidence level is not very useful in a decision-making scenario. Nowadays, forecast models range from purely data-driven, machine learning algorithms, to physics-based approximation of first-principle equations (and everything that sits in between). Uncertainties pervade all such models, at every level: from the raw data to finite-precision implementation of numerical methods. The most rigorous way of quantifying the propagation of uncertainties is by embracing a Bayesian probabilistic approach. One of the simplest and most robust machine learning technique in the Bayesian framework is Gaussian Process regression and classification. Here, we present the application of Gaussian Processes to the problems of the DST geomagnetic index forecast, the solar wind type classification, and the estimation of diffusion parameters in radiation belt modeling. In each of these very diverse problems, the GP approach rigorously provide forecasts in the form of predictive distributions. In turn, these distributions can be used as input for ensemble simulations in order to quantify the amplification of uncertainties. We show that we have achieved excellent results in all of the standard metrics to evaluate our models, with very modest computational cost.

  17. Public Perceptions of Regulatory Costs, Their Uncertainty and Interindividual Distribution.

    PubMed

    Johnson, Branden B; Finkel, Adam M

    2016-06-01

    Public perceptions of both risks and regulatory costs shape rational regulatory choices. Despite decades of risk perception studies, this article is the first on regulatory cost perceptions. A survey of 744 U.S. residents probed: (1) How knowledgeable are laypeople about regulatory costs incurred to reduce risks? (2) Do laypeople see official estimates of cost and benefit (lives saved) as accurate? (3) (How) do preferences for hypothetical regulations change when mean-preserving spreads of uncertainty replace certain cost or benefit? and (4) (How) do preferences change when unequal interindividual distributions of hypothetical regulatory costs replace equal distributions? Respondents overestimated costs of regulatory compliance, while assuming agencies underestimate costs. Most assumed agency estimates of benefits are accurate; a third believed both cost and benefit estimates are accurate. Cost and benefit estimates presented without uncertainty were slightly preferred to those surrounded by "narrow uncertainty" (a range of costs or lives entirely within a personally-calibrated zone without clear acceptance or rejection of tradeoffs). Certain estimates were more preferred than "wide uncertainty" (a range of agency estimates extending beyond these personal bounds, thus posing a gamble between favored and unacceptable tradeoffs), particularly for costs as opposed to benefits (but even for costs a quarter of respondents preferred wide uncertainty to certainty). Agency-acknowledged uncertainty in general elicited mixed judgments of honesty and trustworthiness. People preferred egalitarian distributions of regulatory costs, despite skewed actual cost distributions, and preferred progressive cost distributions (the rich pay a greater than proportional share) to regressive ones. Efficient and socially responsive regulations require disclosure of much more information about regulatory costs and risks. © 2016 Society for Risk Analysis.

  18. Interval Estimation of Seismic Hazard Parameters

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw

    2017-03-01

    The paper considers Poisson temporal occurrence of earthquakes and presents a way to integrate uncertainties of the estimates of mean activity rate and magnitude cumulative distribution function in the interval estimation of the most widely used seismic hazard functions, such as the exceedance probability and the mean return period. The proposed algorithm can be used either when the Gutenberg-Richter model of magnitude distribution is accepted or when the nonparametric estimation is in use. When the Gutenberg-Richter model of magnitude distribution is used the interval estimation of its parameters is based on the asymptotic normality of the maximum likelihood estimator. When the nonparametric kernel estimation of magnitude distribution is used, we propose the iterated bias corrected and accelerated method for interval estimation based on the smoothed bootstrap and second-order bootstrap samples. The changes resulted from the integrated approach in the interval estimation of the seismic hazard functions with respect to the approach, which neglects the uncertainty of the mean activity rate estimates have been studied using Monte Carlo simulations and two real dataset examples. The results indicate that the uncertainty of mean activity rate affects significantly the interval estimates of hazard functions only when the product of activity rate and the time period, for which the hazard is estimated, is no more than 5.0. When this product becomes greater than 5.0, the impact of the uncertainty of cumulative distribution function of magnitude dominates the impact of the uncertainty of mean activity rate in the aggregated uncertainty of the hazard functions. Following, the interval estimates with and without inclusion of the uncertainty of mean activity rate converge. The presented algorithm is generic and can be applied also to capture the propagation of uncertainty of estimates, which are parameters of a multiparameter function, onto this function.

  19. A reference tristimulus colorimeter

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.

    2002-06-01

    A reference tristimulus colorimeter has been developed at NIST with a transmission-type silicon trap detector (1) and four temperature-controlled filter packages to realize the Commission Internationale de l'Eclairage (CIE) x(λ), y(λ) and z(λ) color matching functions (2). Instead of lamp standards, high accuracy detector standards are used for the colorimeter calibration. A detector-based calibration procedure is being suggested for tristimulus colorimeters wehre the absolute spectral responsivity of the tristimulus channels is determined. Then, color (spectral) correct and peak (amplitude) normalization are applied to minimize uncertainties caused by the imperfect realizations of the CIE functions. As a result of the corrections, the chromaticity coordinates of stable light sources with different spectral power distributions can be measured with uncertainties less than 0.0005 (k=1).

  20. Moving toward a Biomass Map of Boreal Eurasia based on ICESat GLAS, ASTER GDEM, and field measurements: Amount, Spatial distribution, and Statistical Uncertainties

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Nelson, R. F.; Sun, G.; Ranson, J.; Montesano, P. M.; Margolis, H. A.

    2011-12-01

    The Eurasian boreal forest is the largest continuous forest in the world and contains a vast quantity of carbon stock that is currently vulnerable to loss from climate change. We develop and present an approach to map the spatial distribution of above ground biomass throughout this region. Our method combines satellite measurements from the Geoscience Laser Altimeter System (GLAS) that is carried on the Ice, Cloud and land Elevation Satellite ( ICESat), with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and biomass field measurements collected from surveys from a number of different biomes throughout Boreal Eurasia. A slope model derived from the GDEM with quality control flags, and Moderate-resolution Imaging Spectroradiometer (MODIS) water mask was implemented to exclude poor quality GLAS shots and stratify measurements by MODIS International Geosphere Biosphere (IGBP) and World Wildlife Fund (WWF) ecozones. We derive equations from regional field measurements to estimate the spatial distribution of above ground biomass by land cover type within biome and present a map with uncertainties and limitations of this approach which can be used as a baseline for future studies.

  1. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  2. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast

  3. Bio-physical vs. Economic Uncertainty in the Analysis of Climate Change Impacts on World Agriculture

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Lobell, D. B.

    2010-12-01

    Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. The recent paper by Hertel, Burke and Lobell (GEC, 2010) considers three scenarios of agricultural impacts of climate change, corresponding to the fifth, fiftieth, and ninety fifth percentiles of projected yield distributions for the world’s crops in 2030. They evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, their low productivity scenario reveals the potential for much larger food price changes than reported in recent studies which have hitherto focused on the most likely outcomes. The poverty impacts of price changes under the extremely adverse scenario are quite heterogeneous and very significant in some population strata. They conclude that it is critical to look beyond central case climate shocks and beyond a simple focus on yields and highly aggregated poverty impacts. In this paper, we conduct a more formal, systematic sensitivity analysis (SSA) with respect to uncertainty in the biophysical impacts of climate change on agriculture, by explicitly specifying joint distributions for global yield changes - this time focusing on 2050. This permits us to place confidence intervals on the resulting price impacts and poverty results which reflect the uncertainty inherited from the biophysical side of the analysis. We contrast this with the economic uncertainty inherited from the global general equilibrium model (GTAP), by undertaking SSA with respect to the behavioral parameters in that model. This permits us to assess which type of uncertainty is more important for regional price and poverty outcomes. Finally, we undertake a combined SSA, wherein climate change-induced productivity shocks are permitted to interact with the uncertain economic parameters. This permits us to examine potential interactions between the two sources of uncertainty.

  4. Nationwide tsunami hazard assessment project in Japan

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Ohsumi, T.; Morikawa, N.; Kawai, S.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2014-12-01

    In 2012, we began a project of nationwide Probabilistic Tsunami Hazard Assessment (PTHA) in Japan to support various measures (Fujiwara et al., 2013, JpGU; Hirata et al., 2014, AOGS). The most important strategy in the nationwide PTHA is predominance of aleatory uncertainty in the assessment but use of epistemic uncertainty is limited to the minimum, because the number of all possible combinations among epistemic uncertainties diverges quickly when the number of epistemic uncertainties in the assessment increases ; we consider only a type of earthquake occurrence probability distribution as epistemic uncertainty. We briefly show outlines of the nationwide PTHA as follows; (i) we consider all possible earthquakes in the future, including those that the Headquarters for Earthquake Research Promotion (HERP) of Japanese Government, already assessed. (ii) We construct a set of simplified earthquake fault models, called "Characterized Earthquake Fault Models (CEFMs)", for all of the earthquakes by following prescribed rules (Toyama et al., 2014, JpGU; Korenaga et al., 2014, JpGU). (iii) For all of initial water surface distributions caused by a number of the CEFMs, we calculate tsunamis by solving a nonlinear long wave equation, using FDM, including runup calculation, over a nesting grid system with a minimum grid size of 50 meters. (iv) Finally, we integrate information about the tsunamis calculated from the numerous CEFMs to get nationwide tsunami hazard assessments. One of the most popular representations of the integrated information is a tsunami hazard curve for coastal tsunami heights, incorporating uncertainties inherent in tsunami simulation and earthquake fault slip heterogeneity (Abe et al., 2014, JpGU). We will show a PTHA along the eastern coast of Honshu, Japan, based on approximately 1,800 tsunami sources located within the subduction zone along the Japan Trench, as a prototype of the nationwide PTHA. This study is supported by part of the research project on research on evaluation of hazard and risk of natural disasters, under the direction of the HERP of Japanese Government.

  5. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region.

    PubMed

    Ando, Amy W; Mallory, Mindy L

    2012-04-24

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.

  6. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region

    PubMed Central

    Ando, Amy W.; Mallory, Mindy L.

    2012-01-01

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit–cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change–induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area. PMID:22451914

  7. An uncertainty budget for VHF and UHF reflectometers

    NASA Astrophysics Data System (ADS)

    Ridler, N. M.; Medley, C. J.

    1992-05-01

    Details of the derivation of an uncertainty budget for one port immittance or complex voltage reflection coefficient measuring instruments, operating at VHF and UHF in the 14 mm 50 ohm coaxial line size, are reported. The principles of the uncertainty budget are given along with experimental results obtained using six ports and a network analyzer as the measuring instruments. Details of the types of calibration for which the uncertainty budget is suitable are reported. Various aspects of the uncertainty budget are considered and general principles and treatment of the type A and type B contributions are discussed. Experimental results obtained using the uncertainty budget are given. A summary of uncertainties for the six ports and HP8753B automatic network analyzer are also given.

  8. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  9. Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Samrat; Halappanavar, Mahantesh; Tipireddy, Ramakrishna

    Representation and propagation of uncertainty in cyber attacker payoffs is a key aspect of security games. Past research has primarily focused on representing the defender’s beliefs about attacker payoffs as point utility estimates. More recently, within the physical security domain, attacker payoff uncertainties have been represented as Uniform and Gaussian probability distributions, and intervals. Within cyber-settings, continuous probability distributions may still be appropriate for addressing statistical (aleatory) uncertainties where the defender may assume that the attacker’s payoffs differ over time. However, systematic (epistemic) uncertainties may exist, where the defender may not have sufficient knowledge or there is insufficient information aboutmore » the attacker’s payoff generation mechanism. Such epistemic uncertainties are more suitably represented as probability boxes with intervals. In this study, we explore the mathematical treatment of such mixed payoff uncertainties.« less

  10. Predicting long-range transport: a systematic evaluation of two multimedia transport models.

    PubMed

    Bennett, D H; Scheringer, M; McKone, T E; Hungerbühler, K

    2001-03-15

    The United Nations Environment Program has recently developed criteria to identify and restrict chemicals with a potential for persistence and long-range transport (persistent organic pollutants or POPs). There are many stakeholders involved, and the issues are not only scientific but also include social, economic, and political factors. This work focuses on one aspect of the POPs debate, the criteria for determining the potential for long-range transport (LRT). Our goal is to determine if current models are reliable enough to support decisions that classify a chemical based on the LRT potential. We examine the robustness of two multimedia fate models for determining the relative ranking and absolute spatial range of various chemicals in the environment. We also consider the effect of parameter uncertainties and the model uncertainty associated with the selection of an algorithm for gas-particle partitioning on the model results. Given the same chemical properties, both models give virtually the same ranking. However, when chemical parameter uncertainties and model uncertainties such as particle partitioning are considered, the spatial range distributions obtained for the individual chemicals overlap, preventing a distinct rank order. The absolute values obtained for the predicted spatial range or travel distance differ significantly between the two models for the uncertainties evaluated. We find that to evaluate a chemical when large and unresolved uncertainties exist, it is more informative to use two or more models and include multiple types of uncertainty. Model differences and uncertainties must be explicitly confronted to determine how the limitations of scientific knowledge impact predictions in the decision-making process.

  11. Reliability of a new biokinetic model of zirconium in internal dosimetry: part I, parameter uncertainty analysis.

    PubMed

    Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph

    2011-12-01

    The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a certain extent depending on the strength of the correlation. In the case of model prediction, the qualitative comparison of the model predictions with the measured plasma and urinary data showed the HMGU model to be more reliable than the ICRP model; quantitatively, the uncertainty model prediction by the HMGU systemic biokinetic model is smaller than that of the ICRP model. The uncertainty information on the model parameters analyzed in this study was used in the second part of the paper regarding a sensitivity analysis of the Zr biokinetic models.

  12. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.

    2010-11-01

    The uncertainties of a national, bottom-up inventory of Chinese emissions of anthropogenic SO2, NOx, and particulate matter (PM) of different size classes and carbonaceous species are comprehensively quantified, for the first time, using Monte Carlo simulation. The inventory is structured by seven dominant sectors: coal-fired electric power, cement, iron and steel, other industry (boiler combustion), other industry (non-combustion processes), transportation, and residential. For each parameter related to emission factors or activity-level calculations, the uncertainties, represented as probability distributions, are either statistically fitted using results of domestic field tests or, when these are lacking, estimated based on foreign or other domestic data. The uncertainties (i.e., 95% confidence intervals around the central estimates) of Chinese emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC), and organic carbon (OC) in 2005 are estimated to be -14%~12%, -10%~36%, -10%~36%, -12%~42% -16%~52%, -23%~130%, and -37%~117%, respectively. Variations at activity levels (e.g., energy consumption or industrial production) are not the main source of emission uncertainties. Due to narrow classification of source types, large sample sizes, and relatively high data quality, the coal-fired power sector is estimated to have the smallest emission uncertainties for all species except BC and OC. Due to poorer source classifications and a wider range of estimated emission factors, considerable uncertainties of NOx and PM emissions from cement production and boiler combustion in other industries are found. The probability distributions of emission factors for biomass burning, the largest source of BC and OC, are fitted based on very limited domestic field measurements, and special caution should thus be taken interpreting these emission uncertainties. Although Monte Carlo simulation yields narrowed estimates of uncertainties compared to previous bottom-up emission studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones - notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties - is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.

  13. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.

    2011-03-01

    The uncertainties of a national, bottom-up inventory of Chinese emissions of anthropogenic SO2, NOx, and particulate matter (PM) of different size classes and carbonaceous species are comprehensively quantified, for the first time, using Monte Carlo simulation. The inventory is structured by seven dominant sectors: coal-fired electric power, cement, iron and steel, other industry (boiler combustion), other industry (non-combustion processes), transportation, and residential. For each parameter related to emission factors or activity-level calculations, the uncertainties, represented as probability distributions, are either statistically fitted using results of domestic field tests or, when these are lacking, estimated based on foreign or other domestic data. The uncertainties (i.e., 95% confidence intervals around the central estimates) of Chinese emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC), and organic carbon (OC) in 2005 are estimated to be -14%~13%, -13%~37%, -11%~38%, -14%~45%, -17%~54%, -25%~136%, and -40%~121%, respectively. Variations at activity levels (e.g., energy consumption or industrial production) are not the main source of emission uncertainties. Due to narrow classification of source types, large sample sizes, and relatively high data quality, the coal-fired power sector is estimated to have the smallest emission uncertainties for all species except BC and OC. Due to poorer source classifications and a wider range of estimated emission factors, considerable uncertainties of NOx and PM emissions from cement production and boiler combustion in other industries are found. The probability distributions of emission factors for biomass burning, the largest source of BC and OC, are fitted based on very limited domestic field measurements, and special caution should thus be taken interpreting these emission uncertainties. Although Monte Carlo simulation yields narrowed estimates of uncertainties compared to previous bottom-up emission studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones - notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties - is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.

  14. Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals

    NASA Astrophysics Data System (ADS)

    Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.

    2014-12-01

    Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.

  15. Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Den Hartog, D.J.

    1996-06-01

    The fitting of data by {chi}{sup 2}-minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimatesmore » for the fit parameters. They compare this method with a {chi}{sup 2}-minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than {approximately}20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers.« less

  16. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  17. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  18. 'spup' - an R package for uncertainty propagation in spatial environmental modelling

    NASA Astrophysics Data System (ADS)

    Sawicka, Kasia; Heuvelink, Gerard

    2016-04-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected static and interactive visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.

  19. 'spup' - an R package for uncertainty propagation analysis in spatial environmental modelling

    NASA Astrophysics Data System (ADS)

    Sawicka, Kasia; Heuvelink, Gerard

    2017-04-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability and being able to deal with case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.

  20. Uncertainties in the 2004 Sumatra–Andaman source through nonlinear stochastic inversion of tsunami waves

    PubMed Central

    Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F.

    2017-01-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems. PMID:28989311

  1. Uncertainties in the 2004 Sumatra-Andaman source through nonlinear stochastic inversion of tsunami waves.

    PubMed

    Gopinathan, D; Venugopal, M; Roy, D; Rajendran, K; Guillas, S; Dias, F

    2017-09-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra-Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems.

  2. TH-A-19A-04: Latent Uncertainties and Performance of a GPU-Implemented Pre-Calculated Track Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, M; Seuntjens, J; Roberge, D

    Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less

  3. Representation of analysis results involving aleatory and epistemic uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Helton, Jon Craig; Oberkampf, William Louis

    2008-08-01

    Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for quantities that are assumed to have fixed but poorly known values in the context of a specific study. Aleatory uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or complementary cumulative distribution functions (CCDFs) for analysis results of interest. Several mathematical structures are available for themore » representation of epistemic uncertainty, including interval analysis, possibility theory, evidence theory and probability theory. In the presence of epistemic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty. Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated and presented for the indicated characterizations of epistemic uncertainty.« less

  4. Probabilistic Radiological Performance Assessment Modeling and Uncertainty

    NASA Astrophysics Data System (ADS)

    Tauxe, J.

    2004-12-01

    A generic probabilistic radiological Performance Assessment (PA) model is presented. The model, built using the GoldSim systems simulation software platform, concerns contaminant transport and dose estimation in support of decision making with uncertainty. Both the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE) require assessments of potential future risk to human receptors of disposal of LLW. Commercially operated LLW disposal facilities are licensed by the NRC (or agreement states), and the DOE operates such facilities for disposal of DOE-generated LLW. The type of PA model presented is probabilistic in nature, and hence reflects the current state of knowledge about the site by using probability distributions to capture what is expected (central tendency or average) and the uncertainty (e.g., standard deviation) associated with input parameters, and propagating through the model to arrive at output distributions that reflect expected performance and the overall uncertainty in the system. Estimates of contaminant release rates, concentrations in environmental media, and resulting doses to human receptors well into the future are made by running the model in Monte Carlo fashion, with each realization representing a possible combination of input parameter values. Statistical summaries of the results can be compared to regulatory performance objectives, and decision makers are better informed of the inherently uncertain aspects of the model which supports their decision-making. While this information may make some regulators uncomfortable, they must realize that uncertainties which were hidden in a deterministic analysis are revealed in a probabilistic analysis, and the chance of making a correct decision is now known rather than hoped for. The model includes many typical features and processes that would be part of a PA, but is entirely fictitious. This does not represent any particular site and is meant to be a generic example. A practitioner could, however, start with this model as a GoldSim template and, by adding site specific features and parameter values (distributions), use this model as a starting point for a real model to be used in real decision making.

  5. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.

    PubMed

    Andreozzi, Stefano; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2016-01-01

    Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Impact of Pitot tube calibration on the uncertainty of water flow rate measurement

    NASA Astrophysics Data System (ADS)

    de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder

    2015-10-01

    Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.

  7. Quantifying the uncertainty of nonpoint source attribution in distributed water quality models: A Bayesian assessment of SWAT's sediment export predictions

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Long, Tanya; Boyd, Duncan

    2014-11-01

    Spatially distributed nonpoint source watershed models are essential tools to estimate the magnitude and sources of diffuse pollution. However, little work has been undertaken to understand the sources and ramifications of the uncertainty involved in their use. In this study we conduct the first Bayesian uncertainty analysis of the water quality components of the SWAT model, one of the most commonly used distributed nonpoint source models. Working in Southern Ontario, we apply three Bayesian configurations for calibrating SWAT to Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural one. We answer four interrelated questions: can SWAT determine suspended sediment sources with confidence when end of basin data is used for calibration? How does uncertainty propagate from the discharge submodel to the suspended sediment submodels? Do the estimated sediment sources vary when different calibration approaches are used? Can we combine the knowledge gained from different calibration approaches? We show that: (i) despite reasonable fit at the basin outlet, the simulated sediment sources are subject to uncertainty sufficient to undermine the typical approach of reliance on a single, best fit simulation; (ii) more than a third of the uncertainty of sediment load predictions may stem from the discharge submodel; (iii) estimated sediment sources do vary significantly across the three statistical configurations of model calibration despite end-of-basin predictions being virtually identical; and (iv) Bayesian model averaging is an approach that can synthesize predictions when a number of adequate distributed models make divergent source apportionments. We conclude with recommendations for future research to reduce the uncertainty encountered when using distributed nonpoint source models for source apportionment.

  8. Multiple Use One-Sided Hypotheses Testing in Univariate Linear Calibration

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, K.; Kulkarni, Pandurang M.; Mathew, Thomas

    1996-01-01

    Consider a normally distributed response variable, related to an explanatory variable through the simple linear regression model. Data obtained on the response variable, corresponding to known values of the explanatory variable (i.e., calibration data), are to be used for testing hypotheses concerning unknown values of the explanatory variable. We consider the problem of testing an unlimited sequence of one sided hypotheses concerning the explanatory variable, using the corresponding sequence of values of the response variable and the same set of calibration data. This is the situation of multiple use of the calibration data. The tests derived in this context are characterized by two types of uncertainties: one uncertainty associated with the sequence of values of the response variable, and a second uncertainty associated with the calibration data. We derive tests based on a condition that incorporates both of these uncertainties. The solution has practical applications in the decision limit problem. We illustrate our results using an example dealing with the estimation of blood alcohol concentration based on breath estimates of the alcohol concentration. In the example, the problem is to test if the unknown blood alcohol concentration of an individual exceeds a threshold that is safe for driving.

  9. Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method.

    PubMed

    Zonta, Zivko J; Flotats, Xavier; Magrí, Albert

    2014-08-01

    The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.

  10. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  11. dftools: Distribution function fitting

    NASA Astrophysics Data System (ADS)

    Obreschkow, Danail

    2018-05-01

    dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.

  12. A METHODOLOGY FOR ESTIMATING UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC MODEL: APPLICATION TO POCONO CREEK WATERSHED

    EPA Science Inventory

    Utility of distributed hydrologic and water quality models for watershed management and sustainability studies should be accompanied by rigorous model uncertainty analysis. However, the use of complex watershed models primarily follows the traditional {calibrate/validate/predict}...

  13. Accommodating Uncertainty in Prior Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Richard Roy; Vander Wiel, Scott Alan

    2017-01-19

    A fundamental premise of Bayesian methodology is that a priori information is accurately summarized by a single, precisely de ned prior distribution. In many cases, especially involving informative priors, this premise is false, and the (mis)application of Bayes methods produces posterior quantities whose apparent precisions are highly misleading. We examine the implications of uncertainty in prior distributions, and present graphical methods for dealing with them.

  14. Rényi and Tsallis formulations of separability conditions in finite dimensions

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2017-12-01

    Separability conditions for a bipartite quantum system of finite-dimensional subsystems are formulated in terms of Rényi and Tsallis entropies. Entropic uncertainty relations often lead to entanglement criteria. We propose new approach based on the convolution of discrete probability distributions. Measurements on a total system are constructed of local ones according to the convolution scheme. Separability conditions are derived on the base of uncertainty relations of the Maassen-Uffink type as well as majorization relations. On each of subsystems, we use a pair of sets of subnormalized vectors that form rank-one POVMs. We also obtain entropic separability conditions for local measurements with a special structure, such as mutually unbiased bases and symmetric informationally complete measurements. The relevance of the derived separability conditions is demonstrated with several examples.

  15. The uncertainty of nitrous oxide emissions from grazed grasslands: A New Zealand case study

    NASA Astrophysics Data System (ADS)

    Kelliher, Francis M.; Henderson, Harold V.; Cox, Neil R.

    2017-01-01

    Agricultural soils emit nitrous oxide (N2O), a greenhouse gas and the primary source of nitrogen oxides which deplete stratospheric ozone. Agriculture has been estimated to be the largest anthropogenic N2O source. In New Zealand (NZ), pastoral agriculture uses half the land area. To estimate the annual N2O emissions from NZ's agricultural soils, the nitrogen (N) inputs have been determined and multiplied by an emission factor (EF), the mass fraction of N inputs emitted as N2Osbnd N. To estimate the associated uncertainty, we developed an analytical method. For comparison, another estimate was determined by Monte Carlo numerical simulation. For both methods, expert judgement was used to estimate the N input uncertainty. The EF uncertainty was estimated by meta-analysis of the results from 185 NZ field trials. For the analytical method, assuming a normal distribution and independence of the terms used to calculate the emissions (correlation = 0), the estimated 95% confidence limit was ±57%. When there was a normal distribution and an estimated correlation of 0.4 between N input and EF, the latter inferred from experimental data involving six NZ soils, the analytical method estimated a 95% confidence limit of ±61%. The EF data from 185 NZ field trials had a logarithmic normal distribution. For the Monte Carlo method, assuming a logarithmic normal distribution for EF, a normal distribution for the other terms and independence of all terms, the estimated 95% confidence limits were -32% and +88% or ±60% on average. When there were the same distribution assumptions and a correlation of 0.4 between N input and EF, the Monte Carlo method estimated 95% confidence limits were -34% and +94% or ±64% on average. For the analytical and Monte Carlo methods, EF uncertainty accounted for 95% and 83% of the emissions uncertainty when the correlation between N input and EF was 0 and 0.4, respectively. As the first uncertainty analysis of an agricultural soils N2O emissions inventory using "country-specific" field trials to estimate EF uncertainty, this can be a potentially informative case study for the international scientific community.

  16. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.

  17. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    DTIC Science & Technology

    2014-09-02

    release; distribution is unlimited. rock zone which provides a pathway for formation fluids, natural gas and crude oil from deeper strata that are... southeast Louisiana (Figure 21). It is a part of the Gulf Coast salt basin which exhibits many salt structures formed by upward flow of sedimentary salt...primarily, evaporites) on account of low density of salt and overburden pressures caused by younger sedimentary deposits (Beckman and Williamson, 1990

  18. Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements.

    PubMed

    Herman, Benjamin R; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2008-04-01

    We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.

  19. Parameter-induced uncertainty quantification of crop yields, soil N2O and CO2 emission for 8 arable sites across Europe using the LandscapeDNDC model

    NASA Astrophysics Data System (ADS)

    Santabarbara, Ignacio; Haas, Edwin; Kraus, David; Herrera, Saul; Klatt, Steffen; Kiese, Ralf

    2014-05-01

    When using biogeochemical models to estimate greenhouse gas emissions at site to regional/national levels, the assessment and quantification of the uncertainties of simulation results are of significant importance. The uncertainties in simulation results of process-based ecosystem models may result from uncertainties of the process parameters that describe the processes of the model, model structure inadequacy as well as uncertainties in the observations. Data for development and testing of uncertainty analisys were corp yield observations, measurements of soil fluxes of nitrous oxide (N2O) and carbon dioxide (CO2) from 8 arable sites across Europe. Using the process-based biogeochemical model LandscapeDNDC for simulating crop yields, N2O and CO2 emissions, our aim is to assess the simulation uncertainty by setting up a Bayesian framework based on Metropolis-Hastings algorithm. Using Gelman statistics convergence criteria and parallel computing techniques, enable multi Markov Chains to run independently in parallel and create a random walk to estimate the joint model parameter distribution. Through means distribution we limit the parameter space, get probabilities of parameter values and find the complex dependencies among them. With this parameter distribution that determines soil-atmosphere C and N exchange, we are able to obtain the parameter-induced uncertainty of simulation results and compare them with the measurements data.

  20. Teaching Uncertainties

    ERIC Educational Resources Information Center

    Duerdoth, Ian

    2009-01-01

    The subject of uncertainties (sometimes called errors) is traditionally taught (to first-year science undergraduates) towards the end of a course on statistics that defines probability as the limit of many trials, and discusses probability distribution functions and the Gaussian distribution. We show how to introduce students to the concepts of…

  1. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    NASA Astrophysics Data System (ADS)

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; Zhang, Guodong; Yan, Wei; Li, Jiaxuan; Li, Bo; Dan, Li; Fisher, Joshua B.; Gao, Zhiqiang; He, Yong; Huntzinger, Deborah; Jain, Atul K.; Mao, Jiafu; Meng, Jihua; Michalak, Anna M.; Parazoo, Nicholas C.; Peng, Changhui; Poulter, Benjamin; Schwalm, Christopher R.; Shi, Xiaoying; Sun, Rui; Tao, Fulu; Tian, Hanqin; Wei, Yaxing; Zeng, Ning; Zhu, Qiuan; Zhu, Wenquan

    2016-05-01

    Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr-1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr-1 during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.

  2. Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes

    NASA Astrophysics Data System (ADS)

    Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.

    2017-12-01

    Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.

  3. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measuredmore » over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of Standards and Technology standards. This study shows that N{sub D,w} coefficients measured at different ADCLs are statistically equivalent, especially considering reasonable uncertainties. This analysis of N{sub D,w} coefficients also allows identification of chamber types that can be considered stable enough for accurate reference dosimetry.« less

  4. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2016-03-01

    Gross primary production (GPP) can be separated from flux tower measurements of net ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based simulators and remote-sensing-derived estimates of simulated GPP at various time steps. Proper validation includes the uncertainty associated with this separation. In this study, uncertainty assessment was done in a Bayesian framework. It was applied to data from the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half-hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from the flux tower measurements. The NRH model provides a robust empirical relationship between radiation and GPP. It includes the degree of curvature of the light response curve, radiation and temperature. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. We defined the prior distribution of each NRH parameter and used Markov chain Monte Carlo (MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior distribution at half-hourly time steps. This time series also allowed us to estimate the uncertainty at daily time steps. We compared the informative with the non-informative prior distributions of the NRH parameters and found that both choices produced similar posterior distributions of GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  5. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport.

    PubMed

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-03

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  6. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  7. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, R.; Hamm, N. A. S.; van der Tol, C.; Stein, A.

    2015-08-01

    Gross primary production (GPP), separated from flux tower measurements of net ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time steps. Proper validation should include the uncertainty associated with this separation at different time steps. This can be achieved by using a Bayesian framework. In this study, we estimated the uncertainty in GPP at half hourly time steps. We used a non-rectangular hyperbola (NRH) model to separate GPP from flux tower measurements of NEE at the Speulderbos forest site, The Netherlands. The NRH model included the variables that influence GPP, in particular radiation, and temperature. In addition, the NRH model provided a robust empirical relationship between radiation and GPP by including the degree of curvature of the light response curve. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. Adopting a Bayesian approach, we defined the prior distribution of each NRH parameter. Markov chain Monte Carlo (MCMC) simulation was used to update the prior distribution of each NRH parameter. This allowed us to estimate the uncertainty in the separated GPP at half-hourly time steps. This yielded the posterior distribution of GPP at each half hour and allowed the quantification of uncertainty. The time series of posterior distributions thus obtained allowed us to estimate the uncertainty at daily time steps. We compared the informative with non-informative prior distributions of the NRH parameters. The results showed that both choices of prior produced similar posterior distributions GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  8. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge observations and several years of archived forecasts, overall empirical error distributions termed 'overall error' were for each gauge derived for a range of relevant forecast lead times. b) The error distributions vary strongly with the hydrometeorological situation, therefore a subdivision into the hydrological cases 'low flow, 'rising flood', 'flood', flood recession' was introduced. c) For the sake of numerical compression, theoretical distributions were fitted to the empirical distributions using the method of moments. Here, the normal distribution was generally best suited. d) Further data compression was achieved by representing the distribution parameters as a function (second-order polynome) of lead time. In general, the 'overall error' obtained from the above procedure is most useful in regions where large human impact occurs and where the influence of the meteorological forecast is limited. In upstream regions however, forecast uncertainty is strongly dependent on the current predictability of the atmosphere, which is contained in the spread of an ensemble forecast. Including this dynamically in the hydrological forecast uncertainty estimation requires prior elimination of the contribution of the weather forecast to the 'overall error'. This was achieved by calculating long series of hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The resulting error distribution is termed 'model error' and can be applied on hydrological ensemble forecasts, where ensemble rainfall forecasts are used as forcing. The concept will be illustrated by examples (good and bad ones) covering a wide range of catchment sizes, hydrometeorological regimes and quality of hydrological model calibration. The methodology to combine the static and dynamic shares of uncertainty will be presented in part II of this study.

  9. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  10. Prediction of the Electromagnetic Field Distribution in a Typical Aircraft Using the Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane

    2016-05-01

    Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.

  11. Visualization of the operational space of edge-localized modes through low-dimensional embedding of probability distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Noterdaeme, J. M.; Max-Planck-Institut für Plasmaphysik, Garching D-85748

    2014-11-15

    Information visualization aimed at facilitating human perception is an important tool for the interpretation of experiments on the basis of complex multidimensional data characterizing the operational space of fusion devices. This work describes a method for visualizing the operational space on a two-dimensional map and applies it to the discrimination of type I and type III edge-localized modes (ELMs) from a series of carbon-wall ELMy discharges at JET. The approach accounts for stochastic uncertainties that play an important role in fusion data sets, by modeling measurements with probability distributions in a metric space. The method is aimed at contributing tomore » physical understanding of ELMs as well as their control. Furthermore, it is a general method that can be applied to the modeling of various other plasma phenomena as well.« less

  12. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  13. Uncertainty indication in soil function maps - transparent and easy-to-use information to support sustainable use of soil resources

    NASA Astrophysics Data System (ADS)

    Greiner, Lucie; Nussbaum, Madlene; Papritz, Andreas; Zimmermann, Stephan; Gubler, Andreas; Grêt-Regamey, Adrienne; Keller, Armin

    2018-05-01

    Spatial information on soil function fulfillment (SFF) is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1) indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM) that are used for soil function assessment (SFA) and (2) showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil resources.

  14. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region.

    PubMed

    Gissi, Elena; Menegon, Stefano; Sarretta, Alessandro; Appiotti, Federica; Maragno, Denis; Vianello, Andrea; Depellegrin, Daniel; Venier, Chiara; Barbanti, Andrea

    2017-01-01

    Maritime spatial planning (MSP) is envisaged as a tool to apply an ecosystem-based approach to the marine and coastal realms, aiming at ensuring that the collective pressure of human activities is kept within acceptable limits. Cumulative impacts (CI) assessment can support science-based MSP, in order to understand the existing and potential impacts of human uses on the marine environment. A CI assessment includes several sources of uncertainty that can hinder the correct interpretation of its results if not explicitly incorporated in the decision-making process. This study proposes a three-level methodology to perform a general uncertainty analysis integrated with the CI assessment for MSP, applied to the Adriatic and Ionian Region (AIR). We describe the nature and level of uncertainty with the help of expert judgement and elicitation to include all of the possible sources of uncertainty related to the CI model with assumptions and gaps related to the case-based MSP process in the AIR. Next, we use the results to tailor the global uncertainty analysis to spatially describe the uncertainty distribution and variations of the CI scores dependent on the CI model factors. The results show the variability of the uncertainty in the AIR, with only limited portions robustly identified as the most or the least impacted areas under multiple model factors hypothesis. The results are discussed for the level and type of reliable information and insights they provide to decision-making. The most significant uncertainty factors are identified to facilitate the adaptive MSP process and to establish research priorities to fill knowledge gaps for subsequent planning cycles. The method aims to depict the potential CI effects, as well as the extent and spatial variation of the data and scientific uncertainty; therefore, this method constitutes a suitable tool to inform the potential establishment of the precautionary principle in MSP.

  15. Uncertainties in land use data

    NASA Astrophysics Data System (ADS)

    Castilla, G.; Hay, G. J.

    2006-11-01

    This paper deals with the description and assessment of uncertainties in gridded land use data derived from Remote Sensing observations, in the context of hydrological studies. Land use is a categorical regionalised variable returning the main socio-economic role each location has, where the role is inferred from the pattern of occupation of land. There are two main uncertainties surrounding land use data, positional and categorical. This paper focuses on the second one, as the first one has in general less serious implications and is easier to tackle. The conventional method used to asess categorical uncertainty, the confusion matrix, is criticised in depth, the main critique being its inability to inform on a basic requirement to propagate uncertainty through distributed hydrological models, namely the spatial distribution of errors. Some existing alternative methods are reported, and finally the need for metadata is stressed as a more reliable means to assess the quality, and hence the uncertainty, of these data.

  16. Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    PubMed

    Yao, Guolin; Staples, Mark D; Malina, Robert; Tyner, Wallace E

    2017-01-01

    Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven prices, potential investors can apply whatever risk preferences they like to determine an appropriate bid or breakeven price that matches their risk profile.

  17. Mitigating Provider Uncertainty in Service Provision Contracts

    NASA Astrophysics Data System (ADS)

    Smith, Chris; van Moorsel, Aad

    Uncertainty is an inherent property of open, distributed and multiparty systems. The viability of the mutually beneficial relationships which motivate these systems relies on rational decision-making by each constituent party under uncertainty. Service provision in distributed systems is one such relationship. Uncertainty is experienced by the service provider in his ability to deliver a service with selected quality level guarantees due to inherent non-determinism, such as load fluctuations and hardware failures. Statistical estimators utilized to model this non-determinism introduce additional uncertainty through sampling error. Inability of the provider to accurately model and analyze uncertainty in the quality level guarantees can result in the formation of sub-optimal service provision contracts. Emblematic consequences include loss of revenue, inefficient resource utilization and erosion of reputation and consumer trust. We propose a utility model for contract-based service provision to provide a systematic approach to optimal service provision contract formation under uncertainty. Performance prediction methods to enable the derivation of statistical estimators for quality level are introduced, with analysis of their resultant accuracy and cost.

  18. What drives uncertainty in model diagnoses of carbon dynamics in southern US forests: climate, vegetation, disturbance, or model parameters?

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gu, H.; Williams, C. A.

    2017-12-01

    Results from terrestrial carbon cycle models have multiple sources of uncertainty, each with its behavior and range. Their relative importance and how they combine has received little attention. This study investigates how various sources of uncertainty propagate, temporally and spatially, in CASA-Disturbance (CASA-D). CASA-D simulates the impact of climatic forcing and disturbance legacies on forest carbon dynamics with the following steps. Firstly, we infer annual growth and mortality rates from measured biomass stocks (FIA) over time and disturbance (e.g., fire, harvest, bark beetle) to represent annual post-disturbance carbon fluxes trajectories across forest types and site productivity settings. Then, annual carbon fluxes are estimated from these trajectories by using time since disturbance which is inferred from biomass (NBCD 2000) and disturbance maps (NAFD, MTBS and ADS). Finally, we apply monthly climatic scalars derived from default CASA to temporally distribute annual carbon fluxes to each month. This study assesses carbon flux uncertainty from two sources: driving data including climatic and forest biomass inputs, and three most sensitive parameters in CASA-D including maximum light use efficiency, temperature sensitivity of soil respiration (Q10) and optimum temperature identified by using EFAST (Extended Fourier Amplitude Sensitivity Testing). We quantify model uncertainties from each, and report their relative importance in estimating forest carbon sink/source in southeast United States from 2003 to 2010.

  19. Socioeconomic Implications of Achieving 2.0 °C and 1.5 °C Climate Targets under Scientific Uncertainties

    NASA Astrophysics Data System (ADS)

    Su, X.; Takahashi, K.; Fujimori, S.; Hasegawa, T.; Tanaka, K.; Shiogama, H.; Emori, S.; LIU, J.; Hanasaki, N.; Hijioka, Y.; Masui, T.

    2017-12-01

    Large uncertainty exists in the temperature projections, including contributions from carbon cycle, climate system and aerosols. For the integrated assessment models (IAMs), like DICE, FUND and PAGE, however, the scientific uncertainties mainly rely on the distribution of (equilibrium) climate sensitivity. This study aims at evaluating the emission pathways by limiting temperature increase below 2.0 ºC or 1.5 ºC after 2100 considering scientific uncertainties, and exploring how socioeconomic indicators are affected by such scientific uncertainties. We use a stochastic version of the SCM4OPT, with an uncertainty measurement by considering alternative ranges of key parameters. Three climate cases, namely, i) base case of SSP2, ii) limiting temperature increase below 2.0 ºC after 2100 and iii) limiting temperature increase below 1.5 ºC after 2100, and three types of probabilities - i) >66% probability or likely, ii) >50% probability or more likely than not and iii) the mean of the probability distribution, are considered in the study. The results show that, i) for the 2.0ºC case, the likely CO2 reduction rate in 2100 ranges from 75.5%-102.4%, with mean value of 88.1%, and 93.0%-113.1% (mean 102.5%) for the 1.5ºC case; ii) a likely range of forcing effect is found for the 2.0 ºC case (2.7-3.9 Wm-2) due to scientific uncertainty, and 1.9-3.1 Wm-2 for the 1.5 ºC case; iii) the carbon prices within 50% confidential interval may differ a factor of 3 for both the 2.0ºC case and the 1.5 ºC case; iv) the abatement costs within 50% confidential interval may differ a factor of 4 for both the 2.0ºC case and the 1.5 ºC case. Nine C4MIP carbon cycle models and nineteen CMIP3 AOGCMs are used to account for the scientific uncertainties, following MAGICC 6.0. These uncertainties will result in a likely radiative forcing range of 6.1-7.5 Wm-2 and a likely temperature increase of 3.1-4.5 ºC in 2100 for the base case of SSP2. If we evaluate the 2 ºC target by limiting the temperature increase, a likely difference of up to 20.7 GtCO2-eq greenhouse gases (GHGs) in 2100 will occur in the assessment, or 14.4 GtCO2-eq GHGs difference for the 1.5 ºC case. The scientific uncertainties have significant impacts on evaluating costs of climate change and an appropriate representation of such uncertainties is important in the socioeconomic assessment.

  20. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Green, Anne M.

    2017-08-01

    The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.

  1. Development and application of a standardized flow measurement uncertainty analysis framework to various low-head short-converging intake types across the United States federal hydropower fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T

    2015-01-01

    Turbine discharges at low-head short converging intakes are difficult to measure accurately. The proximity of the measurement section to the intake entrance admits large uncertainties related to asymmetry of the velocity profile, swirl, and turbulence. Existing turbine performance codes [10, 24] do not address this special case and published literature is largely silent on rigorous evaluation of uncertainties associated with this measurement context. The American Society of Mechanical Engineers (ASME) Committee investigated the use of Acoustic transit time (ATT), Acoustic scintillation (AS), and Current meter (CM) in a short converging intake at the Kootenay Canal Generating Station in 2009. Basedmore » on their findings, a standardized uncertainty analysis (UA) framework for velocity-area method (specifically for CM measurements) is presented in this paper given the fact that CM is still the most fundamental and common type of measurement system. Typical sources of systematic and random errors associated with CM measurements are investigated, and the major sources of uncertainties associated with turbulence and velocity fluctuations, numerical velocity integration technique (bi-cubic spline), and the number and placement of current meters are being considered for an evaluation. Since the velocity measurements in a short converging intake are associated with complex nonlinear and time varying uncertainties (e.g., Reynolds stress in fluid dynamics), simply applying the law of propagation of uncertainty is known to overestimate the measurement variance while the Monte Carlo method does not. Therefore, a pseudo-Monte Carlo simulation method (random flow generation technique [8]) which was initially developed for the purpose of establishing upstream or initial conditions in the Large-Eddy Simulation (LES) and the Direct Numerical Simulation (DNS) is used to statistically determine uncertainties associated with turbulence and velocity fluctuations. This technique is then combined with a bi-cubic spline interpolation method which converts point velocities into a continuous velocity distribution over the measurement domain. Subsequently the number and placement of current meters are simulated to investigate the accuracy of the estimated flow rates using the numerical velocity-area integration method outlined in ISO 3354 [12]. The authors herein consider that statistics on generated flow rates processed with bi-cubic interpolation and sensor simulations are the combined uncertainties which already accounted for the effects of all those three uncertainty sources. A preliminary analysis based on the current meter data obtained through an upgrade acceptance test of a single unit located in a mainstem plant has been presented.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Chen, Z; Nath, R

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less

  3. The Bebig Valencia-type skin applicators: Dosimetric study and implementation of a dosimetric hybrid technique.

    PubMed

    Anagnostopoulos, Georgios; Andrássy, Michael; Baltas, Dimos

    To determine the relative dose rate distribution in water for the Bebig 20 mm and 30 mm skin applicators and report results in a form suitable for potential clinical use. Results for both skin applicators are also provided in the form of a hybrid Task Group 43 (TG-43) dosimetry technique. Furthermore, the radiation leakage around both skin applicators from the radiation protection point of view and the impact of the geometrical source position uncertainties are studied and reported. Monte Carlo simulations were performed using the MCNP 6.1 general purpose code, which was benchmarked against published dosimetry data for the Bebig Ir2.A85-2 high-dose-rate iridium-192 source, as well as the dosimetry data for the two Elekta skin applicators. Both Bebig skin applicators were modeled, and the dose rate distributions in a water phantom were calculated. The dosimetric quantities derived according to a hybrid TG-43 dosimetry technique are provided with their corresponding uncertainty values. The air kerma rate in air was simulated in the vicinity of each skin applicator to assess the radiation leakage. Results from the Monte Carlo simulations of both skin applicators are presented in the form of figures and relative dose rate tables, and additionally with the aid of the quantities defined in the hybrid TG-43 dosimetry technique and their corresponding uncertainty values. Their output factors, flatness, and penumbra values were found comparable to the Elekta skin applicators. The radiation shielding was evaluated to be adequate. The effect of potential uncertainties in source positioning on dosimetry should be investigated as part of applicator commissioning. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sig Drellack, Lance Prothro

    2007-12-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result ofmore » the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.« less

  5. Uncertainty in Measurement: A Review of Monte Carlo Simulation Using Microsoft Excel for the Calculation of Uncertainties Through Functional Relationships, Including Uncertainties in Empirically Derived Constants

    PubMed Central

    Farrance, Ian; Frenkel, Robert

    2014-01-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional relationship and contribute to the combined standard uncertainty of the measurand. PMID:24659835

  6. Uncertainty in measurement: a review of monte carlo simulation using microsoft excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants.

    PubMed

    Farrance, Ian; Frenkel, Robert

    2014-02-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship and contribute to the combined standard uncertainty of the measurand.

  7. Worry, Intolerance of Uncertainty, and Statistics Anxiety

    ERIC Educational Resources Information Center

    Williams, Amanda S.

    2013-01-01

    Statistics anxiety is a problem for most graduate students. This study investigates the relationship between intolerance of uncertainty, worry, and statistics anxiety. Intolerance of uncertainty was significantly related to worry, and worry was significantly related to three types of statistics anxiety. Six types of statistics anxiety were…

  8. Development of a Prototype Model-Form Uncertainty Knowledge Base

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2016-01-01

    Uncertainties are generally classified as either aleatory or epistemic. Aleatory uncertainties are those attributed to random variation, either naturally or through manufacturing processes. Epistemic uncertainties are generally attributed to a lack of knowledge. One type of epistemic uncertainty is called model-form uncertainty. The term model-form means that among the choices to be made during a design process within an analysis, there are different forms of the analysis process, which each give different results for the same configuration at the same flight conditions. Examples of model-form uncertainties include the grid density, grid type, and solver type used within a computational fluid dynamics code, or the choice of the number and type of model elements within a structures analysis. The objectives of this work are to identify and quantify a representative set of model-form uncertainties and to make this information available to designers through an interactive knowledge base (KB). The KB can then be used during probabilistic design sessions, so as to enable the possible reduction of uncertainties in the design process through resource investment. An extensive literature search has been conducted to identify and quantify typical model-form uncertainties present within aerospace design. An initial attempt has been made to assemble the results of this literature search into a searchable KB, usable in real time during probabilistic design sessions. A concept of operations and the basic structure of a model-form uncertainty KB are described. Key operations within the KB are illustrated. Current limitations in the KB, and possible workarounds are explained.

  9. Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

    NASA Astrophysics Data System (ADS)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten

    2016-05-01

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.

  10. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin

    2017-03-01

    We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.

  11. A Monte Carlo-type simulation toolbox for Solar System small body dynamics: Application to the October Draconids

    NASA Astrophysics Data System (ADS)

    Kastinen, D.; Kero, J.

    2017-09-01

    We present the current status and first results from a Monte Carlo-type simulation toolbox for Solar System small body dynamics. We also present fundamental methods for evaluating the results of this type of simulations using convergence criteria. The calculations consider a body in the Solar System with a mass loss mechanism that generates smaller particles. In our application the body, or parent body, is a comet and the mass loss mechanism is a sublimation process. In order to study mass propagation from parent bodies to Earth, we use the toolbox to sample the uncertainty distributions of relevant comet parameters and to find the resulting Earth influx distributions. The initial distributions considered represent orbital elements, sublimation distance, cometary and meteoroid densities, comet and meteoroid sizes and cometary surface activity. Simulations include perturbations from all major planets, radiation pressure and the Poynting-Robertson effect. In this paper we present the results of an initial software validation performed by producing synthetic versions of the 1933, 1946, 2011 and 2012 October Draconids meteor outbursts and comparing them with observational data and previous models. The synthetic meteor showers were generated by ejecting and propagating material from the recognized parent body of the October Draconids; the comet 21P/Giacobini-Zinner. Material was ejected during 17 perihelion passages between 1866 and 1972. Each perihelion passage was sampled with 50 clones of the parent body, all producing meteoroid streams. The clones were drawn from a multidimensional Gaussian distribution on the orbital elements, with distribution variances proportional to observational uncertainties. In the simulations, each clone ejected 8000 particles. Each particle was assigned an individual weight proportional to the mass loss it represented. This generated a total of 6.7 million test particles, out of which 43 thousand entered the Earth's Hill sphere during 1900-2020 and were considered encounters. The simulation reproduces the predictions and observations of the 1933, 1946, 2011 and 2012 October Draconids, including the unexpected but measured deviation of the meteoroid mass index from a power law in 2012 as compared to 2011. We show that when convergence is sufficient in the simulation, the fraction between two encountered mass distributions is independent of the assumed input mass distribution. Finally, we predict an outburst for the 2018 October Draconids with a peak on October 8-9 that could be up to twice as large as the 2011 and 2012 outbursts.

  12. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    PubMed Central

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  13. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    NASA Astrophysics Data System (ADS)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique. Subsequently, we only considered the most sensitive parameters for parameter optimization and UA. To explicitly account for the stream flow uncertainty, we assumed that the stream flow measurement error increases linearly with the stream flow value. To assess the uncertainty and infer posterior distributions of the parameters, we used a Markov Chain Monte Carlo (MCMC) sampler - differential evolution adaptive metropolis (DREAM) that uses sampling from an archive of past states to generate candidate points in each individual chain. It is shown that the marginal posterior distributions of the rainfall multipliers vary widely between individual events, as a consequence of rainfall measurement errors and the spatial variability of the rain. Only few of the rainfall events are well defined. The marginal posterior distributions of the SWAT model parameter values are well defined and identified by DREAM, within their prior ranges. The posterior distributions of output uncertainty parameter values also show that the stream flow data is highly uncertain. The approach of using rainfall multipliers to treat rainfall uncertainty for a complex model has an impact on the model parameter marginal posterior distributions and on the model results Corresponding author: Tel.: +32 (0)2629 3027; fax: +32(0)2629 3022. E-mail: otolessa@vub.ac.be

  14. TU-AB-BRB-03: Coverage-Based Treatment Planning to Accommodate Organ Deformable Motions and Contouring Uncertainties for Prostate Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  15. TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  16. Quantification of variability and uncertainty for air toxic emission inventories with censored emission factor data.

    PubMed

    Frey, H Christopher; Zhao, Yuchao

    2004-11-15

    Probabilistic emission inventories were developed for urban air toxic emissions of benzene, formaldehyde, chromium, and arsenic for the example of Houston. Variability and uncertainty in emission factors were quantified for 71-97% of total emissions, depending upon the pollutant and data availability. Parametric distributions for interunit variability were fit using maximum likelihood estimation (MLE), and uncertainty in mean emission factors was estimated using parametric bootstrap simulation. For data sets containing one or more nondetected values, empirical bootstrap simulation was used to randomly sample detection limits for nondetected values and observations for sample values, and parametric distributions for variability were fit using MLE estimators for censored data. The goodness-of-fit for censored data was evaluated by comparison of cumulative distributions of bootstrap confidence intervals and empirical data. The emission inventory 95% uncertainty ranges are as small as -25% to +42% for chromium to as large as -75% to +224% for arsenic with correlated surrogates. Uncertainty was dominated by only a few source categories. Recommendations are made for future improvements to the analysis.

  17. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less

  18. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  19. Unveiling Inherent Degeneracies in Determining Population-weighted Ensembles of Inter-domain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs

    PubMed Central

    Yang, Shan; Al-Hashimi, Hashim M.

    2016-01-01

    A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693

  20. Local Analysis Approach for Short Wavelength Geopotential Variations

    NASA Astrophysics Data System (ADS)

    Bender, P. L.

    2009-12-01

    The value of global spherical harmonic analyses for determining 15 day to 30 day changes in the Earth's gravity field has been demonstrated extensively using data from the GRACE mission and previous missions. However, additional useful information appears to be obtainable from local analyses of the data. A number of such analyses have been carried out by various groups. In the energy approximation, the changes in the height of the satellite altitude geopotential can be determined from the post-fit changes in the satellite separation during individual one-revolution arcs of data from a GRACE-type pair of satellites in a given orbit. For a particular region, it is assumed that short wavelength spatial variations for the arcs crossing that region during a time T of interest would be used to determine corrections to the spherical harmonic results. The main issue in considering higher measurement accuracy in future missions is how much improvement in spatial resolution can be achieved. For this, the shortest wavelengths that can be determined are the most important. And, while the longer wavelength variations are affected by mass distribution changes over much of the globe, the shorter wavelength ones hopefully will be determined mainly by more local changes in the mass distribution. Future missions are expected to have much higher accuracy for measuring changes in the satellite separation than GRACE. However, how large an improvement in the derived results in hydrology will be achieved is still very much a matter of study, particularly because of the effects of uncertainty in the time variations in the atmospheric and oceanic mass distributions. To be specific, it will be assumed that improving the spatial resolution in continental regions away from the coastlines is the objective, and that the satellite altitude is in the range of roughly 290 to 360 km made possible for long missions by drag-free operation. The advantages of putting together the short wavelength results from different arcs crossing the region can be seen most easily for an orbit with moderate inclination, such as 50 to 65 deg., so that the crossing angle between south-to-north (S-N) and N-S passes is fairly large over most regions well away from the poles. In that case, after filtering to pass the shorter wavelengths, the results for a given time interval can be combined to give the short wavelength W-E variations in the geopotential efficiently. For continents with extensive meteorological measurements available, like Europe and North America, a very rough guess at the surface mass density variation uncertainties is about 3 kg/m^2. This is based on the apparent accuracy of carefully calibrated surface pressure measurements. If a substantial part of the resulting uncertainties in the geopotential height at satellite altitude are at wavelengths less than about 1,500 km, they will dominate the measurement uncertainty at short spatial wavelengths for a GRACE-type mission with laser interferometry. This would be the case, even if the uncertainty in the atmospheric and oceanic mass distribution at large distances has a fairly small effect. However, the geopotential accuracy would still be substantially better than for the results achievable with a microwave ranging system.

  1. Bayesian calibration of mechanistic aquatic biogeochemical models and benefits for environmental management

    NASA Astrophysics Data System (ADS)

    Arhonditsis, George B.; Papantou, Dimitra; Zhang, Weitao; Perhar, Gurbir; Massos, Evangelia; Shi, Molu

    2008-09-01

    Aquatic biogeochemical models have been an indispensable tool for addressing pressing environmental issues, e.g., understanding oceanic response to climate change, elucidation of the interplay between plankton dynamics and atmospheric CO 2 levels, and examination of alternative management schemes for eutrophication control. Their ability to form the scientific basis for environmental management decisions can be undermined by the underlying structural and parametric uncertainty. In this study, we outline how we can attain realistic predictive links between management actions and ecosystem response through a probabilistic framework that accommodates rigorous uncertainty analysis of a variety of error sources, i.e., measurement error, parameter uncertainty, discrepancy between model and natural system. Because model uncertainty analysis essentially aims to quantify the joint probability distribution of model parameters and to make inference about this distribution, we believe that the iterative nature of Bayes' Theorem is a logical means to incorporate existing knowledge and update the joint distribution as new information becomes available. The statistical methodology begins with the characterization of parameter uncertainty in the form of probability distributions, then water quality data are used to update the distributions, and yield posterior parameter estimates along with predictive uncertainty bounds. Our illustration is based on a six state variable (nitrate, ammonium, dissolved organic nitrogen, phytoplankton, zooplankton, and bacteria) ecological model developed for gaining insight into the mechanisms that drive plankton dynamics in a coastal embayment; the Gulf of Gera, Island of Lesvos, Greece. The lack of analytical expressions for the posterior parameter distributions was overcome using Markov chain Monte Carlo simulations; a convenient way to obtain representative samples of parameter values. The Bayesian calibration resulted in realistic reproduction of the key temporal patterns of the system, offered insights into the degree of information the data contain about model inputs, and also allowed the quantification of the dependence structure among the parameter estimates. Finally, our study uses two synthetic datasets to examine the ability of the updated model to provide estimates of predictive uncertainty for water quality variables of environmental management interest.

  2. The epistemic and aleatory uncertainties of the ETAS-type models: an application to the Central Italy seismicity.

    PubMed

    Lombardi, A M

    2017-09-18

    Stochastic models provide quantitative evaluations about the occurrence of earthquakes. A basic component of this type of models are the uncertainties in defining main features of an intrinsically random process. Even if, at a very basic level, any attempting to distinguish between types of uncertainty is questionable, an usual way to deal with this topic is to separate epistemic uncertainty, due to lack of knowledge, from aleatory variability, due to randomness. In the present study this problem is addressed in the narrow context of short-term modeling of earthquakes and, specifically, of ETAS modeling. By mean of an application of a specific version of the ETAS model to seismicity of Central Italy, recently struck by a sequence with a main event of Mw6.5, the aleatory and epistemic (parametric) uncertainty are separated and quantified. The main result of the paper is that the parametric uncertainty of the ETAS-type model, adopted here, is much lower than the aleatory variability in the process. This result points out two main aspects: an analyst has good chances to set the ETAS-type models, but he may retrospectively describe and forecast the earthquake occurrences with still limited precision and accuracy.

  3. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the classification. The harmonization of the aerosol typing procedures is a fundamental need in aerosol studies for long-term perspectives, satellite validation, and accuracy. However, the possibilities and limits in defining a common set of aerosol types for satellite missions and ground-based measurements depends on different information content among measurement techniques and for different retrieval conditions (e.g. for low aerosol content there is smaller satellite aerosol type retrieval sensitivity), as well as different historical choices. The concept of aReference database for aerosol typing (REDAT) is developed with the specific purpose of providing a dataset suitable for the comparison of typing procedures (from ground-based, and satellite measurements) and to be used as reference dataset for the modelling community. It will also allow the definition of translating rules between the different aerosol typing nomenclature, information strongly needed for the more and more increased audience of scientific data with no scientific background, as well as policy and decision makers. Acknowledgments: The research leading to these results is partially funded by ACTRIS2 Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169.

  4. Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Biondi, D.; De Luca, D. L.

    2013-02-01

    SummaryThe paper evaluates, for a number of flood events, the performance of a Bayesian Forecasting System (BFS), with the aim of evaluating total uncertainty in real-time flood forecasting. The predictive uncertainty of future streamflow is estimated through the Bayesian integration of two separate processors. The former evaluates the propagation of input uncertainty on simulated river discharge, the latter computes the hydrological uncertainty of actual river discharge associated with all other possible sources of error. A stochastic model and a distributed rainfall-runoff model were assumed, respectively, for rainfall and hydrological response simulations. A case study was carried out for a small basin in the Calabria region (southern Italy). The performance assessment of the BFS was performed with adequate verification tools suited for probabilistic forecasts of continuous variables such as streamflow. Graphical tools and scalar metrics were used to evaluate several attributes of the forecast quality of the entire time-varying predictive distributions: calibration, sharpness, accuracy, and continuous ranked probability score (CRPS). Besides the overall system, which incorporates both sources of uncertainty, other hypotheses resulting from the BFS properties were examined, corresponding to (i) a perfect hydrological model; (ii) a non-informative rainfall forecast for predicting streamflow; and (iii) a perfect input forecast. The results emphasize the importance of using different diagnostic approaches to perform comprehensive analyses of predictive distributions, to arrive at a multifaceted view of the attributes of the prediction. For the case study, the selected criteria revealed the interaction of the different sources of error, in particular the crucial role of the hydrological uncertainty processor when compensating, at the cost of wider forecast intervals, for the unreliable and biased predictive distribution resulting from the Precipitation Uncertainty Processor.

  5. Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2016-12-01

    In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.

  6. The Importance of Behavioral Thresholds and Objective Functions in Contaminant Transport Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Kang, M.; Thomson, N. R.

    2007-12-01

    The TCE release from The Lockformer Company in Lisle Illinois resulted in a plume in a confined aquifer that is more than 4 km long and impacted more than 300 residential wells. Many of the wells are on the fringe of the plume and have concentrations that did not exceed 5 ppb. The settlement for the Chapter 11 bankruptcy protection of Lockformer involved the establishment of a trust fund that compensates individuals with cancers with payments being based on cancer type, estimated TCE concentration in the well and the duration of exposure to TCE. The estimation of early arrival times and hence low likelihood events is critical in the determination of the eligibility of an individual for compensation. Thus, an emphasis must be placed on the accuracy of the leading tail region in the likelihood distribution of possible arrival times at a well. The estimation of TCE arrival time, using a three-dimensional analytical solution, involved parameter estimation and uncertainty analysis. Parameters in the model included TCE source parameters, groundwater velocities, dispersivities and the TCE decay coefficient for both the confining layer and the bedrock aquifer. Numerous objective functions, which include the well-known L2-estimator, robust estimators (L1-estimators and M-estimators), penalty functions, and dead zones, were incorporated in the parameter estimation process to treat insufficiencies in both the model and observational data due to errors, biases, and limitations. The concept of equifinality was adopted and multiple maximum likelihood parameter sets were accepted if pre-defined physical criteria were met. The criteria ensured that a valid solution predicted TCE concentrations for all TCE impacted areas. Monte Carlo samples are found to be inadequate for uncertainty analysis of this case study due to its inability to find parameter sets that meet the predefined physical criteria. Successful results are achieved using a Dynamically-Dimensioned Search sampling methodology that inherently accounts for parameter correlations and does not require assumptions regarding parameter distributions. For uncertainty analysis, multiple parameter sets were obtained using a modified Cauchy's M-estimator. Penalty functions had to be incorporated into the objective function definitions to generate a sufficient number of acceptable parameter sets. The combined effect of optimization and the application of the physical criteria perform the function of behavioral thresholds by reducing anomalies and by removing parameter sets with high objective function values. The factors that are important to the creation of an uncertainty envelope for TCE arrival at wells are outlined in the work. In general, greater uncertainty appears to be present at the tails of the distribution. For a refinement of the uncertainty envelopes, the application of additional physical criteria or behavioral thresholds is recommended.

  7. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    DOE PAGES

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; ...

    2016-04-28

    Here, despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr –1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36%more » and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr –1 during 1981–2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.« less

  8. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi

    Here, despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr –1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36%more » and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr –1 during 1981–2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.« less

  9. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    NASA Astrophysics Data System (ADS)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  10. What might we learn from climate forecasts?

    PubMed Central

    Smith, Leonard A.

    2002-01-01

    Most climate models are large dynamical systems involving a million (or more) variables on big computers. Given that they are nonlinear and not perfect, what can we expect to learn from them about the earth's climate? How can we determine which aspects of their output might be useful and which are noise? And how should we distribute resources between making them “better,” estimating variables of true social and economic interest, and quantifying how good they are at the moment? Just as “chaos” prevents accurate weather forecasts, so model error precludes accurate forecasts of the distributions that define climate, yielding uncertainty of the second kind. Can we estimate the uncertainty in our uncertainty estimates? These questions are discussed. Ultimately, all uncertainty is quantified within a given modeling paradigm; our forecasts need never reflect the uncertainty in a physical system. PMID:11875200

  11. A contribution to the calculation of measurement uncertainty and optimization of measuring strategies in coordinate measurement

    NASA Astrophysics Data System (ADS)

    Waeldele, F.

    1983-01-01

    The influence of sample shape deviations on the measurement uncertainties and the optimization of computer aided coordinate measurement were investigated for a circle and a cylinder. Using the complete error propagation law in matrix form the parameter uncertainties are calculated, taking the correlation between the measurement points into account. Theoretical investigations show that the measuring points have to be equidistantly distributed and that for a cylindrical body a measuring point distribution along a cross section is better than along a helical line. The theoretically obtained expressions to calculate the uncertainties prove to be a good estimation basis. The simple error theory is not satisfactory for estimation. The complete statistical data analysis theory helps to avoid aggravating measurement errors and to adjust the number of measuring points to the required measuring uncertainty.

  12. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: Application to a smoking cessation trial

    PubMed Central

    Siddique, Juned; Harel, Ofer; Crespi, Catherine M.; Hedeker, Donald

    2014-01-01

    The true missing data mechanism is never known in practice. We present a method for generating multiple imputations for binary variables that formally incorporates missing data mechanism uncertainty. Imputations are generated from a distribution of imputation models rather than a single model, with the distribution reflecting subjective notions of missing data mechanism uncertainty. Parameter estimates and standard errors are obtained using rules for nested multiple imputation. Using simulation, we investigate the impact of missing data mechanism uncertainty on post-imputation inferences and show that incorporating this uncertainty can increase the coverage of parameter estimates. We apply our method to a longitudinal smoking cessation trial where nonignorably missing data were a concern. Our method provides a simple approach for formalizing subjective notions regarding nonresponse and can be implemented using existing imputation software. PMID:24634315

  13. Illness uncertainty and treatment motivation in type 2 diabetes patients.

    PubMed

    Apóstolo, João Luís Alves; Viveiros, Catarina Sofia Castro; Nunes, Helena Isabel Ribeiro; Domingues, Helena Raquel Faustino

    2007-01-01

    To characterize the uncertainty in illness and the motivation for treatment and to evaluate the existing relation between these variables in individuals with type 2 diabetes. Descriptive, correlational study, using a sample of 62 individuals in diabetes consultation sessions. The Uncertainty Stress Scale and the Treatment Self-Regulation Questionnaire were used. The individuals with type 2 diabetes present low levels of uncertainty in illness and a high motivation for treatment, with a stronger intrinsic than extrinsic motivation. A negative correlation was verified between the uncertainty in the face of the prognosis and treatment and the intrinsic motivation. These individuals are already adapted, acting according to the meanings they attribute to illness. Uncertainty can function as a threat, intervening negatively in the attribution of meaning to the events related to illness and in the process of adaptation and motivation to adhere to treatment. Intrinsic motivation seems to be essential to adhere to treatment.

  14. Estimating the spatial distribution of artificial groundwater recharge using multiple tracers.

    PubMed

    Moeck, Christian; Radny, Dirk; Auckenthaler, Adrian; Berg, Michael; Hollender, Juliane; Schirmer, Mario

    2017-10-01

    Stable isotopes of water, organic micropollutants and hydrochemistry data are powerful tools for identifying different water types in areas where knowledge of the spatial distribution of different groundwater is critical for water resource management. An important question is how the assessments change if only one or a subset of these tracers is used. In this study, we estimate spatial artificial infiltration along an infiltration system with stage-discharge relationships and classify different water types based on the mentioned hydrochemistry data for a drinking water production area in Switzerland. Managed aquifer recharge via surface water that feeds into the aquifer creates a hydraulic barrier between contaminated groundwater and drinking water wells. We systematically compare the information from the aforementioned tracers and illustrate differences in distribution and mixing ratios. Despite uncertainties in the mixing ratios, we found that the overall spatial distribution of artificial infiltration is very similar for all the tracers. The highest infiltration occurred in the eastern part of the infiltration system, whereas infiltration in the western part was the lowest. More balanced infiltration within the infiltration system could cause the elevated groundwater mound to be distributed more evenly, preventing the natural inflow of contaminated groundwater. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  15. Implications of uncertainty on regional CO2 mitigation policies for the U.S. onroad sector based on a high-resolution emissions estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, D.; Gurney, Kevin R.; Geethakumar, Sarath

    2013-04-01

    In this study we present onroad fossil fuel CO2 emissions estimated by the Vulcan Project, an effort quantifying fossil fuel CO2 emissions for the U.S. in high spatial and temporal resolution. This high-resolution data, aggregated at the state-level and classified in broad road and vehicle type categories, is compared to a commonly used national-average approach. We find that the use of national averages incurs state-level biases for road groupings that are almost twice as large as for vehicle groupings. The uncertainty for all groups exceeds the bias, and both quantities are positively correlated with total state emissions. States with themore » largest emissions totals are typically similar to one another in terms of emissions fraction distribution across road and vehicle groups, while smaller-emitting states have a wider range of variation in all groups. Errors in reduction estimates as large as ±60% corresponding to ±0.2 MtC are found for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class, such as passenger gas vehicles or heavy diesel trucks. Recommendations are made for reducing CO2 emissions uncertainty by addressing its main drivers: VMT and fuel efficiency uncertainty.« less

  16. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models

    USGS Publications Warehouse

    Watling, James I.; Brandt, Laura A.; Bucklin, David N.; Fujisaki, Ikuko; Mazzotti, Frank J.; Romañach, Stephanie; Speroterra, Carolina

    2015-01-01

    Species distribution models (SDMs) are widely used in basic and applied ecology, making it important to understand sources and magnitudes of uncertainty in SDM performance and predictions. We analyzed SDM performance and partitioned variance among prediction maps for 15 rare vertebrate species in the southeastern USA using all possible combinations of seven potential sources of uncertainty in SDMs: algorithms, climate datasets, model domain, species presences, variable collinearity, CO2 emissions scenarios, and general circulation models. The choice of modeling algorithm was the greatest source of uncertainty in SDM performance and prediction maps, with some additional variation in performance associated with the comprehensiveness of the species presences used for modeling. Other sources of uncertainty that have received attention in the SDM literature such as variable collinearity and model domain contributed little to differences in SDM performance or predictions in this study. Predictions from different algorithms tended to be more variable at northern range margins for species with more northern distributions, which may complicate conservation planning at the leading edge of species' geographic ranges. The clear message emerging from this work is that researchers should use multiple algorithms for modeling rather than relying on predictions from a single algorithm, invest resources in compiling a comprehensive set of species presences, and explicitly evaluate uncertainty in SDM predictions at leading range margins.

  17. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  18. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.

  19. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    USGS Publications Warehouse

    Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust decisions.

  20. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, B.; Miller, L.F.; Sparks, R.B.

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less

  1. Partial knowledge, entropy, and estimation

    PubMed Central

    MacQueen, James; Marschak, Jacob

    1975-01-01

    In a growing body of literature, available partial knowledge is used to estimate the prior probability distribution p≡(p1,...,pn) by maximizing entropy H(p)≡-Σpi log pi, subject to constraints on p which express that partial knowledge. The method has been applied to distributions of income, of traffic, of stock-price changes, and of types of brand-article purchases. We shall respond to two justifications given for the method: (α) It is “conservative,” and therefore good, to maximize “uncertainty,” as (uniquely) represented by the entropy parameter. (β) One should apply the mathematics of statistical thermodynamics, which implies that the most probable distribution has highest entropy. Reason (α) is rejected. Reason (β) is valid when “complete ignorance” is defined in a particular way and both the constraint and the estimator's loss function are of certain kinds. PMID:16578733

  2. Robust Decision Making Approach to Managing Water Resource Risks (Invited)

    NASA Astrophysics Data System (ADS)

    Lempert, R.

    2010-12-01

    The IPCC and US National Academies of Science have recommended iterative risk management as the best approach for water management and many other types of climate-related decisions. Such an approach does not rely on a single set of judgments at any one time but rather actively updates and refines strategies as new information emerges. In addition, the approach emphasizes that a portfolio of different types of responses, rather than any single action, often provides the best means to manage uncertainty. Implementing an iterative risk management approach can however prove difficult in actual decision support applications. This talk will suggest that robust decision making (RDM) provides a particularly useful set of quantitative methods for implementing iterative risk management. This RDM approach is currently being used in a wide variety of water management applications. RDM employs three key concepts that differentiate it from most types of probabilistic risk analysis: 1) characterizing uncertainty with multiple views of the future (which can include sets of probability distributions) rather than a single probabilistic best-estimate, 2) employing a robustness rather than an optimality criterion to assess alternative policies, and 3) organizing the analysis with a vulnerability and response option framework, rather than a predict-then-act framework. This talk will summarize the RDM approach, describe its use in several different types of water management applications, and compare the results to those obtained with other methods.

  3. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis.

    PubMed

    Traas, T P; Luttik, R; Jongbloed, R H

    1996-08-01

    In previous studies, the risk of toxicant accumulation in food chains was used to calculate quality criteria for surface water and soil. A simple algorithm was used to calculate maximum permissable concentrations [MPC = no-observed-effect concentration/bioconcentration factor(NOEC/BCF)]. These studies were limited to simple food chains. This study presents a method to calculate MPCs for more complex food webs of predators. The previous method is expanded. First, toxicity data (NOECs) for several compounds were corrected for differences between laboratory animals and animals in the wild. Second, for each compound, it was assumed these NOECs were a sample of a log-logistic distribution of mammalian and avian NOECs. Third, bioaccumulation factors (BAFs) for major food items of predators were collected and were assumed to derive from different log-logistic distributions of BAFs. Fourth, MPCs for each compound were calculated using Monte Carlo sampling from NOEC and BAF distributions. An uncertainty analysis for cadmium was performed to identify the most uncertain parameters of the model. Model analysis indicated that most of the prediction uncertainty of the model can be ascribed to uncertainty of species sensitivity as expressed by NOECs. A very small proportion of model uncertainty is contributed by BAFs from food webs. Correction factors for the conversion of NOECs from laboratory conditions to the field have some influence on the final value of MPC5, but the total prediction uncertainty of the MPC is quite large. It is concluded that the uncertainty in species sensitivity is quite large. To avoid unethical toxicity testing with mammalian or avian predators, it cannot be avoided to use this uncertainty in the method proposed to calculate MPC distributions. The fifth percentile of the MPC is suggested as a safe value for top predators.

  4. Underestimation of Variance of Predicted Health Utilities Derived from Multiattribute Utility Instruments.

    PubMed

    Chan, Kelvin K W; Xie, Feng; Willan, Andrew R; Pullenayegum, Eleanor M

    2017-04-01

    Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.

  5. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    NASA Astrophysics Data System (ADS)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000 variants per set of fixed input parameters. The shape and coefficients of CCRAF equations are derived from regression analyses of historic data and expert assessments. There are two types of random components in CCRAF - one reflects a year-to-year fluctuations around the expected value of a given variable (e.g., standard error of the annual GDP growth) and another is fixed within each CCRAF variant and represents some essential constants within a "world" represented by that variant (e.g., the value of climate sensitivity). Both types of random components are drawn from pre-defined probability distributions functions developed based on historic data or expert assessments. Preliminary CCRAF results emphasize the relative importance of uncertainties associated with the conversion of GHG and particulate emissions into radiative forcing and quantifying climate change effects at the regional level. A separates analysis involves an "adaptive decision-making", which optimizes the expected future policy effects given the estimated probabilistic uncertainties. As uncertainty for some variables evolve over the time steps, the decisions also adapt. This modeling approach is feasible only with explicit modeling of uncertainties.

  6. Large-area settlement pattern recognition from Landsat-8 data

    NASA Astrophysics Data System (ADS)

    Wieland, Marc; Pittore, Massimiliano

    2016-09-01

    The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.

  7. Spatial Downscaling of Alien Species Presences using Machine Learning

    NASA Astrophysics Data System (ADS)

    Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides

    2017-07-01

    Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  8. Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes

    NASA Astrophysics Data System (ADS)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.

    2017-12-01

    Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.

  9. Uncertainty Budget Analysis for Dimensional Inspection Processes (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Lucas M.

    2012-07-26

    This paper is intended to provide guidance and describe how to prepare an uncertainty analysis of a dimensional inspection process through the utilization of an uncertainty budget analysis. The uncertainty analysis is stated in the same methodology as that of the ISO GUM standard for calibration and testing. There is a specific distinction between how Type A and Type B uncertainty analysis is used in a general and specific process. All theory and applications are utilized to represent both a generalized approach to estimating measurement uncertainty and how to report and present these estimations for dimensional measurements in a dimensionalmore » inspection process. The analysis of this uncertainty budget shows that a well-controlled dimensional inspection process produces a conservative process uncertainty, which can be attributed to the necessary assumptions in place for best possible results.« less

  10. Uncertainty after treatment for prostate cancer: definition, assessment, and management.

    PubMed

    Yu Ko, Wellam F; Degner, Lesley F

    2008-10-01

    Prostate cancer is the second most common type of cancer in men living in the United States and the most common type of malignancy in Canadian men, accounting for 186,320 new cases in the United States and 24,700 in Canada in 2008. Uncertainty, a component of all illness experiences, influences how men perceive the processes of treatment and adaptation. The Reconceptualized Uncertainty in Illness Theory explains the chronic nature of uncertainty in cancer survivorship by describing a shift from an emergent acute phase of uncertainty in survivors to a new level of uncertainty that is no longer acute and becomes a part of daily life. Proper assessment of certainty and uncertainty may allow nurses to maximize the effectiveness of patient-provider communication, cognitive reframing, and problem-solving interventions to reduce uncertainty after cancer treatment.

  11. Quantifying uncertainty in Bayesian calibrated animal-to-human PBPK models with informative prior distributions

    EPA Science Inventory

    Understanding and quantifying the uncertainty of model parameters and predictions has gained more interest in recent years with the increased use of computational models in chemical risk assessment. Fully characterizing the uncertainty in risk metrics derived from linked quantita...

  12. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Treesearch

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  13. Tolerance and UQ4SIM: Nimble Uncertainty Documentation and Analysis Software

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2008-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and variabilities is a necessary first step toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. The basic premise of uncertainty markup is to craft a tolerance and tagging mini-language that offers a natural, unobtrusive presentation and does not depend on parsing each type of input file format. Each file is marked up with tolerances and optionally, associated tags that serve to label the parameters and their uncertainties. The evolution of such a language, often called a Domain Specific Language or DSL, is given in [1], but in final form it parallels tolerances specified on an engineering drawing, e.g., 1 +/- 0.5, 5 +/- 10%, 2 +/- 10 where % signifies percent and o signifies order of magnitude. Tags, necessary for error propagation, can be added by placing a quotation-mark-delimited tag after the tolerance, e.g., 0.7 +/- 20% 'T_effective'. In addition, tolerances might have different underlying distributions, e.g., Uniform, Normal, or Triangular, or the tolerances may merely be intervals due to lack of knowledge (uncertainty). Finally, to address pragmatic considerations such as older models that require specific number-field formats, C-style format specifiers can be appended to the tolerance like so, 1.35 +/- 10U_3.2f. As an example of use, consider figure 1, where a chemical reaction input file is has been marked up to include tolerances and tags per table 1. Not only does the technique provide a natural method of specifying tolerances, but it also servers as in situ documentation of model uncertainties. This tolerance language comes with a utility to strip the tolerances (and tags), to provide a path to the nominal model parameter file. And, as shown in [1], having the ability to quickly mark and identify model parameter uncertainties facilitates error propagation, which in turn yield output uncertainties.

  14. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  15. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graur, O.; Rodney, S. A.; Riess, A. G.

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit onmore » the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.« less

  16. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  17. Uncertainty squared: Choosing among multiple input probability distributions and interpreting multiple output probability distributions in Monte Carlo climate risk models

    NASA Astrophysics Data System (ADS)

    Baer, P.; Mastrandrea, M.

    2006-12-01

    Simple probabilistic models which attempt to estimate likely transient temperature change from specified CO2 emissions scenarios must make assumptions about at least six uncertain aspects of the causal chain between emissions and temperature: current radiative forcing (including but not limited to aerosols), current land use emissions, carbon sinks, future non-CO2 forcing, ocean heat uptake, and climate sensitivity. Of these, multiple PDFs (probability density functions) have been published for the climate sensitivity, a couple for current forcing and ocean heat uptake, one for future non-CO2 forcing, and none for current land use emissions or carbon cycle uncertainty (which are interdependent). Different assumptions about these parameters, as well as different model structures, will lead to different estimates of likely temperature increase from the same emissions pathway. Thus policymakers will be faced with a range of temperature probability distributions for the same emissions scenarios, each described by a central tendency and spread. Because our conventional understanding of uncertainty and probability requires that a probabilistically defined variable of interest have only a single mean (or median, or modal) value and a well-defined spread, this "multidimensional" uncertainty defies straightforward utilization in policymaking. We suggest that there are no simple solutions to the questions raised. Crucially, we must dispel the notion that there is a "true" probability probabilities of this type are necessarily subjective, and reasonable people may disagree. Indeed, we suggest that what is at stake is precisely the question, what is it reasonable to believe, and to act as if we believe? As a preliminary suggestion, we demonstrate how the output of a simple probabilistic climate model might be evaluated regarding the reasonableness of the outputs it calculates with different input PDFs. We suggest further that where there is insufficient evidence to clearly favor one range of probabilistic projections over another, that the choice of results on which to base policy must necessarily involve ethical considerations, as they have inevitable consequences for the distribution of risk In particular, the choice to use a more "optimistic" PDF for climate sensitivity (or other components of the causal chain) leads to the allowance of higher emissions consistent with any specified goal for risk reduction, and thus leads to higher climate impacts, in exchange for lower mitigation costs.

  18. A lower limit on the age of the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaboyer, B.; Demarque, P.; Kernan, P.J.

    1996-02-16

    A detailed numerical study was designed and conducted to estimate the absolute age and the uncertainty in age (with confidence limits) of the oldest globular clusters in our galaxy, and hence to put a robust lower bound on the age of the universe. Estimates of the uncertainty range and distribution in the input parameters of stellar evolution codes were used to produce 1000 Monte Carlo realizations of stellar isochrones, which were then used to derive ages for the 17 oldest globular clusters. A probability distribution for the mean age of these systems was derived by incorporating the observational uncertainties inmore » chrones. The dominant contribution to the width of the distribution (approximately {sup +}{sub -}5) magnitudes. Subdominant contributions came from the choice of the color table used to translate theoretical luminosities and temperatures to observed magnitudes and colors, as well as from theoretical uncertainties in heavy element abundances and mixing length. The one-sided 95 percent confidence limit lower bound for this distribution occurs at an age of 12.07 X 10{sup 9} years, and the median age for the distribution is 14.56 X 10{sup 9} years. These age limits, when compared with the Hubble age estimate, put powerful constraints on cosmology. 41 refs., 2 figs.« less

  19. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  20. A flexible Bayesian assessment for the expected impact of data on prediction confidence for optimal sampling designs

    NASA Astrophysics Data System (ADS)

    Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang

    2010-05-01

    Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The applicability and advantages are shown in a synthetic example. Therefor, we consider a contaminant source, posing a threat on a drinking water well in an aquifer. Furthermore, we assume uncertainty in geostatistical parameters, boundary conditions and hydraulic gradient. The two mentioned measures evaluate the sensitivity of (1) general prediction confidence and (2) exceedance probability of a legal regulatory threshold value on sampling locations.

  1. TU-AB-BRB-01: Coverage Evaluation and Probabilistic Treatment Planning as a Margin Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, J.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  2. TU-AB-BRB-00: New Methods to Ensure Target Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  3. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    PubMed Central

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  4. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  5. Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.

    PubMed

    Hauser, Juerg; Wellmann, Florian; Trefry, Mike

    2018-03-01

    We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined. © 2017, National Ground Water Association.

  6. Mobile Phone Based Participatory Sensing in Hydrology

    NASA Astrophysics Data System (ADS)

    Lowry, C.; Fienen, M. N.; Böhlen, M.

    2014-12-01

    Although many observations in the hydrologic sciences are easy to obtain, requiring very little training or equipment, spatial and temporally-distributed data collection is hindered by associated personnel and telemetry costs. Lack of data increases the uncertainty and can limit applications of both field and modeling studies. However, modern society is much more digitally connected than the past, which presents new opportunities to collect real-time hydrologic data through the use of participatory sensing. Participatory sensing in this usage refers to citizens contributing distributed observations of physical phenomena. Real-time data streams are possible as a direct result of the growth of mobile phone networks and high adoption rates of mobile users. In this research, we describe an example of the development, methodology, barriers to entry, data uncertainty, and results of mobile phone based participatory sensing applied to groundwater and surface water characterization. Results are presented from three participatory sensing experiments that focused on stream stage, surface water temperature, and water quality. Results demonstrate variability in the consistency and reliability across the type of data collected and the challenges of collecting research grade data. These studies also point to needed improvements and future developments for widespread use of low cost techniques for participatory sensing.

  7. What is the uncertainty principle of non-relativistic quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Riggs, Peter J.

    2018-05-01

    After more than ninety years of discussions over the uncertainty principle, there is still no universal agreement on what the principle states. The Robertson uncertainty relation (incorporating standard deviations) is given as the mathematical expression of the principle in most quantum mechanics textbooks. However, the uncertainty principle is not merely a statement of what any of the several uncertainty relations affirm. It is suggested that a better approach would be to present the uncertainty principle as a statement about the probability distributions of incompatible variables and the resulting restrictions on quantum states.

  8. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less

  9. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  10. nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusina, A.; Kovarik, Karol; Jezo, T.

    2015-09-01

    We present the first official release of the nCTEQ nuclear parton distribution functions with errors. The main addition to the previous nCTEQ PDFs is the introduction of PDF uncertainties based on the Hessian method. Another important addition is the inclusion of pion production data from RHIC that give us a handle on constraining the gluon PDF. This contribution summarizes our results from arXiv:1509.00792 and concentrates on the comparison with other groups providing nuclear parton distributions.

  11. nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusina, A.; Kovarik, K.; Jezo, T.

    2015-09-04

    We present the first official release of the nCTEQ nuclear parton distribution functions with errors. The main addition to the previous nCTEQ PDFs is the introduction of PDF uncertainties based on the Hessian method. Another important addition is the inclusion of pion production data from RHIC that give us a handle on constraining the gluon PDF. This contribution summarizes our results from arXiv:1509.00792, and concentrates on the comparison with other groups providing nuclear parton distributions.

  12. Bayesian methods for uncertainty factor application for derivation of reference values.

    PubMed

    Simon, Ted W; Zhu, Yiliang; Dourson, Michael L; Beck, Nancy B

    2016-10-01

    In 2014, the National Research Council (NRC) published Review of EPA's Integrated Risk Information System (IRIS) Process that considers methods EPA uses for developing toxicity criteria for non-carcinogens. These criteria are the Reference Dose (RfD) for oral exposure and Reference Concentration (RfC) for inhalation exposure. The NRC Review suggested using Bayesian methods for application of uncertainty factors (UFs) to adjust the point of departure dose or concentration to a level considered to be without adverse effects for the human population. The NRC foresaw Bayesian methods would be potentially useful for combining toxicity data from disparate sources-high throughput assays, animal testing, and observational epidemiology. UFs represent five distinct areas for which both adjustment and consideration of uncertainty may be needed. NRC suggested UFs could be represented as Bayesian prior distributions, illustrated the use of a log-normal distribution to represent the composite UF, and combined this distribution with a log-normal distribution representing uncertainty in the point of departure (POD) to reflect the overall uncertainty. Here, we explore these suggestions and present a refinement of the methodology suggested by NRC that considers each individual UF as a distribution. From an examination of 24 evaluations from EPA's IRIS program, when individual UFs were represented using this approach, the geometric mean fold change in the value of the RfD or RfC increased from 3 to over 30, depending on the number of individual UFs used and the sophistication of the assessment. We present example calculations and recommendations for implementing the refined NRC methodology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Bayesian models for comparative analysis integrating phylogenetic uncertainty.

    PubMed

    de Villemereuil, Pierre; Wells, Jessie A; Edwards, Robert D; Blomberg, Simon P

    2012-06-28

    Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models is provided in the BUGS model description language.

  14. Bayesian models for comparative analysis integrating phylogenetic uncertainty

    PubMed Central

    2012-01-01

    Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models is provided in the BUGS model description language. PMID:22741602

  15. Public Perception of Uncertainties Within Climate Change Science.

    PubMed

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  16. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    NASA Astrophysics Data System (ADS)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  17. Latent uncertainties of the precalculated track Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, Marc-André; Seuntjens, Jan; Roberge, David

    Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less

  18. Latent uncertainties of the precalculated track Monte Carlo method.

    PubMed

    Renaud, Marc-André; Roberge, David; Seuntjens, Jan

    2015-01-01

    While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.

  19. Imprecision and Uncertainty in the UFO Database Model.

    ERIC Educational Resources Information Center

    Van Gyseghem, Nancy; De Caluwe, Rita

    1998-01-01

    Discusses how imprecision and uncertainty are dealt with in the UFO (Uncertainty and Fuzziness in an Object-oriented) database model. Such information is expressed by means of possibility distributions, and modeled by means of the proposed concept of "role objects." The role objects model uncertain, tentative information about objects,…

  20. PEBBED Uncertainty and Sensitivity Analysis of the CRP-5 PBMR DLOFC Transient Benchmark with the SUSA Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2011-01-01

    The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA,more » utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).« less

  1. Mapping Calcium Rich Ejecta in Two Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2016-10-01

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.

  2. Dealing with uncertainties in environmental burden of disease assessment

    PubMed Central

    2009-01-01

    Disability Adjusted Life Years (DALYs) combine the number of people affected by disease or mortality in a population and the duration and severity of their condition into one number. The environmental burden of disease is the number of DALYs that can be attributed to environmental factors. Environmental burden of disease estimates enable policy makers to evaluate, compare and prioritize dissimilar environmental health problems or interventions. These estimates often have various uncertainties and assumptions which are not always made explicit. Besides statistical uncertainty in input data and parameters – which is commonly addressed – a variety of other types of uncertainties may substantially influence the results of the assessment. We have reviewed how different types of uncertainties affect environmental burden of disease assessments, and we give suggestions as to how researchers could address these uncertainties. We propose the use of an uncertainty typology to identify and characterize uncertainties. Finally, we argue that uncertainties need to be identified, assessed, reported and interpreted in order for assessment results to adequately support decision making. PMID:19400963

  3. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy

    2012-11-15

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measuremore » of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was Less-Than-Or-Slanted-Equal-To 3 mm (95th percentiles within {+-}4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from -0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of Less-Than-Or-Slanted-Equal-To 5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance.« less

  4. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    PubMed Central

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Wells, William M.; Tempany, Clare M.; Cormack, Robert A.

    2012-01-01

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measure of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was ⩽3 mm (95th percentiles within ±4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from −0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of ⩽5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance. PMID:23127078

  5. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk

    2013-12-01

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, directmore » and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.« less

  6. Biotic Interactivity between Grazers and Plants: Relationships Contributing to Atmospheric Boundary Layer Dynamics.

    NASA Astrophysics Data System (ADS)

    Dyer, M. I.; Turner, C. L.; Seastedt, T. R.

    1998-04-01

    During 1987 and 1988 First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) studies conducted in the tallgrass prairie of central Kansas, variations in ungulate grazing intensity produced a patchy spatial and temporal distribution of remaining vegetation. Equally variable plant regrowth patterns contributed further to a broad array of total primary production that resulted in a pronounced mosaic of grazing impacts. This regrowth potential, derived from a relative growth rate (RGR) equation comparing ungrazed and grazed plants, determines much of the ecosystem dynamics within and among the grazed pastures and between years. Rates of change in new plant growth (RGRg) ranged from 100% to +40%; however, 78% of the time in 1987 and 71% in 1988, productivity increased as a function of grazing intensity. Since plant growth potential in ungrazed (RGRug) and grazed systems (RGRg) have inherently different attributes, interactions with the abiotic environment may develop many uncertainties. Thus, changes in growth rates in grazed areas compared to ungrazed areas (RGRg) may impose major controls over system productivity and associated biological processes currently not accounted for in ecosystem models.Because FIFE microsite atmospheric boundary layer (ABL) studies did not directly incorporate grazing intensity into their design, Type I and Type II statistical errors may introduce significant uncertainties for understanding cause and effect in surface flux dynamics. As a consequence these uncertainties compromise the ability to extrapolate microsite ABL biophysical findings to other spatial and temporal scales.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, William R.; Lee, John C.; baxter, Alan

    Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less

  8. Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties

    USGS Publications Warehouse

    Riley, Pete; Love, Jeffrey J.

    2017-01-01

    Extreme space weather events are low-frequency, high-risk phenomena. Estimating their rates of occurrence, as well as their associated uncertainties, is difficult. In this study, we derive statistical estimates and uncertainties for the occurrence rate of an extreme geomagnetic storm on the scale of the Carrington event (or worse) occurring within the next decade. We model the distribution of events as either a power law or lognormal distribution and use (1) Kolmogorov-Smirnov statistic to estimate goodness of fit, (2) bootstrapping to quantify the uncertainty in the estimates, and (3) likelihood ratio tests to assess whether one distribution is preferred over another. Our best estimate for the probability of another extreme geomagnetic event comparable to the Carrington event occurring within the next 10 years is 10.3% 95%  confidence interval (CI) [0.9,18.7] for a power law distribution but only 3.0% 95% CI [0.6,9.0] for a lognormal distribution. However, our results depend crucially on (1) how we define an extreme event, (2) the statistical model used to describe how the events are distributed in intensity, (3) the techniques used to infer the model parameters, and (4) the data and duration used for the analysis. We test a major assumption that the data represent time stationary processes and discuss the implications. If the current trends persist, suggesting that we are entering a period of lower activity, our forecasts may represent upper limits rather than best estimates.

  9. Comparison of Calibration Methods for Tristimulus Colorimeters.

    PubMed

    Gardner, James L

    2007-01-01

    Uncertainties in source color measurements with a tristimulus colorimeter are estimated for calibration factors determined, based on a known source spectral distribution or on accurate measurements of the spectral responsivities of the colorimeter channels. Application is to the National Institute of Standards and Technology (NIST) colorimeter and an International Commission on Illumination (CIE) Illuminant A calibration. Detector-based calibration factors generally have lower uncertainties than source-based calibration factors. Uncertainties are also estimated for calculations of spectral mismatch factors. Where both spectral responsivities of the colorimeter channels and the spectral power distributions of the calibration and test sources are known, uncertainties are lowest if the colorimeter calibration factors are recalculated for the test source; this process also avoids correlations between the CIE Source A calibration factors and the spectral mismatch factors.

  10. Comparison of Calibration Methods for Tristimulus Colorimeters

    PubMed Central

    Gardner, James L.

    2007-01-01

    Uncertainties in source color measurements with a tristimulus colorimeter are estimated for calibration factors determined, based on a known source spectral distribution or on accurate measurements of the spectral responsivities of the colorimeter channels. Application is to the National Institute of Standards and Technology (NIST) colorimeter and an International Commission on Illumination (CIE) Illuminant A calibration. Detector-based calibration factors generally have lower uncertainties than source-based calibration factors. Uncertainties are also estimated for calculations of spectral mismatch factors. Where both spectral responsivities of the colorimeter channels and the spectral power distributions of the calibration and test sources are known, uncertainties are lowest if the colorimeter calibration factors are recalculated for the test source; this process also avoids correlations between the CIE Source A calibration factors and the spectral mismatch factors. PMID:27110460

  11. Not Normal: the uncertainties of scientific measurements

    NASA Astrophysics Data System (ADS)

    Bailey, David C.

    2017-01-01

    Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student's t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply.

  12. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  13. Not Normal: the uncertainties of scientific measurements

    PubMed Central

    2017-01-01

    Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student’s t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply. PMID:28280557

  14. What do we need to measure, how much, and where? A quantitative assessment of terrestrial data needs across North American biomes through data-model fusion and sampling optimization

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; Davidson, C. D.; Desai, A. R.; Feng, X.; Kelly, R.; Kooper, R.; LeBauer, D. S.; Mantooth, J.; McHenry, K.; Serbin, S. P.; Wang, D.

    2012-12-01

    Ecosystem models are designed to synthesize our current understanding of how ecosystems function and to predict responses to novel conditions, such as climate change. Reducing uncertainties in such models can thus improve both basic scientific understanding and our predictive capacity, but rarely have the models themselves been employed in the design of field campaigns. In the first part of this paper we provide a synthesis of uncertainty analyses conducted using the Predictive Ecosystem Analyzer (PEcAn) ecoinformatics workflow on the Ecosystem Demography model v2 (ED2). This work spans a number of projects synthesizing trait databases and using Bayesian data assimilation techniques to incorporate field data across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array diverse biomes, such as the need for better constraint on growth respiration. We also identify other data needs that are biome specific, such as reproductive allocation in tundra, leaf dark respiration in forestry and early-successional trees, and root allocation and turnover in mid- and late-successional trees. Future data collection needs to balance the unequal distribution of past measurements across biomes (temperate biased) and processes (aboveground biased) with the sensitivities of different processes. In the second part we present the development of a power analysis and sampling optimization module for the the PEcAn system. This module uses the results of variance decomposition analyses to estimate the further reduction in model predictive uncertainty for different sample sizes of different variables. By assigning a cost to each measurement type, we apply basic economic theory to optimize the reduction in model uncertainty for any total expenditure, or to determine the cost required to reduce uncertainty to a given threshold. Using this system we find that sampling switches among multiple measurement types but favors those with no prior measurements due to the need integrate over prior uncertainty in within and among site variability. When starting from scratch in a new system, the optimal design favors initial measurements of SLA due to high sensitivity and low cost. The value of many data types, such as photosynthetic response curves, depends strongly on whether one includes initial equipment costs or just per-sample costs. Similarly, sampling at previously measured locations is favored when infrastructure costs are high, otherwise across-site sampling is favored over intensive sampling except when within-site variability strongly dominates.

  15. Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge.

    PubMed

    Bannan, Caitlin C; Burley, Kalistyn H; Chiu, Michael; Shirts, Michael R; Gilson, Michael K; Mobley, David L

    2016-11-01

    In the recent SAMPL5 challenge, participants submitted predictions for cyclohexane/water distribution coefficients for a set of 53 small molecules. Distribution coefficients (log D) replace the hydration free energies that were a central part of the past five SAMPL challenges. A wide variety of computational methods were represented by the 76 submissions from 18 participating groups. Here, we analyze submissions by a variety of error metrics and provide details for a number of reference calculations we performed. As in the SAMPL4 challenge, we assessed the ability of participants to evaluate not just their statistical uncertainty, but their model uncertainty-how well they can predict the magnitude of their model or force field error for specific predictions. Unfortunately, this remains an area where prediction and analysis need improvement. In SAMPL4 the top performing submissions achieved a root-mean-squared error (RMSE) around 1.5 kcal/mol. If we anticipate accuracy in log D predictions to be similar to the hydration free energy predictions in SAMPL4, the expected error here would be around 1.54 log units. Only a few submissions had an RMSE below 2.5 log units in their predicted log D values. However, distribution coefficients introduced complexities not present in past SAMPL challenges, including tautomer enumeration, that are likely to be important in predicting biomolecular properties of interest to drug discovery, therefore some decrease in accuracy would be expected. Overall, the SAMPL5 distribution coefficient challenge provided great insight into the importance of modeling a variety of physical effects. We believe these types of measurements will be a promising source of data for future blind challenges, especially in view of the relatively straightforward nature of the experiments and the level of insight provided.

  16. Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge

    PubMed Central

    Bannan, Caitlin C.; Burley, Kalistyn H.; Chiu, Michael; Shirts, Michael R.; Gilson, Michael K.; Mobley, David L.

    2016-01-01

    In the recent SAMPL5 challenge, participants submitted predictions for cyclohexane/water distribution coefficients for a set of 53 small molecules. Distribution coefficients (log D) replace the hydration free energies that were a central part of the past five SAMPL challenges. A wide variety of computational methods were represented by the 76 submissions from 18 participating groups. Here, we analyze submissions by a variety of error metrics and provide details for a number of reference calculations we performed. As in the SAMPL4 challenge, we assessed the ability of participants to evaluate not just their statistical uncertainty, but their model uncertainty – how well they can predict the magnitude of their model or force field error for specific predictions. Unfortunately, this remains an area where prediction and analysis need improvement. In SAMPL4 the top performing submissions achieved a root-mean-squared error (RMSE) around 1.5 kcal/mol. If we anticipate accuracy in log D predictions to be similar to the hydration free energy predictions in SAMPL4, the expected error here would be around 1.54 log units. Only a few submissions had an RMSE below 2.5 log units in their predicted log D values. However, distribution coefficients introduced complexities not present in past SAMPL challenges, including tautomer enumeration, that are likely to be important in predicting biomolecular properties of interest to drug discovery, therefore some decrease in accuracy would be expected. Overall, the SAMPL5 distribution coefficient challenge provided great insight into the importance of modeling a variety of physical effects. We believe these types of measurements will be a promising source of data for future blind challenges, especially in view of the relatively straightforward nature of the experiments and the level of insight provided. PMID:27677750

  17. Sequential data assimilation for a distributed hydrologic model considering different time scale of internal processes

    NASA Astrophysics Data System (ADS)

    Noh, S.; Tachikawa, Y.; Shiiba, M.; Kim, S.

    2011-12-01

    Applications of the sequential data assimilation methods have been increasing in hydrology to reduce uncertainty in the model prediction. In a distributed hydrologic model, there are many types of state variables and each variable interacts with each other based on different time scales. However, the framework to deal with the delayed response, which originates from different time scale of hydrologic processes, has not been thoroughly addressed in the hydrologic data assimilation. In this study, we propose the lagged filtering scheme to consider the lagged response of internal states in a distributed hydrologic model using two filtering schemes; particle filtering (PF) and ensemble Kalman filtering (EnKF). The EnKF is one of the widely used sub-optimal filters implementing an efficient computation with limited number of ensemble members, however, still based on Gaussian approximation. PF can be an alternative in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions involved. In case of PF, advanced particle regularization scheme is implemented together to preserve the diversity of the particle system. In case of EnKF, the ensemble square root filter (EnSRF) are implemented. Each filtering method is parallelized and implemented in the high performance computing system. A distributed hydrologic model, the water and energy transfer processes (WEP) model, is applied for the Katsura River catchment, Japan to demonstrate the applicability of proposed approaches. Forecasted results via PF and EnKF are compared and analyzed in terms of the prediction accuracy and the probabilistic adequacy. Discussions are focused on the prospects and limitations of each data assimilation method.

  18. Different methodologies to quantify uncertainties of air emissions.

    PubMed

    Romano, Daniela; Bernetti, Antonella; De Lauretis, Riccardo

    2004-10-01

    Characterization of the uncertainty associated with air emission estimates is of critical importance especially in the compilation of air emission inventories. In this paper, two different theories are discussed and applied to evaluate air emissions uncertainty. In addition to numerical analysis, which is also recommended in the framework of the United Nation Convention on Climate Change guidelines with reference to Monte Carlo and Bootstrap simulation models, fuzzy analysis is also proposed. The methodologies are discussed and applied to an Italian example case study. Air concentration values are measured from two electric power plants: a coal plant, consisting of two boilers and a fuel oil plant, of four boilers; the pollutants considered are sulphur dioxide (SO(2)), nitrogen oxides (NO(X)), carbon monoxide (CO) and particulate matter (PM). Monte Carlo, Bootstrap and fuzzy methods have been applied to estimate uncertainty of these data. Regarding Monte Carlo, the most accurate results apply to Gaussian distributions; a good approximation is also observed for other distributions with almost regular features either positive asymmetrical or negative asymmetrical. Bootstrap, on the other hand, gives a good uncertainty estimation for irregular and asymmetrical distributions. The logic of fuzzy analysis, where data are represented as vague and indefinite in opposition to the traditional conception of neatness, certain classification and exactness of the data, follows a different description. In addition to randomness (stochastic variability) only, fuzzy theory deals with imprecision (vagueness) of data. Fuzzy variance of the data set was calculated; the results cannot be directly compared with empirical data but the overall performance of the theory is analysed. Fuzzy theory may appear more suitable for qualitative reasoning than for a quantitative estimation of uncertainty, but it suits well when little information and few measurements are available and when distributions of data are not properly known.

  19. Neural network modeling and an uncertainty analysis in Bayesian framework: A case study from the KTB borehole site

    NASA Astrophysics Data System (ADS)

    Maiti, Saumen; Tiwari, Ram Krishna

    2010-10-01

    A new probabilistic approach based on the concept of Bayesian neural network (BNN) learning theory is proposed for decoding litho-facies boundaries from well-log data. We show that how a multi-layer-perceptron neural network model can be employed in Bayesian framework to classify changes in litho-log successions. The method is then applied to the German Continental Deep Drilling Program (KTB) well-log data for classification and uncertainty estimation in the litho-facies boundaries. In this framework, a posteriori distribution of network parameter is estimated via the principle of Bayesian probabilistic theory, and an objective function is minimized following the scaled conjugate gradient optimization scheme. For the model development, we inflict a suitable criterion, which provides probabilistic information by emulating different combinations of synthetic data. Uncertainty in the relationship between the data and the model space is appropriately taken care by assuming a Gaussian a priori distribution of networks parameters (e.g., synaptic weights and biases). Prior to applying the new method to the real KTB data, we tested the proposed method on synthetic examples to examine the sensitivity of neural network hyperparameters in prediction. Within this framework, we examine stability and efficiency of this new probabilistic approach using different kinds of synthetic data assorted with different level of correlated noise. Our data analysis suggests that the designed network topology based on the Bayesian paradigm is steady up to nearly 40% correlated noise; however, adding more noise (˜50% or more) degrades the results. We perform uncertainty analyses on training, validation, and test data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a posteriori distribution about the peak model. We present a standard deviation error-map at the network output corresponding to the three types of the litho-facies present over the entire litho-section of the KTB. The comparisons of maximum a posteriori geological sections constructed here, based on the maximum a posteriori probability distribution, with the available geological information and the existing geophysical findings suggest that the BNN results reveal some additional finer details in the KTB borehole data at certain depths, which appears to be of some geological significance. We also demonstrate that the proposed BNN approach is superior to the conventional artificial neural network in terms of both avoiding "over-fitting" and aiding uncertainty estimation, which are vital for meaningful interpretation of geophysical records. Our analyses demonstrate that the BNN-based approach renders a robust means for the classification of complex changes in the litho-facies successions and thus could provide a useful guide for understanding the crustal inhomogeneity and the structural discontinuity in many other tectonically complex regions.

  20. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.

  1. Reconciling Streamflow Uncertainty Estimation and River Bed Morphology Dynamics. Insights from a Probabilistic Assessment of Streamflow Uncertainties Using a Reliability Diagram

    NASA Astrophysics Data System (ADS)

    Morlot, T.; Mathevet, T.; Perret, C.; Favre Pugin, A. C.

    2014-12-01

    Streamflow uncertainty estimation has recently received a large attention in the literature. A dynamic rating curve assessment method has been introduced (Morlot et al., 2014). This dynamic method allows to compute a rating curve for each gauging and a continuous streamflow time-series, while calculating streamflow uncertainties. Streamflow uncertainty takes into account many sources of uncertainty (water level, rating curve interpolation and extrapolation, gauging aging, etc.) and produces an estimated distribution of streamflow for each days. In order to caracterise streamflow uncertainty, a probabilistic framework has been applied on a large sample of hydrometric stations of the Division Technique Générale (DTG) of Électricité de France (EDF) hydrometric network (>250 stations) in France. A reliability diagram (Wilks, 1995) has been constructed for some stations, based on the streamflow distribution estimated for a given day and compared to a real streamflow observation estimated via a gauging. To build a reliability diagram, we computed the probability of an observed streamflow (gauging), given the streamflow distribution. Then, the reliability diagram allows to check that the distribution of probabilities of non-exceedance of the gaugings follows a uniform law (i.e., quantiles should be equipropables). Given the shape of the reliability diagram, the probabilistic calibration is caracterised (underdispersion, overdispersion, bias) (Thyer et al., 2009). In this paper, we present case studies where reliability diagrams have different statistical properties for different periods. Compared to our knowledge of river bed morphology dynamic of these hydrometric stations, we show how reliability diagram gives us invaluable information on river bed movements, like a continuous digging or backfilling of the hydraulic control due to erosion or sedimentation processes. Hence, the careful analysis of reliability diagrams allows to reconcile statistics and long-term river bed morphology processes. This knowledge improves our real-time management of hydrometric stations, given a better caracterisation of erosion/sedimentation processes and the stability of hydrometric station hydraulic control.

  2. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE PAGES

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    2016-09-12

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  3. Study on the Dose Uncertainties in the Lung during Passive Proton Irradiation with a Proton Beam Range Compensator

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Hoon; Son, Jae Man; Yoon, Myonggeun; Park, Sung Yong; Shin, Dongho; Min, Byung Jun

    2018-06-01

    A moving phantom is manufactured for mimicking lung model to study the dose uncertainty from CT number-stopping power conversion and dose calculation in the soft tissue, light lung tissue and bone regions during passive proton irradiation with compensator smearing value. The phantom is scanned with a CT system, and a proton beam irradiation plan is carried out with the use of a treatment planning system (Eclipse). In the case of the moving phantom, a RPM system is used for respiratory gating. The uncertainties in the dose distribution between the measured data and the planned data are investigated by a gamma analysis with 3%-3 mm acceptance criteria. To investigate smearing effect, three smearing values (0.3 cm, 0.7 cm, 1.2 cm) are used to for fixed and moving phantom system. For both fixed and moving phantom, uncertainties in the light lung tissue are severe than those in soft tissue region in which the dose uncertainties are within clinically tolerable ranges. As the smearing value increases, the uncertainty in the proton dose distribution decreases.

  4. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  5. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.

    PubMed

    Su, Hongsheng

    2017-12-18

    Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.

  6. Distributed parallel computing in stochastic modeling of groundwater systems.

    PubMed

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  7. Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstration using a Bayesian method

    NASA Astrophysics Data System (ADS)

    Liu, Yaoze; Engel, Bernard A.; Flanagan, Dennis C.; Gitau, Margaret W.; McMillan, Sara K.; Chaubey, Indrajeet; Singh, Shweta

    2018-05-01

    Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water quality models, a high level and forward-looking modeling framework was developed. The components in the framework consist of establishment period efficiency, starting efficiency, efficiency for each storm event, efficiency between maintenance, and efficiency over the life cycle. Combined, they represent long-term efficiency for a specific type of practice and specific environmental concern (runoff/pollutant). An approach for possible implementation of the framework was discussed. The long-term impacts of grass buffer strips (agricultural BMP) and bioretention systems (urban BMP) in reducing total phosphorus were simulated to demonstrate the framework. Data gaps were captured in estimating the long-term performance of the BMPs. A Bayesian method was used to match the simulated distribution of long-term BMP efficiencies with the observed distribution with the assumption that the observed data represented long-term BMP efficiencies. The simulated distribution matched the observed distribution well with only small total predictive uncertainties. With additional data, the same method can be used to further improve the simulation results. The modeling framework and results of this study, which can be adopted in hydrologic/water quality models to better represent long-term BMP effectiveness, can help improve decision support systems for creating long-term stormwater management strategies for watershed management projects.

  8. Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling.

    PubMed

    Huijbregts, Mark A J; Gilijamse, Wim; Ragas, Ad M J; Reijnders, Lucas

    2003-06-01

    The evaluation of uncertainty is relatively new in environmental life-cycle assessment (LCA). It provides useful information to assess the reliability of LCA-based decisions and to guide future research toward reducing uncertainty. Most uncertainty studies in LCA quantify only one type of uncertainty, i.e., uncertainty due to input data (parameter uncertainty). However, LCA outcomes can also be uncertain due to normative choices (scenario uncertainty) and the mathematical models involved (model uncertainty). The present paper outlines a new methodology that quantifies parameter, scenario, and model uncertainty simultaneously in environmental life-cycle assessment. The procedure is illustrated in a case study that compares two insulation options for a Dutch one-family dwelling. Parameter uncertainty was quantified by means of Monte Carlo simulation. Scenario and model uncertainty were quantified by resampling different decision scenarios and model formulations, respectively. Although scenario and model uncertainty were not quantified comprehensively, the results indicate that both types of uncertainty influence the case study outcomes. This stresses the importance of quantifying parameter, scenario, and model uncertainty simultaneously. The two insulation options studied were found to have significantly different impact scores for global warming, stratospheric ozone depletion, and eutrophication. The thickest insulation option has the lowest impact on global warming and eutrophication, and the highest impact on stratospheric ozone depletion.

  9. NIST-NRC Comparison of Total Immersion Liquid-in-Glass Thermometers

    NASA Astrophysics Data System (ADS)

    Hill, K. D.; Gee, D. J.; Cross, C. D.; Strouse, G. F.

    2009-02-01

    The use of liquid-in-glass (LIG) thermometers is described in many documentary standards in the fields of environmental testing, material testing, and material transfer. Many national metrology institutes, including the National Institute of Standards and Technology (NIST) and the National Research Council of Canada (NRC), list calibration services for these thermometers among the Calibration Measurement Capabilities of Appendix C of the BIPM Key Comparison Database. NIST and NRC arranged a bilateral comparison of a set of total-immersion ASTM-type LIG thermometers to validate their uncertainty claims. Two each of ASTM thermometer types 62C through 69C were calibrated at NIST and at NRC at four temperatures distributed over the range appropriate to each thermometer, in addition to the ice point. Collectively, the thermometers span a temperature range of - 38 °C to 305 °C. In total, 160 measurements (80 pairs) comprise the comparison data set. Pair-wise differences ( T NIST- T NRC) were formed for each thermometer at each temperature. For 8 of the 80 pairs (10 %), the differences exceed the k = 2 combined uncertainties. These results support the claimed capabilities of NIST and NRC for the calibration of LIG thermometers.

  10. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at; Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patientmore » positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe.« less

  11. Uncertainty and the Social Cost of Methane Using Bayesian Constrained Climate Models

    NASA Astrophysics Data System (ADS)

    Errickson, F. C.; Anthoff, D.; Keller, K.

    2016-12-01

    Social cost estimates of greenhouse gases are important for the design of sound climate policies and are also plagued by uncertainty. One major source of uncertainty stems from the simplified representation of the climate system used in the integrated assessment models that provide these social cost estimates. We explore how uncertainty over the social cost of methane varies with the way physical processes and feedbacks in the methane cycle are modeled by (i) coupling three different methane models to a simple climate model, (ii) using MCMC to perform a Bayesian calibration of the three coupled climate models that simulates direct sampling from the joint posterior probability density function (pdf) of model parameters, and (iii) producing probabilistic climate projections that are then used to calculate the Social Cost of Methane (SCM) with the DICE and FUND integrated assessment models. We find that including a temperature feedback in the methane cycle acts as an additional constraint during the calibration process and results in a correlation between the tropospheric lifetime of methane and several climate model parameters. This correlation is not seen in the models lacking this feedback. Several of the estimated marginal pdfs of the model parameters also exhibit different distributional shapes and expected values depending on the methane model used. As a result, probabilistic projections of the climate system out to the year 2300 exhibit different levels of uncertainty and magnitudes of warming for each of the three models under an RCP8.5 scenario. We find these differences in climate projections result in differences in the distributions and expected values for our estimates of the SCM. We also examine uncertainty about the SCM by performing a Monte Carlo analysis using a distribution for the climate sensitivity while holding all other climate model parameters constant. Our SCM estimates using the Bayesian calibration are lower and exhibit less uncertainty about extremely high values in the right tail of the distribution compared to the Monte Carlo approach. This finding has important climate policy implications and suggests previous work that accounts for climate model uncertainty by only varying the climate sensitivity parameter may overestimate the SCM.

  12. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    PubMed Central

    Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.

    2014-01-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R2 < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe. PMID:25186386

  13. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  14. Can we do better than the grid survey: Optimal synoptic surveys in presence of variable uncertainty and decorrelation scales

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Garau, Bartolame; Bellingham, James

    2014-08-01

    Regular grid ("lawnmower") survey is a classical strategy for synoptic sampling of the ocean. Is it possible to achieve a more effective use of available resources if one takes into account a priori knowledge about variability in magnitudes of uncertainty and decorrelation scales? In this article, we develop and compare the performance of several path-planning algorithms: optimized "lawnmower," a graph-search algorithm (A*), and a fully nonlinear genetic algorithm. We use the machinery of the best linear unbiased estimator (BLUE) to quantify the ability of a vehicle fleet to synoptically map distribution of phytoplankton off the central California coast. We used satellite and in situ data to specify covariance information required by the BLUE estimator. Computational experiments showed that two types of sampling strategies are possible: a suboptimal space-filling design (produced by the "lawnmower" and the A* algorithms) and an optimal uncertainty-aware design (produced by the genetic algorithm). Unlike the space-filling designs that attempted to cover the entire survey area, the optimal design focused on revisiting areas of high uncertainty. Results of the multivehicle experiments showed that fleet performance predictors, such as cumulative speed or the weight of the fleet, predicted the performance of a homogeneous fleet well; however, these were poor predictors for comparing the performance of different platforms.

  15. Uncertainty evaluation of a regional real-time system for rain-induced landslides

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni

    2015-04-01

    A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.

  16. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.

  17. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  18. A review of contemporary methods for the presentation of scientific uncertainty.

    PubMed

    Makinson, K A; Hamby, D M; Edwards, J A

    2012-12-01

    Graphic methods for displaying uncertainty are often the most concise and informative way to communicate abstract concepts. Presentation methods currently in use for the display and interpretation of scientific uncertainty are reviewed. Numerous subjective and objective uncertainty display methods are presented, including qualitative assessments, node and arrow diagrams, standard statistical methods, box-and-whisker plots,robustness and opportunity functions, contribution indexes, probability density functions, cumulative distribution functions, and graphical likelihood functions.

  19. A multiple-point geostatistical approach to quantifying uncertainty for flow and transport simulation in geologically complex environments

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.

    2011-12-01

    In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.

  20. Regional Frequency and Uncertainty Analysis of Extreme Precipitation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mortuza, M. R.; Demissie, Y.; Li, H. Y.

    2014-12-01

    Increased frequency of extreme precipitations, especially those with multiday durations, are responsible for recent urban floods and associated significant losses of lives and infrastructures in Bangladesh. Reliable and routinely updated estimation of the frequency of occurrence of such extreme precipitation events are thus important for developing up-to-date hydraulic structures and stormwater drainage system that can effectively minimize future risk from similar events. In this study, we have updated the intensity-duration-frequency (IDF) curves for Bangladesh using daily precipitation data from 1961 to 2010 and quantified associated uncertainties. Regional frequency analysis based on L-moments is applied on 1-day, 2-day and 5-day annual maximum precipitation series due to its advantages over at-site estimation. The regional frequency approach pools the information from climatologically similar sites to make reliable estimates of quantiles given that the pooling group is homogeneous and of reasonable size. We have used Region of influence (ROI) approach along with homogeneity measure based on L-moments to identify the homogenous pooling groups for each site. Five 3-parameter distributions (i.e., Generalized Logistic, Generalized Extreme value, Generalized Normal, Pearson Type Three, and Generalized Pareto) are used for a thorough selection of appropriate models that fit the sample data. Uncertainties related to the selection of the distributions and historical data are quantified using the Bayesian Model Averaging and Balanced Bootstrap approaches respectively. The results from this study can be used to update the current design and management of hydraulic structures as well as in exploring spatio-temporal variations of extreme precipitation and associated risk.

  1. Medical Need, Equality, and Uncertainty.

    PubMed

    Horne, L Chad

    2016-10-01

    Many hold that distributing healthcare according to medical need is a requirement of equality. Most egalitarians believe, however, that people ought to be equal on the whole, by some overall measure of well-being or life-prospects; it would be a massive coincidence if distributing healthcare according to medical need turned out to be an effective way of promoting equality overall. I argue that distributing healthcare according to medical need is important for reducing individuals' uncertainty surrounding their future medical needs. In other words, distributing healthcare according to medical need is a natural feature of healthcare insurance; it is about indemnity, not equality. © 2016 John Wiley & Sons Ltd.

  2. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali mohammad

    2014-01-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14% reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  3. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali Mohammad

    2014-05-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14 % reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  4. Dealing with uncertainty in modeling intermittent water supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  5. An uncertainty-based distributed fault detection mechanism for wireless sensor networks.

    PubMed

    Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong

    2014-04-25

    Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio.

  6. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  7. Uncertainty in cloud optical depth estimates made from satellite radiance measurements

    NASA Technical Reports Server (NTRS)

    Pincus, Robert; Szczodrak, Malgorzata; Gu, Jiujing; Austin, Philip

    1995-01-01

    The uncertainty in optical depths retrieved from satellite measurements of visible wavelength radiance at the top of the atmosphere is quantified. Techniques are briefly reviewed for the estimation of optical depth from measurements of radiance, and it is noted that these estimates are always more uncertain at greater optical depths and larger solar zenith angles. The lack of radiometric calibration for visible wavelength imagers on operational satellites dominates the uncertainty retrievals of optical depth. This is true for both single-pixel retrievals and for statistics calculated from a population of individual retrievals. For individual estimates or small samples, sensor discretization can also be significant, but the sensitivity of the retrieval to the specification of the model atmosphere is less important. The relative uncertainty in calibration affects the accuracy with which optical depth distributions measured by different sensors may be quantitatively compared, while the absolute calibration uncertainty, acting through the nonlinear mapping of radiance to optical depth, limits the degree to which distributions measured by the same sensor may be distinguished.

  8. Uncertainty Analysis of Consequence Management (CM) Data Products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Brian D.; Eckert-Gallup, Aubrey Celia; Cochran, Lainy Dromgoole

    The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.

  9. Probabilistic accident consequence uncertainty analysis -- Late health effects uncertain assessment. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, M.P.; Muirhead, C.R.; Goossens, L.H.J.

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA late health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the expert panel on late health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less

  10. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  11. Validation of aerosol optical depth uncertainties within the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Stebel, Kerstin; Povey, Adam; Popp, Thomas; Capelle, Virginie; Clarisse, Lieven; Heckel, Andreas; Kinne, Stefan; Klueser, Lars; Kolmonen, Pekka; de Leeuw, Gerrit; North, Peter R. J.; Pinnock, Simon; Sogacheva, Larisa; Thomas, Gareth; Vandenbussche, Sophie

    2017-04-01

    Uncertainty is a vital component of any climate data record as it provides the context with which to understand the quality of the data and compare it to other measurements. Therefore, pixel-level uncertainties are provided for all aerosol products that have been developed in the framework of the Aerosol_cci project within ESA's Climate Change Initiative (CCI). Validation of these estimated uncertainties is necessary to demonstrate that they provide a useful representation of the distribution of error. We propose a technique for the statistical validation of AOD (aerosol optical depth) uncertainty by comparison to high-quality ground-based observations and present results for ATSR (Along Track Scanning Radiometer) and IASI (Infrared Atmospheric Sounding Interferometer) data records. AOD at 0.55 µm and its uncertainty was calculated with three AOD retrieval algorithms using data from the ATSR instruments (ATSR-2 (1995-2002) and AATSR (2002-2012)). Pixel-level uncertainties were calculated through error propagation (ADV/ASV, ORAC algorithms) or parameterization of the error's dependence on the geophysical retrieval conditions (SU algorithm). Level 2 data are given as super-pixels of 10 km x 10 km. As validation data, we use direct-sun observations of AOD from the AERONET (AErosol RObotic NETwork) and MAN (Maritime Aerosol Network) sun-photometer networks, which are substantially more accurate than satellite retrievals. Neglecting the uncertainty in AERONET observations and possible issues with their ability to represent a satellite pixel area, the error in the retrieval can be approximated by the difference between the satellite and AERONET retrievals (herein referred to as "error"). To evaluate how well the pixel-level uncertainty represents the observed distribution of error, we look at the distribution of the ratio D between the "error" and the ATSR uncertainty. If uncertainties are well represented, D should be normally distributed and 68.3% of values should fall within the range [-1, +1]. A non-zero mean of D indicates the presence of residual systematic errors. If the fraction is smaller than 68%, uncertainties are underestimated; if it is larger, uncertainties are overestimated. For the three ATSR algorithms, we provide statistics and an evaluation at a global scale (separately for land and ocean/coastal regions), for high/low AOD regimes, and seasonal and regional statistics (e.g. Europe, N-Africa, East-Asia, N-America). We assess the long-term stability of the uncertainty estimates over the 17-year time series, and the consistency between ATSR-2 and AATSR results (during their period of overlap). Furthermore, we exploit the possibility to adapt the uncertainty validation concept to the IASI datasets. Ten-year data records (2007-2016) of dust AOD have been generated with four algorithms using IASI observations over the greater Sahara region [80°W - 120°E, 0°N - 40°N]. For validation, the coarse mode AOD at 0.55 μm from the AERONET direct-sun spectral deconvolution algorithm (SDA) product may be used as a proxy for desert dust. The uncertainty validation results for IASI are still tentative, as larger IASI pixel sizes and the conversion of the IASI AOD values from infrared to visible wavelengths for comparison to ground-based observations introduces large uncertainties.

  12. nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework

    DOE PAGES

    Kovarik, K.; Kusina, A.; Jezo, T.; ...

    2016-04-28

    We present the new nCTEQ15 set of nuclear parton distribution functions with uncertainties. This fit extends the CTEQ proton PDFs to include the nuclear dependence using data on nuclei all the way up to 208Pb. The uncertainties are determined using the Hessian method with an optimal rescaling of the eigenvectors to accurately represent the uncertainties for the chosen tolerance criteria. In addition to the Deep Inelastic Scattering (DIS) and Drell-Yan (DY) processes, we also include inclusive pion production data from RHIC to help constrain the nuclear gluon PDF. Here, we investigate the correlation of the data sets with specific nPDFmore » flavor components, and asses the impact of individual experiments. We also provide comparisons of the nCTEQ15 set with recent fits from other groups.« less

  13. Numerical analysis of the accuracy of bivariate quantile distributions utilizing copulas compared to the GUM supplement 2 for oil pressure balance uncertainties

    NASA Astrophysics Data System (ADS)

    Ramnath, Vishal

    2017-11-01

    In the field of pressure metrology the effective area is Ae = A0 (1 + λP) where A0 is the zero-pressure area and λ is the distortion coefficient and the conventional practise is to construct univariate probability density functions (PDFs) for A0 and λ. As a result analytical generalized non-Gaussian bivariate joint PDFs has not featured prominently in pressure metrology. Recently extended lambda distribution based quantile functions have been successfully utilized for summarizing univariate arbitrary PDF distributions of gas pressure balances. Motivated by this development we investigate the feasibility and utility of extending and applying quantile functions to systems which naturally exhibit bivariate PDFs. Our approach is to utilize the GUM Supplement 1 methodology to solve and generate Monte Carlo based multivariate uncertainty data for an oil based pressure balance laboratory standard that is used to generate known high pressures, and which are in turn cross-floated against another pressure balance transfer standard in order to deduce the transfer standard's respective area. We then numerically analyse the uncertainty data by formulating and constructing an approximate bivariate quantile distribution that directly couples A0 and λ in order to compare and contrast its accuracy to an exact GUM Supplement 2 based uncertainty quantification analysis.

  14. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  15. Uncertainties of predictions from parton distributions II: theoretical errors

    NASA Astrophysics Data System (ADS)

    Martin, A. D.; Roberts, R. G.; Stirling, W. J.; Thorne, R. S.

    2004-06-01

    We study the uncertainties in parton distributions, determined in global fits to deep inelastic and related hard scattering data, due to so-called theoretical errors. Amongst these, we include potential errors due to the change of perturbative order (NLO to NNLO), ln(1/x) and ln(1-x) effects, absorptive corrections and higher-twist contributions. We investigate these uncertainties both by including explicit corrections to our standard global analysis and by examining the sensitivity to changes of the x, Q 2, W 2 cuts on the data that are fitted. In this way we expose those kinematic regions where the conventional DGLAP description is inadequate. As a consequence we obtain a set of NLO, and of NNLO, conservative partons where the data are fully consistent with DGLAP evolution, but over a restricted kinematic domain. We also examine the potential effects of such issues as the choice of input parametrisation, heavy target corrections, assumptions about the strange quark sea and isospin violation. Hence we are able to compare the theoretical errors with those uncertainties due to errors on the experimental measurements, which we studied previously. We use W and Higgs boson production at the Tevatron and the LHC as explicit examples of the uncertainties arising from parton distributions. For many observables the theoretical error is dominant, but for the cross section for W production at the Tevatron both the theoretical and experimental uncertainties are small, and hence the NNLO prediction may serve as a valuable luminosity monitor.

  16. Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartICus reflectivity factors

    NASA Astrophysics Data System (ADS)

    Mascio, Jeana; Mace, Gerald G.

    2017-02-01

    Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.

  17. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less

  18. Distributed autonomous systems: resource management, planning, and control algorithms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Nguyen, ThanhVu H.

    2005-05-01

    Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be discussed consists of a collection of unmanned aerial vehicles (UAVs) that are under fuzzy logic control. The UAVs fly and conduct meteorological sampling in a coordinated fashion determined by their fuzzy logic controllers to determine the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy planning algorithm determines the optimal trajectory, sampling rate and pattern for the UAVs and an interferometer platform while taking into account risk, reliability, priority for sampling in certain regions, fuel limitations, mission cost, and related uncertainties. The real-time fuzzy control algorithm running on each UAV will give the UAV limited autonomy allowing it to change course immediately without consulting with any commander, request other UAVs to help it, alter its sampling pattern and rate when observing interesting phenomena, or to terminate the mission and return to base. The algorithms developed will be compared to a resource manager (RM) developed for another DAS problem related to electronic attack (EA). This RM is based on fuzzy logic and optimized by evolutionary algorithms. It allows a group of dissimilar platforms to use EA resources distributed throughout the group. For both DAS types significant theoretical and simulation results will be presented.

  19. Estimating the Uncertainty In Diameter Growth Model Predictions and Its Effects On The Uncertainty of Annual Inventory Estimates

    Treesearch

    Ronald E. McRoberts; Veronica C. Lessard

    2001-01-01

    Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...

  20. Map scale effects on estimating the number of undiscovered mineral deposits

    USGS Publications Warehouse

    Singer, D.A.; Menzie, W.D.

    2008-01-01

    Estimates of numbers of undiscovered mineral deposits, fundamental to assessing mineral resources, are affected by map scale. Where consistently defined deposits of a particular type are estimated, spatial and frequency distributions of deposits are linked in that some frequency distributions can be generated by processes randomly in space whereas others are generated by processes suggesting clustering in space. Possible spatial distributions of mineral deposits and their related frequency distributions are affected by map scale and associated inclusions of non-permissive or covered geological settings. More generalized map scales are more likely to cause inclusion of geologic settings that are not really permissive for the deposit type, or that include unreported cover over permissive areas, resulting in the appearance of deposit clustering. Thus, overly generalized map scales can cause deposits to appear clustered. We propose a model that captures the effects of map scale and the related inclusion of non-permissive geologic settings on numbers of deposits estimates, the zero-inflated Poisson distribution. Effects of map scale as represented by the zero-inflated Poisson distribution suggest that the appearance of deposit clustering should diminish as mapping becomes more detailed because the number of inflated zeros would decrease with more detailed maps. Based on observed worldwide relationships between map scale and areas permissive for deposit types, mapping at a scale with twice the detail should cut permissive area size of a porphyry copper tract to 29% and a volcanic-hosted massive sulfide tract to 50% of their original sizes. Thus some direct benefits of mapping an area at a more detailed scale are indicated by significant reductions in areas permissive for deposit types, increased deposit density and, as a consequence, reduced uncertainty in the estimate of number of undiscovered deposits. Exploration enterprises benefit from reduced areas requiring detailed and expensive exploration, and land-use planners benefit from reduced areas of concern. ?? 2008 International Association for Mathematical Geology.

  1. Estimating Prediction Uncertainty from Geographical Information System Raster Processing: A User's Manual for the Raster Error Propagation Tool (REPTool)

    USGS Publications Warehouse

    Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.

    2009-01-01

    The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.

  2. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework

    NASA Astrophysics Data System (ADS)

    Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun

    2017-06-01

    Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.

  3. Uncertainty of future projections of species distributions in mountainous regions.

    PubMed

    Tang, Ying; Winkler, Julie A; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution.

  4. Uncertainty of future projections of species distributions in mountainous regions

    PubMed Central

    Tang, Ying; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution. PMID:29320501

  5. Capabilities of VOS-based fluxes for estimating ocean heat budget and its variability

    NASA Astrophysics Data System (ADS)

    Gulev, S.; Belyaev, K.

    2016-12-01

    We consider here the perspective of using VOS observations by merchant ships available form the ICOADS data for estimating ocean surface heat budget at different time scale. To this purpose we compute surface turbulent heat fluxes as well as short- and long-wave radiative fluxes from the ICOADS reports for the last several decades in the North Atlantic mid latitudes. Turbulent fluxes were derived using COARE-3 algorithm and for computation of radiative fluxes new algorithms accounting for cloud types were used. Sampling uncertainties in the VOS-based fluxes were estimated by sub-sampling of the recomputed reanalysis (ERA-Interim) fluxes according to the VOS sampling scheme. For the turbulent heat fluxes we suggest an approach to minimize sampling uncertainties. The approach is based on the integration of the turbulent heat fluxes in the coordinates of steering parameters (vertical surface temperature and humidity gradients on one hand and wind speed on the other) for which theoretical probability distributions are known. For short-wave radiative fluxes sampling uncertainties were minimized by "rotating local observation time around the clock" and using probability density functions for the cloud cover occurrence distributions. Analysis was performed for the North Atlantic latitudinal band from 25 N to 60 N, for which also estimates of the meridional heat transport are available from the ocean cross-sections. Over the last 35 years turbulent fluxes within the region analysed increase by about 6 W/m2 with the major growth during the 1990s and early 2000s. Decreasing incoming short wave radiation during the same time (about 1 W/m2) implies upward change of the ocean surface heat loss by about 7-8 W/m2. We discuss different sources of uncertainties of computations as well as potential of the application of the analysis concept to longer time series going back to 1920s.

  6. Intelligent decision support algorithm for distribution system restoration.

    PubMed

    Singh, Reetu; Mehfuz, Shabana; Kumar, Parmod

    2016-01-01

    Distribution system is the means of revenue for electric utility. It needs to be restored at the earliest if any feeder or complete system is tripped out due to fault or any other cause. Further, uncertainty of the loads, result in variations in the distribution network's parameters. Thus, an intelligent algorithm incorporating hybrid fuzzy-grey relation, which can take into account the uncertainties and compare the sequences is discussed to analyse and restore the distribution system. The simulation studies are carried out to show the utility of the method by ranking the restoration plans for a typical distribution system. This algorithm also meets the smart grid requirements in terms of an automated restoration plan for the partial/full blackout of network.

  7. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than +/-3%. We also examined the daily IC variability, which is dominated by sea ice drift and ice formation/melt. Daily IC variability is the highest, year round, in the MIZ (often up to 20%, locally 30%). The temporal and spatial distributions of the retrieval uncertainties and the daily IC variability is expected to be useful for algorithm intercomparisons, climate trend assessments, and possibly IC assimilation in models.

  8. Representativeness Uncertainty in Chemical Data Assimilation Highlight Mixing Barriers

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2003-01-01

    When performing chemical data assimilation the observational, representativeness, and theoretical uncertainties have very different characteristics. In this study we have accurately characterized the representativeness uncertainty by studying the probability distribution function (PDF) of the observations. The average deviation has been used as a measure of the width of the PDF and of the variability (representativeness uncertainty) for the grid cell. It turns out that for long-lived tracers such as N2O and CH4 the representativeness uncertainty is markedly different from the observational uncertainty and clearly delineates mixing barriers such as the polar vortex edge, the tropical pipe and the tropopause.

  9. Uncertainty estimation of a complex water quality model: The influence of Box-Cox transformation on Bayesian approaches and comparison with a non-Bayesian method

    NASA Astrophysics Data System (ADS)

    Freni, Gabriele; Mannina, Giorgio

    In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.

  10. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration

    PubMed Central

    Yang, M; Zhu, X R; Park, PC; Titt, Uwe; Mohan, R; Virshup, G; Clayton, J; Dong, L

    2012-01-01

    The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0–3.4%, primarily because soft tissue is the dominant tissue type in human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield Numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction. PMID:22678123

  11. [The uncertainty evaluation of analytical results of 27 elements in geological samples by X-ray fluorescence spectrometry].

    PubMed

    Wang, Yi-Ya; Zhan, Xiu-Chun

    2014-04-01

    Evaluating uncertainty of analytical results with 165 geological samples by polarized dispersive X-ray fluorescence spectrometry (P-EDXRF) has been reported according to the internationally accepted guidelines. One hundred sixty five pressed pellets of similar matrix geological samples with reliable values were analyzed by P-EDXRF. These samples were divided into several different concentration sections in the concentration ranges of every component. The relative uncertainties caused by precision and accuracy of 27 components were evaluated respectively. For one element in one concentration, the relative uncertainty caused by precision can be calculated according to the average value of relative standard deviation with different concentration level in one concentration section, n = 6 stands for the 6 results of one concentration level. The relative uncertainty caused by accuracy in one concentration section can be evaluated by the relative standard deviation of relative deviation with different concentration level in one concentration section. According to the error propagation theory, combining the precision uncertainty and the accuracy uncertainty into a global uncertainty, this global uncertainty acted as method uncertainty. This model of evaluating uncertainty can solve a series of difficult questions in the process of evaluating uncertainty, such as uncertainties caused by complex matrix of geological samples, calibration procedure, standard samples, unknown samples, matrix correction, overlap correction, sample preparation, instrument condition and mathematics model. The uncertainty of analytical results in this method can act as the uncertainty of the results of the similar matrix unknown sample in one concentration section. This evaluation model is a basic statistical method owning the practical application value, which can provide a strong base for the building of model of the following uncertainty evaluation function. However, this model used a lot of samples which cannot simply be applied to other types of samples with different matrix samples. The number of samples is too large to adapt to other type's samples. We will strive for using this study as a basis to establish a reasonable basis of mathematical statistics function mode to be applied to different types of samples.

  12. Impacts of uncertainties in weather and streamflow observations in calibration and evaluation of an elevation distributed HBV-model

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.; Petersen-Øverleir, A.; Johansen, S.

    2012-04-01

    The aim of this study is to assess the uncertainties in streamflow simulations when uncertainties in both observed inputs (precipitation and temperature) and streamflow observations used in the calibration of the hydrological model are explicitly accounted for. To achieve this goal we applied the elevation distributed HBV model operating on daily time steps to a small catchment in high elevation in Southern Norway where the seasonal snow cover is important. The uncertainties in precipitation inputs were quantified using conditional simulation. This procedure accounts for the uncertainty related to the density of the precipitation network, but neglects uncertainties related to measurement bias/errors and eventual elevation gradients in precipitation. The uncertainties in temperature inputs were quantified using a Bayesian temperature interpolation procedure where the temperature lapse rate is re-estimated every day. The uncertainty in the lapse rate was accounted for whereas the sampling uncertainty related to network density was neglected. For every day a random sample of precipitation and temperature inputs were drawn to be applied as inputs to the hydrologic model. The uncertainties in observed streamflow were assessed based on the uncertainties in the rating curve model. A Bayesian procedure was applied to estimate the probability for rating curve models with 1 to 3 segments and the uncertainties in their parameters. This method neglects uncertainties related to errors in observed water levels. Note that one rating curve was drawn to make one realisation of a whole time series of streamflow, thus the rating curve errors lead to a systematic bias in the streamflow observations. All these uncertainty sources were linked together in both calibration and evaluation of the hydrologic model using a DREAM based MCMC routine. Effects of having less information (e.g. missing one streamflow measurement for defining the rating curve or missing one precipitation station) was also investigated.

  13. SU-F-T-316: A Model to Deal with Dosimetric and Delivery Uncertainties in Radiotherapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haering, P; Lang, C; Splinter, M

    2016-06-15

    Purpose The conventional way of dealing with uncertainties resulting from dose calculation or beam delivery in IMRT, is to do verification measurements for the plan in question. Here we present an alternative based on recommendations given in the AAPM 142 report and treatment specific parameters that model the uncertainties for the plan delivery. Methods Basis of the model is the assignment of uncertainty parameters to all segment fields or control point sequences of a plan. The given field shape is analyzed for complexity, dose rate, number of MU, field size related output as well as factors for in/out field positionmore » and penumbra regions. Together with depth related uncertainties, a 3D matrix is generated by a projection algorithm. Patient anatomy is included as uncertainty CT data set as well. Therefore, object density is classified in 4 categories close to water, lung, bone and gradient regions with additional uncertainties. The result is then exported as a DICOM dose file by the software tool (written in IDL, Exelis), having the given resolution and target point. Results Uncertainty matrixes for several patient cases have been calculated and compared side by side in the planning system. The result is not quite always intuitive but it clearly indicates high and low uncertainties related to OARs and target volumes as well as to measured gamma distributions.ConclusionThe imported uncertainty datasets may help the treatment planner to understand the complexity of the treatment plan. He then might decide to change the plan to produce a more suited uncertainty distribution, e.g. by changing the beam angles the high uncertainty spots can be influenced or try to use another treatment setup, resulting in a plan with lower uncertainties. A next step could be to include such a model into the optimization algorithm to add a new dose uncertainty constraint.« less

  14. Momentum distributions for H 2 ( e , e ' p )

    DOE PAGES

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  15. A Climatology of Polar Stratospheric Cloud Types by MIPAS-Envisat

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Griessbach, Sabine; Orr, Andrew; Höpfner, Michael; Müller, Rolf

    2015-04-01

    For Chemistry Climate Models (CCM) it is still a challenging task to properly represent the evolution of the polar vortices over the entire winter season. The models usually do not include comprehensive microphysical modules to evolve the formation of different types of polar stratospheric clouds (PSC) over the winter. Consequently, predictions on the development and recovery of the future ozone hole have relatively large uncertainties. A climatological record of hemispheric measurement of PSC types could help to better validate and improve the PSC schemes in CCMs. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard the ESA Envisat satellite operated from July 2002 to April 2012. The infra-red limb emission measurements compile a unique dataset of day and night measurements of polar stratospheric clouds up to the poles. From the spectral measurements in the 4.15-14.6 microns range it is possible to select a number of atmospheric window regions and spectral signatures to classify PSC cloud types like nitric acid hydrates, sulfuric ternary solution droplets, and ice particles. The cloud detection sensitivity is similar to space borne lidars, but MIPAS adds complementary information due to its different measurement technique (limb instead of nadir) and wavelength region. Here we will describe a new classification method for PSCs based on the combination of multiple brightness temperature differences (BTD) and colour ratios. Probability density functions (PDF) of the MIPAS measurements in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions enable the definition of regions attributed to specific or mixed types clouds. Applying a naive bias classifier for independent criteria to all defined classes in four 2D PDF distributions, it is possible to assign the most likely PSC type to any measured cloud spectrum. Statistical Monte Carlo test have been applied to quantify uncertainties and the sensitivity to a priori information of the approach. The processing of the complete MIPAS data set of almost 10 years of PSC observations with a first version of the new classification approach is completed. Results for various northern and southern hemisphere winters will be presented. The temporal evolution of the PSC types with respect to the temporal development of the meteorological conditions of the polar vortex as well as comparison with space and ground based lidar measurements will be investigated.

  16. Production of NOx by Lightning and its Effects on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2009-01-01

    Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.

  17. Body Movement in Relation to Type of Information (Person- and Nonperson-Oriented) and Cognitive Style (Field Dependence)

    ERIC Educational Resources Information Center

    Sousa-Poza, Joaquin F.; Rohrberg, Robert

    1977-01-01

    Proposes that body-focused movement reflects a degree of uncertainty involved in generating information as a function of type of information, psychological differentiation of encoder, and psychological uncertainty of communicative setting. Object-focused movements appear to occur in relation to the type of information and listener availability.…

  18. Uncertainty analysis of an inflow forecasting model: extension of the UNEEC machine learning-based method

    NASA Astrophysics Data System (ADS)

    Pianosi, Francesca; Lal Shrestha, Durga; Solomatine, Dimitri

    2010-05-01

    This research presents an extension of UNEEC (Uncertainty Estimation based on Local Errors and Clustering, Shrestha and Solomatine, 2006, 2008 & Solomatine and Shrestha, 2009) method in the direction of explicit inclusion of parameter uncertainty. UNEEC method assumes that there is an optimal model and the residuals of the model can be used to assess the uncertainty of the model prediction. It is assumed that all sources of uncertainty including input, parameter and model structure uncertainty are explicitly manifested in the model residuals. In this research, theses assumptions are relaxed, and the UNEEC method is extended to consider parameter uncertainty as well (abbreviated as UNEEC-P). In UNEEC-P, first we use Monte Carlo (MC) sampling in parameter space to generate N model realizations (each of which is a time series), estimate the prediction quantiles based on the empirical distribution functions of the model residuals considering all the residual realizations, and only then apply the standard UNEEC method that encapsulates the uncertainty of a hydrologic model (expressed by quantiles of the error distribution) in a machine learning model (e.g., ANN). UNEEC-P is applied first to a linear regression model of synthetic data, and then to a real case study of forecasting inflow to lake Lugano in northern Italy. The inflow forecasting model is a stochastic heteroscedastic model (Pianosi and Soncini-Sessa, 2009). The preliminary results show that the UNEEC-P method produces wider uncertainty bounds, which is consistent with the fact that the method considers also parameter uncertainty of the optimal model. In the future UNEEC method will be further extended to consider input and structure uncertainty which will provide more realistic estimation of model predictions.

  19. Weighing Clinical Evidence Using Patient Preferences: An Application of Probabilistic Multi-Criteria Decision Analysis.

    PubMed

    Broekhuizen, Henk; IJzerman, Maarten J; Hauber, A Brett; Groothuis-Oudshoorn, Catharina G M

    2017-03-01

    The need for patient engagement has been recognized by regulatory agencies, but there is no consensus about how to operationalize this. One approach is the formal elicitation and use of patient preferences for weighing clinical outcomes. The aim of this study was to demonstrate how patient preferences can be used to weigh clinical outcomes when both preferences and clinical outcomes are uncertain by applying a probabilistic value-based multi-criteria decision analysis (MCDA) method. Probability distributions were used to model random variation and parameter uncertainty in preferences, and parameter uncertainty in clinical outcomes. The posterior value distributions and rank probabilities for each treatment were obtained using Monte-Carlo simulations. The probability of achieving the first rank is the probability that a treatment represents the highest value to patients. We illustrated our methodology for a simplified case on six HIV treatments. Preferences were modeled with normal distributions and clinical outcomes were modeled with beta distributions. The treatment value distributions showed the rank order of treatments according to patients and illustrate the remaining decision uncertainty. This study demonstrated how patient preference data can be used to weigh clinical evidence using MCDA. The model takes into account uncertainty in preferences and clinical outcomes. The model can support decision makers during the aggregation step of the MCDA process and provides a first step toward preference-based personalized medicine, yet requires further testing regarding its appropriate use in real-world settings.

  20. Assessing and reporting uncertainties in dietary exposure analysis: Mapping of uncertainties in a tiered approach.

    PubMed

    Kettler, Susanne; Kennedy, Marc; McNamara, Cronan; Oberdörfer, Regina; O'Mahony, Cian; Schnabel, Jürgen; Smith, Benjamin; Sprong, Corinne; Faludi, Roland; Tennant, David

    2015-08-01

    Uncertainty analysis is an important component of dietary exposure assessments in order to understand correctly the strength and limits of its results. Often, standard screening procedures are applied in a first step which results in conservative estimates. If through those screening procedures a potential exceedance of health-based guidance values is indicated, within the tiered approach more refined models are applied. However, the sources and types of uncertainties in deterministic and probabilistic models can vary or differ. A key objective of this work has been the mapping of different sources and types of uncertainties to better understand how to best use uncertainty analysis to generate more realistic comprehension of dietary exposure. In dietary exposure assessments, uncertainties can be introduced by knowledge gaps about the exposure scenario, parameter and the model itself. With this mapping, general and model-independent uncertainties have been identified and described, as well as those which can be introduced and influenced by the specific model during the tiered approach. This analysis identifies that there are general uncertainties common to point estimates (screening or deterministic methods) and probabilistic exposure assessment methods. To provide further clarity, general sources of uncertainty affecting many dietary exposure assessments should be separated from model-specific uncertainties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Hyperspectral imaging spectro radiometer improves radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc

    2013-06-01

    Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.

  2. An Uncertainty-Based Distributed Fault Detection Mechanism for Wireless Sensor Networks

    PubMed Central

    Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong

    2014-01-01

    Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio. PMID:24776937

  3. Statistical Analysis of the Uncertainty in Pre-Flight Aerodynamic Database of a Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Huh, Lynn

    The objective of the present research was to develop a new method to derive the aerodynamic coefficients and the associated uncertainties for flight vehicles via post- flight inertial navigation analysis using data from the inertial measurement unit. Statistical estimates of vehicle state and aerodynamic coefficients are derived using Monte Carlo simulation. Trajectory reconstruction using the inertial navigation system (INS) is a simple and well used method. However, deriving realistic uncertainties in the reconstructed state and any associated parameters is not so straight forward. Extended Kalman filters, batch minimum variance estimation and other approaches have been used. However, these methods generally depend on assumed physical models, assumed statistical distributions (usually Gaussian) or have convergence issues for non-linear problems. The approach here assumes no physical models, is applicable to any statistical distribution, and does not have any convergence issues. The new approach obtains the statistics directly from a sufficient number of Monte Carlo samples using only the generally well known gyro and accelerometer specifications and could be applied to the systems of non-linear form and non-Gaussian distribution. When redundant data are available, the set of Monte Carlo simulations are constrained to satisfy the redundant data within the uncertainties specified for the additional data. The proposed method was applied to validate the uncertainty in the pre-flight aerodynamic database of the X-43A Hyper-X research vehicle. In addition to gyro and acceleration data, the actual flight data include redundant measurements of position and velocity from the global positioning system (GPS). The criteria derived from the blend of the GPS and INS accuracy was used to select valid trajectories for statistical analysis. The aerodynamic coefficients were derived from the selected trajectories by either direct extraction method based on the equations in dynamics, or by the inquiry of the pre-flight aerodynamic database. After the application of the proposed method to the case of the X-43A Hyper-X research vehicle, it was found that 1) there were consistent differences in the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis, 2) the pre-flight estimation of the pitching moment coefficients was significantly different from the post-flight analysis, 3) the type of distribution of the states from the Monte Carlo simulation were affected by that of the perturbation parameters, 4) the uncertainties in the pre-flight model were overestimated, 5) the range where the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis are in closest agreement is between Mach *.* and *.* and more data points may be needed between Mach * and ** in the pre-flight aerodynamic database, 6) selection criterion for valid trajectories from the Monte Carlo simulations was mostly driven by the horizontal velocity error, 7) the selection criterion must be based on reasonable model to ensure the validity of the statistics from the proposed method, and 8) the results from the proposed method applied to the two different flights with the identical geometry and similar flight profile were consistent.

  4. Picturing Data With Uncertainty

    NASA Technical Reports Server (NTRS)

    Kao, David; Love, Alison; Dungan, Jennifer L.; Pang, Alex

    2004-01-01

    NASA is in the business of creating maps for scientific purposes to represent important biophysical or geophysical quantities over space and time. For example, maps of surface temperature over the globe tell scientists where and when the Earth is heating up; regional maps of the greenness of vegetation tell scientists where and when plants are photosynthesizing. There is always uncertainty associated with each value in any such map due to various factors. When uncertainty is fully modeled, instead of a single value at each map location, there is a distribution expressing a set of possible outcomes at each location. We consider such distribution data as multi-valued data since it consists of a collection of values about a single variable. Thus, a multi-valued data represents both the map and its uncertainty. We have been working on ways to visualize spatial multi-valued data sets effectively for fields with regularly spaced units or grid cells such as those in NASA's Earth science applications. A new way to display distributions at multiple grid locations is to project the distributions from an individual row, column or other user-selectable straight transect from the 2D domain. First at each grid cell in a given slice (row, column or transect), we compute a smooth density estimate from the underlying data. Such a density estimate for the probability density function (PDF) is generally more useful than a histogram, which is a classic density estimate. Then, the collection of PDFs along a given slice are presented vertically above the slice and form a wall. To minimize occlusion of intersecting slices, the corresponding walls are positioned at the far edges of the boundary. The PDF wall depicts the shapes of the distributions very dearly since peaks represent the modes (or bumps) in the PDFs. We've defined roughness as the number of peaks in the distribution. Roughness is another useful summary information for multimodal distributions. The uncertainty of the multi-valued data can also be interpreted by the number of peaks and the widths of the peaks as shown by the PDF walls.

  5. The Fermi Galactic Center GeV Excess and Implications for Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2017-05-01

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties inmore » the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  6. A typology of uncertainty derived from an analysis of critical incidents in medical residents: A mixed methods study.

    PubMed

    Hamui-Sutton, Alicia; Vives-Varela, Tania; Gutiérrez-Barreto, Samuel; Leenen, Iwin; Sánchez-Mendiola, Melchor

    2015-11-04

    Medical uncertainty is inherently related to the practice of the physician and generally affects his or her patient care, job satisfaction, continuing education, as well as the overall goals of the health care system. In this paper, some new types of uncertainty, which extend existing typologies, are identified and the contexts and strategies to deal with them are studied. We carried out a mixed-methods study, consisting of a qualitative and a quantitative phase. For the qualitative study, 128 residents reported critical incidents in their clinical practice and described how they coped with the uncertainty in the situation. Each critical incident was analyzed and the most salient situations, 45 in total, were retained. In the quantitative phase, a distinct group of 120 medical residents indicated for each of these situations whether they have been involved in the described situations and, if so, which coping strategy they applied. The analysis examines the relation between characteristics of the situation and the coping strategies. From the qualitative study, a new typology of uncertainty was derived which distinguishes between technical, conceptual, communicational, systemic, and ethical uncertainty. The quantitative analysis showed that, independently of the type of uncertainty, critical incidents are most frequently resolved by consulting senior physicians (49 % overall), which underscores the importance of the hierarchical relationships in the hospital. The insights gained by this study are combined into an integrative model of uncertainty in medical residencies, which combines the type and perceived level of uncertainty, the strategies employed to deal with it, and context elements such as the actors present in the situation. The model considers the final resolution at each of three levels: the patient, the health system, and the physician's personal level. This study gives insight into how medical residents make decisions under different types of uncertainty, giving account of the context in which the interactions take place and of the strategies used to resolve the incidents. These insights may guide the development of organizational policies that reduce uncertainty and stress in residents during their clinical training.

  7. Data Applicability of Heritage and New Hardware For Launch Vehicle Reliability Models

    NASA Technical Reports Server (NTRS)

    Al Hassan, Mohammad; Novack, Steven

    2015-01-01

    Bayesian reliability requires the development of a prior distribution to represent degree of belief about the value of a parameter (such as a component's failure rate) before system specific data become available from testing or operations. Generic failure data are often provided in reliability databases as point estimates (mean or median). A component's failure rate is considered a random variable where all possible values are represented by a probability distribution. The applicability of the generic data source is a significant source of uncertainty that affects the spread of the distribution. This presentation discusses heuristic guidelines for quantifying uncertainty due to generic data applicability when developing prior distributions mainly from reliability predictions.

  8. The effect of model uncertainty on some optimal routing problems

    NASA Technical Reports Server (NTRS)

    Mohanty, Bibhu; Cassandras, Christos G.

    1991-01-01

    The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.

  9. Uncertainty quantification of environmental performance metrics in heterogeneous aquifers with long-range correlations

    NASA Astrophysics Data System (ADS)

    Moslehi, Mahsa; de Barros, Felipe P. J.

    2017-01-01

    We investigate how the uncertainty stemming from disordered porous media that display long-range correlation in the hydraulic conductivity (K) field propagates to predictions of environmental performance metrics (EPMs). In this study, the EPMs are quantities that are of relevance to risk analysis and remediation, such as peak flux-averaged concentration, early and late arrival times among others. By using stochastic simulations, we quantify the uncertainty associated with the EPMs for a given disordered spatial structure of the K-field and identify the probability distribution function (PDF) model that best captures the statistics of the EPMs of interest. Results indicate that the probabilistic distribution of the EPMs considered in this study follows lognormal PDF. Finally, through the use of information theory, we reveal how the persistent/anti-persistent correlation structure of the K-field influences the EPMs and corresponding uncertainties.

  10. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    PubMed

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.

  11. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    USGS Publications Warehouse

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.

  12. A probabilistic seismic model for the European Arctic

    NASA Astrophysics Data System (ADS)

    Hauser, Juerg; Dyer, Kathleen M.; Pasyanos, Michael E.; Bungum, Hilmar; Faleide, Jan I.; Clark, Stephen A.; Schweitzer, Johannes

    2011-01-01

    The development of three-dimensional seismic models for the crust and upper mantle has traditionally focused on finding one model that provides the best fit to the data while observing some regularization constraints. In contrast to this, the inversion employed here fits the data in a probabilistic sense and thus provides a quantitative measure of model uncertainty. Our probabilistic model is based on two sources of information: (1) prior information, which is independent from the data, and (2) different geophysical data sets, including thickness constraints, velocity profiles, gravity data, surface wave group velocities, and regional body wave traveltimes. We use a Markov chain Monte Carlo (MCMC) algorithm to sample models from the prior distribution, the set of plausible models, and test them against the data to generate the posterior distribution, the ensemble of models that fit the data with assigned uncertainties. While being computationally more expensive, such a probabilistic inversion provides a more complete picture of solution space and allows us to combine various data sets. The complex geology of the European Arctic, encompassing oceanic crust, continental shelf regions, rift basins and old cratonic crust, as well as the nonuniform coverage of the region by data with varying degrees of uncertainty, makes it a challenging setting for any imaging technique and, therefore, an ideal environment for demonstrating the practical advantages of a probabilistic approach. Maps of depth to basement and depth to Moho derived from the posterior distribution are in good agreement with previously published maps and interpretations of the regional tectonic setting. The predicted uncertainties, which are as important as the absolute values, correlate well with the variations in data coverage and quality in the region. A practical advantage of our probabilistic model is that it can provide estimates for the uncertainties of observables due to model uncertainties. We will demonstrate how this can be used for the formulation of earthquake location algorithms that take model uncertainties into account when estimating location uncertainties.

  13. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  14. Measurements of UV-A radiation and hazard limits from some types of outdoor lamps

    NASA Astrophysics Data System (ADS)

    El-Moghazy, Essam; Abd-Elmageed, Alaa-Eldin; Reda, Sameh

    2015-05-01

    Illumination using artificial light sources is common in these days. Many manufactures are paying for the design of lamps depending on high efficacy and low UV hazards. This research is focusing on the most useable lamps in the Egyptian markets; High Pressure Mercury (HPM), Metal Halide (MH), and High Pressure Sodium (HPS). A set up for relative spectral power distribution based on single monochromator and UVA silicon detector for absolute irradiance measurements are used. The absolute irradiance in (W/m2) in UVA region of the lamps and their accompanied standard uncertainty are evaluated.

  15. Uncertainty in the Work-Place: Hierarchical Differences of Uncertainty Levels and Reduction Strategies.

    ERIC Educational Resources Information Center

    Petelle, John L.; And Others

    A study examined the uncertainty levels and types reported by supervisors and employees at three hierarchical levels of an organization: first-line supervisors, full-time employees, and part-time employees. It investigated differences in uncertainty-reduction strategies employed by these three hierarchical groups. The 61 subjects who completed…

  16. The Impact of Uncertainty and Irreversibility on Investments in Online Learning

    ERIC Educational Resources Information Center

    Oslington, Paul

    2004-01-01

    Uncertainty and irreversibility are central to online learning projects, but have been neglected in the existing educational cost-benefit analysis literature. This paper builds some simple illustrative models of the impact of irreversibility and uncertainty, and shows how different types of cost and demand uncertainty can have substantial impacts…

  17. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques

    PubMed Central

    Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong

    2012-01-01

    Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the optimization algorithm attempts to produce a single-field uniform dose distribution while minimizing the patching field as much as possible; and (2) perturbed dose distribution, which follows the change in anatomical geometry. Multiple-instance optimization has more knowledge of the influence matrices; this greater knowledge improves IMPT plans’ ability to retain robustness despite the presence of uncertainties. PMID:22755694

  18. Allowable Trajectory Variations for Space Shuttle Orbiter Entry-Aeroheating CFD

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Alter, Stephen J.

    2008-01-01

    Reynolds-number criteria are developed for acceptable variations in Space Shuttle Orbiter entry trajectories for use in computational aeroheating analyses. The criteria determine if an existing computational fluid dynamics solution for a particular trajectory can be extrapolated to a different trajectory. The criteria development begins by estimating uncertainties for seventeen types of computational aeroheating data, such as boundary layer thickness, at exact trajectory conditions. For each type of datum, the allowable uncertainty contribution due to trajectory variation is set to be half of the value of the estimated exact-trajectory uncertainty. Then, for the twelve highest-priority datum types, Reynolds-number relations between trajectory variation and output uncertainty are determined. From these relations the criteria are established for the maximum allowable trajectory variations. The most restrictive criterion allows a 25% variation in Reynolds number at constant Mach number between trajectories.

  19. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply tomore » Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to the test item. 'Best practices' are provided in Section 9 to help the user to obtain the best measurements possible.« less

  20. Representativeness uncertainty in chemical data assimilation highlight mixing barriers

    NASA Astrophysics Data System (ADS)

    Lary, David John

    2004-02-01

    When performing chemical data assimilation the observational, representativeness, and theoretical uncertainties have very different characteristics. In this study, we have accurately characterized the representativeness uncertainty by studying the probability distribution function (PDF) of the observations. The average deviation has been used as a measure of the width of the PDF and of the variability (representativeness uncertainty) for the grid cell. It turns out that for long-lived tracers such as N2O and CH4 the representativeness uncertainty is markedly different from the observational uncertainty and clearly delineates mixing barriers such as the polar vortex edge, the tropical pipe and the tropopause. Published by Elsevier Ltd on behalf of Royal Meteorological Society.

  1. Role of information theoretic uncertainty relations in quantum theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz; ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin; Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again,more » improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.« less

  2. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-07-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.

  3. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  4. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  5. Coseismic slip variation assessed from terrestrial lidar scans of the El Mayor-Cucapah surface rupture

    NASA Astrophysics Data System (ADS)

    Gold, Peter O.; Oskin, Michael E.; Elliott, Austin J.; Hinojosa-Corona, Alejandro; Taylor, Michael H.; Kreylos, Oliver; Cowgill, Eric

    2013-03-01

    We analyze high-resolution (>103 points/m2) terrestrial lidar surveys of the 4 April 2010 El Mayor-Cucapah earthquake rupture (Baja California, Mexico), collected at three sites 12-18 days after the event. Using point cloud-based tools in an immersive visualization environment, we quantify coseismic fault slip for hundreds of meters along strike and construct densely constrained along-strike slip distributions from measurements of offset landforms. Uncertainty bounds for each offset, determined empirically by repeatedly measuring offsets at each site sequentially, illuminate measurement uncertainties that are difficult to quantify in the field. These uncertainties are used to define length scales over which variability in slip distributions may be assumed to reflect either recognizable earthquake mechanisms or measurement noise. At two sites characterized by 2-3 m of concentrated right-oblique slip, repeat measurements yield 2σ uncertainties of ±11-12%. Each site encompasses ∼200 m along strike, and a smoothed linear slip gradient satisfies all measurement distributions, implying along-fault strains of ∼10-3. Conversely, the common practice of defining the slip curve by the local slip maxima distorts the curve, overestimates along-fault strain, and may overestimate actual fault slip by favoring measurements with large, positive, uncertainties. At a third site characterized by 1-2.5 m of diffuse normal slip, repeat measurements of fault throw summed along fault-perpendicular profiles yield 2σ uncertainties of ±17%. Here, a low order polynomial fit through the measurement averages best approximates surface slip. However independent measurements of off-fault strain accommodated by hanging wall flexure suggest that over the ∼200 m length of this site, a linear interpolation through the average values for the slip maxima at either end of this site most accurately represents subsurface displacement. In aggregate, these datasets show that given uncertainties of greater than ±11% (2σ), slip distributions over shorter scales are likely to be less uneven than those derived from a single set of field- or lidar-based measurements. This suggests that the relatively smooth slip curves we obtain over ∼102 m distances reflect real physical phenomena, whereas short wavelength variability over ∼100-101 m distances can be attributed to measurement uncertainty.

  6. Bird-landscape relations in the Chihuahuan Desert: Coping with uncertainties about predictive models

    USGS Publications Warehouse

    Gutzwiller, K.J.; Barrow, W.C.

    2001-01-01

    During the springs of 1995-1997, we studied birds and landscapes in the Chihuahuan Desert along part of the Texas-Mexico border. Our objectives were to assess bird-landscape relations and their interannual consistency and to identify ways to cope with associated uncertainties that undermine confidence in using such relations in conservation decision processes. Bird distributions were often significantly associated with landscape features, and many bird-landscape models were valid and useful for predictive purposes. Differences in early spring rainfall appeared to influence bird abundance, but there was no evidence that annual differences in bird abundance affected model consistency. Model consistency for richness (42%) was higher than mean model consistency for 26 focal species (mean 30%, range 0-67%), suggesting that relations involving individual species are, on average, more subject to factors that cause variation than are richness-landscape relations. Consistency of bird-landscape relations may be influenced by such factors as plant succession, exotic species invasion, bird species' tolerances for environmental variation, habitat occupancy patterns, and variation in food density or weather. The low model consistency that we observed for most species indicates the high variation in bird-landscape relations that managers and other decision makers may encounter. The uncertainty of interannual variation in bird-landscape relations can be reduced by using projections of bird distributions from different annual models to determine the likely range of temporal and spatial variation in a species' distribution. Stochastic simulation models can be used to incorporate the uncertainty of random environmental variation into predictions of bird distributions based on bird-landscape relations and to provide probabilistic projections with which managers can weigh the costs and benefits of various decisions, Uncertainty about the true structure of bird-landscape relations (structural uncertainty) can be reduced by ensuring that models meet important statistical assumptions, designing studies with sufficient statistical power, validating the predictive ability of models, and improving model accuracy through continued field sampling and model fitting. Un certainty associated with sampling variation (partial observability) can be reduced by ensuring that sample sizes are large enough to provide precise estimates of both bird and landscape parameters. By decreasing the uncertainty due to partial observability, managers will improve their ability to reduce structural uncertainty.

  7. Complementary Density Measurements for the 200W Busek Hall Thruster (PREPRINT)

    DTIC Science & Technology

    2006-07-12

    Hall thruster are presented. Both a Faraday probe and microwave interferometry system are used to examine the density distribution of the thruster plasma at regular spatial intervals. Both experiments are performed in situ under the same conditions. The resulting density distributions obtained from both experiments are presented. Advantages and uncertainties of both methods are presented, as well as how comparison between the two data sets can account for the uncertainties of each method

  8. Analysis of mean seismic ground motion and its uncertainty based on the UCERF3 geologic slip rate model with uncertainty for California

    USGS Publications Warehouse

    Zeng, Yuehua

    2018-01-01

    The Uniform California Earthquake Rupture Forecast v.3 (UCERF3) model (Field et al., 2014) considers epistemic uncertainty in fault‐slip rate via the inclusion of multiple rate models based on geologic and/or geodetic data. However, these slip rates are commonly clustered about their mean value and do not reflect the broader distribution of possible rates and associated probabilities. Here, we consider both a double‐truncated 2σ Gaussian and a boxcar distribution of slip rates and use a Monte Carlo simulation to sample the entire range of the distribution for California fault‐slip rates. We compute the seismic hazard following the methodology and logic‐tree branch weights applied to the 2014 national seismic hazard model (NSHM) for the western U.S. region (Petersen et al., 2014, 2015). By applying a new approach developed in this study to the probabilistic seismic hazard analysis (PSHA) using precomputed rates of exceedance from each fault as a Green’s function, we reduce the computer time by about 10^5‐fold and apply it to the mean PSHA estimates with 1000 Monte Carlo samples of fault‐slip rates to compare with results calculated using only the mean or preferred slip rates. The difference in the mean probabilistic peak ground motion corresponding to a 2% in 50‐yr probability of exceedance is less than 1% on average over all of California for both the Gaussian and boxcar probability distributions for slip‐rate uncertainty but reaches about 18% in areas near faults compared with that calculated using the mean or preferred slip rates. The average uncertainties in 1σ peak ground‐motion level are 5.5% and 7.3% of the mean with the relative maximum uncertainties of 53% and 63% for the Gaussian and boxcar probability density function (PDF), respectively.

  9. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.

    PubMed

    Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward

    2013-09-01

    Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  10. Assessing the uncertainty of soil moisture impacts on convective precipitation using a new ensemble approach

    NASA Astrophysics Data System (ADS)

    Henneberg, Olga; Ament, Felix; Grützun, Verena

    2018-05-01

    Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.

  11. A robust approach to chance constrained optimal power flow with renewable generation

    DOE PAGES

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2016-09-01

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less

  12. Efficient Location Uncertainty Treatment for Probabilistic Modelling of Portfolio Loss from Earthquake Events

    NASA Astrophysics Data System (ADS)

    Scheingraber, Christoph; Käser, Martin; Allmann, Alexander

    2017-04-01

    Probabilistic seismic risk analysis (PSRA) is a well-established method for modelling loss from earthquake events. In the insurance industry, it is widely employed for probabilistic modelling of loss to a distributed portfolio. In this context, precise exposure locations are often unknown, which results in considerable loss uncertainty. The treatment of exposure uncertainty has already been identified as an area where PSRA would benefit from increased research attention. However, so far, epistemic location uncertainty has not been in the focus of a large amount of research. We propose a new framework for efficient treatment of location uncertainty. To demonstrate the usefulness of this novel method, a large number of synthetic portfolios resembling real-world portfolios is systematically analyzed. We investigate the effect of portfolio characteristics such as value distribution, portfolio size, or proportion of risk items with unknown coordinates on loss variability. Several sampling criteria to increase the computational efficiency of the framework are proposed and put into the wider context of well-established Monte-Carlo variance reduction techniques. The performance of each of the proposed criteria is analyzed.

  13. Impact of Uncertainty in the Drop Size Distribution on Oceanic Rainfall Retrievals From Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Wilheit, Thomas T.; Chandrasekar, V.; Li, Wanyu

    2007-01-01

    The variability of the drop size distribution (DSD) is one of the factors that must be considered in understanding the uncertainties in the retrieval of oceanic precipitation from passive microwave observations. Here, we have used observations from the Precipitation Radar on the Tropical Rainfall Measuring Mission spacecraft to infer the relationship between the DSD and the rain rate and the variability in this relationship. The impact on passive microwave rain rate retrievals varies with the frequency and rain rate. The total uncertainty for a given pixel can be slightly larger than 10% at the low end (ca. 10 GHz) of frequencies commonly used for this purpose and smaller at higher frequencies (up to 37 GHz). Since the error is not totally random, averaging many pixels, as in a monthly rainfall total, should roughly halve this uncertainty. The uncertainty may be lower at rain rates less than about 30 mm/h, but the lack of sensitivity of the surface reference technique to low rain rates makes it impossible to tell from the present data set.

  14. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling

    Treesearch

    Wei Wu; James Clark; James Vose

    2010-01-01

    Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the...

  15. The Establishment of LTO Emission Inventory of Civil Aviation Airports Based on Big Data

    NASA Astrophysics Data System (ADS)

    Lu, Chengwei; Liu, Hefan; Song, Danlin; Yang, Xinyue; Tan, Qinwen; Hu, Xiang; Kang, Xue

    2018-03-01

    An estimation model on LTO emissions of civil aviation airports was developed in this paper, LTO big data was acquired by analysing the internet with Python, while the LTO emissions was dynamically calculated based on daily LTO data, an uncertainty analysis was conducted with Monte Carlo method. Through the model, the emission of LTO in Shuangliu International Airport was calculated, and the characteristics and temporal distribution of LTO in 2015 was analysed. Results indicates that compared with the traditional methods, the model established can calculate the LTO emissions from different types of airplanes more accurately. Based on the hourly LTO information of 302 valid days, it was obtained that the total number of LTO cycles in Chengdu Shuangliu International Airport was 274,645 and the annual amount of emission of SO2, NOx, VOCs, CO, PM10 and PM2.5 was estimated, and the uncertainty of the model was around 7% to 10% varies on pollutants.

  16. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less

  17. Methylcyclopentadienyl manganese tricarbonyl: health risk uncertainties and research directions.

    PubMed Central

    Davis, J M

    1998-01-01

    With the way cleared for increased use of the fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) in the United States, the issue of possible public health impacts associated with this additive has gained greater attention. In assessing potential health risks of particulate Mn emitted from the combustion of MMT in gasoline, the U.S. Environmental Protection Agency not only considered the qualitative types of toxic effects associated with inhaled Mn, but conducted extensive exposure-response analyses using various statistical approaches and also estimated population exposure distributions of particulate Mn based on data from an exposure study conducted in California when MMT was used in leaded gasoline. Because of limitations in available data and the need to make several assumptions and extrapolations, the resulting risk characterization had inherent uncertainties that made it impossible to estimate health risks in a definitive or quantitative manner. To support an improved health risk characterization, further investigation is needed in the areas of health effects, emission characterization, and exposure analysis. PMID:9539013

  18. The statistical fluctuation study of quantum key distribution in means of uncertainty principle

    NASA Astrophysics Data System (ADS)

    Liu, Dunwei; An, Huiyao; Zhang, Xiaoyu; Shi, Xuemei

    2018-03-01

    Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon's length is N = 10^{11}, the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle's 127 km. So our study is in line with established theory, but we make it more realistic.

  19. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units.more » These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.« less

  20. Non-parametric data-based approach for the quantification and communication of uncertainties in river flood forecasts

    NASA Astrophysics Data System (ADS)

    Van Steenbergen, N.; Willems, P.

    2012-04-01

    Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the probability of flooding of a certain area, based on the uncertainty assessment of the flood forecasts. By using this type of maps, water managers can focus their attention on the areas with the highest flood probability. Also the larger public can consult these maps for information on the probability of flooding for their specific location, such that they can take pro-active measures to reduce the personal damage. The method of quantifying the uncertainty was implemented in the operational flood forecasting system for the navigable rivers in the Flanders region of Belgium. The method has shown clear benefits during the floods of the last two years.

  1. Uncertainty Estimation in Tsunami Initial Condition From Rapid Bayesian Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Benavente, R. F.; Dettmer, J.; Cummins, P. R.; Urrutia, A.; Cienfuegos, R.

    2017-12-01

    It is well known that kinematic rupture models for a given earthquake can present discrepancies even when similar datasets are employed in the inversion process. While quantifying this variability can be critical when making early estimates of the earthquake and triggered tsunami impact, "most likely models" are normally used for this purpose. In this work, we quantify the uncertainty of the tsunami initial condition for the great Illapel earthquake (Mw = 8.3, 2015, Chile). We focus on utilizing data and inversion methods that are suitable to rapid source characterization yet provide meaningful and robust results. Rupture models from teleseismic body and surface waves as well as W-phase are derived and accompanied by Bayesian uncertainty estimates from linearized inversion under positivity constraints. We show that robust and consistent features about the rupture kinematics appear when working within this probabilistic framework. Moreover, by using static dislocation theory, we translate the probabilistic slip distributions into seafloor deformation which we interpret as a tsunami initial condition. After considering uncertainty, our probabilistic seafloor deformation models obtained from different data types appear consistent with each other providing meaningful results. We also show that selecting just a single "representative" solution from the ensemble of initial conditions for tsunami propagation may lead to overestimating information content in the data. Our results suggest that rapid, probabilistic rupture models can play a significant role during emergency response by providing robust information about the extent of the disaster.

  2. Computer Model Inversion and Uncertainty Quantification in the Geosciences

    NASA Astrophysics Data System (ADS)

    White, Jeremy T.

    The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for inversion. The worth of different types of tephra data to reduce parameter uncertainty is evaluated, as is the importance of different observation error models. The analyses reveal the importance using tephra granulometry data for inversion, which results in reduced uncertainty for most eruption parameters. In the third chapter, geophysical inversion is combined with hydrothermal modeling to evaluate the enthalpy of an undeveloped geothermal resource in a pull-apart basin located in southeastern Armenia. A high-dimensional gravity inversion is used to define the depth to the contact between the lower-density valley fill sediments and the higher-density surrounding host rock. The inverted basin depth distribution was used to define the hydrostratigraphy for the coupled groundwater-flow and heat-transport model that simulates the circulation of hydrothermal fluids in the system. Evaluation of several different geothermal system configurations indicates that the most likely system configuration is a low-enthalpy, liquid-dominated geothermal system.

  3. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be established that depends on uncertainties in the physics models and methodology employed to produce the DOS. Through Monte Carlo sampling of perturbations from the reference phonon spectrum, an S(alpha, beta) covariance matrix may be generated. In this work, density functional theory and lattice dynamics in the harmonic approximation are used to calculate the phonon DOS for hexagonal crystalline graphite. This form of graphite is used as an example material for the purpose of demonstrating procedures for analyzing, calculating and processing thermal neutron inelastic scattering uncertainty information. Several sources of uncertainty in thermal neutron inelastic scattering calculations are examined, including sources which cannot be directly characterized through a description of the phonon DOS uncertainty, and their impacts are evaluated. Covariances for hexagonal crystalline graphite S(alpha, beta) data are quantified by coupling the standard methodology of LEAPR with a Monte Carlo sampling process. The mechanics of efficiently representing and processing this covariance information is also examined. Finally, with appropriate sensitivity information, it is shown that an S(alpha, beta) covariance matrix can be propagated to generate covariance data for integrated cross sections, secondary energy distributions, and coupled energy-angle distributions. This approach enables a complete description of thermal neutron inelastic scattering cross section uncertainties which may be employed to improve the simulation of nuclear systems.

  4. Effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model output

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.

    2012-04-01

    This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the goodness of fit of the model realizations. GLUE-type uncertainty bounds during the verification period are derived at the probability levels p=85%, 90% and 95%. Results indicate that, as expected, prediction uncertainty bounds indeed change if precipitation factors FPi are estimated a priori rather than being allowed to vary, but that this change is not dramatic. Firstly, the width of the uncertainty bounds at the same probability level only slightly reduces compared to the case where precipitation factors are allowed to vary. Secondly, the ability to enclose the observations improves, but the decrease in the fraction of outliers is not significant. These results are probably due to the narrow range of variability allowed to the precipitation factors FPi in the first experiment, which implies that although they indicate the shape of the functional relationship between precipitation and height, the magnitude of precipitation estimates were mainly determined by the magnitude of the observations at the available raingauge. It is probable that the situation where no prior information is available on the realistic ranges of variation of the precipitation factors, and the inclusion of precipitation data uncertainty, would have led to a different conclusion. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.

  5. Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification

    PubMed Central

    Karacan, C. Özgen; Olea, Ricardo A.

    2018-01-01

    Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal seam reservoir simulation is one of the most effective ways to help with these two main objectives. As in all modeling and simulation studies, how the reservoir is defined and whether observed productions can be predicted are important considerations. Using geostatistical realizations as spatial maps of different coal reservoir properties is a more realistic approach than assuming uniform properties across the field. In fact, this approach can help with simultaneous history matching of multiple wellbores to enhance the confidence in spatial models of different coal properties that are pertinent to degasification. The problem that still remains is the uncertainty in geostatistical simulations originating from the partial sampling of the seam that does not properly reflect the stochastic nature of coal property realizations. Stochastic simulations and using individual realizations, rather than E-type, make evaluation of uncertainty possible. This work is an advancement over Karacan et al. (2014) in the sense of assessing uncertainty that stems from geostatistical maps. In this work, we batched 100 individual realizations of 10 coal properties that were randomly generated to create 100 bundles and used them in 100 separate coal seam reservoir simulations for simultaneous history matching. We then evaluated the history matching errors for each bundle and defined the single set of realizations that would minimize the error for all wells. We further compared the errors with those of E-type and the average realization of the best matches. Unlike in Karacan et al. (2014), which used E-type maps and average of quantile maps, using these 100 bundles created 100 different history match results from separate simulations, and distributions of results for in-place gas quantity, for example, from which uncertainty in coal property realizations could be evaluated. The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In addition, it was shown that both E-type and the average of realizations that gave the best match for invidual approximated the same properties resonably. Moreover, the determined realization bundle showed that the study field initially had 151.5 million m3 (cubic meter) of gas and 1.04 million m3 water in the coal, corresponding to Q90 of the entire range of probability for gas and close to Q75 for water. In 2013, in-place fluid amounts decreased to 138.9 million m3 and 0.997 million m3 for gas and water, respectively. PMID:29563647

  6. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  7. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Maryam; Evoli, Carmelo; Cholis, Ilias

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towardsmore » different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.« less

  8. Propagation of uncertainties for an evaluation of the Azores-Gibraltar Fracture Zone tsunamigenic potential

    NASA Astrophysics Data System (ADS)

    Antoshchenkova, Ekaterina; Imbert, David; Richet, Yann; Bardet, Lise; Duluc, Claire-Marie; Rebour, Vincent; Gailler, Audrey; Hébert, Hélène

    2016-04-01

    The aim of this study is to assess evaluation the tsunamigenic potential of the Azores-Gibraltar Fracture Zone (AGFZ). This work is part of the French project TANDEM (Tsunamis in the Atlantic and English ChaNnel: Definition of the Effects through numerical Modeling; www-tandem.cea.fr), special attention is paid to French Atlantic coasts. Structurally, the AGFZ region is complex and not well understood. However, a lot of its faults produce earthquakes with significant vertical slip, of a type that can result in tsunami. We use the major tsunami event of the AGFZ on purpose to have a regional estimation of the tsunamigenic potential of this zone. The major reported event for this zone is the 1755 Lisbon event. There are large uncertainties concerning source location and focal mechanism of this earthquake. Hence, simple deterministic approach is not sufficient to cover on the one side the whole AGFZ with its geological complexity and on the other side the lack of information concerning the 1755 Lisbon tsunami. A parametric modeling environment Promethée (promethee.irsn.org/doku.php) was coupled to tsunami simulation software based on shallow water equations with the aim of propagation of uncertainties. Such a statistic point of view allows us to work with multiple hypotheses simultaneously. In our work we introduce the seismic source parameters in a form of distributions, thus giving a data base of thousands of tsunami scenarios and tsunami wave height distributions. Exploring our tsunami scenarios data base we present preliminary results for France. Tsunami wave heights (within one standard deviation of the mean) can be about 0.5 m - 1 m for the Atlantic coast and approaching 0.3 m for the English Channel.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model withmore » chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.« less

  10. Quantifying uncertainties in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  11. Uncertainty quantification for constitutive model calibration of brain tissue.

    PubMed

    Brewick, Patrick T; Teferra, Kirubel

    2018-05-31

    The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.

  12. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  13. How much expert knowledge is it worth to put in conceptual hydrological models?

    NASA Astrophysics Data System (ADS)

    Antonetti, Manuel; Zappa, Massimiliano

    2017-04-01

    Both modellers and experimentalists agree on using expert knowledge to improve our conceptual hydrological simulations on ungauged basins. However, they use expert knowledge differently for both hydrologically mapping the landscape and parameterising a given hydrological model. Modellers use generally very simplified (e.g. topography-based) mapping approaches and put most of the knowledge for constraining the model by defining parameter and process relational rules. In contrast, experimentalists tend to invest all their detailed and qualitative knowledge about processes to obtain a spatial distribution of areas with different dominant runoff generation processes (DRPs) as realistic as possible, and for defining plausible narrow value ranges for each model parameter. Since, most of the times, the modelling goal is exclusively to simulate runoff at a specific site, even strongly simplified hydrological classifications can lead to satisfying results due to equifinality of hydrological models, overfitting problems and the numerous uncertainty sources affecting runoff simulations. Therefore, to test to which extent expert knowledge can improve simulation results under uncertainty, we applied a typical modellers' modelling framework relying on parameter and process constraints defined based on expert knowledge to several catchments on the Swiss Plateau. To map the spatial distribution of the DRPs, mapping approaches with increasing involvement of expert knowledge were used. Simulation results highlighted the potential added value of using all the expert knowledge available on a catchment. Also, combinations of event types and landscapes, where even a simplified mapping approach can lead to satisfying results, were identified. Finally, the uncertainty originated by the different mapping approaches was compared with the one linked to meteorological input data and catchment initial conditions.

  14. Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region

    USGS Publications Warehouse

    Li, Zhengpeng; Liu, Shuguang; Zhang, Xuesong; West, Tristram O.; Ogle, Stephen M.; Zhou, Naijun

    2016-01-01

    Quantifying spatial and temporal patterns of carbon sources and sinks and their uncertainties across agriculture-dominated areas remains challenging for understanding regional carbon cycles. Characteristics of local land cover inputs could impact the regional carbon estimates but the effect has not been fully evaluated in the past. Within the North American Carbon Program Mid-Continent Intensive (MCI) Campaign, three models were developed to estimate carbon fluxes on croplands: an inventory-based model, the Environmental Policy Integrated Climate (EPIC) model, and the General Ensemble biogeochemical Modeling System (GEMS) model. They all provided estimates of three major carbon fluxes on cropland: net primary production (NPP), net ecosystem production (NEP), and soil organic carbon (SOC) change. Using data mining and spatial statistics, we studied the spatial distribution of the carbon fluxes uncertainties and the relationships between the uncertainties and the land cover characteristics. Results indicated that uncertainties for all three carbon fluxes were not randomly distributed, but instead formed multiple clusters within the MCI region. We investigated the impacts of three land cover characteristics on the fluxes uncertainties: cropland percentage, cropland richness and cropland diversity. The results indicated that cropland percentage significantly influenced the uncertainties of NPP and NEP, but not on the uncertainties of SOC change. Greater uncertainties of NPP and NEP were found in counties with small cropland percentage than the counties with large cropland percentage. Cropland species richness and diversity also showed negative correlations with the model uncertainties. Our study demonstrated that the land cover characteristics contributed to the uncertainties of regional carbon fluxes estimates. The approaches we used in this study can be applied to other ecosystem models to identify the areas with high uncertainties and where models can be improved to reduce overall uncertainties for regional carbon flux estimates.

  15. Uncertainty analysis of the radiological characteristics of radioactive waste using a method based on log-normal distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gigase, Yves

    2007-07-01

    Available in abstract form only. Full text of publication follows: The uncertainty on characteristics of radioactive LILW waste packages is difficult to determine and often very large. This results from a lack of knowledge of the constitution of the waste package and of the composition of the radioactive sources inside. To calculate a quantitative estimate of the uncertainty on a characteristic of a waste package one has to combine these various uncertainties. This paper discusses an approach to this problem, based on the use of the log-normal distribution, which is both elegant and easy to use. It can provide asmore » example quantitative estimates of uncertainty intervals that 'make sense'. The purpose is to develop a pragmatic approach that can be integrated into existing characterization methods. In this paper we show how our method can be applied to the scaling factor method. We also explain how it can be used when estimating other more complex characteristics such as the total uncertainty of a collection of waste packages. This method could have applications in radioactive waste management, more in particular in those decision processes where the uncertainty on the amount of activity is considered to be important such as in probability risk assessment or the definition of criteria for acceptance or categorization. (author)« less

  16. Soil carbon distribution in Alaska in relation to soil-forming factors

    USGS Publications Warehouse

    Johnson, K.D.; Harden, J.; McGuire, A.D.; Bliss, N.B.; Bockheim, James G.; Clark, M.R.; Nettleton-Hollingsworth, T.; Jorgenson, M.T.; Kane, E.S.; Mack, M.; O'Donnell, J.; Ping, C.-L.; Schuur, E.A.G.; Turetsky, M.R.; Valentine, D.W.

    2011-01-01

    The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-order assessment of data gaps and spatial distributions of SOC was conducted from a recently compiled soil carbon database. Temperature and landform type were the dominant controls on SOC distribution for selected ecoregions. Mean SOC pools (to a depth of 1-m) varied by three, seven and ten-fold across ecoregion, landform, and ecosystem types, respectively. Climate interactions with landform type and SOC were greatest in the uplands. For upland SOC there was a six-fold non-linear increase in SOC with latitude (i.e., temperature) where SOC was lowest in the Intermontane Boreal compared to the Arctic Tundra and Coastal Rainforest. Additionally, in upland systems mineral SOC pools decreased as climate became more continental, suggesting that the lower productivity, higher decomposition rates and fire activity, common in continental climates, interacted to reduce mineral SOC. For lowland systems, in contrast, these interactions and their impacts on SOC were muted or absent making SOC in these environments more comparable across latitudes. Thus, the magnitudes of SOC change across temperature gradients were non-uniform and depended on landform type. Additional factors that appeared to be related to SOC distribution within ecoregions included stand age, aspect, and permafrost presence or absence in black spruce stands. Overall, these results indicate the influence of major interactions between temperature-controlled decomposition and topography on SOC in high-latitude systems. However, there remains a need for more SOC data from wetlands and boreal-region permafrost soils, especially at depths > 1 m in order to fully understand the effects of climate on soil carbon in Alaska.

  17. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti.

    PubMed

    Hauri, Pascal; Schneider, Uwe

    2018-04-01

    Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.

  18. Rainfall or parameter uncertainty? The power of sensitivity analysis on grouped factors

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2017-04-01

    Hydrological models are typically used to study and represent (a part of) the hydrological cycle. In general, the output of these models mostly depends on their input rainfall and parameter values. Both model parameters and input precipitation however, are characterized by uncertainties and, therefore, lead to uncertainty on the model output. Sensitivity analysis (SA) allows to assess and compare the importance of the different factors for this output uncertainty. Hereto, the rainfall uncertainty can be incorporated in the SA by representing it as a probabilistic multiplier. Such multiplier can be defined for the entire time series, or several of these factors can be determined for every recorded rainfall pulse or for hydrological independent storm events. As a consequence, the number of parameters included in the SA related to the rainfall uncertainty can be (much) lower or (much) higher than the number of model parameters. Although such analyses can yield interesting results, it remains challenging to determine which type of uncertainty will affect the model output most due to the different weight both types will have within the SA. In this study, we apply the variance based Sobol' sensitivity analysis method to two different hydrological simulators (NAM and HyMod) for four diverse watersheds. Besides the different number of model parameters (NAM: 11 parameters; HyMod: 5 parameters), the setup of our sensitivity and uncertainty analysis-combination is also varied by defining a variety of scenarios including diverse numbers of rainfall multipliers. To overcome the issue of the different number of factors and, thus, the different weights of the two types of uncertainty, we build on one of the advantageous properties of the Sobol' SA, i.e. treating grouped parameters as a single parameter. The latter results in a setup with a single factor for each uncertainty type and allows for a straightforward comparison of their importance. In general, the results show a clear influence of the weights in the different SA scenarios. However, working with grouped factors resolves this issue and leads to clear importance results.

  19. Modeling uncertainty and correlation in soil properties using Restricted Pairing and implications for ensemble-based hillslope-scale soil moisture and temperature estimation

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Entekhabi, D.; Bras, R. L.

    2007-12-01

    Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.

  20. SU-E-J-92: Validating Dose Uncertainty Estimates Produced by AUTODIRECT, An Automated Program to Evaluate Deformable Image Registration Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J; Pouliot, J

    2015-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less

  1. Uncertainty quantification and experimental design based on unsupervised machine learning identification of contaminant sources and groundwater types using hydrogeochemical data

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.

    2017-12-01

    Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical species. Numerous geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. As a result, these types of model analyses are typically extremely challenging. Here, we demonstrate a new contaminant source identification approach that performs decomposition of the observation mixtures based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. We also demonstrate how NMFk can be extended to perform uncertainty quantification and experimental design related to real-world site characterization. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios). The NMFk algorithm has been extensively tested on synthetic datasets; NMFk analyses have been actively performed on real-world data collected at the Los Alamos National Laboratory (LANL) groundwater sites related to Chromium and RDX contamination.

  2. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  3. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE PAGES

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...

    2017-04-01

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  4. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    NASA Astrophysics Data System (ADS)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  5. Joint analysis of epistemic and aleatory uncertainty in stability analysis for geo-hazard assessments

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Verdel, Thierry

    2017-04-01

    Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e.g., Baudrit et al., 2007) for geo-hazard assessments. A graphical tool is then developed to explore: 1. the contribution of both types of uncertainty, aleatoric and epistemic; 2. the regions of the imprecise or random parameters which contribute the most to the imprecision on the failure probability P. The method is applied on two case studies (a mine pillar and a steep slope stability analysis, Rohmer and Verdel, 2014) to investigate the necessity for extra data acquisition on parameters whose imprecision can hardly be modelled by probabilities due to the scarcity of the available information (respectively the extraction ratio and the cliff geometry). References Baudrit, C., Couso, I., & Dubois, D. (2007). Joint propagation of probability and possibility in risk analysis: Towards a formal framework. International Journal of Approximate Reasoning, 45(1), 82-105. Rohmer, J., & Verdel, T. (2014). Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis. Computers and Geotechnics, 61, 308-315.

  6. A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki

    2017-02-01

    This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Where Might We Be Headed? Signposts from Other States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, Emerson

    2017-04-07

    Presentation on the state of distributed energy resources interconnection in Wisconsin from the Wisconsin Distributed Resources Collaborative (WIDRC) Interconnection Forum for Distributed Generation. It addresses concerns over application submission and processing, lack of visibility into the distribution system, and uncertainty in upgrade costs.

  8. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought.

    PubMed

    Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G

    2006-10-01

    Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes.

  9. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].

    PubMed

    Renner, Franziska

    2016-09-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.

  10. From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches

    PubMed Central

    Potter, Kristin; Rosen, Paul; Johnson, Chris R.

    2014-01-01

    Quantifying uncertainty is an increasingly important topic across many domains. The uncertainties present in data come with many diverse representations having originated from a wide variety of disciplines. Communicating these uncertainties is a task often left to visualization without clear connection between the quantification and visualization. In this paper, we first identify frequently occurring types of uncertainty. Second, we connect those uncertainty representations to ones commonly used in visualization. We then look at various approaches to visualizing this uncertainty by partitioning the work based on the dimensionality of the data and the dimensionality of the uncertainty. We also discuss noteworthy exceptions to our taxonomy along with future research directions for the uncertainty visualization community. PMID:25663949

  11. Decision-Making under Criteria Uncertainty

    NASA Astrophysics Data System (ADS)

    Kureychik, V. M.; Safronenkova, I. B.

    2018-05-01

    Uncertainty is an essential part of a decision-making procedure. The paper deals with the problem of decision-making under criteria uncertainty. In this context, decision-making under uncertainty, types and conditions of uncertainty were examined. The decision-making problem under uncertainty was formalized. A modification of the mathematical decision support method under uncertainty via ontologies was proposed. A critical distinction of the developed method is ontology usage as its base elements. The goal of this work is a development of a decision-making method under criteria uncertainty with the use of ontologies in the area of multilayer board designing. This method is oriented to improvement of technical-economic values of the examined domain.

  12. Probabilistic structural analysis of a truss typical for space station

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.

    1990-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.

  13. Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2009-01-01

    Estimating the likelihood of tsunamis occurring along the U.S. Atlantic coast critically depends on knowledge of tsunami source probability. We review available information on both earthquake and landslide probabilities from potential sources that could generate local and transoceanic tsunamis. Estimating source probability includes defining both size and recurrence distributions for earthquakes and landslides. For the former distribution, source sizes are often distributed according to a truncated or tapered power-law relationship. For the latter distribution, sources are often assumed to occur in time according to a Poisson process, simplifying the way tsunami probabilities from individual sources can be aggregated. For the U.S. Atlantic coast, earthquake tsunami sources primarily occur at transoceanic distances along plate boundary faults. Probabilities for these sources are constrained from previous statistical studies of global seismicity for similar plate boundary types. In contrast, there is presently little information constraining landslide probabilities that may generate local tsunamis. Though there is significant uncertainty in tsunami source probabilities for the Atlantic, results from this study yield a comparative analysis of tsunami source recurrence rates that can form the basis for future probabilistic analyses.

  14. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment

    NASA Astrophysics Data System (ADS)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2015-12-01

    Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers' efficiency.

  15. Uncertainty visualisation in the Model Web

    NASA Astrophysics Data System (ADS)

    Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.

    2012-04-01

    Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool: (i) adjacent maps showing data and uncertainty separately, and (ii) multidimensional mapping providing different visualisation methods in combination to explore the spatial, temporal and uncertainty distribution of the data. Adjacent maps allow a simpler visualisation by separating value and uncertainty maps for non-experts and a first overview. The multidimensional approach allows a more complex exploration of the data for experts by browsing through the different dimensions. It offers the visualisation of maps, statistic plots and time series in different windows and sliders to interactively move through time, space and uncertainty (thresholds).

  16. Robust portfolio selection based on asymmetric measures of variability of stock returns

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tan, Shaohua

    2009-10-01

    This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.

  17. Optimal Universal Uncertainty Relations

    PubMed Central

    Li, Tao; Xiao, Yunlong; Ma, Teng; Fei, Shao-Ming; Jing, Naihuan; Li-Jost, Xianqing; Wang, Zhi-Xi

    2016-01-01

    We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. PMID:27775010

  18. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials

    NASA Astrophysics Data System (ADS)

    Hyeon, Changbong; Hwang, Wonseok

    2017-07-01

    Using Brownian motion in periodic potentials V (x ) tilted by a force f , we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q , and in order to limit the output fluctuation within a relative uncertainty ɛ , at least 2 kBT /ɛ2 of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f ≪V'(x ) ] but also at far-from-equilibrium [f ≫V'(x ) ] , more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σq2) increases with its mean (μq), and it cannot be smaller than 2 kBT μq .

  19. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials.

    PubMed

    Hyeon, Changbong; Hwang, Wonseok

    2017-07-01

    Using Brownian motion in periodic potentials V(x) tilted by a force f, we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q, and in order to limit the output fluctuation within a relative uncertainty ε, at least 2k_{B}T/ε^{2} of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f≪V^{'}(x)] but also at far-from-equilibrium [f≫V^{'}(x)], more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σ_{q}^{2}) increases with its mean (μ_{q}), and it cannot be smaller than 2k_{B}Tμ_{q}.

  20. Uncertainty evaluation with increasing borehole drilling in subsurface hydrogeological explorations

    NASA Astrophysics Data System (ADS)

    Amano, K.; Ohyama, T.; Kumamoto, S.; Shimo, M.

    2016-12-01

    Quantities of drilling boreholes have been a difficult subject for field investigators in such as subsurface hydrogeological explorations. This problem becomes a bigger in heterogeneous formations or rock masses so we need to develop quantitative criteria for evaluating uncertainties during borehole investigations.To test an uncertainty reduction with increasing boreholes, we prepared a simple hydrogeological model and virtual hydraulic tests were carried out by using this model. The model consists of 125,000 elements of which hydraulic conductivities are generated randomly from the log-normal distribution in a 2-kilometer cube. Uncertainties were calculated by the difference of head distributions between the original model and the inchoate models made by virtual hydraulic test one by one.The results show the level and the variance of uncertainty are strongly correlated to the average and variance of the hydraulic conductivities. This kind of trends also could be seen in the actual field data obtained from the deep borehole investigations in Horonobe Town, northern Hokkaido, Japan. Here, a new approach using fractional bias (FB) and normalized mean square error (NMSE) for evaluating uncertainty characteristics will be introduced and the possibility of use as an indicator for decision making (i.e. to stop borehole drilling or to continue borehole drilling) in field investigations will be discussed.

  1. Visualizing uncertainty about the future.

    PubMed

    Spiegelhalter, David; Pearson, Mike; Short, Ian

    2011-09-09

    We are all faced with uncertainty about the future, but we can get the measure of some uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate effectively to lay audiences, and in this review we examine current practice for communicating uncertainties visually, using examples drawn from sport, weather, climate, health, economics, and politics. Despite the burgeoning interest in infographics, there is limited experimental evidence on how different types of visualizations are processed and understood, although the effectiveness of some graphics clearly depends on the relative numeracy of an audience. Fortunately, it is increasingly easy to present data in the form of interactive visualizations and in multiple types of representation that can be adjusted to user needs and capabilities. Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed knowledge--or from essential indeterminacy about the future--remains a challenge.

  2. Electric Vehicles Charging Scheduling Strategy Considering the Uncertainty of Photovoltaic Output

    NASA Astrophysics Data System (ADS)

    Wei, Xiangxiang; Su, Su; Yue, Yunli; Wang, Wei; He, Luobin; Li, Hao; Ota, Yutaka

    2017-05-01

    The rapid development of electric vehicles and distributed generation bring new challenges to security and economic operation of the power system, so the collaborative research of the EVs and the distributed generation have important significance in distribution network. Under this background, an EVs charging scheduling strategy considering the uncertainty of photovoltaic(PV) output is proposed. The characteristics of EVs charging are analysed first. A PV output prediction method is proposed with a PV database then. On this basis, an EVs charging scheduling strategy is proposed with the goal to satisfy EVs users’ charging willingness and decrease the power loss in distribution network. The case study proves that the proposed PV output prediction method can predict the PV output accurately and the EVs charging scheduling strategy can reduce the power loss and stabilize the fluctuation of the load in distributed network.

  3. Stochastic Residual-Error Analysis For Estimating Hydrologic Model Predictive Uncertainty

    EPA Science Inventory

    A hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute ...

  4. Moving across scales: Challenges and opportunities in upscaling carbon fluxes

    NASA Astrophysics Data System (ADS)

    Naithani, K. J.

    2016-12-01

    Light use efficiency (LUE) type models are commonly used to upscale terrestrial C fluxes and estimate regional and global C budgets. Model parameters are often estimated for each land cover type (LCT) using flux observations from one or more eddy covariance towers, and then spatially extrapolated by integrating land cover, meteorological, and remotely sensed data. Decisions regarding the type of input data (spatial resolution of land cover data, spatial and temporal length of flux data), representation of landscape structure (land use vs. disturbance regime), and the type of modeling framework (common risk vs. hierarchical) all influence the estimates CO2 fluxes and the associated uncertainties, but are rarely considered together. This work presents a synthesis of past and present efforts for upscaling CO2 fluxes and associated uncertainties in the ChEAS (Chequamegon Ecosystem Atmosphere Study) region in northern Wisconsin and the Upper Peninsula of Michigan. This work highlights two key future research needs. First, the characterization of uncertainties due to all of the abovementioned factors reflects only a (hopefully relevant) subset the overall uncertainties. Second, interactions among these factors are likely critical, but are poorly represented by the tower network at landscape scales. Yet, results indicate significant spatial and temporal heterogeneity of uncertainty in CO2 fluxes which can inform carbon management efforts and prioritize data needs.

  5. MODIS land cover uncertainty in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.

    2017-12-01

    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.

  6. Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah

    2013-07-01

    This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.

  7. Overview of the taxonomy of zooxanthellate Scleractinia.

    PubMed

    Veron, John

    2013-11-01

    Coral taxonomy has entered a historical phase where nomenclatorial uncertainty is rapidly increasing. The fundamental cause is mandatory adherence to historical monographs that lack essential information of all sorts, and also to type specimens, if they exist at all, that are commonly unrecognizable fragments or are uncharacteristic of the species they are believed to represent. Historical problems, including incorrect subsequent type species designations, also create uncertainty for many well-established genera. The advent of in situ studies in the 1970s revealed these issues; now molecular technology is again changing the taxonomic landscape. The competing methodologies involved must be seen in context if they are to avoid becoming an additional basis for continuing nomenclatorial instability. To prevent this happening, the International Commission on Zoological Nomenclature (ICZN) will need to focus on rules that consolidate well-established nomenclature and allow for the designation of new type specimens that are unambiguous, and which include both skeletal material and soft tissue for molecular study. Taxonomic and biogeographic findings have now become linked, with molecular methodologies providing the capacity to re-visit past taxonomic decisions, and to extend both taxonomy and biogeography into the realm of evolutionary theory. It is proposed that most species will ultimately be seen as operational taxonomic units that are human rather than natural constructs, which in consequence will always have fuzzy morphological, genetic, and distribution boundaries. The pathway ahead calls for the integration of morphological and molecular taxonomies, and for website delivery of information that crosses current discipline boundaries.

  8. Predictive uncertainty analysis of plume distribution for geological carbon sequestration using sparse-grid Bayesian method

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhang, G.

    2013-12-01

    Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.

  9. Examination of the uncertainty in contaminant fate and transport modeling: a case study in the Venice Lagoon.

    PubMed

    Sommerfreund, J; Arhonditsis, G B; Diamond, M L; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L; Giuliani, S; Mugnai, C

    2010-03-01

    A Monte Carlo analysis is used to quantify environmental parametric uncertainty in a multi-segment, multi-chemical model of the Venice Lagoon. Scientific knowledge, expert judgment and observational data are used to formulate prior probability distributions that characterize the uncertainty pertaining to 43 environmental system parameters. The propagation of this uncertainty through the model is then assessed by a comparative analysis of the moments (central tendency, dispersion) of the model output distributions. We also apply principal component analysis in combination with correlation analysis to identify the most influential parameters, thereby gaining mechanistic insights into the ecosystem functioning. We found that modeled concentrations of Cu, Pb, OCDD/F and PCB-180 varied by up to an order of magnitude, exhibiting both contaminant- and site-specific variability. These distributions generally overlapped with the measured concentration ranges. We also found that the uncertainty of the contaminant concentrations in the Venice Lagoon was characterized by two modes of spatial variability, mainly driven by the local hydrodynamic regime, which separate the northern and central parts of the lagoon and the more isolated southern basin. While spatial contaminant gradients in the lagoon were primarily shaped by hydrology, our analysis also shows that the interplay amongst the in-place historical pollution in the central lagoon, the local suspended sediment concentrations and the sediment burial rates exerts significant control on the variability of the contaminant concentrations. We conclude that the probabilistic analysis presented herein is valuable for quantifying uncertainty and probing its cause in over-parameterized models, while some of our results can be used to dictate where additional data collection efforts should focus on and the directions that future model refinement should follow. (c) 2009 Elsevier Inc. All rights reserved.

  10. Background sampling and transferability of species distribution model ensembles under climate change

    NASA Astrophysics Data System (ADS)

    Iturbide, Maialen; Bedia, Joaquín; Gutiérrez, José Manuel

    2018-07-01

    Species Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning. A popular application of these models is the projection of species distributions under climate change conditions. Yet there are still a range of methodological SDM factors which limit the transferability of these models, contributing significantly to the overall uncertainty of the resulting projections. An important source of uncertainty often neglected in climate change studies comes from the use of background data (a.k.a. pseudo-absences) for model calibration. Here, we study the sensitivity to pseudo-absence sampling as a determinant factor for SDM stability and transferability under climate change conditions, focusing on European wide projections of Quercus robur as an illustrative case study. We explore the uncertainty in future projections derived from ten pseudo-absence realizations and three popular SDMs (GLM, Random Forest and MARS). The contribution of the pseudo-absence realization to the uncertainty was higher in peripheral regions and clearly differed among the tested SDMs in the whole study domain, being MARS the most sensitive - with projections differing up to a 40% for different realizations - and GLM the most stable. As a result we conclude that parsimonious SDMs are preferable in this context, avoiding complex methods (such as MARS) which may exhibit poor model transferability. Accounting for this new source of SDM-dependent uncertainty is crucial when forming multi-model ensembles to undertake climate change projections.

  11. Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.

    PubMed

    Dosso, Stan E; Nielsen, Peter L

    2002-01-01

    This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.

  12. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  13. County-Level Climate Uncertainty for Risk Assessments: Volume 14 Appendix M - Historical Surface Runoff.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  14. County-Level Climate Uncertainty for Risk Assessments: Volume 15 Appendix N - Forecast Surface Runoff.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  15. County-Level Climate Uncertainty for Risk Assessments: Volume 10 Appendix I - Historical Evaporation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  16. County-Level Climate Uncertainty for Risk Assessments: Volume 8 Appendix G - Historical Precipitation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  17. County-Level Climate Uncertainty for Risk Assessments: Volume 12 Appendix K - Historical Rel. Humidity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  18. Quantifying parameter uncertainty in stochastic models using the Box Cox transformation

    NASA Astrophysics Data System (ADS)

    Thyer, Mark; Kuczera, George; Wang, Q. J.

    2002-08-01

    The Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.

  19. County-Level Climate Uncertainty for Risk Assessments: Volume 23 Appendix V - Forecast Sea Ice Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-04-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  20. County-Level Climate Uncertainty for Risk Assessments: Volume 24 Appendix W - Historical Sea Ice Age.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  1. County-Level Climate Uncertainty for Risk Assessments: Volume 22 Appendix U - Historical Sea Ice Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  2. County-Level Climate Uncertainty for Risk Assessments: Volume 21 Appendix T - Forecast Sea Ice Area Fraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  3. County-Level Climate Uncertainty for Risk Assessments: Volume 25 Appendix X - Forecast Sea Ice Age.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  4. County-Level Climate Uncertainty for Risk Assessments: Volume 27 Appendix Z - Forecast Ridging Rate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  5. County-Level Climate Uncertainty for Risk Assessments: Volume 18 Appendix Q - Historical Maximum Near-Surface Wind Speed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconom ic impacts. The full report is contained in 27 volumes.« less

  6. County-Level Climate Uncertainty for Risk Assessments: Volume 17 Appendix P - Forecast Soil Moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  7. County-Level Climate Uncertainty for Risk Assessments: Volume 16 Appendix O - Historical Soil Moisture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  8. County-Level Climate Uncertainty for Risk Assessments: Volume 6 Appendix E - Historical Minimum Near-Surface Air Temperature.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  9. County-Level Climate Uncertainty for Risk Assessments: Volume 26 Appendix Y - Historical Ridging Rate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  10. County-Level Climate Uncertainty for Risk Assessments: Volume 4 Appendix C - Historical Maximum Near-Surface Air Temperature.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  11. County-Level Climate Uncertainty for Risk Assessments: Volume 2 Appendix A - Historical Near-Surface Air Temperature.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  12. County-Level Climate Uncertainty for Risk Assessments: Volume 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  13. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  14. Finite Element Modeling Used to Study Stress Distribution on the Foot

    NASA Technical Reports Server (NTRS)

    Morales, Nelson; Davis, Brian; Tajaddini, Azita

    2004-01-01

    A method to study the stress distribution inside the forefoot during walking was developed at the Cleveland Clinic Foundation by a researcher from the NASA Glenn Research Center. In this method, a semiautomated process was outlined to create a three-dimensional, patient-specific, finite element model (FEM) of the forefoot using magnetic resonance images (MRI). The images were processed in Matlab using the k-nearest neighbor (k-NN) classification algorithm and Sobel edge detection to separate the different tissue types: bone, skin, fat, and muscle. This information was used to create curves and surfaces that were exported to an FEM preprocessor known as Truegrid. In Truegrid, eight-noded or brick elements were created by using surface mapping. The FEM was processed and postprocessed in Abaqus. Material properties of the models were obtained from past experiments such as fat pad confined compression, skin axial and biaxial tests, muscle in vivo compressive tests, and reference literature (bone properties). Nonlinear (hyperelastic) material models were used for the skin (epidermis and dermis), fat, and muscles; and a linear elastic model was used for the bones. Muscle activation during walking yielded uncertainties in the muscle material model since contracted muscles are stiffer than relaxed muscles. These uncertainties were resolved by performing a sensitivity analysis of the muscle material properties. The original properties were multiplied by arbitrary factors of 2, 3, 0.5, and 0.33. The strain and stress distributions, as well as the locations of peak values, were similar in all cases. The peak contact pressure P obtained for each case varied with respect to the applied factor f as follows:

  15. Monitoring and modeling as a continuing learning process: the use of hydrological models in a general probabilistic framework.

    NASA Astrophysics Data System (ADS)

    Baroni, G.; Gräff, T.; Reinstorf, F.; Oswald, S. E.

    2012-04-01

    Nowadays uncertainty and sensitivity analysis are considered basic tools for the assessment of hydrological models and the evaluation of the most important sources of uncertainty. In this context, in the last decades several methods have been developed and applied in different hydrological conditions. However, in most of the cases, the studies have been done by investigating mainly the influence of the parameter uncertainty on the simulated outputs and few approaches tried to consider also other sources of uncertainty i.e. input and model structure. Moreover, several constrains arise when spatially distributed parameters are involved. To overcome these limitations a general probabilistic framework based on Monte Carlo simulations and the Sobol method has been proposed. In this study, the general probabilistic framework was applied at field scale using a 1D physical-based hydrological model (SWAP). Furthermore, the framework was extended at catchment scale in combination with a spatially distributed hydrological model (SHETRAN). The models are applied in two different experimental sites in Germany: a relatively flat cropped field close to Potsdam (Brandenburg) and a small mountainous catchment with agricultural land use (Schaefertal, Harz Mountains). For both cases, input and parameters are considered as major sources of uncertainty. Evaluation of the models was based on soil moisture detected at plot scale in different depths and, for the catchment site, also with daily discharge values. The study shows how the framework can take into account all the various sources of uncertainty i.e. input data, parameters (either in scalar or spatially distributed form) and model structures. The framework can be used in a loop in order to optimize further monitoring activities used to improve the performance of the model. In the particular applications, the results show how the sources of uncertainty are specific for each process considered. The influence of the input data as well as the presence of compensating errors become clear by the different processes simulated.

  16. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.

    PubMed

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A

    2013-02-01

    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on understanding the distributional characteristics of such uncertainty. Our approach provides a tool to improve decision making. © 2013 Society for Conservation Biology.

  17. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy.

    PubMed

    Frey, K; Unholtz, D; Bauer, J; Debus, J; Min, C H; Bortfeld, T; Paganetti, H; Parodi, K

    2014-10-07

    We introduce the automation of the range difference calculation deduced from particle-irradiation induced β(+)-activity distributions with the so-called most-likely-shift approach, and evaluate its reliability via the monitoring of algorithm- and patient-specific uncertainty factors. The calculation of the range deviation is based on the minimization of the absolute profile differences in the distal part of two activity depth profiles shifted against each other. Depending on the workflow of positron emission tomography (PET)-based range verification, the two profiles under evaluation can correspond to measured and simulated distributions, or only measured data from different treatment sessions. In comparison to previous work, the proposed approach includes an automated identification of the distal region of interest for each pair of PET depth profiles and under consideration of the planned dose distribution, resulting in the optimal shift distance. Moreover, it introduces an estimate of uncertainty associated to the identified shift, which is then used as weighting factor to 'red flag' problematic large range differences. Furthermore, additional patient-specific uncertainty factors are calculated using available computed tomography (CT) data to support the range analysis. The performance of the new method for in-vivo treatment verification in the clinical routine is investigated with in-room PET images for proton therapy as well as with offline PET images for proton and carbon ion therapy. The comparison between measured PET activity distributions and predictions obtained by Monte Carlo simulations or measurements from previous treatment fractions is performed. For this purpose, a total of 15 patient datasets were analyzed, which were acquired at Massachusetts General Hospital and Heidelberg Ion-Beam Therapy Center with in-room PET and offline PET/CT scanners, respectively. Calculated range differences between the compared activity distributions are reported in a 2D map in beam-eye-view. In comparison to previously proposed approaches, the new most-likely-shift method shows more robust results for assessing in-vivo the range from strongly varying PET distributions caused by differing patient geometry, ion beam species, beam delivery techniques, PET imaging concepts and counting statistics. The additional visualization of the uncertainties and the dedicated weighting strategy contribute to the understanding of the reliability of observed range differences and the complexity in the prediction of activity distributions. The proposed method promises to offer a feasible technique for clinical routine of PET-based range verification.

  18. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy

    NASA Astrophysics Data System (ADS)

    Frey, K.; Unholtz, D.; Bauer, J.; Debus, J.; Min, C. H.; Bortfeld, T.; Paganetti, H.; Parodi, K.

    2014-10-01

    We introduce the automation of the range difference calculation deduced from particle-irradiation induced β+-activity distributions with the so-called most-likely-shift approach, and evaluate its reliability via the monitoring of algorithm- and patient-specific uncertainty factors. The calculation of the range deviation is based on the minimization of the absolute profile differences in the distal part of two activity depth profiles shifted against each other. Depending on the workflow of positron emission tomography (PET)-based range verification, the two profiles under evaluation can correspond to measured and simulated distributions, or only measured data from different treatment sessions. In comparison to previous work, the proposed approach includes an automated identification of the distal region of interest for each pair of PET depth profiles and under consideration of the planned dose distribution, resulting in the optimal shift distance. Moreover, it introduces an estimate of uncertainty associated to the identified shift, which is then used as weighting factor to ‘red flag’ problematic large range differences. Furthermore, additional patient-specific uncertainty factors are calculated using available computed tomography (CT) data to support the range analysis. The performance of the new method for in-vivo treatment verification in the clinical routine is investigated with in-room PET images for proton therapy as well as with offline PET images for proton and carbon ion therapy. The comparison between measured PET activity distributions and predictions obtained by Monte Carlo simulations or measurements from previous treatment fractions is performed. For this purpose, a total of 15 patient datasets were analyzed, which were acquired at Massachusetts General Hospital and Heidelberg Ion-Beam Therapy Center with in-room PET and offline PET/CT scanners, respectively. Calculated range differences between the compared activity distributions are reported in a 2D map in beam-eye-view. In comparison to previously proposed approaches, the new most-likely-shift method shows more robust results for assessing in-vivo the range from strongly varying PET distributions caused by differing patient geometry, ion beam species, beam delivery techniques, PET imaging concepts and counting statistics. The additional visualization of the uncertainties and the dedicated weighting strategy contribute to the understanding of the reliability of observed range differences and the complexity in the prediction of activity distributions. The proposed method promises to offer a feasible technique for clinical routine of PET-based range verification.

  19. Uncertainties in estimates of the risks of late effects from space radiation

    NASA Astrophysics Data System (ADS)

    Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P. B.; Dicello, J. F.

    2004-01-01

    Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.

  20. Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river

    USGS Publications Warehouse

    Legleiter, C.J.; Kyriakidis, P.C.; McDonald, R.R.; Nelson, J.M.

    2011-01-01

    Many applications in river research and management rely upon two-dimensional (2D) numerical models to characterize flow fields, assess habitat conditions, and evaluate channel stability. Predictions from such models are potentially highly uncertain due to the uncertainty associated with the topographic data provided as input. This study used a spatial stochastic simulation strategy to examine the effects of topographic uncertainty on flow modeling. Many, equally likely bed elevation realizations for a simple meander bend were generated and propagated through a typical 2D model to produce distributions of water-surface elevation, depth, velocity, and boundary shear stress at each node of the model's computational grid. Ensemble summary statistics were used to characterize the uncertainty associated with these predictions and to examine the spatial structure of this uncertainty in relation to channel morphology. Simulations conditioned to different data configurations indicated that model predictions became increasingly uncertain as the spacing between surveyed cross sections increased. Model sensitivity to topographic uncertainty was greater for base flow conditions than for a higher, subbankfull flow (75% of bankfull discharge). The degree of sensitivity also varied spatially throughout the bend, with the greatest uncertainty occurring over the point bar where the flow field was influenced by topographic steering effects. Uncertain topography can therefore introduce significant uncertainty to analyses of habitat suitability and bed mobility based on flow model output. In the presence of such uncertainty, the results of these studies are most appropriately represented in probabilistic terms using distributions of model predictions derived from a series of topographic realizations. Copyright 2011 by the American Geophysical Union.

  1. EXPOSURE TO PESTICIDES BY MEDIUM AND ROUTE: THE 90TH PERCENTILE AND RELATED UNCERTAINTIES

    EPA Science Inventory

    This study investigates distributions of exposure to chlorpyrifos and diazinon using the database generated in the state of Arizona by the National Human Exposure Assessment Survey (NHEXAS-AZ). Exposure to pesticide and associated uncertainties are estimated using probabilistic...

  2. Trapped between two tails: trading off scientific uncertainties via climate targets

    NASA Astrophysics Data System (ADS)

    Lemoine, Derek; McJeon, Haewon C.

    2013-09-01

    Climate change policies must trade off uncertainties about future warming, about the social and ecological impacts of warming, and about the cost of reducing greenhouse gas emissions. We show that laxer carbon targets produce broader distributions for climate damages, skewed towards severe outcomes. However, if potential low-carbon technologies fill overlapping niches, then more stringent carbon targets produce broader distributions for the cost of reducing emissions, skewed towards high-cost outcomes. We use the technology-rich GCAM integrated assessment model to assess the robustness of 450 and 500 ppm carbon targets to each uncertain factor. The 500 ppm target provides net benefits across a broad range of futures. The 450 ppm target provides net benefits only when impacts are greater than conventionally assumed, when multiple technological breakthroughs lower the cost of abatement, or when evaluated with a low discount rate. Policy evaluations are more sensitive to uncertainty about abatement technology and impacts than to uncertainty about warming.

  3. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  4. Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.

    PubMed

    Hadwin, Paul J; Sipkens, Timothy A; Thomson, Kevin A; Liu, Fengshan; Daun, Kyle J

    2018-03-01

    Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.

  5. Trapped Between Two Tails: Trading Off Scientific Uncertainties via Climate Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemoine, Derek M.; McJeon, Haewon C.

    2013-08-20

    Climate change policies must trade off uncertainties about future warming, about the social and ecological impacts of warming, and about the cost of reducing greenhouse gas emissions. We show that laxer carbon targets produce broader distributions for climate damages, skewed towards severe outcomes. However, if potential low-carbon technologies fill overlapping niches, then more stringent carbon targets produce broader distributions for the cost of reducing emissions, skewed towards high-cost outcomes. We use the technology- rich GCAM integrated assessment model to assess the robustness of 450 ppm and 500 ppm carbon targets to each uncertain factor. The 500 ppm target provides netmore » benefits across a broad range of futures. The 450 ppm target provides net benefits only when impacts are greater than conventionally assumed, when multiple technological breakthroughs lower the cost of abatement, or when evaluated with a low discount rate. Policy evaluations are more sensitive to uncertainty about abatement technology and impacts than to uncertainty about warming.« less

  6. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  7. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  8. New method to incorporate Type B uncertainty into least-squares procedures in radionuclide metrology.

    PubMed

    Han, Jubong; Lee, K B; Lee, Jong-Man; Park, Tae Soon; Oh, J S; Oh, Pil-Jei

    2016-03-01

    We discuss a new method to incorporate Type B uncertainty into least-squares procedures. The new method is based on an extension of the likelihood function from which a conventional least-squares function is derived. The extended likelihood function is the product of the original likelihood function with additional PDFs (Probability Density Functions) that characterize the Type B uncertainties. The PDFs are considered to describe one's incomplete knowledge on correction factors being called nuisance parameters. We use the extended likelihood function to make point and interval estimations of parameters in the basically same way as the least-squares function used in the conventional least-squares method is derived. Since the nuisance parameters are not of interest and should be prevented from appearing in the final result, we eliminate such nuisance parameters by using the profile likelihood. As an example, we present a case study for a linear regression analysis with a common component of Type B uncertainty. In this example we compare the analysis results obtained from using our procedure with those from conventional methods. Copyright © 2015. Published by Elsevier Ltd.

  9. The Near-Earth Meteoroid Flux, Speed Distribution, and Uncertainty

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea; Cooke, William J.; Brown, Peter G.; Campbell-Brown, Margaret; Moser, Danielle E.

    2016-01-01

    Meteoroids are known to pose a threat to spacecraft; they can puncture components, disturb spacecraft attitude, and possibly create secondary electrical effects. Accurate environment models are therefore critical for mitigating meteoroid-related risks. While there are several meteoroid environment models available for assessing spacecraft risk, the uncertainties associated with these models are not well understood. Because meteoroid properties are derived from indirect observations such as meteors and impact craters, the uncertainty in the meteoroid flux is potentially quite large. We combine existing meteoroid flux measurements with new radar and optical meteor data to improve our characterization of the meteoroid flux onto the Earth and its velocity distribution. We use data extracted from the NASA all-sky network, the Canadian Automated Meteor Observatory, and the Canadian Meteor Orbit Radar. We improve our characterization of the observed meteoroid speed distribution by incorporating modern descriptions of the ionization efficiency (e.g., Thomas et al., 2016). We also present estimates of the uncertainties associated with our meteoroid flux distribution. Finally, we discuss the implications for spacecraft. Our model is constrained by the cratering rate on the space-facing surface of LDEF, and thus the risk posed to spacecraft by meteoroid-induced physical damage is the least uncertain component of our model. Other sources of risk, however, may vary. For instance, a lower average meteoroid speed would require a higher meteoroid mass flux in order to match the LDEF crater counts, leading to higher predicted rates of attitude disturbances.

  10. Probability Distribution Estimated From the Minimum, Maximum, and Most Likely Values: Applied to Turbine Inlet Temperature Uncertainty

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.

    2004-01-01

    Modern engineering design practices are tending more toward the treatment of design parameters as random variables as opposed to fixed, or deterministic, values. The probabilistic design approach attempts to account for the uncertainty in design parameters by representing them as a distribution of values rather than as a single value. The motivations for this effort include preventing excessive overdesign as well as assessing and assuring reliability, both of which are important for aerospace applications. However, the determination of the probability distribution is a fundamental problem in reliability analysis. A random variable is often defined by the parameters of the theoretical distribution function that gives the best fit to experimental data. In many cases the distribution must be assumed from very limited information or data. Often the types of information that are available or reasonably estimated are the minimum, maximum, and most likely values of the design parameter. For these situations the beta distribution model is very convenient because the parameters that define the distribution can be easily determined from these three pieces of information. Widely used in the field of operations research, the beta model is very flexible and is also useful for estimating the mean and standard deviation of a random variable given only the aforementioned three values. However, an assumption is required to determine the four parameters of the beta distribution from only these three pieces of information (some of the more common distributions, like the normal, lognormal, gamma, and Weibull distributions, have two or three parameters). The conventional method assumes that the standard deviation is a certain fraction of the range. The beta parameters are then determined by solving a set of equations simultaneously. A new method developed in-house at the NASA Glenn Research Center assumes a value for one of the beta shape parameters based on an analogy with the normal distribution (ref.1). This new approach allows for a very simple and direct algebraic solution without restricting the standard deviation. The beta parameters obtained by the new method are comparable to the conventional method (and identical when the distribution is symmetrical). However, the proposed method generally produces a less peaked distribution with a slightly larger standard deviation (up to 7 percent) than the conventional method in cases where the distribution is asymmetric or skewed. The beta distribution model has now been implemented into the Fast Probability Integration (FPI) module used in the NESSUS computer code for probabilistic analyses of structures (ref. 2).

  11. Full uncertainty quantification of N2O and NO emissions using the biogeochemical model LandscapeDNDC on site and regional scale

    NASA Astrophysics Data System (ADS)

    Haas, Edwin; Santabarbara, Ignacio; Kiese, Ralf; Butterbach-Bahl, Klaus

    2017-04-01

    Numerical simulation models are increasingly used to estimate greenhouse gas emissions at site to regional / national scale and are outlined as the most advanced methodology (Tier 3) in the framework of UNFCCC reporting. Process-based models incorporate the major processes of the carbon and nitrogen cycle of terrestrial ecosystems and are thus thought to be widely applicable at various conditions and spatial scales. Process based modelling requires high spatial resolution input data on soil properties, climate drivers and management information. The acceptance of model based inventory calculations depends on the assessment of the inventory's uncertainty (model, input data and parameter induced uncertainties). In this study we fully quantify the uncertainty in modelling soil N2O and NO emissions from arable, grassland and forest soils using the biogeochemical model LandscapeDNDC. We address model induced uncertainty (MU) by contrasting two different soil biogeochemistry modules within LandscapeDNDC. The parameter induced uncertainty (PU) was assessed by using joint parameter distributions for key parameters describing microbial C and N turnover processes as obtained by different Bayesian calibration studies for each model configuration. Input data induced uncertainty (DU) was addressed by Bayesian calibration of soil properties, climate drivers and agricultural management practices data. For the MU, DU and PU we performed several hundred simulations each to contribute to the individual uncertainty assessment. For the overall uncertainty quantification we assessed the model prediction probability, followed by sampled sets of input datasets and parameter distributions. Statistical analysis of the simulation results have been used to quantify the overall full uncertainty of the modelling approach. With this study we can contrast the variation in model results to the different sources of uncertainties for each ecosystem. Further we have been able to perform a fully uncertainty analysis for modelling N2O and NO emissions from arable, grassland and forest soils necessary for the comprehensibility of modelling results. We have applied the methodology to a regional inventory to assess the overall modelling uncertainty for a regional N2O and NO emissions inventory for the state of Saxony, Germany.

  12. Combining Satellite Ocean Color and Hydrodynamic Model Uncertainties in Bio-Optical Forecasts

    DTIC Science & Technology

    2014-04-03

    observed chlorophyll distribution for that day (MODIS Image for October 17, 2011), without regard to sign, I.e., IFigs. 11(c)-11(a)l. Black pixels indicate...time using the current field from the model. Uncertainties in both the satellite chlorophyll values and the currents from the circulation model impact...ensemole techniques to partition the chlorophyll uncertainties into components due to atmospheric correction and bio-optical inversion. By combining

  13. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.

    PubMed

    Li, Cheng; Yuan, Zibing; Ou, Jiamin; Fan, Xiaoli; Ye, Siqi; Xiao, Teng; Shi, Yuqi; Huang, Zhijiong; Ng, Simon K W; Zhong, Zhuangmin; Zheng, Junyu

    2016-12-15

    Ship emissions contribute significantly to air pollution and impose health risks to residents along the coastal area. By using the refined data from the Automatic Identification System (AIS), this study developed a highly resolved ship emission inventory for the Pearl River Delta (PRD) region, China, home to three of ten busiest ports in the world. The region-wide SO 2 , NO X , CO, PM 10 , PM 2.5 , and VOC emissions in 2013 were estimated to be 61,484, 103,717, 10,599, 7155, 6605, and 4195t, respectively. Ocean going vessels were the largest contributors of the total emissions, followed by coastal vessels and river vessels. In terms of ship type, container ship was the leading contributor, followed by conventional cargo ship, dry bulk carrier, fishing ship, and oil tanker. These five ship types accounted for >90% of total emissions. The spatial distributions of emissions revealed that the key emission hot spots all concentrated within the newly proposed emission control area (ECA) and ship emissions within ECA covered >80% of total ship emissions in the PRD, highlighting the importance of ECA in emissions reduction in the PRD. The uncertainties of emission estimates of pollutants were quantified, with lower bounds of -24.5% to -21.2% and upper bounds of 28.6% to 33.3% at 95% confidence intervals. The lower uncertainties in this study highlighted the powerfulness of AIS data in improving ship emission estimates. The AIS-based bottom-up methodology can be used for developing and upgrading ship emission inventory and formulating effective control measures on ship emissions in other port regions wherever possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Uncertainty propagation for statistical impact prediction of space debris

    NASA Astrophysics Data System (ADS)

    Hoogendoorn, R.; Mooij, E.; Geul, J.

    2018-01-01

    Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.

  15. Preliminary evaluation of the dosimetric accuracy of cone-beam computed tomography for cases with respiratory motion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee

    2014-04-01

    Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.

  16. Vector-Boson Fusion Higgs Production at Three Loops in QCD.

    PubMed

    Dreyer, Frédéric A; Karlberg, Alexander

    2016-08-12

    We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.

  17. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations.

    PubMed

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang; Xie, Yangyang; Liu, Saiyan; Meng, Erhao; Li, Pei

    2017-07-19

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating the potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. This study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.

  18. Evolution of stable carbon-isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments

    NASA Astrophysics Data System (ADS)

    Hornibrook, Edward R. C.; Longstaffe, Frederick J.; Fyfe, William S.

    2000-03-01

    Two types of distribution for α C values are observed in anaerobic environments when δ 13C-ΣCO 2 and δ 13C-CH 4 values are measured across gradients of depth or age of organic debris. The type-I distribution involves a systematic increase in α C values with depth as a result of decreasing δ 13C-CH 4 and increasing δ 13C-ΣCO 2 values. This behavior corresponds to a progressive increase in the prevalence of methanogenesis by the CO 2 reduction pathway relative to acetate fermentation. Utilization of autotrophically formed acetate by methanogens would also cause an increase in α C values. The type-II distribution occurs when both δ 13C-CH 4 and δ 13C-ΣCO 2 values decrease with depth, resulting in approximately constant α C values. This condition corresponds with a strong dependence of methanogens on porewater ΣCO 2 as a carbon source by way of either the CO 2 reduction pathway or utilization of autotrophically formed acetate. Freshwater wetlands possess both types of α C value distribution. Wetlands with type-I distributions exhibit curves with slopes that vary probably as a function of deposition and preservation of labile organic carbon. An abundance of labile substrates in anaerobic soils yields steeper curves because aceticlastic methanogenesis predominates and δ 13C-CH 4 and δ 13C-CO 2 values are high. Diminished transfer of labile carbon to the methanogenic zone results in an increased prevalence of the CO 2 reduction pathway, yielding low δ 13C-CH 4 values and shallowly sloping curves. Aerobic oxidation of organic matter or decay involving sulfate reduction produces CO 2 with low δ 13C values, which also will contribute to shallowly sloping curves. The size of the dissolved CO 2 pool can influence the sensitivity of δ 13C-CO 2 values to change during methanogenesis. Regression curves of δ 13C-CH 4 and δ 13C-ΣCO 2 values from four wetlands with type-I distributions intersect at δ 13C-CH 4 = -40.7 ± 6.1‰ (1σ) and δ 13C-ΣCO 2 = -23.9 ± 4.8‰ (1σ). These values are similar to δ 13C values for methyl and carboxyl moieties within acetate produced by anaerobic degradation of fresh C 3 plant matter. A low abundance of acetate during aceticlastic methanogenesis will result in minimal expression of metabolic kinetic isotope effects (KIEs) and production of CH 4 and CO 2 with δ 13C values similar to the intramolecular distribution of sedimentary acetate. The type-II distribution is prevalent in marine environments, probably because of substrate depletion in the sulfate reduction zone. The type-I distribution does occur in marine settings where deposition rates of organic matter are high. Landfills possess only the type-I distribution of α C values and exhibit unusually steep curves, possibly because methanogenesis occurs predominantly from acetate produced by fermentation at mesophilic temperatures. The high abundance of acetate in landfill leachate may permit varying degrees of expression of the KIE associated with aceticlastic methanogenesis. Outgassing of 12CO 2 may contribute further to the steepening of α C curves in landfills and other anaerobic environments possessing a type-I distribution. Defining the type of α C distributions in different wetlands could reduce uncertainty in estimating the δ 13C value of CH 4 emissions. Hence, the prevalence of type-I vs. type-II α C distributions in wetlands may have practical importance for the refinement of global CH 4 budgets that rely on 13C/ 12C ratios for mass balance.

  19. Barriers to the utilization of synthetic fuels for transportation

    NASA Technical Reports Server (NTRS)

    Parker, H. W.; Reilly, M. J.

    1981-01-01

    The principal types of engines for transportation uses are reviewed and the specifications for conventional fuels are compared with specifications for synthetic fuels. Synfuel processes nearing the commercialization phase are reviewed. The barriers to using synfuels can be classified into four groups: technical, such as the uncertainty that a new engine design can satisfy the desired performance criteria; environmental, such as the risk that the engine emissions cannot meet the applicable environmental standards; economic, including the cost of using a synfuel relative to conventional transportation fuels; and market, involving market penetration by offering new engines, establishing new distribution systems and/or changing user expectations.

  20. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

Top