Understanding the Sampling Distribution and the Central Limit Theorem.
ERIC Educational Resources Information Center
Lewis, Charla P.
The sampling distribution is a common source of misuse and misunderstanding in the study of statistics. The sampling distribution, underlying distribution, and the Central Limit Theorem are all interconnected in defining and explaining the proper use of the sampling distribution of various statistics. The sampling distribution of a statistic is…
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander
2016-09-01
The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.
ERIC Educational Resources Information Center
Larwin, Karen H.; Larwin, David A.
2011-01-01
Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…
NASA Technical Reports Server (NTRS)
Chao, Luen-Yuan; Shetty, Dinesh K.
1992-01-01
Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.
New approach in the quantum statistical parton distribution
NASA Astrophysics Data System (ADS)
Sohaily, Sozha; Vaziri (Khamedi), Mohammad
2017-12-01
An attempt to find simple parton distribution functions (PDFs) based on quantum statistical approach is presented. The PDFs described by the statistical model have very interesting physical properties which help to understand the structure of partons. The longitudinal portion of distribution functions are given by applying the maximum entropy principle. An interesting and simple approach to determine the statistical variables exactly without fitting and fixing parameters is surveyed. Analytic expressions of the x-dependent PDFs are obtained in the whole x region [0, 1], and the computed distributions are consistent with the experimental observations. The agreement with experimental data, gives a robust confirm of our simple presented statistical model.
Combinatorial interpretation of Haldane-Wu fractional exclusion statistics.
Aringazin, A K; Mazhitov, M I
2002-08-01
Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q=1 and q--> infinity (n(i)/q-->1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.
Tsallis p⊥ distribution from statistical clusters
NASA Astrophysics Data System (ADS)
Bialas, A.
2015-07-01
It is shown that the transverse momentum distributions of particles emerging from the decay of statistical clusters, distributed according to a power law in their transverse energy, closely resemble those following from the Tsallis non-extensive statistical model. The experimental data are well reproduced with the cluster temperature T ≈ 160 MeV.
EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.
Tong, Xiaoxiao; Bentler, Peter M
2013-01-01
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.
Student's Conceptions in Statistical Graph's Interpretation
ERIC Educational Resources Information Center
Kukliansky, Ida
2016-01-01
Histograms, box plots and cumulative distribution graphs are popular graphic representations for statistical distributions. The main research question that this study focuses on is how college students deal with interpretation of these statistical graphs when translating graphical representations into analytical concepts in descriptive statistics.…
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting
2017-04-01
Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.
Robustness of S1 statistic with Hodges-Lehmann for skewed distributions
NASA Astrophysics Data System (ADS)
Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping
2016-10-01
Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.
Statistics for characterizing data on the periphery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, James P; Hush, Donald R
2010-01-01
We introduce a class of statistics for characterizing the periphery of a distribution, and show that these statistics are particularly valuable for problems in target detection. Because so many detection algorithms are rooted in Gaussian statistics, we concentrate on ellipsoidal models of high-dimensional data distributions (that is to say: covariance matrices), but we recommend several alternatives to the sample covariance matrix that more efficiently model the periphery of a distribution, and can more effectively detect anomalous data samples.
Comparing Simulated and Theoretical Sampling Distributions of the U3 Person-Fit Statistic.
ERIC Educational Resources Information Center
Emons, Wilco H. M.; Meijer, Rob R.; Sijtsma, Klaas
2002-01-01
Studied whether the theoretical sampling distribution of the U3 person-fit statistic is in agreement with the simulated sampling distribution under different item response theory models and varying item and test characteristics. Simulation results suggest that the use of standard normal deviates for the standardized version of the U3 statistic may…
Willits, Jon A.; Seidenberg, Mark S.; Saffran, Jenny R.
2014-01-01
What makes some words easy for infants to recognize, and other words difficult? We addressed this issue in the context of prior results suggesting that infants have difficulty recognizing verbs relative to nouns. In this work, we highlight the role played by the distributional contexts in which nouns and verbs occur. Distributional statistics predict that English nouns should generally be easier to recognize than verbs in fluent speech. However, there are situations in which distributional statistics provide similar support for verbs. The statistics for verbs that occur with the English morpheme –ing, for example, should facilitate verb recognition. In two experiments with 7.5- and 9.5-month-old infants, we tested the importance of distributional statistics for word recognition by varying the frequency of the contextual frames in which verbs occur. The results support the conclusion that distributional statistics are utilized by infant language learners and contribute to noun–verb differences in word recognition. PMID:24908342
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1982-01-01
The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.
A new statistical method for design and analyses of component tolerance
NASA Astrophysics Data System (ADS)
Movahedi, Mohammad Mehdi; Khounsiavash, Mohsen; Otadi, Mahmood; Mosleh, Maryam
2017-03-01
Tolerancing conducted by design engineers to meet customers' needs is a prerequisite for producing high-quality products. Engineers use handbooks to conduct tolerancing. While use of statistical methods for tolerancing is not something new, engineers often use known distributions, including the normal distribution. Yet, if the statistical distribution of the given variable is unknown, a new statistical method will be employed to design tolerance. In this paper, we use generalized lambda distribution for design and analyses component tolerance. We use percentile method (PM) to estimate the distribution parameters. The findings indicated that, when the distribution of the component data is unknown, the proposed method can be used to expedite the design of component tolerance. Moreover, in the case of assembled sets, more extensive tolerance for each component with the same target performance can be utilized.
ERIC Educational Resources Information Center
Yuan, Ke-Hai
2008-01-01
In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…
Powerlaw: a Python package for analysis of heavy-tailed distributions.
Alstott, Jeff; Bullmore, Ed; Plenz, Dietmar
2014-01-01
Power laws are theoretically interesting probability distributions that are also frequently used to describe empirical data. In recent years, effective statistical methods for fitting power laws have been developed, but appropriate use of these techniques requires significant programming and statistical insight. In order to greatly decrease the barriers to using good statistical methods for fitting power law distributions, we developed the powerlaw Python package. This software package provides easy commands for basic fitting and statistical analysis of distributions. Notably, it also seeks to support a variety of user needs by being exhaustive in the options available to the user. The source code is publicly available and easily extensible.
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.
1993-01-01
New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.
The beta distribution: A statistical model for world cloud cover
NASA Technical Reports Server (NTRS)
Falls, L. W.
1973-01-01
Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.
Modified Distribution-Free Goodness-of-Fit Test Statistic.
Chun, So Yeon; Browne, Michael W; Shapiro, Alexander
2018-03-01
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
From Weakly Chaotic Dynamics to Deterministic Subdiffusion via Copula Modeling
NASA Astrophysics Data System (ADS)
Nazé, Pierre
2018-03-01
Copula modeling consists in finding a probabilistic distribution, called copula, whereby its coupling with the marginal distributions of a set of random variables produces their joint distribution. The present work aims to use this technique to connect the statistical distributions of weakly chaotic dynamics and deterministic subdiffusion. More precisely, we decompose the jumps distribution of Geisel-Thomae map into a bivariate one and determine the marginal and copula distributions respectively by infinite ergodic theory and statistical inference techniques. We verify therefore that the characteristic tail distribution of subdiffusion is an extreme value copula coupling Mittag-Leffler distributions. We also present a method to calculate the exact copula and joint distributions in the case where weakly chaotic dynamics and deterministic subdiffusion statistical distributions are already known. Numerical simulations and consistency with the dynamical aspects of the map support our results.
RAId_DbS: Peptide Identification using Database Searches with Realistic Statistics
Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo
2007-01-01
Background The key to mass-spectrometry-based proteomics is peptide identification. A major challenge in peptide identification is to obtain realistic E-values when assigning statistical significance to candidate peptides. Results Using a simple scoring scheme, we propose a database search method with theoretically characterized statistics. Taking into account possible skewness in the random variable distribution and the effect of finite sampling, we provide a theoretical derivation for the tail of the score distribution. For every experimental spectrum examined, we collect the scores of peptides in the database, and find good agreement between the collected score statistics and our theoretical distribution. Using Student's t-tests, we quantify the degree of agreement between the theoretical distribution and the score statistics collected. The T-tests may be used to measure the reliability of reported statistics. When combined with reported P-value for a peptide hit using a score distribution model, this new measure prevents exaggerated statistics. Another feature of RAId_DbS is its capability of detecting multiple co-eluted peptides. The peptide identification performance and statistical accuracy of RAId_DbS are assessed and compared with several other search tools. The executables and data related to RAId_DbS are freely available upon request. PMID:17961253
A note on generalized Genome Scan Meta-Analysis statistics
Koziol, James A; Feng, Anne C
2005-01-01
Background Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies. Results We provide an Edgeworth approximation to the null distribution of the weighted GSMA statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing for determining significance of GSMA results. Conclusion Theoretical considerations detailed herein can lead to clarification and simplification of testing criteria for generalizations of the GSMA statistic. PMID:15717930
A Sorting Statistic with Application in Neurological Magnetic Resonance Imaging of Autism.
Levman, Jacob; Takahashi, Emi; Forgeron, Cynthia; MacDonald, Patrick; Stewart, Natalie; Lim, Ashley; Martel, Anne
2018-01-01
Effect size refers to the assessment of the extent of differences between two groups of samples on a single measurement. Assessing effect size in medical research is typically accomplished with Cohen's d statistic. Cohen's d statistic assumes that average values are good estimators of the position of a distribution of numbers and also assumes Gaussian (or bell-shaped) underlying data distributions. In this paper, we present an alternative evaluative statistic that can quantify differences between two data distributions in a manner that is similar to traditional effect size calculations; however, the proposed approach avoids making assumptions regarding the shape of the underlying data distribution. The proposed sorting statistic is compared with Cohen's d statistic and is demonstrated to be capable of identifying feature measurements of potential interest for which Cohen's d statistic implies the measurement would be of little use. This proposed sorting statistic has been evaluated on a large clinical autism dataset from Boston Children's Hospital , Harvard Medical School , demonstrating that it can potentially play a constructive role in future healthcare technologies.
A Sorting Statistic with Application in Neurological Magnetic Resonance Imaging of Autism
Takahashi, Emi; Lim, Ashley; Martel, Anne
2018-01-01
Effect size refers to the assessment of the extent of differences between two groups of samples on a single measurement. Assessing effect size in medical research is typically accomplished with Cohen's d statistic. Cohen's d statistic assumes that average values are good estimators of the position of a distribution of numbers and also assumes Gaussian (or bell-shaped) underlying data distributions. In this paper, we present an alternative evaluative statistic that can quantify differences between two data distributions in a manner that is similar to traditional effect size calculations; however, the proposed approach avoids making assumptions regarding the shape of the underlying data distribution. The proposed sorting statistic is compared with Cohen's d statistic and is demonstrated to be capable of identifying feature measurements of potential interest for which Cohen's d statistic implies the measurement would be of little use. This proposed sorting statistic has been evaluated on a large clinical autism dataset from Boston Children's Hospital, Harvard Medical School, demonstrating that it can potentially play a constructive role in future healthcare technologies. PMID:29796236
Neti, Prasad V.S.V.; Howell, Roger W.
2010-01-01
Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086
Neti, Prasad V.S.V.; Howell, Roger W.
2008-01-01
Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316
Wu, Hao
2018-05-01
In structural equation modelling (SEM), a robust adjustment to the test statistic or to its reference distribution is needed when its null distribution deviates from a χ 2 distribution, which usually arises when data do not follow a multivariate normal distribution. Unfortunately, existing studies on this issue typically focus on only a few methods and neglect the majority of alternative methods in statistics. Existing simulation studies typically consider only non-normal distributions of data that either satisfy asymptotic robustness or lead to an asymptotic scaled χ 2 distribution. In this work we conduct a comprehensive study that involves both typical methods in SEM and less well-known methods from the statistics literature. We also propose the use of several novel non-normal data distributions that are qualitatively different from the non-normal distributions widely used in existing studies. We found that several under-studied methods give the best performance under specific conditions, but the Satorra-Bentler method remains the most viable method for most situations. © 2017 The British Psychological Society.
Prototyping a Distributed Information Retrieval System That Uses Statistical Ranking.
ERIC Educational Resources Information Center
Harman, Donna; And Others
1991-01-01
Built using a distributed architecture, this prototype distributed information retrieval system uses statistical ranking techniques to provide better service to the end user. Distributed architecture was shown to be a feasible alternative to centralized or CD-ROM information retrieval, and user testing of the ranking methodology showed both…
A log-Weibull spatial scan statistic for time to event data.
Usman, Iram; Rosychuk, Rhonda J
2018-06-13
Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.
On the Determination of Poisson Statistics for Haystack Radar Observations of Orbital Debris
NASA Technical Reports Server (NTRS)
Stokely, Christopher L.; Benbrook, James R.; Horstman, Matt
2007-01-01
A convenient and powerful method is used to determine if radar detections of orbital debris are observed according to Poisson statistics. This is done by analyzing the time interval between detection events. For Poisson statistics, the probability distribution of the time interval between events is shown to be an exponential distribution. This distribution is a special case of the Erlang distribution that is used in estimating traffic loads on telecommunication networks. Poisson statistics form the basis of many orbital debris models but the statistical basis of these models has not been clearly demonstrated empirically until now. Interestingly, during the fiscal year 2003 observations with the Haystack radar in a fixed staring mode, there are no statistically significant deviations observed from that expected with Poisson statistics, either independent or dependent of altitude or inclination. One would potentially expect some significant clustering of events in time as a result of satellite breakups, but the presence of Poisson statistics indicates that such debris disperse rapidly with respect to Haystack's very narrow radar beam. An exception to Poisson statistics is observed in the months following the intentional breakup of the Fengyun satellite in January 2007.
Statistical distribution sampling
NASA Technical Reports Server (NTRS)
Johnson, E. S.
1975-01-01
Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.
Generating an Empirical Probability Distribution for the Andrews-Pregibon Statistic.
ERIC Educational Resources Information Center
Jarrell, Michele G.
A probability distribution was developed for the Andrews-Pregibon (AP) statistic. The statistic, developed by D. F. Andrews and D. Pregibon (1978), identifies multivariate outliers. It is a ratio of the determinant of the data matrix with an observation deleted to the determinant of the entire data matrix. Although the AP statistic has been used…
Chou, C P; Bentler, P M; Satorra, A
1991-11-01
Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.
2017-09-01
In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.
Information Distribution Practices of Federal Statistical Agencies: The Census Bureau Example.
ERIC Educational Resources Information Center
Gey, Frederick C.
1993-01-01
Describes the current and historical distribution channels of the U.S. Bureau of the Census within a framework of distribution policies and practices for federal statistical information. The issues of reasonable distribution policies and the impact of technological change are discussed, and guidelines are offered. (Contains 26 references.) (EAM)
Quantifying risks with exact analytical solutions of derivative pricing distribution
NASA Astrophysics Data System (ADS)
Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin
2017-04-01
Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.
Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models
Burr, Tom
2013-01-01
Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the “go-to” option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example. PMID:24288668
Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.
Burr, Tom; Skurikhin, Alexei
2013-01-01
Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the "go-to" option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example.
2016-12-01
KS and AD Statistical Power via Monte Carlo Simulation Statistical power is the probability of correctly rejecting the null hypothesis when the...Select a caveat DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Determining the Statistical Power...real-world data to test the accuracy of the simulation. Statistical comparison of these metrics can be necessary when making such a determination
Scene-based nonuniformity correction using local constant statistics.
Zhang, Chao; Zhao, Wenyi
2008-06-01
In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.
A brief history of numbers and statistics with cytometric applications.
Watson, J V
2001-02-15
A brief history of numbers and statistics traces the development of numbers from prehistory to completion of our current system of numeration with the introduction of the decimal fraction by Viete, Stevin, Burgi, and Galileo at the turn of the 16th century. This was followed by the development of what we now know as probability theory by Pascal, Fermat, and Huygens in the mid-17th century which arose in connection with questions in gambling with dice and can be regarded as the origin of statistics. The three main probability distributions on which statistics depend were introduced and/or formalized between the mid-17th and early 19th centuries: the binomial distribution by Pascal; the normal distribution by de Moivre, Gauss, and Laplace, and the Poisson distribution by Poisson. The formal discipline of statistics commenced with the works of Pearson, Yule, and Gosset at the turn of the 19th century when the first statistical tests were introduced. Elementary descriptions of the statistical tests most likely to be used in conjunction with cytometric data are given and it is shown how these can be applied to the analysis of difficult immunofluorescence distributions when there is overlap between the labeled and unlabeled cell populations. Copyright 2001 Wiley-Liss, Inc.
DISFIT: A PROGRAM FOR FITTING DISTRIBUTIONS IN DATA
Although distribution fitting methods abound in the statistical literature, very few of these methods are found in the major statistical packages. In particular, SPSS (1975), BMD-P (1981) and SAS (1979) only give some overall tests for normality. There a few specialized distribut...
Estimating order statistics of network degrees
NASA Astrophysics Data System (ADS)
Chu, J.; Nadarajah, S.
2018-01-01
We model the order statistics of network degrees of big data sets by a range of generalised beta distributions. A three parameter beta distribution due to Libby and Novick (1982) is shown to give the best overall fit for at least four big data sets. The fit of this distribution is significantly better than the fit suggested by Olhede and Wolfe (2012) across the whole range of order statistics for all four data sets.
NASA Astrophysics Data System (ADS)
Sergeenko, N. P.
2017-11-01
An adequate statistical method should be developed in order to predict probabilistically the range of ionospheric parameters. This problem is solved in this paper. The time series of the critical frequency of the layer F2- foF2( t) were subjected to statistical processing. For the obtained samples {δ foF2}, statistical distributions and invariants up to the fourth order are calculated. The analysis shows that the distributions differ from the Gaussian law during the disturbances. At levels of sufficiently small probability distributions, there are arbitrarily large deviations from the model of the normal process. Therefore, it is attempted to describe statistical samples {δ foF2} based on the Poisson model. For the studied samples, the exponential characteristic function is selected under the assumption that time series are a superposition of some deterministic and random processes. Using the Fourier transform, the characteristic function is transformed into a nonholomorphic excessive-asymmetric probability-density function. The statistical distributions of the samples {δ foF2} calculated for the disturbed periods are compared with the obtained model distribution function. According to the Kolmogorov's criterion, the probabilities of the coincidence of a posteriori distributions with the theoretical ones are P 0.7-0.9. The conducted analysis makes it possible to draw a conclusion about the applicability of a model based on the Poisson random process for the statistical description and probabilistic variation estimates during heliogeophysical disturbances of the variations {δ foF2}.
Weighted Distributions Arising Out of Methods of Ascertainment.
1984-07-01
control and statistical problems generated by it. In Applications of Statistics, P. R. Krishnaiah (ed.), North-Holland, 1-26. Patil, 0. P. and Ord, J. K...weighted distributions: A survey of their applications. In Aplications of Statistics, P. R. Krishnaiah (ed.), 383-405, North Holland Publishing Company
Characterization of Inclusion Populations in Mn-Si Deoxidized Steel
NASA Astrophysics Data System (ADS)
García-Carbajal, Alfonso; Herrera-Trejo, Martín; Castro-Cedeño, Edgar-Ivan; Castro-Román, Manuel; Martinez-Enriquez, Arturo-Isaias
2017-12-01
Four plant heats of Mn-Si deoxidized steel were conducted to follow the evolution of the inclusion population through ladle furnace (LF) treatment and subsequent vacuum treatment (VT). The liquid steel was sampled, and the chemical composition and size distribution of the inclusion populations were characterized. The Gumbel generalized extreme-value (GEV) and generalized Pareto (GP) distributions were used for the statistical analysis of the inclusion size distributions. The inclusions found at the beginning of the LF treatment were mostly fully liquid SiO2-Al2O3-MnO inclusions, which then evolved into fully liquid SiO2-Al2O3-CaO-MgO and partly liquid SiO2-CaO-MgO-(Al2O3-MgO) inclusions detected at the end of the VT. The final fully liquid inclusions had a desirable chemical composition for plastic behavior in subsequent metallurgical operations. The GP distribution was found to be undesirable for statistical analysis. The GEV distribution approach led to shape parameter values different from the zero value hypothesized from the Gumbel distribution. According to the GEV approach, some of the final inclusion size distributions had statistically significant differences, whereas the Gumbel approach predicted no statistically significant differences. The heats were organized according to indicators of inclusion cleanliness and a statistical comparison of the size distributions.
Statistical distribution of building lot frontage: application for Tokyo downtown districts
NASA Astrophysics Data System (ADS)
Usui, Hiroyuki
2018-03-01
The frontage of a building lot is the determinant factor of the residential environment. The statistical distribution of building lot frontages shows how the perimeters of urban blocks are shared by building lots for a given density of buildings and roads. For practitioners in urban planning, this is indispensable to identify potential districts which comprise a high percentage of building lots with narrow frontage after subdivision and to reconsider the appropriate criteria for the density of buildings and roads as residential environment indices. In the literature, however, the statistical distribution of building lot frontages and the density of buildings and roads has not been fully researched. In this paper, based on the empirical study in the downtown districts of Tokyo, it is found that (1) a log-normal distribution fits the observed distribution of building lot frontages better than a gamma distribution, which is the model of the size distribution of Poisson Voronoi cells on closed curves; (2) the statistical distribution of building lot frontages statistically follows a log-normal distribution, whose parameters are the gross building density, road density, average road width, the coefficient of variation of building lot frontage, and the ratio of the number of building lot frontages to the number of buildings; and (3) the values of the coefficient of variation of building lot frontages, and that of the ratio of the number of building lot frontages to that of buildings are approximately equal to 0.60 and 1.19, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arutyunyan, R.V.; Bol`shov, L.A.; Vasil`ev, S.K.
1994-06-01
The objective of this study was to clarify a number of issues related to the spatial distribution of contaminants from the Chernobyl accident. The effects of local statistics were addressed by collecting and analyzing (for Cesium 137) soil samples from a number of regions, and it was found that sample activity differed by a factor of 3-5. The effect of local non-uniformity was estimated by modeling the distribution of the average activity of a set of five samples for each of the regions, with the spread in the activities for a {+-}2 range being equal to 25%. The statistical characteristicsmore » of the distribution of contamination were then analyzed and found to be a log-normal distribution with the standard deviation being a function of test area. All data for the Bryanskaya Oblast area were analyzed statistically and were adequately described by a log-normal function.« less
The invariant statistical rule of aerosol scattering pulse signal modulated by random noise
NASA Astrophysics Data System (ADS)
Yan, Zhen-gang; Bian, Bao-Min; Yang, Juan; Peng, Gang; Li, Zhen-hua
2010-11-01
A model of the random background noise acting on particle signals is established to study the impact of the background noise of the photoelectric sensor in the laser airborne particle counter on the statistical character of the aerosol scattering pulse signals. The results show that the noises broaden the statistical distribution of the particle's measurement. Further numerical research shows that the output of the signal amplitude still has the same distribution when the airborne particle with the lognormal distribution was modulated by random noise which has lognormal distribution. Namely it follows the statistics law of invariance. Based on this model, the background noise of photoelectric sensor and the counting distributions of random signal for aerosol's scattering pulse are obtained and analyzed by using a high-speed data acquisition card PCI-9812. It is found that the experiment results and simulation results are well consistent.
Nishino, Ko; Lombardi, Stephen
2011-01-01
We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.
Poppe, L.J.; Eliason, A.H.; Hastings, M.E.
2004-01-01
Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The input for the sediment fractions is weight percentages in whole-phi notation (Krumbein, 1934; Inman, 1952), and the program permits the user to select output in either method of moments or inclusive graphics statistics (Fig. 1). Users select options primarily with mouse-click events, or through interactive dialogue boxes.
The Role of the Sampling Distribution in Understanding Statistical Inference
ERIC Educational Resources Information Center
Lipson, Kay
2003-01-01
Many statistics educators believe that few students develop the level of conceptual understanding essential for them to apply correctly the statistical techniques at their disposal and to interpret their outcomes appropriately. It is also commonly believed that the sampling distribution plays an important role in developing this understanding.…
Illustrating Sampling Distribution of a Statistic: Minitab Revisited
ERIC Educational Resources Information Center
Johnson, H. Dean; Evans, Marc A.
2008-01-01
Understanding the concept of the sampling distribution of a statistic is essential for the understanding of inferential procedures. Unfortunately, this topic proves to be a stumbling block for students in introductory statistics classes. In efforts to aid students in their understanding of this concept, alternatives to a lecture-based mode of…
Origins and properties of kappa distributions in space plasmas
NASA Astrophysics Data System (ADS)
Livadiotis, George
2016-07-01
Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as the space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions. Empirical kappa distributions have become increasingly widespread across space and plasma physics. However, a breakthrough in the field came with the connection of kappa distributions to the solid statistical framework of Tsallis non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, some of which will be presented in this talk: (i) The physical meaning of thermal parameters, e.g., temperature and kappa index; (ii) the multi-particle description of kappa distributions; (iii) the phase-space kappa distribution of a Hamiltonian with non-zero potential; (iv) the Sackur-Tetrode entropy for kappa distributions, and (v) the new quantization constant, h _{*}˜10 ^{-22} Js.
A spatial scan statistic for survival data based on Weibull distribution.
Bhatt, Vijaya; Tiwari, Neeraj
2014-05-20
The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.
Application of a truncated normal failure distribution in reliability testing
NASA Technical Reports Server (NTRS)
Groves, C., Jr.
1968-01-01
Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.
Towards Informetrics: Haitun, Laplace, Zipf, Bradford and the Alvey Programme.
ERIC Educational Resources Information Center
Brookes, B. C.
1984-01-01
Review of recent developments in statistical theories for social sciences highlights Haitun's statistical distributions, Laplace's "Law of Succession" and distribution, Laplace and Bradford analysis of book-index data, inefficiency of frequency distribution analysis, Laws of Bradford and Zipf, natural categorization, and Bradford Law and…
Playing at Statistical Mechanics
ERIC Educational Resources Information Center
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özel, Gamze
Bivariate Kumaraswamy (BK) distribution whose marginals are Kumaraswamy distributions has been recently introduced. However, its statistical properties are not studied in detail. In this study, statistical properties of the BK distribution are investigated. We suggest that the BK could provide suitable description for the earthquakes characteristics of Turkey. We support this argument using earthquakesoccurred in Turkey between 1900 and 2009. We also find that the BK distribution simulates earthquakes well.
Comment on the asymptotics of a distribution-free goodness of fit test statistic.
Browne, Michael W; Shapiro, Alexander
2015-03-01
In a recent article Jennrich and Satorra (Psychometrika 78: 545-552, 2013) showed that a proof by Browne (British Journal of Mathematical and Statistical Psychology 37: 62-83, 1984) of the asymptotic distribution of a goodness of fit test statistic is incomplete because it fails to prove that the orthogonal component function employed is continuous. Jennrich and Satorra (Psychometrika 78: 545-552, 2013) showed how Browne's proof can be completed satisfactorily but this required the development of an extensive and mathematically sophisticated framework for continuous orthogonal component functions. This short note provides a simple proof of the asymptotic distribution of Browne's (British Journal of Mathematical and Statistical Psychology 37: 62-83, 1984) test statistic by using an equivalent form of the statistic that does not involve orthogonal component functions and consequently avoids all complicating issues associated with them.
Hansen, John P
2003-01-01
Healthcare quality improvement professionals need to understand and use inferential statistics to interpret sample data from their organizations. In quality improvement and healthcare research studies all the data from a population often are not available, so investigators take samples and make inferences about the population by using inferential statistics. This three-part series will give readers an understanding of the concepts of inferential statistics as well as the specific tools for calculating confidence intervals for samples of data. This article, Part 2, describes probability, populations, and samples. The uses of descriptive and inferential statistics are outlined. The article also discusses the properties and probability of normal distributions, including the standard normal distribution.
Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms
NASA Astrophysics Data System (ADS)
Baluev, R. V.
2018-04-01
Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.
Compounding approach for univariate time series with nonstationary variances
NASA Astrophysics Data System (ADS)
Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich
2015-12-01
A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.
Compounding approach for univariate time series with nonstationary variances.
Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich
2015-12-01
A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelekis, Alexios, E-mail: akelekis@med.uoa.gr; Filippiadis, Dimitrios K., E-mail: dfilippiadis@yahoo.gr; Vergadis, Chrysovalantis, E-mail: valvergadis@yahoo.gr
PurposeThrough a prospective comparison of patients with vertebral fractures and normal population, we illustrate effect of percutaneous vertebroplasty (PV) upon projection of load distribution changes.MethodsVertebroplasty group (36 symptomatic patients with osteoporotic vertebral fractures) was evaluated on an electronic baropodometer registering projection of weight bearing areas on feet. Load distribution between right and left foot (including rear-front of the same foot) during standing and walking was recorded and compared before (group V1) and the day after (group V2) PV. Control group (30 healthy asymptomatic volunteers-no surgery record) were evaluated on the same baropodometer.ResultsMean value of load distribution difference between rear-front ofmore » the same foot was 9.45 ± 6.79 % (54.72–45.28 %) upon standing and 14.76 ± 7.09 % (57.38–42.62 %) upon walking in the control group. Respective load distribution values before PV were 16.52 ± 11.23 and 30.91 ± 19.26 % and after PV were 10.08 ± 6.26 and 14.25 ± 7.68 % upon standing and walking respectively. Mean value of load distribution variation between the two feet was 6.36 and 14.6 % before and 4.62 and 10.4 % after PV upon standing and walking respectively. Comparison of load distribution variation (group V1–V2, group V1-control group) is statistically significant. Comparison of load distribution variation (group V2-control group) is not statistically significant. Comparison of load distribution variation among the two feet is statistically significant during walking but not statistically significant during standing.ConclusionsThere is a statistically significant difference when comparing load distribution variation prior vertebroplasty and that of normal population. After vertebroplasty, this difference normalizes in a statistically significant way. PV is efficient on equilibrium-load distribution improvement as well.« less
NASA Astrophysics Data System (ADS)
Syam, Nur Syamsi; Maeng, Seongjin; Kim, Myo Gwang; Lim, Soo Yeon; Lee, Sang Hoon
2018-05-01
A large dead time of a Geiger Mueller (GM) detector may cause a large count loss in radiation measurements and consequently may cause distortion of the Poisson statistic of radiation events into a new distribution. The new distribution will have different statistical parameters compared to the original distribution. Therefore, the variance, skewness, and excess kurtosis in association with the observed count rate of the time interval distribution for well-known nonparalyzable, paralyzable, and nonparalyzable-paralyzable hybrid dead time models of a Geiger Mueller detector were studied using Monte Carlo simulation (GMSIM). These parameters were then compared with the statistical parameters of a perfect detector to observe the change in the distribution. The results show that the behaviors of the statistical parameters for the three dead time models were different. The values of the skewness and the excess kurtosis of the nonparalyzable model are equal or very close to those of the perfect detector, which are ≅2 for skewness, and ≅6 for excess kurtosis, while the statistical parameters in the paralyzable and hybrid model obtain minimum values that occur around the maximum observed count rates. The different trends of the three models resulting from the GMSIM simulation can be used to distinguish the dead time behavior of a GM counter; i.e. whether the GM counter can be described best by using the nonparalyzable, paralyzable, or hybrid model. In a future study, these statistical parameters need to be analyzed further to determine the possibility of using them to determine a dead time for each model, particularly for paralyzable and hybrid models.
Further developments in cloud statistics for computer simulations
NASA Technical Reports Server (NTRS)
Chang, D. T.; Willand, J. H.
1972-01-01
This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.
ERIC Educational Resources Information Center
Beeman, Jennifer Leigh Sloan
2013-01-01
Research has found that students successfully complete an introductory course in statistics without fully comprehending the underlying theory or being able to exhibit statistical reasoning. This is particularly true for the understanding about the sampling distribution of the mean, a crucial concept for statistical inference. This study…
Developing Teachers' Reasoning about Comparing Distributions: A Cross-Institutional Effort
ERIC Educational Resources Information Center
Tran, Dung; Lee, Hollylynne; Doerr, Helen
2016-01-01
The research reported here uses a pre/post-test model and stimulated recall interviews to assess teachers' statistical reasoning about comparing distributions, when enrolled in a graduate-level statistics education course. We discuss key aspects of the course design aimed at improving teachers' learning and teaching of statistics, and the…
Improving Statistics Education through Simulations: The Case of the Sampling Distribution.
ERIC Educational Resources Information Center
Earley, Mark A.
This paper presents a summary of action research investigating statistics students' understandings of the sampling distribution of the mean. With four sections of an introductory Statistics in Education course (n=98 students), a computer simulation activity (R. delMas, J. Garfield, and B. Chance, 1999) was implemented and evaluated to show…
Wang, B; Switowski, K; Cojocaru, C; Roppo, V; Sheng, Y; Scalora, M; Kisielewski, J; Pawlak, D; Vilaseca, R; Akhouayri, H; Krolikowski, W; Trull, J
2018-01-22
We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.
Deviations from Rayleigh statistics in ultrasonic speckle.
Tuthill, T A; Sperry, R H; Parker, K J
1988-04-01
The statistics of speckle patterns in ultrasound images have potential for tissue characterization. In "fully developed speckle" from many random scatterers, the amplitude is widely recognized as possessing a Rayleigh distribution. This study examines how scattering populations and signal processing can produce non-Rayleigh distributions. The first order speckle statistics are shown to depend on random scatterer density and the amplitude and spacing of added periodic scatterers. Envelope detection, amplifier compression, and signal bandwidth are also shown to cause distinct changes in the signal distribution.
Multiplicative Modeling of Children's Growth and Its Statistical Properties
NASA Astrophysics Data System (ADS)
Kuninaka, Hiroto; Matsushita, Mitsugu
2014-03-01
We develop a numerical growth model that can predict the statistical properties of the height distribution of Japanese children. Our previous studies have clarified that the height distribution of schoolchildren shows a transition from the lognormal distribution to the normal distribution during puberty. In this study, we demonstrate by simulation that the transition occurs owing to the variability of the onset of puberty.
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Swain, P. H. (Principal Investigator); Vardeman, S. B.
1981-01-01
A key input to a statistical classification algorithm, which exploits the tendency of certain ground cover classes to occur more frequently in some spatial context than in others, is a statistical characterization of the context: the context distribution. An unbiased estimator of the context distribution is discussed which, besides having the advantage of statistical unbiasedness, has the additional advantage over other estimation techniques of being amenable to an adaptive implementation in which the context distribution estimate varies according to local contextual information. Results from applying the unbiased estimator to the contextual classification of three real LANDSAT data sets are presented and contrasted with results from non-contextual classifications and from contextual classifications utilizing other context distribution estimation techniques.
Probing the statistics of primordial fluctuations and their evolution
NASA Technical Reports Server (NTRS)
Gaztanaga, Enrique; Yokoyama, Jun'ichi
1993-01-01
The statistical distribution of fluctuations on various scales is analyzed in terms of the counts in cells of smoothed density fields, using volume-limited samples of galaxy redshift catalogs. It is shown that the distribution on large scales, with volume average of the two-point correlation function of the smoothed field less than about 0.05, is consistent with Gaussian. Statistics are shown to agree remarkably well with the negative binomial distribution, which has hierarchial correlations and a Gaussian behavior at large scales. If these observed properties correspond to the matter distribution, they suggest that our universe started with Gaussian fluctuations and evolved keeping hierarchial form.
Dominant role of many-body effects on the carrier distribution function of quantum dot lasers
NASA Astrophysics Data System (ADS)
Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.
2016-03-01
The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.
The exact probability distribution of the rank product statistics for replicated experiments.
Eisinga, Rob; Breitling, Rainer; Heskes, Tom
2013-03-18
The rank product method is a widely accepted technique for detecting differentially regulated genes in replicated microarray experiments. To approximate the sampling distribution of the rank product statistic, the original publication proposed a permutation approach, whereas recently an alternative approximation based on the continuous gamma distribution was suggested. However, both approximations are imperfect for estimating small tail probabilities. In this paper we relate the rank product statistic to number theory and provide a derivation of its exact probability distribution and the true tail probabilities. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Tools for Basic Statistical Analysis
NASA Technical Reports Server (NTRS)
Luz, Paul L.
2005-01-01
Statistical Analysis Toolset is a collection of eight Microsoft Excel spreadsheet programs, each of which performs calculations pertaining to an aspect of statistical analysis. These programs present input and output data in user-friendly, menu-driven formats, with automatic execution. The following types of calculations are performed: Descriptive statistics are computed for a set of data x(i) (i = 1, 2, 3 . . . ) entered by the user. Normal Distribution Estimates will calculate the statistical value that corresponds to cumulative probability values, given a sample mean and standard deviation of the normal distribution. Normal Distribution from two Data Points will extend and generate a cumulative normal distribution for the user, given two data points and their associated probability values. Two programs perform two-way analysis of variance (ANOVA) with no replication or generalized ANOVA for two factors with four levels and three repetitions. Linear Regression-ANOVA will curvefit data to the linear equation y=f(x) and will do an ANOVA to check its significance.
Standard deviation and standard error of the mean.
Lee, Dong Kyu; In, Junyong; Lee, Sangseok
2015-06-01
In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results.
Standard deviation and standard error of the mean
In, Junyong; Lee, Sangseok
2015-01-01
In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results. PMID:26045923
Normal versus Noncentral Chi-Square Asymptotics of Misspecified Models
ERIC Educational Resources Information Center
Chun, So Yeon; Shapiro, Alexander
2009-01-01
The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…
Detection of Person Misfit in Computerized Adaptive Tests with Polytomous Items.
ERIC Educational Resources Information Center
van Krimpen-Stoop, Edith M. L. A.; Meijer, Rob R.
2002-01-01
Compared the nominal and empirical null distributions of the standardized log-likelihood statistic for polytomous items for paper-and-pencil (P&P) and computerized adaptive tests (CATs). Results show that the empirical distribution of the statistic differed from the assumed standard normal distribution for both P&P tests and CATs. Also…
Distribution of water quality parameters in Dhemaji district, Assam (India).
Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P
2010-07-01
The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.
Waiting time distribution revealing the internal spin dynamics in a double quantum dot
NASA Astrophysics Data System (ADS)
Ptaszyński, Krzysztof
2017-07-01
Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.
NASA Technical Reports Server (NTRS)
Falls, L. W.; Crutcher, H. L.
1976-01-01
Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.
Gangnon, Ronald E
2012-03-01
The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution
Gangnon, Ronald E.
2011-01-01
Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118
NASA Astrophysics Data System (ADS)
Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo
2016-12-01
We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.
Analysis of thrips distribution: application of spatial statistics and Kriging
John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard
1991-01-01
Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...
NASA Astrophysics Data System (ADS)
Pickard, William F.
2004-10-01
The classical PERT inverse statistics problem requires estimation of the mean, \\skew1\\bar{m} , and standard deviation, s, of a unimodal distribution given estimates of its mode, m, and of the smallest, a, and largest, b, values likely to be encountered. After placing the problem in historical perspective and showing that it is ill-posed because it is underdetermined, this paper offers an approach to resolve the ill-posedness: (a) by interpreting a and b modes of order statistic distributions; (b) by requiring also an estimate of the number of samples, N, considered in estimating the set {m, a, b}; and (c) by maximizing a suitable likelihood, having made the traditional assumption that the underlying distribution is beta. Exact formulae relating the four parameters of the beta distribution to {m, a, b, N} and the assumed likelihood function are then used to compute the four underlying parameters of the beta distribution; and from them, \\skew1\\bar{m} and s are computed using exact formulae.
A product Pearson-type VII density distribution
NASA Astrophysics Data System (ADS)
Nadarajah, Saralees; Kotz, Samuel
2008-01-01
The Pearson-type VII distributions (containing the Student's t distributions) are becoming increasing prominent and are being considered as competitors to the normal distribution. Motivated by real examples in decision sciences, Bayesian statistics, probability theory and Physics, a new Pearson-type VII distribution is introduced by taking the product of two Pearson-type VII pdfs. Various structural properties of this distribution are derived, including its cdf, moments, mean deviation about the mean, mean deviation about the median, entropy, asymptotic distribution of the extreme order statistics, maximum likelihood estimates and the Fisher information matrix. Finally, an application to a Bayesian testing problem is illustrated.
Variety and volatility in financial markets
NASA Astrophysics Data System (ADS)
Lillo, Fabrizio; Mantegna, Rosario N.
2000-11-01
We study the price dynamics of stocks traded in a financial market by considering the statistical properties of both a single time series and an ensemble of stocks traded simultaneously. We use the n stocks traded on the New York Stock Exchange to form a statistical ensemble of daily stock returns. For each trading day of our database, we study the ensemble return distribution. We find that a typical ensemble return distribution exists in most of the trading days with the exception of crash and rally days and of the days following these extreme events. We analyze each ensemble return distribution by extracting its first two central moments. We observe that these moments fluctuate in time and are stochastic processes, themselves. We characterize the statistical properties of ensemble return distribution central moments by investigating their probability density functions and temporal correlation properties. In general, time-averaged and portfolio-averaged price returns have different statistical properties. We infer from these differences information about the relative strength of correlation between stocks and between different trading days. Last, we compare our empirical results with those predicted by the single-index model and we conclude that this simple model cannot explain the statistical properties of the second moment of the ensemble return distribution.
Austin, Peter C; Steyerberg, Ewout W
2012-06-20
When outcomes are binary, the c-statistic (equivalent to the area under the Receiver Operating Characteristic curve) is a standard measure of the predictive accuracy of a logistic regression model. An analytical expression was derived under the assumption that a continuous explanatory variable follows a normal distribution in those with and without the condition. We then conducted an extensive set of Monte Carlo simulations to examine whether the expressions derived under the assumption of binormality allowed for accurate prediction of the empirical c-statistic when the explanatory variable followed a normal distribution in the combined sample of those with and without the condition. We also examine the accuracy of the predicted c-statistic when the explanatory variable followed a gamma, log-normal or uniform distribution in combined sample of those with and without the condition. Under the assumption of binormality with equality of variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the product of the standard deviation of the normal components (reflecting more heterogeneity) and the log-odds ratio (reflecting larger effects). Under the assumption of binormality with unequal variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the standardized difference of the explanatory variable in those with and without the condition. In our Monte Carlo simulations, we found that these expressions allowed for reasonably accurate prediction of the empirical c-statistic when the distribution of the explanatory variable was normal, gamma, log-normal, and uniform in the entire sample of those with and without the condition. The discriminative ability of a continuous explanatory variable cannot be judged by its odds ratio alone, but always needs to be considered in relation to the heterogeneity of the population.
Mathur, Sunil; Sadana, Ajit
2015-12-01
We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.
Statistics of the geomagnetic secular variation for the past 5Ma
NASA Technical Reports Server (NTRS)
Constable, C. G.; Parker, R. L.
1986-01-01
A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.
Explorations in statistics: the log transformation.
Curran-Everett, Douglas
2018-06-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This thirteenth installment of Explorations in Statistics explores the log transformation, an established technique that rescales the actual observations from an experiment so that the assumptions of some statistical analysis are better met. A general assumption in statistics is that the variability of some response Y is homogeneous across groups or across some predictor variable X. If the variability-the standard deviation-varies in rough proportion to the mean value of Y, a log transformation can equalize the standard deviations. Moreover, if the actual observations from an experiment conform to a skewed distribution, then a log transformation can make the theoretical distribution of the sample mean more consistent with a normal distribution. This is important: the results of a one-sample t test are meaningful only if the theoretical distribution of the sample mean is roughly normal. If we log-transform our observations, then we want to confirm the transformation was useful. We can do this if we use the Box-Cox method, if we bootstrap the sample mean and the statistic t itself, and if we assess the residual plots from the statistical model of the actual and transformed sample observations.
Statistics of the geomagnetic secular variation for the past 5 m.y
NASA Technical Reports Server (NTRS)
Constable, C. G.; Parker, R. L.
1988-01-01
A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.
Gain statistics of a fiber optical parametric amplifier with a temporally incoherent pump.
Xu, Y Q; Murdoch, S G
2010-03-15
We present an investigation of the statistics of the gain fluctuations of a fiber optical parametric amplifier pumped with a temporally incoherent pump. We derive a simple expression for the probability distribution of the gain of the amplified optical signal. The gain statistics are shown to be a strong function of the signal detuning and allow the possibility of generating optical gain distributions with controllable long-tails. Very good agreement is found between this theory and the experimentally measured gain distributions of an incoherently pumped amplifier.
Football goal distributions and extremal statistics
NASA Astrophysics Data System (ADS)
Greenhough, J.; Birch, P. C.; Chapman, S. C.; Rowlands, G.
2002-12-01
We analyse the distributions of the number of goals scored by home teams, away teams, and the total scored in the match, in domestic football games from 169 countries between 1999 and 2001. The probability density functions (PDFs) of goals scored are too heavy-tailed to be fitted over their entire ranges by Poisson or negative binomial distributions which would be expected for uncorrelated processes. Log-normal distributions cannot include zero scores and here we find that the PDFs are consistent with those arising from extremal statistics. In addition, we show that it is sufficient to model English top division and FA Cup matches in the seasons of 1970/71-2000/01 on Poisson or negative binomial distributions, as reported in analyses of earlier seasons, and that these are not consistent with extremal statistics.
Empirical likelihood-based tests for stochastic ordering
BARMI, HAMMOU EL; MCKEAGUE, IAN W.
2013-01-01
This paper develops an empirical likelihood approach to testing for the presence of stochastic ordering among univariate distributions based on independent random samples from each distribution. The proposed test statistic is formed by integrating a localized empirical likelihood statistic with respect to the empirical distribution of the pooled sample. The asymptotic null distribution of this test statistic is found to have a simple distribution-free representation in terms of standard Brownian bridge processes. The approach is used to compare the lengths of rule of Roman Emperors over various historical periods, including the “decline and fall” phase of the empire. In a simulation study, the power of the proposed test is found to improve substantially upon that of a competing test due to El Barmi and Mukerjee. PMID:23874142
ERIC Educational Resources Information Center
Noll, Jennifer; Hancock, Stacey
2015-01-01
This research investigates what students' use of statistical language can tell us about their conceptions of distribution and sampling in relation to informal inference. Prior research documents students' challenges in understanding ideas of distribution and sampling as tools for making informal statistical inferences. We know that these…
Consistent Tolerance Bounds for Statistical Distributions
NASA Technical Reports Server (NTRS)
Mezzacappa, M. A.
1983-01-01
Assumption that sample comes from population with particular distribution is made with confidence C if data lie between certain bounds. These "confidence bounds" depend on C and assumption about distribution of sampling errors around regression line. Graphical test criteria using tolerance bounds are applied in industry where statistical analysis influences product development and use. Applied to evaluate equipment life.
ERIC Educational Resources Information Center
Bellera, Carine A.; Julien, Marilyse; Hanley, James A.
2010-01-01
The Wilcoxon statistics are usually taught as nonparametric alternatives for the 1- and 2-sample Student-"t" statistics in situations where the data appear to arise from non-normal distributions, or where sample sizes are so small that we cannot check whether they do. In the past, critical values, based on exact tail areas, were…
2012 Market Report on Wind Technologies in Distributed Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, Alice C.
2013-08-01
An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.
Probability distributions of the electroencephalogram envelope of preterm infants.
Saji, Ryoya; Hirasawa, Kyoko; Ito, Masako; Kusuda, Satoshi; Konishi, Yukuo; Taga, Gentaro
2015-06-01
To determine the stationary characteristics of electroencephalogram (EEG) envelopes for prematurely born (preterm) infants and investigate the intrinsic characteristics of early brain development in preterm infants. Twenty neurologically normal sets of EEGs recorded in infants with a post-conceptional age (PCA) range of 26-44 weeks (mean 37.5 ± 5.0 weeks) were analyzed. Hilbert transform was applied to extract the envelope. We determined the suitable probability distribution of the envelope and performed a statistical analysis. It was found that (i) the probability distributions for preterm EEG envelopes were best fitted by lognormal distributions at 38 weeks PCA or less, and by gamma distributions at 44 weeks PCA; (ii) the scale parameter of the lognormal distribution had positive correlations with PCA as well as a strong negative correlation with the percentage of low-voltage activity; (iii) the shape parameter of the lognormal distribution had significant positive correlations with PCA; (iv) the statistics of mode showed significant linear relationships with PCA, and, therefore, it was considered a useful index in PCA prediction. These statistics, including the scale parameter of the lognormal distribution and the skewness and mode derived from a suitable probability distribution, may be good indexes for estimating stationary nature in developing brain activity in preterm infants. The stationary characteristics, such as discontinuity, asymmetry, and unimodality, of preterm EEGs are well indicated by the statistics estimated from the probability distribution of the preterm EEG envelopes. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Spatio-temporal analysis of aftershock sequences in terms of Non Extensive Statistical Physics.
NASA Astrophysics Data System (ADS)
Chochlaki, Kalliopi; Vallianatos, Filippos
2017-04-01
Earth's seismicity is considered as an extremely complicated process where long-range interactions and fracturing exist (Vallianatos et al., 2016). For this reason, in order to analyze it, we use an innovative methodological approach, introduced by Tsallis (Tsallis, 1988; 2009), named Non Extensive Statistical Physics. This approach introduce a generalization of the Boltzmann-Gibbs statistical mechanics and it is based on the definition of Tsallis entropy Sq, which maximized leads the the so-called q-exponential function that expresses the probability distribution function that maximizes the Sq. In the present work, we utilize the concept of Non Extensive Statistical Physics in order to analyze the spatiotemporal properties of several aftershock series. Marekova (Marekova, 2014) suggested that the probability densities of the inter-event distances between successive aftershocks follow a beta distribution. Using the same data set we analyze the inter-event distance distribution of several aftershocks sequences in different geographic regions by calculating non extensive parameters that determine the behavior of the system and by fitting the q-exponential function, which expresses the degree of non-extentivity of the investigated system. Furthermore, the inter-event times distribution of the aftershocks as well as the frequency-magnitude distribution has been analyzed. The results supports the applicability of Non Extensive Statistical Physics ideas in aftershock sequences where a strong correlation exists along with memory effects. References C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487. doi:10.1007/BF01016429 C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world, 2009. doi:10.1007/978-0-387-85359-8. E. Marekova, Analysis of the spatial distribution between successive earthquakes in aftershocks series, Annals of Geophysics, 57, 5, doi:10.4401/ag-6556, 2014 F. Vallianatos, G. Papadakis, G. Michas, Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497, 2016.
The extraction and integration framework: a two-process account of statistical learning.
Thiessen, Erik D; Kronstein, Alexandra T; Hufnagle, Daniel G
2013-07-01
The term statistical learning in infancy research originally referred to sensitivity to transitional probabilities. Subsequent research has demonstrated that statistical learning contributes to infant development in a wide array of domains. The range of statistical learning phenomena necessitates a broader view of the processes underlying statistical learning. Learners are sensitive to a much wider range of statistical information than the conditional relations indexed by transitional probabilities, including distributional and cue-based statistics. We propose a novel framework that unifies learning about all of these kinds of statistical structure. From our perspective, learning about conditional relations outputs discrete representations (such as words). Integration across these discrete representations yields sensitivity to cues and distributional information. To achieve sensitivity to all of these kinds of statistical structure, our framework combines processes that extract segments of the input with processes that compare across these extracted items. In this framework, the items extracted from the input serve as exemplars in long-term memory. The similarity structure of those exemplars in long-term memory leads to the discovery of cues and categorical structure, which guides subsequent extraction. The extraction and integration framework provides a way to explain sensitivity to both conditional statistical structure (such as transitional probabilities) and distributional statistical structure (such as item frequency and variability), and also a framework for thinking about how these different aspects of statistical learning influence each other. 2013 APA, all rights reserved
Ho, Andrew D; Yu, Carol C
2015-06-01
Many statistical analyses benefit from the assumption that unconditional or conditional distributions are continuous and normal. More than 50 years ago in this journal, Lord and Cook chronicled departures from normality in educational tests, and Micerri similarly showed that the normality assumption is met rarely in educational and psychological practice. In this article, the authors extend these previous analyses to state-level educational test score distributions that are an increasingly common target of high-stakes analysis and interpretation. Among 504 scale-score and raw-score distributions from state testing programs from recent years, nonnormal distributions are common and are often associated with particular state programs. The authors explain how scaling procedures from item response theory lead to nonnormal distributions as well as unusual patterns of discreteness. The authors recommend that distributional descriptive statistics be calculated routinely to inform model selection for large-scale test score data, and they illustrate consequences of nonnormality using sensitivity studies that compare baseline results to those from normalized score scales.
Ipsen, Andreas
2017-02-03
Here, the mass peak centroid is a quantity that is at the core of mass spectrometry (MS). However, despite its central status in the field, models of its statistical distribution are often chosen quite arbitrarily and without attempts at establishing a proper theoretical justification for their use. Recent work has demonstrated that for mass spectrometers employing analog-to-digital converters (ADCs) and electron multipliers, the statistical distribution of the mass peak intensity can be described via a relatively simple model derived essentially from first principles. Building on this result, the following article derives the corresponding statistical distribution for the mass peak centroidsmore » of such instruments. It is found that for increasing signal strength, the centroid distribution converges to a Gaussian distribution whose mean and variance are determined by physically meaningful parameters and which in turn determine bias and variability of the m/z measurements of the instrument. Through the introduction of the concept of “pulse-peak correlation”, the model also elucidates the complicated relationship between the shape of the voltage pulses produced by the preamplifier and the mean and variance of the centroid distribution. The predictions of the model are validated with empirical data and with Monte Carlo simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ipsen, Andreas
Here, the mass peak centroid is a quantity that is at the core of mass spectrometry (MS). However, despite its central status in the field, models of its statistical distribution are often chosen quite arbitrarily and without attempts at establishing a proper theoretical justification for their use. Recent work has demonstrated that for mass spectrometers employing analog-to-digital converters (ADCs) and electron multipliers, the statistical distribution of the mass peak intensity can be described via a relatively simple model derived essentially from first principles. Building on this result, the following article derives the corresponding statistical distribution for the mass peak centroidsmore » of such instruments. It is found that for increasing signal strength, the centroid distribution converges to a Gaussian distribution whose mean and variance are determined by physically meaningful parameters and which in turn determine bias and variability of the m/z measurements of the instrument. Through the introduction of the concept of “pulse-peak correlation”, the model also elucidates the complicated relationship between the shape of the voltage pulses produced by the preamplifier and the mean and variance of the centroid distribution. The predictions of the model are validated with empirical data and with Monte Carlo simulations.« less
NASA Astrophysics Data System (ADS)
Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.
2017-07-01
We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.
The Effect of Distributed Practice in Undergraduate Statistics Homework Sets: A Randomized Trial
ERIC Educational Resources Information Center
Crissinger, Bryan R.
2015-01-01
Most homework sets in statistics courses are constructed so that students concentrate or "mass" their practice on a certain topic in one problem set. Distributed practice homework sets include review problems in each set so that practice on a topic is distributed across problem sets. There is a body of research that points to the…
Extreme event statistics in a drifting Markov chain
NASA Astrophysics Data System (ADS)
Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur
2017-07-01
We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.
Estimating the proportion of true null hypotheses when the statistics are discrete.
Dialsingh, Isaac; Austin, Stefanie R; Altman, Naomi S
2015-07-15
In high-dimensional testing problems π0, the proportion of null hypotheses that are true is an important parameter. For discrete test statistics, the P values come from a discrete distribution with finite support and the null distribution may depend on an ancillary statistic such as a table margin that varies among the test statistics. Methods for estimating π0 developed for continuous test statistics, which depend on a uniform or identical null distribution of P values, may not perform well when applied to discrete testing problems. This article introduces a number of π0 estimators, the regression and 'T' methods that perform well with discrete test statistics and also assesses how well methods developed for or adapted from continuous tests perform with discrete tests. We demonstrate the usefulness of these estimators in the analysis of high-throughput biological RNA-seq and single-nucleotide polymorphism data. implemented in R. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
1981-08-01
RATIO TEST STATISTIC FOR SPHERICITY OF COMPLEX MULTIVARIATE NORMAL DISTRIBUTION* C. Fang P. R. Krishnaiah B. N. Nagarsenker** August 1981 Technical...and their applications in time sEries, the reader is referred to Krishnaiah (1976). Motivated by the applications in the area of inference on multiple...for practical purposes. Here, we note that Krishnaiah , Lee and Chang (1976) approxi- mated the null distribution of certain power of the likeli
NASA Technical Reports Server (NTRS)
Baker, K. B.; Sturrock, P. A.
1975-01-01
The question of whether pulsars form a single group or whether pulsars come in two or more different groups is discussed. It is proposed that such groups might be related to several factors such as the initial creation of the neutron star, or the orientation of the magnetic field axis with the spin axis. Various statistical models are examined.
NASA Astrophysics Data System (ADS)
Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak
2016-07-01
The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.
NASA Astrophysics Data System (ADS)
Pernot, Pascal; Savin, Andreas
2018-06-01
Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.
Co-occurrence statistics as a language-dependent cue for speech segmentation.
Saksida, Amanda; Langus, Alan; Nespor, Marina
2017-05-01
To what extent can language acquisition be explained in terms of different associative learning mechanisms? It has been hypothesized that distributional regularities in spoken languages are strong enough to elicit statistical learning about dependencies among speech units. Distributional regularities could be a useful cue for word learning even without rich language-specific knowledge. However, it is not clear how strong and reliable the distributional cues are that humans might use to segment speech. We investigate cross-linguistic viability of different statistical learning strategies by analyzing child-directed speech corpora from nine languages and by modeling possible statistics-based speech segmentations. We show that languages vary as to which statistical segmentation strategies are most successful. The variability of the results can be partially explained by systematic differences between languages, such as rhythmical differences. The results confirm previous findings that different statistical learning strategies are successful in different languages and suggest that infants may have to primarily rely on non-statistical cues when they begin their process of speech segmentation. © 2016 John Wiley & Sons Ltd.
Probability and Statistics in Sensor Performance Modeling
2010-12-01
language software program is called Environmental Awareness for Sensor and Emitter Employment. Some important numerical issues in the implementation...3 Statistical analysis for measuring sensor performance...complementary cumulative distribution function cdf cumulative distribution function DST decision-support tool EASEE Environmental Awareness of
On the cause of the non-Gaussian distribution of residuals in geomagnetism
NASA Astrophysics Data System (ADS)
Hulot, G.; Khokhlov, A.
2017-12-01
To describe errors in the data, Gaussian distributions naturally come to mind. In many practical instances, indeed, Gaussian distributions are appropriate. In the broad field of geomagnetism, however, it has repeatedly been noted that residuals between data and models often display much sharper distributions, sometimes better described by a Laplace distribution. In the present study, we make the case that such non-Gaussian behaviors are very likely the result of what is known as mixture of distributions in the statistical literature. Mixtures arise as soon as the data do not follow a common distribution or are not properly normalized, the resulting global distribution being a mix of the various distributions followed by subsets of the data, or even individual datum. We provide examples of the way such mixtures can lead to distributions that are much sharper than Gaussian distributions and discuss the reasons why such mixtures are likely the cause of the non-Gaussian distributions observed in geomagnetism. We also show that when properly selecting sub-datasets based on geophysical criteria, statistical mixture can sometimes be avoided and much more Gaussian behaviors recovered. We conclude with some general recommendations and point out that although statistical mixture always tends to sharpen the resulting distribution, it does not necessarily lead to a Laplacian distribution. This needs to be taken into account when dealing with such non-Gaussian distributions.
An accurate test for homogeneity of odds ratios based on Cochran's Q-statistic.
Kulinskaya, Elena; Dollinger, Michael B
2015-06-10
A frequently used statistic for testing homogeneity in a meta-analysis of K independent studies is Cochran's Q. For a standard test of homogeneity the Q statistic is referred to a chi-square distribution with K-1 degrees of freedom. For the situation in which the effects of the studies are logarithms of odds ratios, the chi-square distribution is much too conservative for moderate size studies, although it may be asymptotically correct as the individual studies become large. Using a mixture of theoretical results and simulations, we provide formulas to estimate the shape and scale parameters of a gamma distribution to fit the distribution of Q. Simulation studies show that the gamma distribution is a good approximation to the distribution for Q. Use of the gamma distribution instead of the chi-square distribution for Q should eliminate inaccurate inferences in assessing homogeneity in a meta-analysis. (A computer program for implementing this test is provided.) This hypothesis test is competitive with the Breslow-Day test both in accuracy of level and in power.
Valid statistical inference methods for a case-control study with missing data.
Tian, Guo-Liang; Zhang, Chi; Jiang, Xuejun
2018-04-01
The main objective of this paper is to derive the valid sampling distribution of the observed counts in a case-control study with missing data under the assumption of missing at random by employing the conditional sampling method and the mechanism augmentation method. The proposed sampling distribution, called the case-control sampling distribution, can be used to calculate the standard errors of the maximum likelihood estimates of parameters via the Fisher information matrix and to generate independent samples for constructing small-sample bootstrap confidence intervals. Theoretical comparisons of the new case-control sampling distribution with two existing sampling distributions exhibit a large difference. Simulations are conducted to investigate the influence of the three different sampling distributions on statistical inferences. One finding is that the conclusion by the Wald test for testing independency under the two existing sampling distributions could be completely different (even contradictory) from the Wald test for testing the equality of the success probabilities in control/case groups under the proposed distribution. A real cervical cancer data set is used to illustrate the proposed statistical methods.
Li, Qizhai; Hu, Jiyuan; Ding, Juan; Zheng, Gang
2014-04-01
A classical approach to combine independent test statistics is Fisher's combination of $p$-values, which follows the $\\chi ^2$ distribution. When the test statistics are dependent, the gamma distribution (GD) is commonly used for the Fisher's combination test (FCT). We propose to use two generalizations of the GD: the generalized and the exponentiated GDs. We study some properties of mis-using the GD for the FCT to combine dependent statistics when one of the two proposed distributions are true. Our results show that both generalizations have better control of type I error rates than the GD, which tends to have inflated type I error rates at more extreme tails. In practice, common model selection criteria (e.g. Akaike information criterion/Bayesian information criterion) can be used to help select a better distribution to use for the FCT. A simple strategy of the two generalizations of the GD in genome-wide association studies is discussed. Applications of the results to genetic pleiotrophic associations are described, where multiple traits are tested for association with a single marker.
Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex.
Herrmann, Björn; Maess, Burkhard; Johnsrude, Ingrid S
2018-02-21
Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; n = 19) and older (mean: 64 years; n = 20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information. SIGNIFICANCE STATEMENT Behavior requires efficient processing of acoustic stimulation. Animal work suggests that neurons accomplish efficient processing by adjusting their response sensitivity depending on statistical properties of the acoustic environment. Little is known about the extent to which this adaptation to stimulus statistics generalizes to humans, particularly to older humans. We used MEG to investigate how aging influences adaptation to sound-level statistics. Listeners were presented with sounds drawn from sound-level distributions with different modes (15 vs 45 dB). Auditory cortex neurons adapted to sound-level statistics in younger and older adults, but adaptation was incomplete in older people. The data suggest that the aging auditory system does not fully capitalize on the statistics available in sound environments to tune the perceptual system dynamically. Copyright © 2018 the authors 0270-6474/18/381989-11$15.00/0.
Asquith, William H.; Roussel, Meghan C.; Cleveland, Theodore G.; Fang, Xing; Thompson, David B.
2006-01-01
The design of small runoff-control structures, from simple floodwater-detention basins to sophisticated best-management practices, requires the statistical characterization of rainfall as a basis for cost-effective, risk-mitigated, hydrologic engineering design. The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a framework to estimate storm statistics including storm interevent times, distributions of storm depths, and distributions of storm durations for eastern New Mexico, Oklahoma, and Texas. The analysis is based on hourly rainfall recorded by the National Weather Service. The database contains more than 155 million hourly values from 774 stations in the study area. Seven sets of maps depicting ranges of mean storm interevent time, mean storm depth, and mean storm duration, by county, as well as tables listing each of those statistics, by county, were developed. The mean storm interevent time is used in probabilistic models to assess the frequency distribution of storms. The Poisson distribution is suggested to model the distribution of storm occurrence, and the exponential distribution is suggested to model the distribution of storm interevent times. The four-parameter kappa distribution is judged as an appropriate distribution for modeling the distribution of both storm depth and storm duration. Preference for the kappa distribution is based on interpretation of L-moment diagrams. Parameter estimates for the kappa distributions are provided. Separate dimensionless frequency curves for storm depth and duration are defined for eastern New Mexico, Oklahoma, and Texas. Dimension is restored by multiplying curve ordinates by the mean storm depth or mean storm duration to produce quantile functions of storm depth and duration. Minimum interevent time and location have slight influence on the scale and shape of the dimensionless frequency curves. Ten example problems and solutions to possible applications are provided.
Zheng, Xiliang; Wang, Jin
2015-01-01
We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453
Multisample adjusted U-statistics that account for confounding covariates.
Satten, Glen A; Kong, Maiying; Datta, Somnath
2018-06-19
Multisample U-statistics encompass a wide class of test statistics that allow the comparison of 2 or more distributions. U-statistics are especially powerful because they can be applied to both numeric and nonnumeric data, eg, ordinal and categorical data where a pairwise similarity or distance-like measure between categories is available. However, when comparing the distribution of a variable across 2 or more groups, observed differences may be due to confounding covariates. For example, in a case-control study, the distribution of exposure in cases may differ from that in controls entirely because of variables that are related to both exposure and case status and are distributed differently among case and control participants. We propose to use individually reweighted data (ie, using the stratification score for retrospective data or the propensity score for prospective data) to construct adjusted U-statistics that can test the equality of distributions across 2 (or more) groups in the presence of confounding covariates. Asymptotic normality of our adjusted U-statistics is established and a closed form expression of their asymptotic variance is presented. The utility of our approach is demonstrated through simulation studies, as well as in an analysis of data from a case-control study conducted among African-Americans, comparing whether the similarity in haplotypes (ie, sets of adjacent genetic loci inherited from the same parent) occurring in a case and a control participant differs from the similarity in haplotypes occurring in 2 control participants. Copyright © 2018 John Wiley & Sons, Ltd.
Statistical modeling of space shuttle environmental data
NASA Technical Reports Server (NTRS)
Tubbs, J. D.; Brewer, D. W.
1983-01-01
Statistical models which use a class of bivariate gamma distribution are examined. Topics discussed include: (1) the ratio of positively correlated gamma varieties; (2) a method to determine if unequal shape parameters are necessary in bivariate gamma distribution; (3) differential equations for modal location of a family of bivariate gamma distribution; and (4) analysis of some wind gust data using the analytical results developed for modeling application.
Current state of the art for statistical modeling of species distributions [Chapter 16
Troy M. Hegel; Samuel A. Cushman; Jeffrey Evans; Falk Huettmann
2010-01-01
Over the past decade the number of statistical modelling tools available to ecologists to model species' distributions has increased at a rapid pace (e.g. Elith et al. 2006; Austin 2007), as have the number of species distribution models (SDM) published in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression (Hosmer and Lemeshow 2000)...
Statistical Properties of Echosignal Obtained from Human Dermis In Vivo
NASA Astrophysics Data System (ADS)
Piotrzkowska, Hanna; Litniewski, Jerzy; Nowicki, Andrzej; Szymańska, Elżbieta
The paper presents the classification of the healthy skin and the skin lesions (basal cell carcinoma and actinic keratosis), basing on the statistical parameters of the envelope of ultrasonic echoes. The envelope was modeled using Rayleigh and non-Rayleigh (K-distribution) statistics. Furthermore, the characteristic parameter of the K-distribution, the effective number of scatterers was investigated. Also the attenuation coefficient was used for the skin lesion assessment.
The Statistical Drake Equation
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2010-12-01
We provide the statistical generalization of the Drake equation. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N are also found. The seven factors in the ordinary Drake equation now become seven positive random variables. The probability distribution of each random variable may be ARBITRARY. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) DISTANCE between any two neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density function, apparently previously unknown and dubbed "Maccone distribution" by Paul Davies. DATA ENRICHMENT PRINCIPLE. It should be noticed that ANY positive number of random variables in the Statistical Drake Equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation, we call the "Data Enrichment Principle," and we regard it as the key to more profound future results in the fields of Astrobiology and SETI. Finally, a practical example is given of how our statistical Drake equation works numerically. We work out in detail the case, where each of the seven random variables is uniformly distributed around its own mean value and has a given standard deviation. For instance, the number of stars in the Galaxy is assumed to be uniformly distributed around (say) 350 billions with a standard deviation of (say) 1 billion. Then, the resulting lognormal distribution of N is computed numerically by virtue of a MathCad file that the author has written. This shows that the mean value of the lognormal random variable N is actually of the same order as the classical N given by the ordinary Drake equation, as one might expect from a good statistical generalization.
NASA Astrophysics Data System (ADS)
Goto, Shin-itiro; Umeno, Ken
2018-03-01
Maps on a parameter space for expressing distribution functions are exactly derived from the Perron-Frobenius equations for a generalized Boole transform family. Here the generalized Boole transform family is a one-parameter family of maps, where it is defined on a subset of the real line and its probability distribution function is the Cauchy distribution with some parameters. With this reduction, some relations between the statistical picture and the orbital one are shown. From the viewpoint of information geometry, the parameter space can be identified with a statistical manifold, and then it is shown that the derived maps can be characterized. Also, with an induced symplectic structure from a statistical structure, symplectic and information geometric aspects of the derived maps are discussed.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
Tahir, M Ramzan; Tran, Quang X; Nikulin, Mikhail S
2017-05-30
We studied the problem of testing a hypothesized distribution in survival regression models when the data is right censored and survival times are influenced by covariates. A modified chi-squared type test, known as Nikulin-Rao-Robson statistic, is applied for the comparison of accelerated failure time models. This statistic is used to test the goodness-of-fit for hypertabastic survival model and four other unimodal hazard rate functions. The results of simulation study showed that the hypertabastic distribution can be used as an alternative to log-logistic and log-normal distribution. In statistical modeling, because of its flexible shape of hazard functions, this distribution can also be used as a competitor of Birnbaum-Saunders and inverse Gaussian distributions. The results for the real data application are shown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Naylor, M.; Main, I. G.; Greenhough, J.; Bell, A. F.; McCloskey, J.
2009-04-01
The Sumatran Boxing Day earthquake and subsequent large events provide an opportunity to re-evaluate the statistical evidence for characteristic earthquake events in frequency-magnitude distributions. Our aims are to (i) improve intuition regarding the properties of samples drawn from power laws, (ii) illustrate using random samples how appropriate Poisson confidence intervals can both aid the eye and provide an appropriate statistical evaluation of data drawn from power-law distributions, and (iii) apply these confidence intervals to test for evidence of characteristic earthquakes in subduction-zone frequency-magnitude distributions. We find no need for a characteristic model to describe frequency magnitude distributions in any of the investigated subduction zones, including Sumatra, due to an emergent skew in residuals of power law count data at high magnitudes combined with a sample bias for examining large earthquakes as candidate characteristic events.
2012-01-01
Background When outcomes are binary, the c-statistic (equivalent to the area under the Receiver Operating Characteristic curve) is a standard measure of the predictive accuracy of a logistic regression model. Methods An analytical expression was derived under the assumption that a continuous explanatory variable follows a normal distribution in those with and without the condition. We then conducted an extensive set of Monte Carlo simulations to examine whether the expressions derived under the assumption of binormality allowed for accurate prediction of the empirical c-statistic when the explanatory variable followed a normal distribution in the combined sample of those with and without the condition. We also examine the accuracy of the predicted c-statistic when the explanatory variable followed a gamma, log-normal or uniform distribution in combined sample of those with and without the condition. Results Under the assumption of binormality with equality of variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the product of the standard deviation of the normal components (reflecting more heterogeneity) and the log-odds ratio (reflecting larger effects). Under the assumption of binormality with unequal variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the standardized difference of the explanatory variable in those with and without the condition. In our Monte Carlo simulations, we found that these expressions allowed for reasonably accurate prediction of the empirical c-statistic when the distribution of the explanatory variable was normal, gamma, log-normal, and uniform in the entire sample of those with and without the condition. Conclusions The discriminative ability of a continuous explanatory variable cannot be judged by its odds ratio alone, but always needs to be considered in relation to the heterogeneity of the population. PMID:22716998
Hyatt, M.W.; Hubert, W.A.
2001-01-01
We assessed relative weight (Wr) distributions among 291 samples of stock-to-quality-length brook trout Salvelinus fontinalis, brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and cutthroat trout O. clarki from lentic and lotic habitats. Statistics describing Wr sample distributions varied slightly among species and habitat types. The average sample was leptokurtotic and slightly skewed to the right with a standard deviation of about 10, but the shapes of Wr distributions varied widely among samples. Twenty-two percent of the samples had nonnormal distributions, suggesting the need to evaluate sample distributions before applying statistical tests to determine whether assumptions are met. In general, our findings indicate that samples of about 100 stock-to-quality-length fish are needed to obtain confidence interval widths of four Wr units around the mean. Power analysis revealed that samples of about 50 stock-to-quality-length fish are needed to detect a 2% change in mean Wr at a relatively high level of power (beta = 0.01, alpha = 0.05).
Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu
2017-06-01
This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.
Statistics of primordial density perturbations from discrete seed masses
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Bertschinger, Edmund
1991-01-01
The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Rong; Li, Yongdong; Liu, Chunliang
2016-07-15
The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less
Pearson-type goodness-of-fit test with bootstrap maximum likelihood estimation.
Yin, Guosheng; Ma, Yanyuan
2013-01-01
The Pearson test statistic is constructed by partitioning the data into bins and computing the difference between the observed and expected counts in these bins. If the maximum likelihood estimator (MLE) of the original data is used, the statistic generally does not follow a chi-squared distribution or any explicit distribution. We propose a bootstrap-based modification of the Pearson test statistic to recover the chi-squared distribution. We compute the observed and expected counts in the partitioned bins by using the MLE obtained from a bootstrap sample. This bootstrap-sample MLE adjusts exactly the right amount of randomness to the test statistic, and recovers the chi-squared distribution. The bootstrap chi-squared test is easy to implement, as it only requires fitting exactly the same model to the bootstrap data to obtain the corresponding MLE, and then constructs the bin counts based on the original data. We examine the test size and power of the new model diagnostic procedure using simulation studies and illustrate it with a real data set.
Limitations of the Porter-Thomas distribution
NASA Astrophysics Data System (ADS)
Weidenmüller, Hans A.
2017-12-01
Data on the distribution of reduced partial neutron widths and on the distribution of total gamma decay widths disagree with the Porter-Thomas distribution (PTD) for reduced partial widths or with predictions of the statistical model. We recall why the disagreement is important: The PTD is a direct consequence of the orthogonal invariance of the Gaussian Orthogonal Ensemble (GOE) of random matrices. The disagreement is reviewed. Two possible causes for violation of orthogonal invariance of the GOE are discussed, and their consequences explored. The disagreement of the distribution of total gamma decay widths with theoretical predictions cannot be blamed on the statistical model.
The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.
Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C
2017-06-01
The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim
2017-06-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim
2018-01-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035
How large is the gluon polarization in the statistical parton distributions approach?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soffer, Jacques; Bourrely, Claude; Buccella, Franco
2015-04-10
We review the theoretical foundations of the quantum statistical approach to parton distributions and we show that by using some recent experimental results from Deep Inelastic Scattering, we are able to improve the description of the data by means of a new determination of the parton distributions. We will see that a large gluon polarization emerges, giving a significant contribution to the proton spin.
ERIC Educational Resources Information Center
Texeira, Antonio; Rosa, Alvaro; Calapez, Teresa
2009-01-01
This article presents statistical power analysis (SPA) based on the normal distribution using Excel, adopting textbook and SPA approaches. The objective is to present the latter in a comparative way within a framework that is familiar to textbook level readers, as a first step to understand SPA with other distributions. The analysis focuses on the…
Vexler, Albert; Tanajian, Hovig; Hutson, Alan D
In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K -sample distributions. Recognizing that recent statistical software packages do not sufficiently address K -sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p -values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p -value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p -value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.
NASA Astrophysics Data System (ADS)
Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin
2017-04-01
This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.
Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all red-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principle formulation of bounded rationality and a set of new types of mean field theory in statistical physics; it also shows that those topics are fundamentally one and the same.
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
NASA Technical Reports Server (NTRS)
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
Stefanov, Valeri T
2002-01-01
Background Pairs of related individuals are widely used in linkage analysis. Most of the tests for linkage analysis are based on statistics associated with identity by descent (IBD) data. The current biotechnology provides data on very densely packed loci, and therefore, it may provide almost continuous IBD data for pairs of closely related individuals. Therefore, the distribution theory for statistics on continuous IBD data is of interest. In particular, distributional results which allow the evaluation of p-values for relevant tests are of importance. Results A technology is provided for numerical evaluation, with any given accuracy, of the cumulative probabilities of some statistics on continuous genome data for pairs of closely related individuals. In the case of a pair of full-sibs, the following statistics are considered: (i) the proportion of genome with 2 (at least 1) haplotypes shared identical-by-descent (IBD) on a chromosomal segment, (ii) the number of distinct pieces (subsegments) of a chromosomal segment, on each of which exactly 2 (at least 1) haplotypes are shared IBD. The natural counterparts of these statistics for the other relationships are also considered. Relevant Maple codes are provided for a rapid evaluation of the cumulative probabilities of such statistics. The genomic continuum model, with Haldane's model for the crossover process, is assumed. Conclusions A technology, together with relevant software codes for its automated implementation, are provided for exact evaluation of the distributions of relevant statistics associated with continuous genome data on closely related individuals. PMID:11996673
The effects of estimation of censoring, truncation, transformation and partial data vectors
NASA Technical Reports Server (NTRS)
Hartley, H. O.; Smith, W. B.
1972-01-01
The purpose of this research was to attack statistical problems concerning the estimation of distributions for purposes of predicting and measuring assembly performance as it appears in biological and physical situations. Various statistical procedures were proposed to attack problems of this sort, that is, to produce the statistical distributions of the outcomes of biological and physical situations which, employ characteristics measured on constituent parts. The techniques are described.
Dai, Qi; Yang, Yanchun; Wang, Tianming
2008-10-15
Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.
Characterizing the D2 statistic: word matches in biological sequences.
Forêt, Sylvain; Wilson, Susan R; Burden, Conrad J
2009-01-01
Word matches are often used in sequence comparison methods, either as a measure of sequence similarity or in the first search steps of algorithms such as BLAST or BLAT. The D2 statistic is the number of matches of words of k letters between two sequences. Recent advances have been made in the characterization of this statistic and in the approximation of its distribution. Here, these results are extended to the case of approximate word matches. We compute the exact value of the variance of the D2 statistic for the case of a uniform letter distribution, and introduce a method to provide accurate approximations of the variance in the remaining cases. This enables the distribution of D2 to be approximated for typical situations arising in biological research. We apply these results to the identification of cis-regulatory modules, and show that this method detects such sequences with a high accuracy. The ability to approximate the distribution of D2 for both exact and approximate word matches will enable the use of this statistic in a more precise manner for sequence comparison, database searches, and identification of transcription factor binding sites.
Tips and Tricks for Successful Application of Statistical Methods to Biological Data.
Schlenker, Evelyn
2016-01-01
This chapter discusses experimental design and use of statistics to describe characteristics of data (descriptive statistics) and inferential statistics that test the hypothesis posed by the investigator. Inferential statistics, based on probability distributions, depend upon the type and distribution of the data. For data that are continuous, randomly and independently selected, as well as normally distributed more powerful parametric tests such as Student's t test and analysis of variance (ANOVA) can be used. For non-normally distributed or skewed data, transformation of the data (using logarithms) may normalize the data allowing use of parametric tests. Alternatively, with skewed data nonparametric tests can be utilized, some of which rely on data that are ranked prior to statistical analysis. Experimental designs and analyses need to balance between committing type 1 errors (false positives) and type 2 errors (false negatives). For a variety of clinical studies that determine risk or benefit, relative risk ratios (random clinical trials and cohort studies) or odds ratios (case-control studies) are utilized. Although both use 2 × 2 tables, their premise and calculations differ. Finally, special statistical methods are applied to microarray and proteomics data, since the large number of genes or proteins evaluated increase the likelihood of false discoveries. Additional studies in separate samples are used to verify microarray and proteomic data. Examples in this chapter and references are available to help continued investigation of experimental designs and appropriate data analysis.
NASA Astrophysics Data System (ADS)
Mahanti, P.; Robinson, M. S.; Boyd, A. K.
2013-12-01
Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was computed over multiple scales. This slope analysis showed that local slope distributions are non-Gaussian for both crater walls and floors. Over larger baselines (~100 meters), crater wall slope probability distributions do approximate Gaussian distributions better, but have long distribution tails. Crater floor probability distributions however, were always asymmetric (for the baseline scales analyzed) and less affected by baseline scale variations. Accordingly, our results suggest that use of long tailed probability distributions (like Cauchy) and a baseline-dependant multi-scale model can be more effective in describing the slope statistics for lunar topography. Refrences: [1]Moore, H.(1971), JGR,75(11) [2]Marcus, A. H.(1969),JGR,74 (22).[3]R.J. Pike (1970),U.S. Geological Survey Working Paper [4]N. C. Costes, J. E. Farmer and E. B. George (1972),NASA Technical Report TR R-401 [5]M. N. Parker and G. L. Tyler(1973), Radio Science, 8(3),177-184 [6]Alekseev, V. A.et al (1968), Soviet Astronomy, Vol. 11, p.860 [7]Burns et al. (2012) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIX-B4, 483-488.[8]Smith et al. (2010) GRL 37, L18204, DOI: 10.1029/2010GL043751. [9]Wagner R., Robinson, M., Speyerer E., Mahanti, P., LPSC 2013, #2924.
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.
Lin, Johnny; Bentler, Peter M
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
Redshift data and statistical inference
NASA Technical Reports Server (NTRS)
Newman, William I.; Haynes, Martha P.; Terzian, Yervant
1994-01-01
Frequency histograms and the 'power spectrum analysis' (PSA) method, the latter developed by Yu & Peebles (1969), have been widely employed as techniques for establishing the existence of periodicities. We provide a formal analysis of these two classes of methods, including controlled numerical experiments, to better understand their proper use and application. In particular, we note that typical published applications of frequency histograms commonly employ far greater numbers of class intervals or bins than is advisable by statistical theory sometimes giving rise to the appearance of spurious patterns. The PSA method generates a sequence of random numbers from observational data which, it is claimed, is exponentially distributed with unit mean and variance, essentially independent of the distribution of the original data. We show that the derived random processes is nonstationary and produces a small but systematic bias in the usual estimate of the mean and variance. Although the derived variable may be reasonably described by an exponential distribution, the tail of the distribution is far removed from that of an exponential, thereby rendering statistical inference and confidence testing based on the tail of the distribution completely unreliable. Finally, we examine a number of astronomical examples wherein these methods have been used giving rise to widespread acceptance of statistically unconfirmed conclusions.
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Rank distributions in community ecology from the statistical viewpoint].
Maksimov, V N
2004-01-01
Traditional statistical methods for definition of empirical functions of abundance distribution (population, biomass, production, etc.) of species in a community are applicable for processing of multivariate data contained in the above quantitative indices of the communities. In particular, evaluation of moments of distribution suffices for convolution of the data contained in a list of species and their abundance. At the same time, the species should be ranked in the list in ascending rather than descending population and the distribution models should be analyzed on the basis of the data on abundant species only.
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
Methods and apparatuses for information analysis on shared and distributed computing systems
Bohn, Shawn J [Richland, WA; Krishnan, Manoj Kumar [Richland, WA; Cowley, Wendy E [Richland, WA; Nieplocha, Jarek [Richland, WA
2011-02-22
Apparatuses and computer-implemented methods for analyzing, on shared and distributed computing systems, information comprising one or more documents are disclosed according to some aspects. In one embodiment, information analysis can comprise distributing one or more distinct sets of documents among each of a plurality of processes, wherein each process performs operations on a distinct set of documents substantially in parallel with other processes. Operations by each process can further comprise computing term statistics for terms contained in each distinct set of documents, thereby generating a local set of term statistics for each distinct set of documents. Still further, operations by each process can comprise contributing the local sets of term statistics to a global set of term statistics, and participating in generating a major term set from an assigned portion of a global vocabulary.
Influence of nonlinear effects on statistical properties of the radiation from SASE FEL
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1998-02-01
The paper presents analysis of statistical properties of the radiation from self-amplified spontaneous emission (SASE) free-electron laser operating in nonlinear mode. The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. It has been observed that the statistics of the instantaneous radiation power from SASE FEL operating in the nonlinear regime changes significantly with respect to the linear regime. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility under construction at DESY.
Davis, Joe M
2011-10-28
General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lane, David M.; Sandor, Aniko
2009-01-01
Statistical graphs are commonly used in scientific publications. Unfortunately, graphs in psychology journals rarely portray distributional information beyond central tendency, and few graphs portray inferential statistics. Moreover, those that do portray inferential information generally do not portray it in a way that is useful for interpreting…
28 CFR 33.20 - Fund availability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... distributed to local units, the most recent and complete data available from the Bureau of Justice Statistics... advance by the Bureau of Justice Assistance. (2) To request approval of a distribution ratio other than that based on data of the Bureau of Justice Statistics, the head of the State Office must certify in...
Three Strategies for the Critical Use of Statistical Methods in Psychological Research
ERIC Educational Resources Information Center
Campitelli, Guillermo; Macbeth, Guillermo; Ospina, Raydonal; Marmolejo-Ramos, Fernando
2017-01-01
We present three strategies to replace the null hypothesis statistical significance testing approach in psychological research: (1) visual representation of cognitive processes and predictions, (2) visual representation of data distributions and choice of the appropriate distribution for analysis, and (3) model comparison. The three strategies…
ERIC Educational Resources Information Center
Conant, Darcy Lynn
2013-01-01
Stochastic understanding of probability distribution undergirds development of conceptual connections between probability and statistics and supports development of a principled understanding of statistical inference. This study investigated the impact of an instructional course intervention designed to support development of stochastic…
NASA Astrophysics Data System (ADS)
Galich, Nikolay E.; Filatov, Michael V.
2008-07-01
Communication contains the description of the immunology experiments and the experimental data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for healthy and unhealthy donors allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions and their bifurcation. Heterogeneity peculiarities of long-range scale immunofluorescence distributions allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Possibilities and alterations of immunofluorescence statistics in registration, diagnostics and monitoring of different diseases in various medical treatments have been demonstrated. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.
A lognormal distribution of the lengths of terminal twigs on self-similar branches of elm trees.
Koyama, Kohei; Yamamoto, Ken; Ushio, Masayuki
2017-01-11
Lognormal distributions and self-similarity are characteristics associated with a wide range of biological systems. The sequential breakage model has established a link between lognormal distributions and self-similarity and has been used to explain species abundance distributions. To date, however, there has been no similar evidence in studies of multicellular organismal forms. We tested the hypotheses that the distribution of the lengths of terminal stems of Japanese elm trees (Ulmus davidiana), the end products of a self-similar branching process, approaches a lognormal distribution. We measured the length of the stem segments of three elm branches and obtained the following results: (i) each occurrence of branching caused variations or errors in the lengths of the child stems relative to their parent stems; (ii) the branches showed statistical self-similarity; the observed error distributions were similar at all scales within each branch and (iii) the multiplicative effect of these errors generated variations of the lengths of terminal twigs that were well approximated by a lognormal distribution, although some statistically significant deviations from strict lognormality were observed for one branch. Our results provide the first empirical evidence that statistical self-similarity of an organismal form generates a lognormal distribution of organ sizes. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.
2018-04-01
Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.
Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C
2010-11-01
This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
A brief introduction to probability.
Di Paola, Gioacchino; Bertani, Alessandro; De Monte, Lavinia; Tuzzolino, Fabio
2018-02-01
The theory of probability has been debated for centuries: back in 1600, French mathematics used the rules of probability to place and win bets. Subsequently, the knowledge of probability has significantly evolved and is now an essential tool for statistics. In this paper, the basic theoretical principles of probability will be reviewed, with the aim of facilitating the comprehension of statistical inference. After a brief general introduction on probability, we will review the concept of the "probability distribution" that is a function providing the probabilities of occurrence of different possible outcomes of a categorical or continuous variable. Specific attention will be focused on normal distribution that is the most relevant distribution applied to statistical analysis.
Inverse statistics and information content
NASA Astrophysics Data System (ADS)
Ebadi, H.; Bolgorian, Meysam; Jafari, G. R.
2010-12-01
Inverse statistics analysis studies the distribution of investment horizons to achieve a predefined level of return. This distribution provides a maximum investment horizon which determines the most likely horizon for gaining a specific return. There exists a significant difference between inverse statistics of financial market data and a fractional Brownian motion (fBm) as an uncorrelated time-series, which is a suitable criteria to measure information content in financial data. In this paper we perform this analysis for the DJIA and S&P500 as two developed markets and Tehran price index (TEPIX) as an emerging market. We also compare these probability distributions with fBm probability, to detect when the behavior of the stocks are the same as fBm.
Statistical procedures for analyzing mental health services data.
Elhai, Jon D; Calhoun, Patrick S; Ford, Julian D
2008-08-15
In mental health services research, analyzing service utilization data often poses serious problems, given the presence of substantially skewed data distributions. This article presents a non-technical introduction to statistical methods specifically designed to handle the complexly distributed datasets that represent mental health service use, including Poisson, negative binomial, zero-inflated, and zero-truncated regression models. A flowchart is provided to assist the investigator in selecting the most appropriate method. Finally, a dataset of mental health service use reported by medical patients is described, and a comparison of results across several different statistical methods is presented. Implications of matching data analytic techniques appropriately with the often complexly distributed datasets of mental health services utilization variables are discussed.
Hao, Chen; LiJun, Chen; Albright, Thomas P.
2007-01-01
Invasive exotic species pose a growing threat to the economy, public health, and ecological integrity of nations worldwide. Explaining and predicting the spatial distribution of invasive exotic species is of great importance to prevention and early warning efforts. We are investigating the potential distribution of invasive exotic species, the environmental factors that influence these distributions, and the ability to predict them using statistical and information-theoretic approaches. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, for most species, absence data are not available. Presented with the challenge of developing a model based on presence-only information, we developed an improved logistic regression approach using Information Theory and Frequency Statistics to produce a relative suitability map. This paper generated a variety of distributions of ragweed (Ambrosia artemisiifolia L.) from logistic regression models applied to herbarium specimen location data and a suite of GIS layers including climatic, topographic, and land cover information. Our logistic regression model was based on Akaike's Information Criterion (AIC) from a suite of ecologically reasonable predictor variables. Based on the results we provided a new Frequency Statistical method to compartmentalize habitat-suitability in the native range. Finally, we used the model and the compartmentalized criterion developed in native ranges to "project" a potential distribution onto the exotic ranges to build habitat-suitability maps. ?? Science in China Press 2007.
Long-term changes (1980-2003) in total ozone time series over Northern Hemisphere midlatitudes
NASA Astrophysics Data System (ADS)
Białek, Małgorzata
2006-03-01
Long-term changes in total ozone time series for Arosa, Belsk, Boulder and Sapporo stations are examined. For each station we analyze time series of the following statistical characteristics of the distribution of daily ozone data: seasonal mean, standard deviation, maximum and minimum of total daily ozone values for all seasons. The iterative statistical model is proposed to estimate trends and long-term changes in the statistical distribution of the daily total ozone data. The trends are calculated for the period 1980-2003. We observe lessening of negative trends in the seasonal means as compared to those calculated by WMO for 1980-2000. We discuss a possibility of a change of the distribution shape of ozone daily data using the Kolmogorov-Smirnov test and comparing trend values in the seasonal mean, standard deviation, maximum and minimum time series for the selected stations and seasons. The distribution shift toward lower values without a change in the distribution shape is suggested with the following exceptions: the spreading of the distribution toward lower values for Belsk during winter and no decisive result for Sapporo and Boulder in summer.
PV System Component Fault and Failure Compilation and Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne
This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.
Statistical Mechanics of Prion Diseases
NASA Astrophysics Data System (ADS)
Slepoy, A.; Singh, R. R.; Pázmándi, F.; Kulkarni, R. V.; Cox, D. L.
2001-07-01
We present a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., mad cow disease) with concomitant prion protein misfolding and aggregation. Our studies lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self-averaging. We model ``species barriers'' to prion infection and assess a related treatment protocol.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.
1980-01-01
Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.
Probability density cloud as a geometrical tool to describe statistics of scattered light.
Yaitskova, Natalia
2017-04-01
First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.
NASA Astrophysics Data System (ADS)
Alimi, Jean-Michel; de Fromont, Paul
2018-04-01
The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.
ERIC Educational Resources Information Center
Ho, Andrew D.; Yu, Carol C.
2015-01-01
Many statistical analyses benefit from the assumption that unconditional or conditional distributions are continuous and normal. More than 50 years ago in this journal, Lord and Cook chronicled departures from normality in educational tests, and Micerri similarly showed that the normality assumption is met rarely in educational and psychological…
Fine-Grained Linguistic Soft Constraints on Statistical Natural Language Processing Models
2009-01-01
88 4 Monolingually -Derived Phrasal Paraphrase Generation for Statistical Ma- chine Translation 90 4.1...123 4.4 Spanish-English (S2E) results . . . . . . . . . . . . . . . . . . . . . . 125 4.5 Gains from using larger monolingual corpora for...96 4.2 Visual example of a phrasal distributional profile . . . . . . . . . . . . 103 4.3 Monolingual corpus-based distributional
Nonparametric Bayesian predictive distributions for future order statistics
Richard A. Johnson; James W. Evans; David W. Green
1999-01-01
We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...
Colloquium: Statistical mechanics of money, wealth, and income
NASA Astrophysics Data System (ADS)
Yakovenko, Victor M.; Rosser, J. Barkley, Jr.
2009-10-01
This Colloquium reviews statistical models for money, wealth, and income distributions developed in the econophysics literature since the late 1990s. By analogy with the Boltzmann-Gibbs distribution of energy in physics, it is shown that the probability distribution of money is exponential for certain classes of models with interacting economic agents. Alternative scenarios are also reviewed. Data analysis of the empirical distributions of wealth and income reveals a two-class distribution. The majority of the population belongs to the lower class, characterized by the exponential (“thermal”) distribution, whereas a small fraction of the population in the upper class is characterized by the power-law (“superthermal”) distribution. The lower part is very stable, stationary in time, whereas the upper part is highly dynamical and out of equilibrium.
Analysis of regional deformation and strain accumulation data adjacent to the San Andreas fault
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1991-01-01
A new approach to the understanding of crustal deformation was developed under this grant. This approach combined aspects of fractals, chaos, and self-organized criticality to provide a comprehensive theory for deformation on distributed faults. It is hypothesized that crustal deformation is an example of comminution: Deformation takes place on a fractal distribution of faults resulting in a fractal distribution of seismicity. Our primary effort under this grant was devoted to developing an understanding of distributed deformation in the continental crust. An initial effort was carried out on the fractal clustering of earthquakes in time. It was shown that earthquakes do not obey random Poisson statistics, but can be approximated in many cases by coupled, scale-invariant fractal statistics. We applied our approach to the statistics of earthquakes in the New Hebrides region of the southwest Pacific because of the very high level of seismicity there. This work was written up and published in the Bulletin of the Seismological Society of America. This approach was also applied to the statistics of the seismicity on the San Andreas fault system.
Singer, Donald A.; Menzie, W.D.; Cheng, Qiuming; Bonham-Carter, G. F.
2005-01-01
Estimating numbers of undiscovered mineral deposits is a fundamental part of assessing mineral resources. Some statistical tools can act as guides to low variance, unbiased estimates of the number of deposits. The primary guide is that the estimates must be consistent with the grade and tonnage models. Another statistical guide is the deposit density (i.e., the number of deposits per unit area of permissive rock in well-explored control areas). Preliminary estimates and confidence limits of the number of undiscovered deposits in a tract of given area may be calculated using linear regression and refined using frequency distributions with appropriate parameters. A Poisson distribution leads to estimates having lower relative variances than the regression estimates and implies a random distribution of deposits. Coefficients of variation are used to compare uncertainties of negative binomial, Poisson, or MARK3 empirical distributions that have the same expected number of deposits as the deposit density. Statistical guides presented here allow simple yet robust estimation of the number of undiscovered deposits in permissive terranes.
Comparison of probability statistics for automated ship detection in SAR imagery
NASA Astrophysics Data System (ADS)
Henschel, Michael D.; Rey, Maria T.; Campbell, J. W. M.; Petrovic, D.
1998-12-01
This paper discuses the initial results of a recent operational trial of the Ocean Monitoring Workstation's (OMW) ship detection algorithm which is essentially a Constant False Alarm Rate filter applied to Synthetic Aperture Radar data. The choice of probability distribution and methodologies for calculating scene specific statistics are discussed in some detail. An empirical basis for the choice of probability distribution used is discussed. We compare the results using a l-look, k-distribution function with various parameter choices and methods of estimation. As a special case of sea clutter statistics the application of a (chi) 2-distribution is also discussed. Comparisons are made with reference to RADARSAT data collected during the Maritime Command Operation Training exercise conducted in Atlantic Canadian Waters in June 1998. Reference is also made to previously collected statistics. The OMW is a commercial software suite that provides modules for automated vessel detection, oil spill monitoring, and environmental monitoring. This work has been undertaken to fine tune the OMW algorithm's, with special emphasis on the false alarm rate of each algorithm.
Empirical Reference Distributions for Networks of Different Size
Smith, Anna; Calder, Catherine A.; Browning, Christopher R.
2016-01-01
Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556
Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model
NASA Astrophysics Data System (ADS)
Batac, Rene; Longjas, Anthony; Monterola, Christopher
2012-02-01
Sandpile-based models have successfully shed light on key features of nonlinear relaxational processes in nature, particularly the occurrence of fat-tailed magnitude distributions and exponential return times, from simple local stress redistributions. In this work, we extend the existing sandpile paradigm into an inter-sandpile cascade, wherein the avalanches emanating from a uniformly-driven sandpile (first layer) is used to trigger the next (second layer), and so on, in a successive fashion. Statistical characterizations reveal that avalanche size distributions evolve from a power-law p(S)≈S-1.3 for the first layer to gamma distributions p(S)≈Sαexp(-S/S0) for layers far away from the uniformly driven sandpile. The resulting avalanche size statistics is found to be associated with the corresponding waiting time distribution, as explained in an accompanying analytic formulation. Interestingly, both the numerical and analytic models show good agreement with actual inventories of non-uniformly driven events in nature.
Using independent component analysis for electrical impedance tomography
NASA Astrophysics Data System (ADS)
Yan, Peimin; Mo, Yulong
2004-05-01
Independent component analysis (ICA) is a way to resolve signals into independent components based on the statistical characteristics of the signals. It is a method for factoring probability densities of measured signals into a set of densities that are as statistically independent as possible under the assumptions of a linear model. Electrical impedance tomography (EIT) is used to detect variations of the electric conductivity of the human body. Because there are variations of the conductivity distributions inside the body, EIT presents multi-channel data. In order to get all information contained in different location of tissue it is necessary to image the individual conductivity distribution. In this paper we consider to apply ICA to EIT on the signal subspace (individual conductivity distribution). Using ICA the signal subspace will then be decomposed into statistically independent components. The individual conductivity distribution can be reconstructed by the sensitivity theorem in this paper. Compute simulations show that the full information contained in the multi-conductivity distribution will be obtained by this method.
Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas
NASA Astrophysics Data System (ADS)
Rouse, I.; Willitsch, S.
2017-04-01
An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven dynamical system which has been found to develop a nonthermal energy distribution with a power law tail. The exact analytical form of this distribution is unknown, but has often been represented empirically by q -exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive analytic ion secular energy distributions from first principles both neglecting and including the effects of the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations. We show that the resulting distributions essentially depend on experimentally controllable parameters paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-08
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.
A note about Gaussian statistics on a sphere
NASA Astrophysics Data System (ADS)
Chave, Alan D.
2015-11-01
The statistics of directional data on a sphere can be modelled either using the Fisher distribution that is conditioned on the magnitude being unity, in which case the sample space is confined to the unit sphere, or using the latitude-longitude marginal distribution derived from a trivariate Gaussian model that places no constraint on the magnitude. These two distributions are derived from first principles and compared. The Fisher distribution more closely approximates the uniform distribution on a sphere for a given small value of the concentration parameter, while the latitude-longitude marginal distribution is always slightly larger than the Fisher distribution at small off-axis angles for large values of the concentration parameter. Asymptotic analysis shows that the two distributions only become equivalent in the limit of large concentration parameter and very small off-axis angle.
Earthquakes: Recurrence and Interoccurrence Times
NASA Astrophysics Data System (ADS)
Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.; Yakovlev, G.; Goltz, C.; Newman, W. I.
2008-04-01
The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.
Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech
NASA Astrophysics Data System (ADS)
Přibil, J.; Přibilová, A.
2009-01-01
The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.
Set size manipulations reveal the boundary conditions of perceptual ensemble learning.
Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni
2017-11-01
Recent evidence suggests that observers can grasp patterns of feature variations in the environment with surprising efficiency. During visual search tasks where all distractors are randomly drawn from a certain distribution rather than all being homogeneous, observers are capable of learning highly complex statistical properties of distractor sets. After only a few trials (learning phase), the statistical properties of distributions - mean, variance and crucially, shape - can be learned, and these representations affect search during a subsequent test phase (Chetverikov, Campana, & Kristjánsson, 2016). To assess the limits of such distribution learning, we varied the information available to observers about the underlying distractor distributions by manipulating set size during the learning phase in two experiments. We found that robust distribution learning only occurred for large set sizes. We also used set size to assess whether the learning of distribution properties makes search more efficient. The results reveal how a certain minimum of information is required for learning to occur, thereby delineating the boundary conditions of learning of statistical variation in the environment. However, the benefits of distribution learning for search efficiency remain unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stochastic space interval as a link between quantum randomness and macroscopic randomness?
NASA Astrophysics Data System (ADS)
Haug, Espen Gaarder; Hoff, Harald
2018-03-01
For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).
NASA Astrophysics Data System (ADS)
Galich, Nikolay E.
2008-07-01
Communication contains the description of the immunology data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for women in the pregnant period allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions, their bifurcation and wavelet spectra. Heterogeneity peculiarities of long-range scale immunofluorescence distributions and peculiarities of wavelet spectra allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Peculiarities of immunofluorescence for women in pregnant period are classified. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.
Variability-aware compact modeling and statistical circuit validation on SRAM test array
NASA Astrophysics Data System (ADS)
Qiao, Ying; Spanos, Costas J.
2016-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose a variability-aware compact model characterization methodology based on stepwise parameter selection. Transistor I-V measurements are obtained from bit transistor accessible SRAM test array fabricated using a collaborating foundry's 28nm FDSOI technology. Our in-house customized Monte Carlo simulation bench can incorporate these statistical compact models; and simulation results on SRAM writability performance are very close to measurements in distribution estimation. Our proposed statistical compact model parameter extraction methodology also has the potential of predicting non-Gaussian behavior in statistical circuit performances through mixtures of Gaussian distributions.
Computer Graphics Simulations of Sampling Distributions.
ERIC Educational Resources Information Center
Gordon, Florence S.; Gordon, Sheldon P.
1989-01-01
Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…
Yigzaw, Kassaye Yitbarek; Michalas, Antonis; Bellika, Johan Gustav
2017-01-03
Techniques have been developed to compute statistics on distributed datasets without revealing private information except the statistical results. However, duplicate records in a distributed dataset may lead to incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset, secure deduplication is an important preprocessing step. We designed a secure protocol for the deduplication of horizontally partitioned datasets with deterministic record linkage algorithms. We provided a formal security analysis of the protocol in the presence of semi-honest adversaries. The protocol was implemented and deployed across three microbiology laboratories located in Norway, and we ran experiments on the datasets in which the number of records for each laboratory varied. Experiments were also performed on simulated microbiology datasets and data custodians connected through a local area network. The security analysis demonstrated that the protocol protects the privacy of individuals and data custodians under a semi-honest adversarial model. More precisely, the protocol remains secure with the collusion of up to N - 2 corrupt data custodians. The total runtime for the protocol scales linearly with the addition of data custodians and records. One million simulated records distributed across 20 data custodians were deduplicated within 45 s. The experimental results showed that the protocol is more efficient and scalable than previous protocols for the same problem. The proposed deduplication protocol is efficient and scalable for practical uses while protecting the privacy of patients and data custodians.
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis
Lin, Johnny; Bentler, Peter M.
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne’s asymptotically distribution-free method and Satorra Bentler’s mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler’s statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby’s study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic. PMID:23144511
Statistical study of air pollutant concentrations via generalized gamma distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marani, A.; Lavagnini, I.; Buttazzoni, C.
1986-11-01
This paper deals with modeling observed frequency distributions of air quality data measured in the area of Venice, Italy. The paper discusses the application of the generalized gamma distribution (ggd) which has not been commonly applied to air quality data notwithstanding the fact that it embodies most distribution models used for air quality analyses. The approach yields important simplifications for statistical analyses. A comparison among the ggd and other relevant models (standard gamma, Weibull, lognormal), carried out on daily sulfur dioxide concentrations in the area of Venice underlines the efficiency of ggd models in portraying experimental data.
NASA Astrophysics Data System (ADS)
Aouaini, Fatma; Knani, Salah; Yahia, Manel Ben; Bahloul, Neila; Ben Lamine, Abdelmottaleb; Kechaou, Nabil
2015-12-01
In this paper, we present a new investigation that allows determining the pore size distribution (PSD) in a porous medium. This PSD is achieved by using the desorption isotherms of four varieties of olive leaves. This is by the means of statistical physics formalism and Kelvin's law. The results are compared with those obtained with scanning electron microscopy. The effect of temperature on the distribution function of pores has been studied. The influence of each parameter on the PSD is interpreted. A similar function of adsorption energy distribution, AED, is deduced from the PSD.
Heavy residues from very mass asymmetric heavy ion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanold, Karl Alan
1994-08-01
The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with thatmore » expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model.« less
Paetkau, D; Waits, L P; Clarkson, P L; Craighead, L; Strobeck, C
1997-12-01
A large microsatellite data set from three species of bear (Ursidae) was used to empirically test the performance of six genetic distance measures in resolving relationships at a variety of scales ranging from adjacent areas in a continuous distribution to species that diverged several million years ago. At the finest scale, while some distance measures performed extremely well, statistics developed specifically to accommodate the mutational processes of microsatellites performed relatively poorly, presumably because of the relatively higher variance of these statistics. At the other extreme, no statistic was able to resolve the close sister relationship of polar bears and brown bears from more distantly related pairs of species. This failure is most likely due to constraints on allele distributions at microsatellite loci. At intermediate scales, both within continuous distributions and in comparisons to insular populations of late Pleistocene origin, it was not possible to define the point where linearity was lost for each of the statistics, except that it is clearly lost after relatively short periods of independent evolution. All of the statistics were affected by the amount of genetic diversity within the populations being compared, significantly complicating the interpretation of genetic distance data.
Paetkau, D.; Waits, L. P.; Clarkson, P. L.; Craighead, L.; Strobeck, C.
1997-01-01
A large microsatellite data set from three species of bear (Ursidae) was used to empirically test the performance of six genetic distance measures in resolving relationships at a variety of scales ranging from adjacent areas in a continuous distribution to species that diverged several million years ago. At the finest scale, while some distance measures performed extremely well, statistics developed specifically to accommodate the mutational processes of microsatellites performed relatively poorly, presumably because of the relatively higher variance of these statistics. At the other extreme, no statistic was able to resolve the close sister relationship of polar bears and brown bears from more distantly related pairs of species. This failure is most likely due to constraints on allele distributions at microsatellite loci. At intermediate scales, both within continuous distributions and in comparisons to insular populations of late Pleistocene origin, it was not possible to define the point where linearity was lost for each of the statistics, except that it is clearly lost after relatively short periods of independent evolution. All of the statistics were affected by the amount of genetic diversity within the populations being compared, significantly complicating the interpretation of genetic distance data. PMID:9409849
The statistical average of optical properties for alumina particle cluster in aircraft plume
NASA Astrophysics Data System (ADS)
Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin
2018-04-01
We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.
Statistical distribution of mechanical properties for three graphite-epoxy material systems
NASA Technical Reports Server (NTRS)
Reese, C.; Sorem, J., Jr.
1981-01-01
Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J
2010-06-24
Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.
Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014
NASA Astrophysics Data System (ADS)
Xu, M.; Cao, C. X.; Guo, H. F.
2017-09-01
Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Interactions between statistical and semantic information in infant language development
Lany, Jill; Saffran, Jenny R.
2013-01-01
Infants can use statistical regularities to form rudimentary word categories (e.g. noun, verb), and to learn the meanings common to words from those categories. Using an artificial language methodology, we probed the mechanisms by which two types of statistical cues (distributional and phonological regularities) affect word learning. Because linking distributional cues vs. phonological information to semantics make different computational demands on learners, we also tested whether their use is related to language proficiency. We found that 22-month-old infants with smaller vocabularies generalized using phonological cues; however, infants with larger vocabularies showed the opposite pattern of results, generalizing based on distributional cues. These findings suggest that both phonological and distributional cues marking word categories promote early word learning. Moreover, while correlations between these cues are important to forming word categories, we found infants’ weighting of these cues in subsequent word-learning tasks changes over the course of early language development. PMID:21884336
Human dynamics scaling characteristics for aerial inbound logistics operation
NASA Astrophysics Data System (ADS)
Wang, Qing; Guo, Jin-Li
2010-05-01
In recent years, the study of power-law scaling characteristics of real-life networks has attracted much interest from scholars; it deviates from the Poisson process. In this paper, we take the whole process of aerial inbound operation in a logistics company as the empirical object. The main aim of this work is to study the statistical scaling characteristics of the task-restricted work patterns. We found that the statistical variables have the scaling characteristics of unimodal distribution with a power-law tail in five statistical distributions - that is to say, there obviously exists a peak in each distribution, the shape of the left part closes to a Poisson distribution, and the right part has a heavy-tailed scaling statistics. Furthermore, to our surprise, there is only one distribution where the right parts can be approximated by the power-law form with exponent α=1.50. Others are bigger than 1.50 (three of four are about 2.50, one of four is about 3.00). We then obtain two inferences based on these empirical results: first, the human behaviors probably both close to the Poisson statistics and power-law distributions on certain levels, and the human-computer interaction behaviors may be the most common in the logistics operational areas, even in the whole task-restricted work pattern areas. Second, the hypothesis in Vázquez et al. (2006) [A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, A.-L. Barabási. Modeling burst and heavy tails in human dynamics, Phys. Rev. E 73 (2006) 036127] is probably not sufficient; it claimed that human dynamics can be classified as two discrete university classes. There may be a new human dynamics mechanism that is different from the classical Barabási models.
Parameter Estimation in Astronomy with Poisson-Distributed Data. 1; The (CHI)2(gamma) Statistic
NASA Technical Reports Server (NTRS)
Mighell, Kenneth J.
1999-01-01
Applying the standard weighted mean formula, [Sigma (sub i)n(sub i)ssigma(sub i, sup -2)], to determine the weighted mean of data, n(sub i), drawn from a Poisson distribution, will, on average, underestimate the true mean by approx. 1 for all true mean values larger than approx.3 when the common assumption is made that the error of the i th observation is sigma(sub i) = max square root of n(sub i), 1).This small, but statistically significant offset, explains the long-known observation that chi-square minimization techniques which use the modified Neyman'chi(sub 2) statistic, chi(sup 2, sub N) equivalent Sigma(sub i)((n(sub i) - y(sub i)(exp 2)) / max(n(sub i), 1), to compare Poisson - distributed data with model values, y(sub i), will typically predict a total number of counts that underestimates the true total by about 1 count per bin. Based on my finding that weighted mean of data drawn from a Poisson distribution can be determined using the formula [Sigma(sub i)[n(sub i) + min(n(sub i), 1)](n(sub i) + 1)(exp -1)] / [Sigma(sub i)(n(sub i) + 1)(exp -1))], I propose that a new chi(sub 2) statistic, chi(sup 2, sub gamma) equivalent, should always be used to analyze Poisson- distributed data in preference to the modified Neyman's chi(exp 2) statistic. I demonstrated the power and usefulness of,chi(sub gamma, sup 2) minimization by using two statistical fitting techniques and five chi(exp 2) statistics to analyze simulated X-ray power - low 15 - channel spectra with large and small counts per bin. I show that chi(sub gamma, sup 2) minimization with the Levenberg - Marquardt or Powell's method can produce excellent results (mean slope errors approx. less than 3%) with spectra having as few as 25 total counts.
Zipkin, Elise F.; Leirness, Jeffery B.; Kinlan, Brian P.; O'Connell, Allan F.; Silverman, Emily D.
2014-01-01
Determining appropriate statistical distributions for modeling animal count data is important for accurate estimation of abundance, distribution, and trends. In the case of sea ducks along the U.S. Atlantic coast, managers want to estimate local and regional abundance to detect and track population declines, to define areas of high and low use, and to predict the impact of future habitat change on populations. In this paper, we used a modified marked point process to model survey data that recorded flock sizes of Common eiders, Long-tailed ducks, and Black, Surf, and White-winged scoters. The data come from an experimental aerial survey, conducted by the United States Fish & Wildlife Service (USFWS) Division of Migratory Bird Management, during which east-west transects were flown along the Atlantic Coast from Maine to Florida during the winters of 2009–2011. To model the number of flocks per transect (the points), we compared the fit of four statistical distributions (zero-inflated Poisson, zero-inflated geometric, zero-inflated negative binomial and negative binomial) to data on the number of species-specific sea duck flocks that were recorded for each transect flown. To model the flock sizes (the marks), we compared the fit of flock size data for each species to seven statistical distributions: positive Poisson, positive negative binomial, positive geometric, logarithmic, discretized lognormal, zeta and Yule–Simon. Akaike’s Information Criterion and Vuong’s closeness tests indicated that the negative binomial and discretized lognormal were the best distributions for all species for the points and marks, respectively. These findings have important implications for estimating sea duck abundances as the discretized lognormal is a more skewed distribution than the Poisson and negative binomial, which are frequently used to model avian counts; the lognormal is also less heavy-tailed than the power law distributions (e.g., zeta and Yule–Simon), which are becoming increasingly popular for group size modeling. Choosing appropriate statistical distributions for modeling flock size data is fundamental to accurately estimating population summaries, determining required survey effort, and assessing and propagating uncertainty through decision-making processes.
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2002-01-01
The Weibull distribution has been widely adopted for the statistical description and inference of fatigue data. This document provides user instructions, examples, and verification for software to analyze gear fatigue test data. The software was developed presuming the data are adequately modeled using a two-parameter Weibull distribution. The calculations are based on likelihood methods, and the approach taken is valid for data that include type 1 censoring. The software was verified by reproducing results published by others.
NASA Technical Reports Server (NTRS)
Kranz, Timothy L.
2002-01-01
The Weibull distribution has been widely adopted for the statistical description and inference of fatigue data. This document provides user instructions, examples, and verification for software to analyze gear fatigue test data. The software was developed presuming the data are adequately modeled using a two-parameter Weibull distribution. The calculations are based on likelihood methods, and the approach taken is valid for data that include type I censoring. The software was verified by reproducing results published by others.
Statistical wind analysis for near-space applications
NASA Astrophysics Data System (ADS)
Roney, Jason A.
2007-09-01
Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18 30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20 22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.
The Statistics of Urban Scaling and Their Connection to Zipf’s Law
Gomez-Lievano, Andres; Youn, HyeJin; Bettencourt, Luís M. A.
2012-01-01
Urban scaling relations characterizing how diverse properties of cities vary on average with their population size have recently been shown to be a general quantitative property of many urban systems around the world. However, in previous studies the statistics of urban indicators were not analyzed in detail, raising important questions about the full characterization of urban properties and how scaling relations may emerge in these larger contexts. Here, we build a self-consistent statistical framework that characterizes the joint probability distributions of urban indicators and city population sizes across an urban system. To develop this framework empirically we use one of the most granular and stochastic urban indicators available, specifically measuring homicides in cities of Brazil, Colombia and Mexico, three nations with high and fast changing rates of violent crime. We use these data to derive the conditional probability of the number of homicides per year given the population size of a city. To do this we use Bayes’ rule together with the estimated conditional probability of city size given their number of homicides and the distribution of total homicides. We then show that scaling laws emerge as expectation values of these conditional statistics. Knowledge of these distributions implies, in turn, a relationship between scaling and population size distribution exponents that can be used to predict Zipf’s exponent from urban indicator statistics. Our results also suggest how a general statistical theory of urban indicators may be constructed from the stochastic dynamics of social interaction processes in cities. PMID:22815745
On alternative q-Weibull and q-extreme value distributions: Properties and applications
NASA Astrophysics Data System (ADS)
Zhang, Fode; Ng, Hon Keung Tony; Shi, Yimin
2018-01-01
Tsallis statistics and Tsallis distributions have been attracting a significant amount of research work in recent years. Importantly, the Tsallis statistics, q-distributions have been applied in different disciplines. Yet, a relationship between some existing q-Weibull distributions and q-extreme value distributions that is parallel to the well-established relationship between the conventional Weibull and extreme value distributions through a logarithmic transformation has not be established. In this paper, we proposed an alternative q-Weibull distribution that leads to a q-extreme value distribution via the q-logarithm transformation. Some important properties of the proposed q-Weibull and q-extreme value distributions are studied. Maximum likelihood and least squares estimation methods are used to estimate the parameters of q-Weibull distribution and their performances are investigated through a Monte Carlo simulation study. The methodologies and the usefulness of the proposed distributions are illustrated by fitting the 2014 traffic fatalities data from The National Highway Traffic Safety Administration.
Animating Statistics: A New Kind of Applet for Exploring Probability Distributions
ERIC Educational Resources Information Center
Kahle, David
2014-01-01
In this article, I introduce a novel applet ("module") for exploring probability distributions, their samples, and various related statistical concepts. The module is primarily designed to be used by the instructor in the introductory course, but it can be used far beyond it as well. It is a free, cross-platform, stand-alone interactive…
Alternative Derivations of the Statistical Mechanical Distribution Laws
Wall, Frederick T.
1971-01-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems. PMID:16578712
Alternative derivations of the statistical mechanical distribution laws.
Wall, F T
1971-08-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.
On the application of Rice's exceedance statistics to atmospheric turbulence.
NASA Technical Reports Server (NTRS)
Chen, W. Y.
1972-01-01
Discrepancies produced by the application of Rice's exceedance statistics to atmospheric turbulence are examined. First- and second-order densities from several data sources have been measured for this purpose. Particular care was paid to each selection of turbulence that provides stationary mean and variance over the entire segment. Results show that even for a stationary segment of turbulence, the process is still highly non-Gaussian, in spite of a Gaussian appearance for its first-order distribution. Data also indicate strongly non-Gaussian second-order distributions. It is therefore concluded that even stationary atmospheric turbulence with a normal first-order distribution cannot be considered a Gaussian process, and consequently the application of Rice's exceedance statistics should be approached with caution.
Caballero Morales, Santiago Omar
2013-01-01
The application of Preventive Maintenance (PM) and Statistical Process Control (SPC) are important practices to achieve high product quality, small frequency of failures, and cost reduction in a production process. However there are some points that have not been explored in depth about its joint application. First, most SPC is performed with the X-bar control chart which does not fully consider the variability of the production process. Second, many studies of design of control charts consider just the economic aspect while statistical restrictions must be considered to achieve charts with low probabilities of false detection of failures. Third, the effect of PM on processes with different failure probability distributions has not been studied. Hence, this paper covers these points, presenting the Economic Statistical Design (ESD) of joint X-bar-S control charts with a cost model that integrates PM with general failure distribution. Experiments showed statistically significant reductions in costs when PM is performed on processes with high failure rates and reductions in the sampling frequency of units for testing under SPC. PMID:23527082
Statistics of Dark Matter Halos from Gravitational Lensing.
Jain; Van Waerbeke L
2000-02-10
We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.
Measuring the Sensitivity of Single-locus “Neutrality Tests” Using a Direct Perturbation Approach
Garrigan, Daniel; Lewontin, Richard; Wakeley, John
2010-01-01
A large number of statistical tests have been proposed to detect natural selection based on a sample of variation at a single genetic locus. These tests measure the deviation of the allelic frequency distribution observed within populations from the distribution expected under a set of assumptions that includes both neutral evolution and equilibrium population demography. The present study considers a new way to assess the statistical properties of these tests of selection, by their behavior in response to direct perturbations of the steady-state allelic frequency distribution, unconstrained by any particular nonequilibrium demographic scenario. Results from Monte Carlo computer simulations indicate that most tests of selection are more sensitive to perturbations of the allele frequency distribution that increase the variance in allele frequencies than to perturbations that decrease the variance. Simulations also demonstrate that it requires, on average, 4N generations (N is the diploid effective population size) for tests of selection to relax to their theoretical, steady-state distributions following different perturbations of the allele frequency distribution to its extremes. This relatively long relaxation time highlights the fact that these tests are not robust to violations of the other assumptions of the null model besides neutrality. Lastly, genetic variation arising under an example of a regularly cycling demographic scenario is simulated. Tests of selection performed on this last set of simulated data confirm the confounding nature of these tests for the inference of natural selection, under a demographic scenario that likely holds for many species. The utility of using empirical, genomic distributions of test statistics, instead of the theoretical steady-state distribution, is discussed as an alternative for improving the statistical inference of natural selection. PMID:19744997
Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana
2017-02-07
Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
Statistical distributions of ultra-low dose CT sinograms and their fundamental limits
NASA Astrophysics Data System (ADS)
Lee, Tzu-Cheng; Zhang, Ruoqiao; Alessio, Adam M.; Fu, Lin; De Man, Bruno; Kinahan, Paul E.
2017-03-01
Low dose CT imaging is typically constrained to be diagnostic. However, there are applications for even lowerdose CT imaging, including image registration across multi-frame CT images and attenuation correction for PET/CT imaging. We define this as the ultra-low-dose (ULD) CT regime where the exposure level is a factor of 10 lower than current low-dose CT technique levels. In the ULD regime it is possible to use statistically-principled image reconstruction methods that make full use of the raw data information. Since most statistical based iterative reconstruction methods are based on the assumption of that post-log noise distribution is close to Poisson or Gaussian, our goal is to understand the statistical distribution of ULD CT data with different non-positivity correction methods, and to understand when iterative reconstruction methods may be effective in producing images that are useful for image registration or attenuation correction in PET/CT imaging. We first used phantom measurement and calibrated simulation to reveal how the noise distribution deviate from normal assumption under the ULD CT flux environment. In summary, our results indicate that there are three general regimes: (1) Diagnostic CT, where post-log data are well modeled by normal distribution. (2) Lowdose CT, where normal distribution remains a reasonable approximation and statistically-principled (post-log) methods that assume a normal distribution have an advantage. (3) An ULD regime that is photon-starved and the quadratic approximation is no longer effective. For instance, a total integral density of 4.8 (ideal pi for 24 cm of water) for 120kVp, 0.5mAs of radiation source is the maximum pi value where a definitive maximum likelihood value could be found. This leads to fundamental limits in the estimation of ULD CT data when using a standard data processing stream
2016 Distributed Wind Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, Alice C.; Foster, Nikolas F.; Morris, Scott L.
The U.S. Department of Energy's (DOE's) annual Distributed Wind Market Report provides stakeholders with statistics and analysis of the distributed wind market, along with insight into its trends and characteristics.
Rain rate duration statistics derived from the Mid-Atlantic coast rain gauge network
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius
1993-01-01
A rain gauge network comprised of 10 tipping bucket rain gauges located in the Mid-Atlantic coast of the United States has been in continuous operation since June 1, 1986. Rain rate distributions and estimated slant path fade distributions at 20 GHz and 30 GHz covering the first five year period were derived from the gauge network measurements, and these results were described by Goldhirsh. In this effort, rain rate time duration statistics are presented. The rain duration statistics are of interest for better understanding the physical nature of precipitation and to present a data base which may be used by modelers to convert to slant path fade duration statistics. Such statistics are important for better assessing optimal coding procedures over defined bandwidths.
Filter Tuning Using the Chi-Squared Statistic
NASA Technical Reports Server (NTRS)
Lilly-Salkowski, Tyler B.
2017-01-01
This paper examines the use of the Chi-square statistic as a means of evaluating filter performance. The goal of the process is to characterize the filter performance in the metric of covariance realism. The Chi-squared statistic is the value calculated to determine the realism of a covariance based on the prediction accuracy and the covariance values at a given point in time. Once calculated, it is the distribution of this statistic that provides insight on the accuracy of the covariance. The process of tuning an Extended Kalman Filter (EKF) for Aqua and Aura support is described, including examination of the measurement errors of available observation types, and methods of dealing with potentially volatile atmospheric drag modeling. Predictive accuracy and the distribution of the Chi-squared statistic, calculated from EKF solutions, are assessed.
Record statistics of financial time series and geometric random walks
NASA Astrophysics Data System (ADS)
Sabir, Behlool; Santhanam, M. S.
2014-09-01
The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.
Using Technology to Prompt Good Questions about Distributions in Statistics
ERIC Educational Resources Information Center
Nabbout-Cheiban, Marie; Fisher, Forest; Edwards, Michael Todd
2017-01-01
The Common Core State Standards for Mathematics envisions data analysis as a key component of K-grade 12 mathematics instruction with statistics introduced in the early grades. Nonetheless, deficiencies in statistical learning persist throughout elementary school and beyond. Too often, mathematics teachers lack the statistical knowledge for…
NASA Technical Reports Server (NTRS)
1980-01-01
MATHPAC image-analysis library is collection of general-purpose mathematical and statistical routines and special-purpose data-analysis and pattern-recognition routines for image analysis. MATHPAC library consists of Linear Algebra, Optimization, Statistical-Summary, Densities and Distribution, Regression, and Statistical-Test packages.
micromap: A Package for Linked Micromaps
The R package micromap is used to create linked micromaps, which display statistical summaries associated with areal units, or polygons. Linked micromaps provide a means to simultaneously summarize and display both statistical and geographic distributions by linking statistical ...
Evaluation of Differential DependencY (EDDY) is a statistical test for the differential dependency relationship of a set of genes between two given conditions. For each condition, possible dependency network structures are enumerated and their likelihoods are computed to represent a probability distribution of dependency networks. The difference between the probability distributions of dependency networks is computed between conditions, and its statistical significance is evaluated with random permutations of condition labels on the samples.
Evaluation of Differential DependencY (EDDY) is a statistical test for the differential dependency relationship of a set of genes between two given conditions. For each condition, possible dependency network structures are enumerated and their likelihoods are computed to represent a probability distribution of dependency networks. The difference between the probability distributions of dependency networks is computed between conditions, and its statistical significance is evaluated with random permutations of condition labels on the samples.
Short-Path Statistics and the Diffusion Approximation
NASA Astrophysics Data System (ADS)
Blanco, Stéphane; Fournier, Richard
2006-12-01
In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.
Zonation in the deep benthic megafauna : Application of a general test.
Gardiner, Frederick P; Haedrich, Richard L
1978-01-01
A test based on Maxwell-Boltzman statistics, instead of the formerly suggested but inappropriate Bose-Einstein statistics (Pielou and Routledge, 1976), examines the distribution of the boundaries of species' ranges distributed along a gradient, and indicates whether they are random or clustered (zoned). The test is most useful as a preliminary to the application of more instructive but less statistically rigorous methods such as cluster analysis. The test indicates zonation is marked in the deep benthic megafauna living between 200 and 3000 m, but below 3000 m little zonation may be found.
A random-sum Wilcoxon statistic and its application to analysis of ROC and LROC data.
Tang, Liansheng Larry; Balakrishnan, N
2011-01-01
The Wilcoxon-Mann-Whitney statistic is commonly used for a distribution-free comparison of two groups. One requirement for its use is that the sample sizes of the two groups are fixed. This is violated in some of the applications such as medical imaging studies and diagnostic marker studies; in the former, the violation occurs since the number of correctly localized abnormal images is random, while in the latter the violation is due to some subjects not having observable measurements. For this reason, we propose here a random-sum Wilcoxon statistic for comparing two groups in the presence of ties, and derive its variance as well as its asymptotic distribution for large sample sizes. The proposed statistic includes the regular Wilcoxon rank-sum statistic. Finally, we apply the proposed statistic for summarizing location response operating characteristic data from a liver computed tomography study, and also for summarizing diagnostic accuracy of biomarker data.
Counts-in-cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations
NASA Astrophysics Data System (ADS)
Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H.
2011-01-01
Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.
Earthquake number forecasts testing
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2017-10-01
We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness and kurtosis both tend to zero for large earthquake rates: for the Gaussian law, these values are identically zero. A calculation of the NBD skewness and kurtosis levels based on the values of the first two statistical moments of the distribution, shows rapid increase of these upper moments levels. However, the observed catalogue values of skewness and kurtosis are rising even faster. This means that for small time intervals, the earthquake number distribution is even more heavy-tailed than the NBD predicts. Therefore for small time intervals, we propose using empirical number distributions appropriately smoothed for testing forecasted earthquake numbers.
Discrete photon statistics from continuous microwave measurements
NASA Astrophysics Data System (ADS)
Virally, Stéphane; Simoneau, Jean Olivier; Lupien, Christian; Reulet, Bertrand
2016-04-01
Photocount statistics are an important tool for the characterization of electromagnetic fields, especially for fields with an irrelevant phase. In the microwave domain, continuous rather than discrete measurements are the norm. Using a different approach, we recover discrete photon statistics from the cumulants of a continuous distribution of field quadrature measurements. The use of cumulants allows the separation between the signal of interest and experimental noise. Using a parametric amplifier as the first stage of the amplification chain, we extract useful data from up to the sixth cumulant of the continuous distribution of a coherent field, hence recovering up to the third moment of the discrete statistics associated with a signal with much less than one average photon.
An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process
NASA Technical Reports Server (NTRS)
Carter, M. C.; Madison, M. W.
1973-01-01
The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.
Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish
2012-01-01
Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable. PMID:22761649
Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish
2012-01-01
Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable.
Order statistics applied to the most massive and most distant galaxy clusters
NASA Astrophysics Data System (ADS)
Waizmann, J.-C.; Ettori, S.; Bartelmann, M.
2013-06-01
In this work, we present an analytic framework for calculating the individual and joint distributions of the nth most massive or nth highest redshift galaxy cluster for a given survey characteristic allowing us to formulate Λ cold dark matter (ΛCDM) exclusion criteria. We show that the cumulative distribution functions steepen with increasing order, giving them a higher constraining power with respect to the extreme value statistics. Additionally, we find that the order statistics in mass (being dominated by clusters at lower redshifts) is sensitive to the matter density and the normalization of the matter fluctuations, whereas the order statistics in redshift is particularly sensitive to the geometric evolution of the Universe. For a fixed cosmology, both order statistics are efficient probes of the functional shape of the mass function at the high-mass end. To allow a quick assessment of both order statistics, we provide fits as a function of the survey area that allow percentile estimation with an accuracy better than 2 per cent. Furthermore, we discuss the joint distributions in the two-dimensional case and find that for the combination of the largest and the second largest observation, it is most likely to find them to be realized with similar values with a broadly peaked distribution. When combining the largest observation with higher orders, it is more likely to find a larger gap between the observations and when combining higher orders in general, the joint probability density function peaks more strongly. Having introduced the theory, we apply the order statistical analysis to the Southpole Telescope (SPT) massive cluster sample and metacatalogue of X-ray detected clusters of galaxies catalogue and find that the 10 most massive clusters in the sample are consistent with ΛCDM and the Tinker mass function. For the order statistics in redshift, we find a discrepancy between the data and the theoretical distributions, which could in principle indicate a deviation from the standard cosmology. However, we attribute this deviation to the uncertainty in the modelling of the SPT survey selection function. In turn, by assuming the ΛCDM reference cosmology, order statistics can also be utilized for consistency checks of the completeness of the observed sample and of the modelling of the survey selection function.
Superthermal photon bunching in terms of simple probability distributions
NASA Astrophysics Data System (ADS)
Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.
2018-05-01
We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.
Scan statistics with local vote for target detection in distributed system
NASA Astrophysics Data System (ADS)
Luo, Junhai; Wu, Qi
2017-12-01
Target detection has occupied a pivotal position in distributed system. Scan statistics, as one of the most efficient detection methods, has been applied to a variety of anomaly detection problems and significantly improves the probability of detection. However, scan statistics cannot achieve the expected performance when the noise intensity is strong, or the signal emitted by the target is weak. The local vote algorithm can also achieve higher target detection rate. After the local vote, the counting rule is always adopted for decision fusion. The counting rule does not use the information about the contiguity of sensors but takes all sensors' data into consideration, which makes the result undesirable. In this paper, we propose a scan statistics with local vote (SSLV) method. This method combines scan statistics with local vote decision. Before scan statistics, each sensor executes local vote decision according to the data of its neighbors and its own. By combining the advantages of both, our method can obtain higher detection rate in low signal-to-noise ratio environment than the scan statistics. After the local vote decision, the distribution of sensors which have detected the target becomes more intensive. To make full use of local vote decision, we introduce a variable-step-parameter for the SSLV. It significantly shortens the scan period especially when the target is absent. Analysis and simulations are presented to demonstrate the performance of our method.
ERIC Educational Resources Information Center
Lunsford, M. Leigh; Rowell, Ginger Holmes; Goodson-Espy, Tracy
2006-01-01
We applied a classroom research model to investigate student understanding of sampling distributions of sample means and the Central Limit Theorem in post-calculus introductory probability and statistics courses. Using a quantitative assessment tool developed by previous researchers and a qualitative assessment tool developed by the authors, we…
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Statistical characterization of discrete conservative systems: The web map
NASA Astrophysics Data System (ADS)
Ruiz, Guiomar; Tirnakli, Ugur; Borges, Ernesto P.; Tsallis, Constantino
2017-10-01
We numerically study the two-dimensional, area preserving, web map. When the map is governed by ergodic behavior, it is, as expected, correctly described by Boltzmann-Gibbs statistics, based on the additive entropic functional SB G[p (x ) ] =-k ∫d x p (x ) lnp (x ) . In contrast, possible ergodicity breakdown and transitory sticky dynamical behavior drag the map into the realm of generalized q statistics, based on the nonadditive entropic functional Sq[p (x ) ] =k 1/-∫d x [p(x ) ] q q -1 (q ∈R ;S1=SB G ). We statistically describe the system (probability distribution of the sum of successive iterates, sensitivity to the initial condition, and entropy production per unit time) for typical values of the parameter that controls the ergodicity of the map. For small (large) values of the external parameter K , we observe q -Gaussian distributions with q =1.935 ⋯ (Gaussian distributions), like for the standard map. In contrast, for intermediate values of K , we observe a different scenario, due to the fractal structure of the trajectories embedded in the chaotic sea. Long-standing non-Gaussian distributions are characterized in terms of the kurtosis and the box-counting dimension of chaotic sea.
Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1987-01-01
The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.
Statistical analysis of the 70 meter antenna surface distortions
NASA Technical Reports Server (NTRS)
Kiedron, K.; Chian, C. T.; Chuang, K. L.
1987-01-01
Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.
Some intriguing aspects of multiparticle production processes
NASA Astrophysics Data System (ADS)
Wilk, Grzegorz; Włodarczyk, Zbigniew
2018-04-01
Multiparticle production processes provide valuable information about the mechanism of the conversion of the initial energy of projectiles into a number of secondaries by measuring their multiplicity distributions and their distributions in phase space. They therefore serve as a reference point for more involved measurements. Distributions in phase space are usually investigated using the statistical approach, very successful in general but failing in cases of small colliding systems, small multiplicities, and at the edges of the allowed phase space, in which cases the underlying dynamical effects competing with the statistical distributions take over. We discuss an alternative approach, which applies to the whole phase space without detailed knowledge of dynamics. It is based on a modification of the usual statistics by generalizing it to a superstatistical form. We stress particularly the scaling and self-similar properties of such an approach manifesting themselves as the phenomena of the log-periodic oscillations and oscillations of temperature caused by sound waves in hadronic matter. Concerning the multiplicity distributions we discuss in detail the phenomenon of the oscillatory behavior of the modified combinants apparently observed in experimental data.
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-01
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919
17 CFR 229.1111 - (Item 1111) Pool assets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... information for the asset pool, including statistical information regarding delinquencies and losses. (d.... Present statistical information in tabular or graphical format, if such presentation will aid understanding. Present statistical information in appropriate distributional groups or incremental ranges in...
A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.
Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine
2008-04-11
Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.
NASA Technical Reports Server (NTRS)
Stefanick, M.; Jurdy, D. M.
1984-01-01
Statistical analyses are compared for two published hot spot data sets, one minimal set of 42 and another larger set of 117, using three different approaches. First, the earths surface is divided into 16 equal-area fractions and the observed distribution of hot spots among them is analyzed using chi-square tests. Second, cumulative distributions about the principal axes of the hot spot inertia tensor are used to describe hot spot distribution. Finally, a hot spot density function is constructed for each of the two hot spot data sets. The methods all indicate that hot spots have a nonuniform distribution, even when statistical fluctuations are considered. To the first order, hot spots are concentrated on one half of of the earth's surface area; within that portion, the distribution is consistent with a uniform distribution. The observed hot spot densities for neither data set are explained solely by plate speed.
NASA Technical Reports Server (NTRS)
Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.
1992-01-01
The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.
On the statistical distribution in a deformed solid
NASA Astrophysics Data System (ADS)
Gorobei, N. N.; Luk'yanenko, A. S.
2017-09-01
A modification of the Gibbs distribution in a thermally insulated mechanically deformed solid, where its linear dimensions (shape parameters) are excluded from statistical averaging and included among the macroscopic parameters of state alongside with the temperature, is proposed. Formally, this modification is reduced to corresponding additional conditions when calculating the statistical sum. The shape parameters and the temperature themselves are found from the conditions of mechanical and thermal equilibria of a body, and their change is determined using the first law of thermodynamics. Known thermodynamic phenomena are analyzed for the simple model of a solid, i.e., an ensemble of anharmonic oscillators, within the proposed formalism with an accuracy of up to the first order by the anharmonicity constant. The distribution modification is considered for the classic and quantum temperature regions apart.
Statistical methods for investigating quiescence and other temporal seismicity patterns
Matthews, M.V.; Reasenberg, P.A.
1988-01-01
We propose a statistical model and a technique for objective recognition of one of the most commonly cited seismicity patterns:microearthquake quiescence. We use a Poisson process model for seismicity and define a process with quiescence as one with a particular type of piece-wise constant intensity function. From this model, we derive a statistic for testing stationarity against a 'quiescence' alternative. The large-sample null distribution of this statistic is approximated from simulated distributions of appropriate functionals applied to Brownian bridge processes. We point out the restrictiveness of the particular model we propose and of the quiescence idea in general. The fact that there are many point processes which have neither constant nor quiescent rate functions underscores the need to test for and describe nonuniformity thoroughly. We advocate the use of the quiescence test in conjunction with various other tests for nonuniformity and with graphical methods such as density estimation. ideally these methods may promote accurate description of temporal seismicity distributions and useful characterizations of interesting patterns. ?? 1988 Birkha??user Verlag.
Statistical mechanics of economics I
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.
2011-02-01
We show that statistical mechanics is useful in the description of financial crisis and economics. Taking a large amount of instant snapshots of a market over an interval of time we construct their ensembles and study their statistical interference. This results in a probability description of the market and gives capital, money, income, wealth and debt distributions, which in the most cases takes the form of the Bose-Einstein distribution. In addition, statistical mechanics provides the main market equations and laws which govern the correlations between the amount of money, debt, product, prices and number of retailers. We applied the found relations to a study of the evolution of the economics in USA between the years 1996 to 2008 and observe that over that time the income of a major population is well described by the Bose-Einstein distribution which parameters are different for each year. Each financial crisis corresponds to a peak in the absolute activity coefficient. The analysis correctly indicates the past crises and predicts the future one.
Statistical Analyses of Raw Material Data for MTM45-1/CF7442A-36% RW: CMH Cure Cycle
NASA Technical Reports Server (NTRS)
Coroneos, Rula; Pai, Shantaram, S.; Murthy, Pappu
2013-01-01
This report describes statistical characterization of physical properties of the composite material system MTM45-1/CF7442A, which has been tested and is currently being considered for use on spacecraft structures. This composite system is made of 6K plain weave graphite fibers in a highly toughened resin system. This report summarizes the distribution types and statistical details of the tests and the conditions for the experimental data generated. These distributions will be used in multivariate regression analyses to help determine material and design allowables for similar material systems and to establish a procedure for other material systems. Additionally, these distributions will be used in future probabilistic analyses of spacecraft structures. The specific properties that are characterized are the ultimate strength, modulus, and Poisson??s ratio by using a commercially available statistical package. Results are displayed using graphical and semigraphical methods and are included in the accompanying appendixes.
Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?
NASA Astrophysics Data System (ADS)
Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.
2013-09-01
Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.
Universal Recurrence Time Statistics of Characteristic Earthquakes
NASA Astrophysics Data System (ADS)
Goltz, C.; Turcotte, D. L.; Abaimov, S.; Nadeau, R. M.
2006-12-01
Characteristic earthquakes are defined to occur quasi-periodically on major faults. Do recurrence time statistics of such earthquakes follow a particular statistical distribution? If so, which one? The answer is fundamental and has important implications for hazard assessment. The problem cannot be solved by comparing the goodness of statistical fits as the available sequences are too short. The Parkfield sequence of M ≍ 6 earthquakes, one of the most extensive reliable data sets available, has grown to merely seven events with the last earthquake in 2004, for example. Recently, however, advances in seismological monitoring and improved processing methods have unveiled so-called micro-repeaters, micro-earthquakes which recur exactly in the same location on a fault. It seems plausible to regard these earthquakes as a miniature version of the classic characteristic earthquakes. Micro-repeaters are much more frequent than major earthquakes, leading to longer sequences for analysis. Due to their recent discovery, however, available sequences contain less than 20 events at present. In this paper we present results for the analysis of recurrence times for several micro-repeater sequences from Parkfield and adjacent regions. To improve the statistical significance of our findings, we combine several sequences into one by rescaling the individual sets by their respective mean recurrence intervals and Weibull exponents. This novel approach of rescaled combination yields the most extensive data set possible. We find that the resulting statistics can be fitted well by an exponential distribution, confirming the universal applicability of the Weibull distribution to characteristic earthquakes. A similar result is obtained from rescaled combination, however, with regard to the lognormal distribution.
Statistical analyses to support guidelines for marine avian sampling. Final report
Kinlan, Brian P.; Zipkin, Elise; O'Connell, Allan F.; Caldow, Chris
2012-01-01
Interest in development of offshore renewable energy facilities has led to a need for high-quality, statistically robust information on marine wildlife distributions. A practical approach is described to estimate the amount of sampling effort required to have sufficient statistical power to identify species-specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and “coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence probability for each species of interest. For example, a location with average abundance or occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The choice of the effect size used to define hot and coldspots will generally depend on a combination of ecological and regulatory considerations. A method is also developed for testing the statistical significance of possible hotspots and coldspots. Both methods are illustrated with historical seabird survey data from the USGS Avian Compendium Database. Our approach consists of five main components: 1. A review of the primary scientific literature on statistical modeling of animal group size and avian count data to develop a candidate set of statistical distributions that have been used or may be useful to model seabird counts. 2. Statistical power curves for one-sample, one-tailed Monte Carlo significance tests of differences of observed small-sample means from a specified reference distribution. These curves show the power to detect "hotspots" or "coldspots" of occurrence and abundance at a range of effect sizes, given assumptions which we discuss. 3. A model selection procedure, based on maximum likelihood fits of models in the candidate set, to determine an appropriate statistical distribution to describe counts of a given species in a particular region and season. 4. Using a large database of historical at-sea seabird survey data, we applied this technique to identify appropriate statistical distributions for modeling a variety of species, allowing the distribution to vary by season. For each species and season, we used the selected distribution to calculate and map retrospective statistical power to detect hotspots and coldspots, and map pvalues from Monte Carlo significance tests of hotspots and coldspots, in discrete lease blocks designated by the U.S. Department of Interior, Bureau of Ocean Energy Management (BOEM). 5. Because our definition of hotspots and coldspots does not explicitly include variability over time, we examine the relationship between the temporal scale of sampling and the proportion of variance captured in time series of key environmental correlates of marine bird abundance, as well as available marine bird abundance time series, and use these analyses to develop recommendations for the temporal distribution of sampling to adequately represent both shortterm and long-term variability. We conclude by presenting a schematic “decision tree” showing how this power analysis approach would fit in a general framework for avian survey design, and discuss implications of model assumptions and results. We discuss avenues for future development of this work, and recommendations for practical implementation in the context of siting and wildlife assessment for offshore renewable energy development projects.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hanagud, S.
1974-01-01
The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.
A study of the feasibility of statistical analysis of airport performance simulation
NASA Technical Reports Server (NTRS)
Myers, R. H.
1982-01-01
The feasibility of conducting a statistical analysis of simulation experiments to study airport capacity is investigated. First, the form of the distribution of airport capacity is studied. Since the distribution is non-Gaussian, it is important to determine the effect of this distribution on standard analysis of variance techniques and power calculations. Next, power computations are made in order to determine how economic simulation experiments would be if they are designed to detect capacity changes from condition to condition. Many of the conclusions drawn are results of Monte-Carlo techniques.
Statistical properties of trading activity in Chinese stock market
NASA Astrophysics Data System (ADS)
Sun, Xiaoqian; Cheng, Xueqi; Shen, Huawei; Wang, Zhaoyang
2010-08-01
We investigate the statistical properties of traders' trading behavior using cumulative distribution function(CDF). We analyze exchange data of 52 stocks for one-year period which contains non-manipulated stocks and manipulated stocks published by China Securities Regulatory Commission(CSRC). By analyzing the total number of transactions and the trading volume of each trader over a year, we find the cumulative distributions have power-law tails and the distributions between non-manipulated stocks and manipulated stocks are different. These findings can help us to detect the manipulated stocks.
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Chan, Shiau Wei; Ismail, Zaleha
2014-01-01
The focus of assessment in statistics has gradually shifted from traditional assessment towards alternative assessment where more attention has been paid to the core statistical concepts such as center, variability, and distribution. In spite of this, there are comparatively few assessments that combine the significant three types of statistical…
Local image statistics: maximum-entropy constructions and perceptual salience
Victor, Jonathan D.; Conte, Mary M.
2012-01-01
The space of visual signals is high-dimensional and natural visual images have a highly complex statistical structure. While many studies suggest that only a limited number of image statistics are used for perceptual judgments, a full understanding of visual function requires analysis not only of the impact of individual image statistics, but also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to construct synthetic images in which local image statistics—including luminance distributions, pair-wise correlations, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local image statistics and to sample their interactions. PMID:22751397
Application of Statistically Derived CPAS Parachute Parameters
NASA Technical Reports Server (NTRS)
Romero, Leah M.; Ray, Eric S.
2013-01-01
The Capsule Parachute Assembly System (CPAS) Analysis Team is responsible for determining parachute inflation parameters and dispersions that are ultimately used in verifying system requirements. A model memo is internally released semi-annually documenting parachute inflation and other key parameters reconstructed from flight test data. Dispersion probability distributions published in previous versions of the model memo were uniform because insufficient data were available for determination of statistical based distributions. Uniform distributions do not accurately represent the expected distributions since extreme parameter values are just as likely to occur as the nominal value. CPAS has taken incremental steps to move away from uniform distributions. Model Memo version 9 (MMv9) made the first use of non-uniform dispersions, but only for the reefing cutter timing, for which a large number of sample was available. In order to maximize the utility of the available flight test data, clusters of parachutes were reconstructed individually starting with Model Memo version 10. This allowed for statistical assessment for steady-state drag area (CDS) and parachute inflation parameters such as the canopy fill distance (n), profile shape exponent (expopen), over-inflation factor (C(sub k)), and ramp-down time (t(sub k)) distributions. Built-in MATLAB distributions were applied to the histograms, and parameters such as scale (sigma) and location (mu) were output. Engineering judgment was used to determine the "best fit" distribution based on the test data. Results include normal, log normal, and uniform (where available data remains insufficient) fits of nominal and failure (loss of parachute and skipped stage) cases for all CPAS parachutes. This paper discusses the uniform methodology that was previously used, the process and result of the statistical assessment, how the dispersions were incorporated into Monte Carlo analyses, and the application of the distributions in trajectory benchmark testing assessments with parachute inflation parameters, drag area, and reefing cutter timing used by CPAS.
Shirazi, Mohammadali; Dhavala, Soma Sekhar; Lord, Dominique; Geedipally, Srinivas Reddy
2017-10-01
Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new statistical distributions, choosing the best one using such post-modeling methods is not a trivial task, in addition to all theoretical or numerical issues the analyst may face during the analysis. Furthermore, and most importantly, these measures or tests do not provide any intuitions into why a specific distribution (or model) is preferred over another (Goodness-of-Logic). This paper ponders into these issues by proposing a methodology to design heuristics for Model Selection based on the characteristics of data, in terms of descriptive summary statistics, before fitting the models. The proposed methodology employs two analytic tools: (1) Monte-Carlo Simulations and (2) Machine Learning Classifiers, to design easy heuristics to predict the label of the 'most-likely-true' distribution for analyzing data. The proposed methodology was applied to investigate when the recently introduced Negative Binomial Lindley (NB-L) distribution is preferred over the Negative Binomial (NB) distribution. Heuristics were designed to select the 'most-likely-true' distribution between these two distributions, given a set of prescribed summary statistics of data. The proposed heuristics were successfully compared against classical tests for several real or observed datasets. Not only they are easy to use and do not need any post-modeling inputs, but also, using these heuristics, the analyst can attain useful information about why the NB-L is preferred over the NB - or vice versa- when modeling data. Copyright © 2017 Elsevier Ltd. All rights reserved.
A modified weighted function method for parameter estimation of Pearson type three distribution
NASA Astrophysics Data System (ADS)
Liang, Zhongmin; Hu, Yiming; Li, Binquan; Yu, Zhongbo
2014-04-01
In this paper, an unconventional method called Modified Weighted Function (MWF) is presented for the conventional moment estimation of a probability distribution function. The aim of MWF is to estimate the coefficient of variation (CV) and coefficient of skewness (CS) from the original higher moment computations to the first-order moment calculations. The estimators for CV and CS of Pearson type three distribution function (PE3) were derived by weighting the moments of the distribution with two weight functions, which were constructed by combining two negative exponential-type functions. The selection of these weight functions was based on two considerations: (1) to relate weight functions to sample size in order to reflect the relationship between the quantity of sample information and the role of weight function and (2) to allocate more weights to data close to medium-tail positions in a sample series ranked in an ascending order. A Monte-Carlo experiment was conducted to simulate a large number of samples upon which statistical properties of MWF were investigated. For the PE3 parent distribution, results of MWF were compared to those of the original Weighted Function (WF) and Linear Moments (L-M). The results indicate that MWF was superior to WF and slightly better than L-M, in terms of statistical unbiasness and effectiveness. In addition, the robustness of MWF, WF, and L-M were compared by designing the Monte-Carlo experiment that samples are obtained from Log-Pearson type three distribution (LPE3), three parameter Log-Normal distribution (LN3), and Generalized Extreme Value distribution (GEV), respectively, but all used as samples from the PE3 distribution. The results show that in terms of statistical unbiasness, no one method possesses the absolutely overwhelming advantage among MWF, WF, and L-M, while in terms of statistical effectiveness, the MWF is superior to WF and L-M.
Temporal distribution of rainfall in Virginia : final report.
DOT National Transportation Integrated Search
1984-01-01
The temporal distribution of Virginia rainstorms was examined by statistically analyzing approximately 1,400 storm events recorded throughout the state. Rainfall time distribution curves were constructed and were compared with several nationally reco...
A generalized statistical model for the size distribution of wealth
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2012-12-01
In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.
Précis of statistical significance: rationale, validity, and utility.
Chow, S L
1998-04-01
The null-hypothesis significance-test procedure (NHSTP) is defended in the context of the theory-corroboration experiment, as well as the following contrasts: (a) substantive hypotheses versus statistical hypotheses, (b) theory corroboration versus statistical hypothesis testing, (c) theoretical inference versus statistical decision, (d) experiments versus nonexperimental studies, and (e) theory corroboration versus treatment assessment. The null hypothesis can be true because it is the hypothesis that errors are randomly distributed in data. Moreover, the null hypothesis is never used as a categorical proposition. Statistical significance means only that chance influences can be excluded as an explanation of data; it does not identify the nonchance factor responsible. The experimental conclusion is drawn with the inductive principle underlying the experimental design. A chain of deductive arguments gives rise to the theoretical conclusion via the experimental conclusion. The anomalous relationship between statistical significance and the effect size often used to criticize NHSTP is more apparent than real. The absolute size of the effect is not an index of evidential support for the substantive hypothesis. Nor is the effect size, by itself, informative as to the practical importance of the research result. Being a conditional probability, statistical power cannot be the a priori probability of statistical significance. The validity of statistical power is debatable because statistical significance is determined with a single sampling distribution of the test statistic based on H0, whereas it takes two distributions to represent statistical power or effect size. Sample size should not be determined in the mechanical manner envisaged in power analysis. It is inappropriate to criticize NHSTP for nonstatistical reasons. At the same time, neither effect size, nor confidence interval estimate, nor posterior probability can be used to exclude chance as an explanation of data. Neither can any of them fulfill the nonstatistical functions expected of them by critics.
Robust approaches to quantification of margin and uncertainty for sparse data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hund, Lauren; Schroeder, Benjamin B.; Rumsey, Kelin
Characterizing the tails of probability distributions plays a key role in quantification of margins and uncertainties (QMU), where the goal is characterization of low probability, high consequence events based on continuous measures of performance. When data are collected using physical experimentation, probability distributions are typically fit using statistical methods based on the collected data, and these parametric distributional assumptions are often used to extrapolate about the extreme tail behavior of the underlying probability distribution. In this project, we character- ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to demonstrate the large magnitude of themore » risk; then, we developed new methods for communicat- ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad- ditional information. We conclude that decision-making using QMU is a complex process that cannot be achieved using statistical analyses alone.« less
Exact extreme-value statistics at mixed-order transitions.
Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David
2016-05-01
We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.
Random walk to a nonergodic equilibrium concept
NASA Astrophysics Data System (ADS)
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1997-01-01
This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for 10,000 years with an assumed ground flash density and peak current distributions, and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
NASA Astrophysics Data System (ADS)
Bernstein, V.; Kolodney, E.
2017-10-01
We have recently observed, both experimentally and computationally, the phenomenon of postcollision multifragmentation in sub-keV surface collisions of a C60 projectile. Namely, delayed multiparticle breakup of a strongly impact deformed and vibrationally excited large cluster collider into several large fragments, after leaving the surface. Molecular dynamics simulations with extensive statistics revealed a nearly simultaneous event, within a sub-psec time window. Here we study, computationally, additional essential aspects of this new delayed collisional fragmentation which were not addressed before. Specifically, we study here the delayed (binary) fission channel for different impact energies both by calculating mass distributions over all fission events and by calculating and analyzing lifetime distributions of the scattered projectile. We observe an asymmetric fission resulting in a most probable fission channel and we find an activated exponential (statistical) decay. Finally, we also calculate and discuss the fragment mass distribution in (triple) multifragmentation over different time windows, in terms of most abundant fragments.
Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales
2015-08-31
ABSTRACT 16. SECURITY CLASSIFICATION OF: Shock wave response of heterogeneous materials like cement and concrete is greatly influenced by the...constituents and their statistical distributions. The microstructure of cement is complex due to the presence of unhydrated water, nano /micro pores, and other...heterogeneous materials like cement and concrete is greatly influenced by the constituents and their statistical distributions. The microstructure of cement
IUTAM Symposium on Statistical Energy Analysis, 8-11 July 1997, Programme
1997-01-01
distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum200 words) This was the first international scientific gathering devoted...energy flow, continuum dynamics, vibrational energy, statistical energy analysis (SEA) 15. NUMBER OF PAGES 16. PRICE CODE INSECURITY... correlation v=V(ɘ ’• • determination of the correlation n^, =11^, (<?). When harmonic motion and time-average are considered, the following I
Statistical Analysis of the Exchange Rate of Bitcoin.
Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.
NASA Astrophysics Data System (ADS)
Cohen, D.; Michlmayr, G.; Or, D.
2012-04-01
Shearing of dense granular materials appears in many engineering and Earth sciences applications. Under a constant strain rate, the shearing stress at steady state oscillates with slow rises followed by rapid drops that are linked to the build up and failure of force chains. Experiments indicate that these drops display exponential statistics. Measurements of acoustic emissions during shearing indicates that the energy liberated by failure of these force chains has power-law statistics. Representing force chains as fibers, we use a stick-slip fiber bundle model to obtain analytical solutions of the statistical distribution of stress drops and failure energy. In the model, fibers stretch, fail, and regain strength during deformation. Fibers have Weibull-distributed threshold strengths with either quenched and annealed disorder. The shape of the distribution for drops and energy obtained from the model are similar to those measured during shearing experiments. This simple model may be useful to identify failure events linked to force chain failures. Future generalizations of the model that include different types of fiber failure may also allow identification of different types of granular failures that have distinct statistical acoustic emission signatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonen, F.A.; Khaleel, M.A.
This paper describes a statistical evaluation of the through-thickness copper variation for welds in reactor pressure vessels, and reviews the historical basis for the static and arrest fracture toughness (K{sub Ic} and K{sub Ia}) equations used in the VISA-II code. Copper variability in welds is due to fabrication procedures with copper contents being randomly distributed, variable from one location to another through the thickness of the vessel. The VISA-II procedure of sampling the copper content from a statistical distribution for every 6.35- to 12.7-mm (1/4- to 1/2-in.) layer through the thickness was found to be consistent with the statistical observations.more » However, the parameters of the VISA-II distribution and statistical limits required further investigation. Copper contents at few locations through the thickness were found to exceed the 0.4% upper limit of the VISA-II code. The data also suggest that the mean copper content varies systematically through the thickness. While, the assumption of normality is not clearly supported by the available data, a statistical evaluation based on all the available data results in mean and standard deviations within the VISA-II code limits.« less
Wu, Jingxian
2018-05-20
The equitable distribution of both generalist and specialist physicians is vital in establishing a fair and efficient health care system. The presents study aims at comparatively measuring the demographical and geographical distribution of generalist and specialist physicians in China from 2012 to 2016. The data were obtained from China Health and Family Planning Statistics and China Statistical Yearbooks 2013 to 2017. Descriptive statistical methods were used to address the quantity and density of physicians, and Gini coefficient was adopted as inequality indicator to trace their distribution inequalities. The quantity and density of total physicians, generalist, and specialist physicians increased during the last 5 years. The demographic distribution inequalities of total physicians, generalist, and specialist physicians are decent with Gini coefficients of approximately 0.3, whereas the corresponding geographical distribution inequalities are severe with Gini coefficients higher than 0.6. Compared with generalist physicians, specialist physicians not only had a higher geographical and geographical density but also maintained a more equitable distribution. The present study compares the distribution inequalities between generalist and specialist physicians in China for the first time. Despite the rapid increase in quantity and density of these physicians, the whole nation faces a severe shortage and maldistribution of generalist physicians. The increase in the number of physicians has not necessarily eliminated the geographical distribution inequalities. The government should consider all influencing factors when allocating health workers and continue promoting the development of primary health care to alleviate these inequalities in physician distribution. Copyright © 2018 John Wiley & Sons, Ltd.
Statistics of the work done on a quantum critical system by quenching a control parameter.
Silva, Alessandro
2008-09-19
We study the statistics of the work done on a quantum critical system by quenching a control parameter in the Hamiltonian. We elucidate the relation between the probability distribution of the work and the Loschmidt echo, a quantity emerging usually in the context of dephasing. Using this connection we characterize the statistics of the work done on a quantum Ising chain by quenching locally or globally the transverse field. We show that for local quenches starting at criticality the probability distribution of the work displays an interesting edge singularity.
NASA Astrophysics Data System (ADS)
Bonneau, Joseph; Just, Mike; Matthews, Greg
We study the efficiency of statistical attacks on human authentication systems relying on personal knowledge questions. We adapt techniques from guessing theory to measure security against a trawling attacker attempting to compromise a large number of strangers' accounts. We then examine a diverse corpus of real-world statistical distributions for likely answer categories such as the names of people, pets, and places and find that personal knowledge questions are significantly less secure than graphical or textual passwords. We also demonstrate that statistics can be used to increase security by proactively shaping the answer distribution to lower the prevalence of common responses.
Use of the Digamma Function in Statistical Astrophysics Distributions
NASA Astrophysics Data System (ADS)
Cahill, Michael
2017-06-01
Relaxed astrophysical statistical distributions may be constructed by using the inverse of a most probable energy distribution equation giving the energy ei of each particle in cell i in terms of the cell’s particle population Ni. The digamma mediated equation is A + Bei = Ψ(1+ Ni), where the constants A & B are Lagrange multipliers and Ψ is the digamma function given by Ψ(1+x) = dln(x!)/dx. Results are discussed for a Monatomic Ideal Gas, Atmospheres of Spherical Planets or Satellites and for Spherical Globular Clusters. These distributions are self-terminating even if other factors do not cause a cutoff. The examples are discussed classically but relativistic extensions are possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marekova, Elisaveta
Series of relatively large earthquakes in different regions of the Earth are studied. The regions chooses are of a high seismic activity and has a good contemporary network for recording of the seismic events along them. The main purpose of this investigation is the attempt to describe analytically the seismic process in the space and time. We are considering the statistical distributions the distances and the times between consecutive earthquakes (so called pair analysis). Studies conducted on approximating the statistical distribution of the parameters of consecutive seismic events indicate the existence of characteristic functions that describe them best. Such amore » mathematical description allows the distributions of the examined parameters to be compared to other model distributions.« less
New advances in the statistical parton distributions approach
NASA Astrophysics Data System (ADS)
Soffer, Jacques; Bourrely, Claude
2016-03-01
The quantum statistical parton distributions approach proposed more than one decade ago is revisited by considering a larger set of recent and accurate Deep Inelastic Scattering experimental results. It enables us to improve the description of the data by means of a new determination of the parton distributions. This global next-to-leading order QCD analysis leads to a good description of several structure functions, involving unpolarized parton distributions and helicity distributions, in terms of a rather small number of free parameters. There are many serious challenging issues. The predictions of this theoretical approach will be tested for single-jet production and charge asymmetry in W± production in p¯p and pp collisions up to LHC energies, using recent data and also for forthcoming experimental results. Presented by J. So.er at POETIC 2015
Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.
2017-12-01
Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.
Limitations of Poisson statistics in describing radioactive decay.
Sitek, Arkadiusz; Celler, Anna M
2015-12-01
The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Rare-event statistics and modular invariance
NASA Astrophysics Data System (ADS)
Nechaev, S. K.; Polovnikov, K.
2018-01-01
Simple geometric arguments based on constructing the Euclid orchard are presented, which explain the equivalence of various types of distributions that result from rare-event statistics. In particular, the spectral density of the exponentially weighted ensemble of linear polymer chains is examined for its number-theoretic properties. It can be shown that the eigenvalue statistics of the corresponding adjacency matrices in the sparse regime show a peculiar hierarchical structure and are described by the popcorn (Thomae) function discontinuous in the dense set of rational numbers. Moreover, the spectral edge density distribution exhibits Lifshitz tails, reminiscent of 1D Anderson localization. Finally, a continuous approximation for the popcorn function is suggested based on the Dedekind η-function, and the hierarchical ultrametric structure of the popcorn-like distributions is demonstrated to be related to hidden SL(2,Z) modular symmetry.
NASA Astrophysics Data System (ADS)
Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett
2016-06-01
The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.
MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data
Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong
2015-01-01
Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201
Snell, Kym Ie; Ensor, Joie; Debray, Thomas Pa; Moons, Karel Gm; Riley, Richard D
2017-01-01
If individual participant data are available from multiple studies or clusters, then a prediction model can be externally validated multiple times. This allows the model's discrimination and calibration performance to be examined across different settings. Random-effects meta-analysis can then be used to quantify overall (average) performance and heterogeneity in performance. This typically assumes a normal distribution of 'true' performance across studies. We conducted a simulation study to examine this normality assumption for various performance measures relating to a logistic regression prediction model. We simulated data across multiple studies with varying degrees of variability in baseline risk or predictor effects and then evaluated the shape of the between-study distribution in the C-statistic, calibration slope, calibration-in-the-large, and E/O statistic, and possible transformations thereof. We found that a normal between-study distribution was usually reasonable for the calibration slope and calibration-in-the-large; however, the distributions of the C-statistic and E/O were often skewed across studies, particularly in settings with large variability in the predictor effects. Normality was vastly improved when using the logit transformation for the C-statistic and the log transformation for E/O, and therefore we recommend these scales to be used for meta-analysis. An illustrated example is given using a random-effects meta-analysis of the performance of QRISK2 across 25 general practices.
Anomaly detection in hyperspectral imagery: statistics vs. graph-based algorithms
NASA Astrophysics Data System (ADS)
Berkson, Emily E.; Messinger, David W.
2016-05-01
Anomaly detection (AD) algorithms are frequently applied to hyperspectral imagery, but different algorithms produce different outlier results depending on the image scene content and the assumed background model. This work provides the first comparison of anomaly score distributions between common statistics-based anomaly detection algorithms (RX and subspace-RX) and the graph-based Topological Anomaly Detector (TAD). Anomaly scores in statistical AD algorithms should theoretically approximate a chi-squared distribution; however, this is rarely the case with real hyperspectral imagery. The expected distribution of scores found with graph-based methods remains unclear. We also look for general trends in algorithm performance with varied scene content. Three separate scenes were extracted from the hyperspectral MegaScene image taken over downtown Rochester, NY with the VIS-NIR-SWIR ProSpecTIR instrument. In order of most to least cluttered, we study an urban, suburban, and rural scene. The three AD algorithms were applied to each scene, and the distributions of the most anomalous 5% of pixels were compared. We find that subspace-RX performs better than RX, because the data becomes more normal when the highest variance principal components are removed. We also see that compared to statistical detectors, anomalies detected by TAD are easier to separate from the background. Due to their different underlying assumptions, the statistical and graph-based algorithms highlighted different anomalies within the urban scene. These results will lead to a deeper understanding of these algorithms and their applicability across different types of imagery.
Wéra, A-C; Barazzuol, L; Jeynes, J C G; Merchant, M J; Suzuki, M; Kirkby, K J
2014-08-07
It is well known that broad beam irradiation with heavy ions leads to variation in the number of hit(s) received by each cell as the distribution of particles follows the Poisson statistics. Although the nucleus area will determine the number of hit(s) received for a given dose, variation amongst its irradiated cell population is generally not considered. In this work, we investigate the effect of the nucleus area's distribution on the survival fraction. More specifically, this work aims to explain the deviation, or tail, which might be observed in the survival fraction at high irradiation doses. For this purpose, the nucleus area distribution was added to the beam Poisson statistics and the Linear-Quadratic model in order to fit the experimental data. As shown in this study, nucleus size variation, and the associated Poisson statistics, can lead to an upward survival trend after broad beam irradiation. The influence of the distribution parameters (mean area and standard deviation) was studied using a normal distribution, along with the Linear-Quadratic model parameters (α and β). Finally, the model proposed here was successfully tested to the survival fraction of LN18 cells irradiated with a 85 keV µm(- 1) carbon ion broad beam for which the distribution in the area of the nucleus had been determined.
A mathematical model for evolution and SETI.
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
Modelling Evolution and SETI Mathematically
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2012-05-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factor increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions constrained between the time axis and the exponential growth curve. Finally, since each lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
A Mathematical Model for Evolution and SETI
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.
Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W
2005-01-01
We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.
Time-dependent quantum oscillator as attenuator and amplifier: noise and statistical evolutions
NASA Astrophysics Data System (ADS)
Portes, D.; Rodrigues, H.; Duarte, S. B.; Baseia, B.
2004-10-01
We revisit the quantum oscillator, modelled as a time-dependent LC-circuit. Nonclassical properties concerned with attenuation and amplification regions are considered, as well as time evolution of quantum noise and statistics, with emphasis on revivals of the statistical distribution.
Use of Fermi-Dirac statistics for defects in solids
NASA Astrophysics Data System (ADS)
Johnson, R. A.
1981-12-01
The Fermi-Dirac distribution function is an approximation describing a special case of Boltzmann statistics. A general occupation probability formula is derived and a criterion given for the use of Fermi-Dirac statistics. Application to classical problems of defects in solids is discussed.
Monitoring Statistics Which Have Increased Power over a Reduced Time Range.
ERIC Educational Resources Information Center
Tang, S. M.; MacNeill, I. B.
1992-01-01
The problem of monitoring trends for changes at unknown times is considered. Statistics that permit one to focus high power on a segment of the monitored period are studied. Numerical procedures are developed to compute the null distribution of these statistics. (Author)
Understanding a Normal Distribution of Data.
Maltenfort, Mitchell G
2015-12-01
Assuming data follow a normal distribution is essential for many common statistical tests. However, what are normal data and when can we assume that a data set follows this distribution? What can be done to analyze non-normal data?
Parametric distribution approach for flow availability in small hydro potential analysis
NASA Astrophysics Data System (ADS)
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, T.E.
1996-01-01
The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less
NASA Astrophysics Data System (ADS)
Maccone, C.
In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in 2008. 4. A practical example is then given of how the SEH works numerically. Each of the ten random variables is uniformly distributed around its own mean value as given by Dole (1964) and a standard deviation of 10% is assumed. The conclusion is that the average number of habitable planets in the Galaxy should be around 100 million ±200 million, and the average distance in between any two nearby habitable planets should be about 88 light years ±40 light years. 5. The SEH results are matched against the results of the Statistical Drake Equation from reference 4. As expected, the number of currently communicating ET civilizations in the Galaxy turns out to be much smaller than the number of habitable planets (about 10,000 against 100 million, i.e. one ET civilization out of 10,000 habitable planets). The average distance between any two nearby habitable planets is much smaller that the average distance between any two neighbouring ET civilizations: 88 light years vs. 2000 light years, respectively. This means an ET average distance about 20 times higher than the average distance between any pair of adjacent habitable planets. 6. Finally, a statistical model of the Fermi Paradox is derived by applying the above results to the coral expansion model of Galactic colonization. The symbolic manipulator "Macsyma" is used to solve these difficult equations. A new random variable Tcol, representing the time needed to colonize a new planet is introduced, which follows the lognormal distribution, Then the new quotient random variable Tcol/D is studied and its probability density function is derived by Macsyma. Finally a linear transformation of random variables yields the overall time TGalaxy needed to colonize the whole Galaxy. We believe that our mathematical work in deriving this STATISTICAL Fermi Paradox is highly innovative and fruitful for the future.
2013-10-15
statistic,” in Artifical Intelligence and Statistics (AISTATS), 2013. [6] ——, “Detecting activity in graphs via the Graph Ellipsoid Scan Statistic... Artifical Intelligence and Statistics (AISTATS), 2013. [8] ——, “Near-optimal anomaly detection in graphs using Lovász Extended Scan Statistic,” in Neural...networks,” in Artificial Intelligence and Statistics (AISTATS), 2010. 11 [11] D. Aldous, “The random walk construction of uniform spanning trees and
Wilcoxon's signed-rank statistic: what null hypothesis and why it matters.
Li, Heng; Johnson, Terri
2014-01-01
In statistical literature, the term 'signed-rank test' (or 'Wilcoxon signed-rank test') has been used to refer to two distinct tests: a test for symmetry of distribution and a test for the median of a symmetric distribution, sharing a common test statistic. To avoid potential ambiguity, we propose to refer to those two tests by different names, as 'test for symmetry based on signed-rank statistic' and 'test for median based on signed-rank statistic', respectively. The utility of such terminological differentiation should become evident through our discussion of how those tests connect and contrast with sign test and one-sample t-test. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Skewness and kurtosis analysis for non-Gaussian distributions
NASA Astrophysics Data System (ADS)
Celikoglu, Ahmet; Tirnakli, Ugur
2018-06-01
In this paper we address a number of pitfalls regarding the use of kurtosis as a measure of deviations from the Gaussian. We treat kurtosis in both its standard definition and that which arises in q-statistics, namely q-kurtosis. We have recently shown that the relation proposed by Cristelli et al. (2012) between skewness and kurtosis can only be verified for relatively small data sets, independently of the type of statistics chosen; however it fails for sufficiently large data sets, if the fourth moment of the distribution is finite. For infinite fourth moments, kurtosis is not defined as the size of the data set tends to infinity. For distributions with finite fourth moments, the size, N, of the data set for which the standard kurtosis saturates to a fixed value, depends on the deviation of the original distribution from the Gaussian. Nevertheless, using kurtosis as a criterion for deciding which distribution deviates further from the Gaussian can be misleading for small data sets, even for finite fourth moment distributions. Going over to q-statistics, we find that although the value of q-kurtosis is finite in the range of 0 < q < 3, this quantity is not useful for comparing different non-Gaussian distributed data sets, unless the appropriate q value, which truly characterizes the data set of interest, is chosen. Finally, we propose a method to determine the correct q value and thereby to compute the q-kurtosis of q-Gaussian distributed data sets.
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.
High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1
1990-06-20
routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost
Mathematical Aspects of Reliability-Centered Maintenance
1977-01-01
exponential distribu~tion, .whose parameter (-hazard rate) can be realistically estimated., La ma SuWiaWItib~ This distribution is als4.. frequently...statistical methods to the study ýf hysicA3 reality was beset with .philosc\\phicsl problems arising from the irrefutable observacion that there isibut one...STATISTICS, 2nd ed. New York: John Wiley & Sons ; 1954. 5. Kolmogorov, A. Interpolation und Extrapolation von stationwren zuf-lligen Folgen. BULL. DE
Statistical Analysis of the Exchange Rate of Bitcoin
Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702
Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls
Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.
2013-01-01
As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
Bayesian statistics and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Koch, K. R.
2018-03-01
The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.
On the Seasonality of Sudden Stratospheric Warmings
NASA Astrophysics Data System (ADS)
Reichler, T.; Horan, M.
2017-12-01
The downward influence of sudden stratospheric warmings (SSWs) creates significant tropospheric circulation anomalies that last for weeks. It is therefore of theoretical and practical interest to understand the time when SSWs are most likely to occur and the controlling factors for the temporal distribution of SSWs. Conceivably, the distribution between mid-winter and late-winter is controlled by the interplay between decreasing eddy convergence in the region of the polar vortex and the weakening strength of the polar vortex. General circulation models (GCMs) tend to produce SSW maxima later in winter than observations, which has been considered as a model deficiency. However, the observed record is short, suggesting that under-sampling of SSWs may contribute to this discrepancy. Here, we study the climatological frequency distribution of SSWs and related events in a long control simulation with a stratosphere resolving GCM. We also create a simple statistical model to determine the primary factors controlling the SSW distribution. The statistical model is based on the daily climatological mean, standard deviation, and autocorrelation of stratospheric winds, and assumes that the winds follow a normal distribution. We find that the null hypothesis, that model and observations stem from the same distribution, cannot be rejected, suggesting that the mid-winter SSW maximum seen in the observations is due to sampling uncertainty. We also find that the statistical model faithfully reproduces the seasonal distribution of SSWs, and that the decreasing climatological strength of the polar vortex is the primary factor for it. We conclude that the late-winter SSW maximum seen in most models is realistic and that late events will be more prominent in future observations. We further conclude that SSWs simply form the tail of normally distributed stratospheric winds, suggesting that there is a continuum of weak polar vortex states and that statistically there is nothing special about the zero-threshold used to define SSWs.
Polarization-interference Jones-matrix mapping of biological crystal networks
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Dubolazov, O. V.; Pidkamin, L. Y.; Sidor, M. I.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of Jones-matrix mapping with the help of reference wave. It was provided experimentally measured coordinate distributions of modulus of Jones-matrix elements of polycrystalline film of bile. It was defined the values and ranges of changing of statistic moments, which characterize such distributions. The second part presents the data of statistic analysis of the distributions of matrix elements of polycrystalline film of urine of donors and patients with albuminuria. It was defined the objective criteria of differentiation of albuminuria.
Statistical prescission point model of fission fragment angular distributions
NASA Astrophysics Data System (ADS)
John, Bency; Kataria, S. K.
1998-03-01
In light of recent developments in fission studies such as slow saddle to scission motion and spin equilibration near the scission point, the theory of fission fragment angular distribution is examined and a new statistical prescission point model is developed. The conditional equilibrium of the collective angular bearing modes at the prescission point, which is guided mainly by their relaxation times and population probabilities, is taken into account in the present model. The present model gives a consistent description of the fragment angular and spin distributions for a wide variety of heavy and light ion induced fission reactions.
Thermal equilibrium and statistical thermometers in special relativity.
Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter
2007-10-26
There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.
NASA Astrophysics Data System (ADS)
Crosby, N.; Georgoulis, M.; Vilmer, N.
1999-10-01
Solar burst observations in the deka-keV energy range originating from the WATCH experiment aboard the GRANAT spacecraft were used to perform frequency distributions built on measured X-ray flare parameters (Crosby et al., 1998). The results of the study show that: 1- the overall distribution functions are robust power laws extending over a number of decades. The typical parameters of events (total counts, peak count rates, duration) are all correlated to each other. 2- the overall distribution functions are the convolution of significantly different distribution functions built on parts of the whole data set filtered by the event duration. These "partial" frequency distributions are still power law distributions over several decades, with a slope systematically decreasing with increasing duration. 3- No correlation is found between the elapsed time interval between successive bursts arising from the same active region and the peak intensity of the flare. In this paper, we attempt a tentative comparison between the statistical properties of the self-organized critical (SOC) cellular automaton statistical flare models (see e.g. Lu and Hamilton (1991), Georgoulis and Vlahos (1996, 1998)) and the respective properties of the WATCH flare data. Despite the inherent weaknesses of the SOC models to simulate a number of physical processes in the active region, it is found that most of the observed statistical properties can be reproduced using the SOC models, including the various frequency distributions and scatter plots. We finally conclude that, even if SOC models must be refined to improve the physical links to MHD approaches, they nevertheless represent a good approach to describe the properties of rapid energy dissipation and magnetic field annihilation in complex and magnetized plasmas. Crosby N., Vilmer N., Lund N. and Sunyaev R., A&A; 334; 299-313; 1998 Crosby N., Lund N., Vilmer N. and Sunyaev R.; A&A Supplement Series; 130, 233, 1998 Georgoulis M. and Vlahos L., 1996, Astrophy. J. Letters, 469, L135 Georgoulis M. and Vlahos L., 1998, in preparation Lu E.T. and Hamilton R.J., 1991, Astroph. J., 380, L89
Yuan, Ke-Hai; Tian, Yubin; Yanagihara, Hirokazu
2015-06-01
Survey data typically contain many variables. Structural equation modeling (SEM) is commonly used in analyzing such data. The most widely used statistic for evaluating the adequacy of a SEM model is T ML, a slight modification to the likelihood ratio statistic. Under normality assumption, T ML approximately follows a chi-square distribution when the number of observations (N) is large and the number of items or variables (p) is small. However, in practice, p can be rather large while N is always limited due to not having enough participants. Even with a relatively large N, empirical results show that T ML rejects the correct model too often when p is not too small. Various corrections to T ML have been proposed, but they are mostly heuristic. Following the principle of the Bartlett correction, this paper proposes an empirical approach to correct T ML so that the mean of the resulting statistic approximately equals the degrees of freedom of the nominal chi-square distribution. Results show that empirically corrected statistics follow the nominal chi-square distribution much more closely than previously proposed corrections to T ML, and they control type I errors reasonably well whenever N ≥ max(50,2p). The formulations of the empirically corrected statistics are further used to predict type I errors of T ML as reported in the literature, and they perform well.
Statistical analysis of content of Cs-137 in soils in Bansko-Razlog region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobilarov, R. G., E-mail: rkobi@tu-sofia.bg
Statistical analysis of the data set consisting of the activity concentrations of {sup 137}Cs in soils in Bansko–Razlog region is carried out in order to establish the dependence of the deposition and the migration of {sup 137}Cs on the soil type. The descriptive statistics and the test of normality show that the data set have not normal distribution. Positively skewed distribution and possible outlying values of the activity of {sup 137}Cs in soils were observed. After reduction of the effects of outliers, the data set is divided into two parts, depending on the soil type. Test of normality of themore » two new data sets shows that they have a normal distribution. Ordinary kriging technique is used to characterize the spatial distribution of the activity of {sup 137}Cs over an area covering 40 km{sup 2} (whole Razlog valley). The result (a map of the spatial distribution of the activity concentration of {sup 137}Cs) can be used as a reference point for future studies on the assessment of radiological risk to the population and the erosion of soils in the study area.« less
Quantum work in the Bohmian framework
NASA Astrophysics Data System (ADS)
Sampaio, R.; Suomela, S.; Ala-Nissila, T.; Anders, J.; Philbin, T. G.
2018-01-01
At nonzero temperature classical systems exhibit statistical fluctuations of thermodynamic quantities arising from the variation of the system's initial conditions and its interaction with the environment. The fluctuating work, for example, is characterized by the ensemble of system trajectories in phase space and, by including the probabilities for various trajectories to occur, a work distribution can be constructed. However, without phase-space trajectories, the task of constructing a work probability distribution in the quantum regime has proven elusive. Here we use quantum trajectories in phase space and define fluctuating work as power integrated along the trajectories, in complete analogy to classical statistical physics. The resulting work probability distribution is valid for any quantum evolution, including cases with coherences in the energy basis. We demonstrate the quantum work probability distribution and its properties with an exactly solvable example of a driven quantum harmonic oscillator. An important feature of the work distribution is its dependence on the initial statistical mixture of pure states, which is reflected in higher moments of the work. The proposed approach introduces a fundamentally different perspective on quantum thermodynamics, allowing full thermodynamic characterization of the dynamics of quantum systems, including the measurement process.
NASA Astrophysics Data System (ADS)
Figueroa-Morales, N.; Rivera, A.; Altshuler, E.; Darnige, T.; Douarche, C.; Soto, R.; Lindner, A.; Clément, E.
The motility of E. Coli bacteria is described as a run and tumble process. Changes of direction correspond to a switch in the flagellar motor rotation. The run time distribution is described as an exponential decay of characteristic time close to 1s. Remarkably, it has been demonstrated that the generic response for the distribution of run times is not exponential, but a heavy tailed power law decay, which is at odds with the motility findings. We investigate the consequences of the motor statistics in the macroscopic bacterial transport. During upstream contamination processes in very confined channels, we have identified very long contamination tongues. Using a stochastic model considering bacterial dwelling times on the surfaces related to the run times, we are able to reproduce qualitatively and quantitatively the evolution of the contamination profiles when considering the power law run time distribution. However, the model fails to reproduce the qualitative dynamics when the classical exponential run and tumble distribution is considered. Moreover, we have corroborated the existence of a power law run time distribution by means of 3D Lagrangian tracking. We then argue that the macroscopic transport of bacteria is essentially determined by the motor rotation statistics.
Gis-Based Spatial Statistical Analysis of College Graduates Employment
NASA Astrophysics Data System (ADS)
Tang, R.
2012-07-01
It is urgently necessary to be aware of the distribution and employment status of college graduates for proper allocation of human resources and overall arrangement of strategic industry. This study provides empirical evidence regarding the use of geocoding and spatial analysis in distribution and employment status of college graduates based on the data from 2004-2008 Wuhan Municipal Human Resources and Social Security Bureau, China. Spatio-temporal distribution of employment unit were analyzed with geocoding using ArcGIS software, and the stepwise multiple linear regression method via SPSS software was used to predict the employment and to identify spatially associated enterprise and professionals demand in the future. The results show that the enterprises in Wuhan east lake high and new technology development zone increased dramatically from 2004 to 2008, and tended to distributed southeastward. Furthermore, the models built by statistical analysis suggest that the specialty of graduates major in has an important impact on the number of the employment and the number of graduates engaging in pillar industries. In conclusion, the combination of GIS and statistical analysis which helps to simulate the spatial distribution of the employment status is a potential tool for human resource development research.
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
Population-wide distributions of neural activity during perceptual decision-making
Machens, Christian
2018-01-01
Cortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells. We put our main focus on data recorded in awake animals that perform simple decision-making tasks and consider statistical distributions of activity throughout cortex, across sensory, associative, and motor areas. We transversally review the complexity of these distributions, from distributions of firing rates and metrics of spike-train structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the dynamical evolution of neural population activity and the distributions of (pairwise) neural interactions. This approach reveals shared patterns of statistical organization across cortex, including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) distributions of tuning parameters for sensory (and motor) variables, which show an extensive extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide dynamics that reveal rotations of internal representations over time, whose traces can be found both in stimulus-driven and internally generated activity. We discuss how these insights are leading us away from the notion of discrete classes of cells, and are acting as powerful constraints on theories and models of cortical organization and population coding. PMID:23123501
ERIC Educational Resources Information Center
Ivancheva, Ludmila E.
2001-01-01
Discusses the concept of the hyperbolic or skew distribution as a universal statistical law in information science and socioeconomic studies. Topics include Zipf's law; Stankov's universal law; non-Gaussian distributions; and why most bibliometric and scientometric laws reveal characters of non-Gaussian distribution. (Author/LRW)
A Story-Based Simulation for Teaching Sampling Distributions
ERIC Educational Resources Information Center
Turner, Stephen; Dabney, Alan R.
2015-01-01
Statistical inference relies heavily on the concept of sampling distributions. However, sampling distributions are difficult to teach. We present a series of short animations that are story-based, with associated assessments. We hope that our contribution can be useful as a tool to teach sampling distributions in the introductory statistics…
ERIC Educational Resources Information Center
Tabor, Josh
2010-01-01
On the 2009 AP[c] Statistics Exam, students were asked to create a statistic to measure skewness in a distribution. This paper explores several of the most popular student responses and evaluates which statistic performs best when sampling from various skewed populations. (Contains 8 figures, 3 tables, and 4 footnotes.)
Teaching Introductory Statistics to Blind Students
ERIC Educational Resources Information Center
Marson, Stephen M.; Harrington, Charles F.; Walls, Adam
2013-01-01
The challenges of learning statistics, particularly distributions and their characteristics, can be potentially monumental for vision impaired and blind students. The authors provide some practical advice for teaching these students.
A κ-generalized statistical mechanics approach to income analysis
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2009-02-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.
Menzerath-Altmann Law: Statistical Mechanical Interpretation as Applied to a Linguistic Organization
NASA Astrophysics Data System (ADS)
Eroglu, Sertac
2014-10-01
The distribution behavior described by the empirical Menzerath-Altmann law is frequently encountered during the self-organization of linguistic and non-linguistic natural organizations at various structural levels. This study presents a statistical mechanical derivation of the law based on the analogy between the classical particles of a statistical mechanical organization and the distinct words of a textual organization. The derived model, a transformed (generalized) form of the Menzerath-Altmann model, was termed as the statistical mechanical Menzerath-Altmann model. The derived model allows interpreting the model parameters in terms of physical concepts. We also propose that many organizations presenting the Menzerath-Altmann law behavior, whether linguistic or not, can be methodically examined by the transformed distribution model through the properly defined structure-dependent parameter and the energy associated states.
Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect
NASA Astrophysics Data System (ADS)
Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.
2017-12-01
Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.
Szyda, Joanna; Liu, Zengting; Zatoń-Dobrowolska, Magdalena; Wierzbicki, Heliodor; Rzasa, Anna
2008-01-01
We analysed data from a selective DNA pooling experiment with 130 individuals of the arctic fox (Alopex lagopus), which originated from 2 different types regarding body size. The association between alleles of 6 selected unlinked molecular markers and body size was tested by using univariate and multinomial logistic regression models, applying odds ratio and test statistics from the power divergence family. Due to the small sample size and the resulting sparseness of the data table, in hypothesis testing we could not rely on the asymptotic distributions of the tests. Instead, we tried to account for data sparseness by (i) modifying confidence intervals of odds ratio; (ii) using a normal approximation of the asymptotic distribution of the power divergence tests with different approaches for calculating moments of the statistics; and (iii) assessing P values empirically, based on bootstrap samples. As a result, a significant association was observed for 3 markers. Furthermore, we used simulations to assess the validity of the normal approximation of the asymptotic distribution of the test statistics under the conditions of small and sparse samples.
NASA Astrophysics Data System (ADS)
Militello, F.; Farley, T.; Mukhi, K.; Walkden, N.; Omotani, J. T.
2018-05-01
A statistical framework was introduced in Militello and Omotani [Nucl. Fusion 56, 104004 (2016)] to correlate the dynamics and statistics of L-mode and inter-ELM plasma filaments with the radial profiles of thermodynamic quantities they generate in the Scrape Off Layer. This paper extends the framework to cases in which the filaments are emitted from the separatrix at different toroidal positions and with a finite toroidal velocity. It is found that the toroidal velocity does not affect the profiles, while the toroidal distribution of filament emission renormalises the waiting time between two events. Experimental data collected by visual camera imaging are used to evaluate the statistics of the fluctuations, to inform the choice of the probability distribution functions used in the application of the framework. It is found that the toroidal separation of the filaments is exponentially distributed, thus suggesting the lack of a toroidal modal structure. Finally, using these measurements, the framework is applied to an experimental case and good agreement is found.
Raymond, Mark R; Clauser, Brian E; Furman, Gail E
2010-10-01
The use of standardized patients to assess communication skills is now an essential part of assessing a physician's readiness for practice. To improve the reliability of communication scores, it has become increasingly common in recent years to use statistical models to adjust ratings provided by standardized patients. This study employed ordinary least squares regression to adjust ratings, and then used generalizability theory to evaluate the impact of these adjustments on score reliability and the overall standard error of measurement. In addition, conditional standard errors of measurement were computed for both observed and adjusted scores to determine whether the improvements in measurement precision were uniform across the score distribution. Results indicated that measurement was generally less precise for communication ratings toward the lower end of the score distribution; and the improvement in measurement precision afforded by statistical modeling varied slightly across the score distribution such that the most improvement occurred in the upper-middle range of the score scale. Possible reasons for these patterns in measurement precision are discussed, as are the limitations of the statistical models used for adjusting performance ratings.
The living Drake equation of the Tau Zero Foundation
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2011-03-01
The living Drake equation is our statistical generalization of the Drake equation such that it can take into account any number of factors. This new result opens up the possibility to enrich the equation by inserting more new factors as long as the scientific learning increases. The adjective "Living" refers just to this continuous enrichment of the Drake equation and is the goal of a new research project that the Tau Zero Foundation has entrusted to this author as the discoverer of the statistical Drake equation described hereafter. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be arbitrarily distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov form of the CLT, or the Lindeberg form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the lognormal distribution. Then, the mean value, standard deviation, mode, median and all the moments of this lognormal N can be derived from the means and standard deviations of the seven input random variables. In fact, the seven factors in the ordinary Drake equation now become seven independent positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) distance between any two neighbouring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, this distance now becomes a new random variable. We derive the relevant probability density function, apparently previously unknown (dubbed "Maccone distribution" by Paul Davies). Data Enrichment Principle. It should be noticed that any positive number of random variables in the statistical Drake equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation we call the "Data Enrichment Principle", and regard as the key to more profound, future results in Astrobiology and SETI.
Statistical distributions of earthquake numbers: consequence of branching process
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2010-03-01
We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
NASA Technical Reports Server (NTRS)
Takahashi, Kazue; Anderson, Brian J.
1992-01-01
Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.
3D Mueller-matrix mapping of biological optically anisotropic networks
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Ushenko, V. O.; Bodnar, G. B.; Zhytaryuk, V. G.; Prydiy, O. G.; Koval, G.; Lukashevich, I.; Vanchuliak, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of death.
NASA Astrophysics Data System (ADS)
Sakhnovskiy, M. Yu.; Ushenko, Yu. O.; Ushenko, V. O.; Besaha, R. N.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of death.
Wavelet analysis of birefringence images of myocardium tissue
NASA Astrophysics Data System (ADS)
Sakhnovskiy, M. Yu.; Ushenko, Yu. O.; Kushnerik, L.; Soltys, I. V.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of death.
Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics
NASA Astrophysics Data System (ADS)
Abe, Sumiyoshi
2014-11-01
The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown, in particular, how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.
Vehicular headways on signalized intersections: theory, models, and reality
NASA Astrophysics Data System (ADS)
Krbálek, Milan; Šleis, Jiří
2015-01-01
We discuss statistical properties of vehicular headways measured on signalized crossroads. On the basis of mathematical approaches, we formulate theoretical and empirically inspired criteria for the acceptability of theoretical headway distributions. Sequentially, the multifarious families of statistical distributions (commonly used to fit real-road headway statistics) are confronted with these criteria, and with original empirical time clearances gauged among neighboring vehicles leaving signal-controlled crossroads after a green signal appears. Using three different numerical schemes, we demonstrate that an arrangement of vehicles on an intersection is a consequence of the general stochastic nature of queueing systems, rather than a consequence of traffic rules, driver estimation processes, or decision-making procedures.
Statistical analysis of flight times for space shuttle ferry flights
NASA Technical Reports Server (NTRS)
Graves, M. E.; Perlmutter, M.
1974-01-01
Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.
ZERODUR: deterministic approach for strength design
NASA Astrophysics Data System (ADS)
Hartmann, Peter
2012-12-01
There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two-parameter Weibull distribution approach and no longer subject to statistical uncertainty.
Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr
2012-01-01
Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2017-03-01
We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.
Statistical distribution of time to crack initiation and initial crack size using service data
NASA Technical Reports Server (NTRS)
Heller, R. A.; Yang, J. N.
1977-01-01
Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.
Statistical Analysis For Nucleus/Nucleus Collisions
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1989-01-01
Report describes use of several statistical techniques to charactertize angular distributions of secondary particles emitted in collisions of atomic nuclei in energy range of 24 to 61 GeV per nucleon. Purpose of statistical analysis to determine correlations between intensities of emitted particles and angles comfirming existence of quark/gluon plasma.
Flame surface statistics of constant-pressure turbulent expanding premixed flames
NASA Astrophysics Data System (ADS)
Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.
2014-04-01
In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.
Insignificant solar-terrestrial triggering of earthquakes
Love, Jeffrey J.; Thomas, Jeremy N.
2013-01-01
We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by χ2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.
Optimal allocation of testing resources for statistical simulations
NASA Astrophysics Data System (ADS)
Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick
2015-07-01
Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.
Statistical analysis of QC data and estimation of fuel rod behaviour
NASA Astrophysics Data System (ADS)
Heins, L.; Groβ, H.; Nissen, K.; Wunderlich, F.
1991-02-01
The behaviour of fuel rods while in reactor is influenced by many parameters. As far as fabrication is concerned, fuel pellet diameter and density, and inner cladding diameter are important examples. Statistical analyses of quality control data show a scatter of these parameters within the specified tolerances. At present it is common practice to use a combination of superimposed unfavorable tolerance limits (worst case dataset) in fuel rod design calculations. Distributions are not considered. The results obtained in this way are very conservative but the degree of conservatism is difficult to quantify. Probabilistic calculations based on distributions allow the replacement of the worst case dataset by a dataset leading to results with known, defined conservatism. This is achieved by response surface methods and Monte Carlo calculations on the basis of statistical distributions of the important input parameters. The procedure is illustrated by means of two examples.
NASA Astrophysics Data System (ADS)
Gros, J.-B.; Kuhl, U.; Legrand, O.; Mortessagne, F.
2016-03-01
The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response.
Statistical representation of multiphase flow
NASA Astrophysics Data System (ADS)
Subramaniam
2000-11-01
The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.
FUNSTAT and statistical image representations
NASA Technical Reports Server (NTRS)
Parzen, E.
1983-01-01
General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.
Inverse statistics in the foreign exchange market
NASA Astrophysics Data System (ADS)
Jensen, M. H.; Johansen, A.; Petroni, F.; Simonsen, I.
2004-09-01
We investigate intra-day foreign exchange (FX) time series using the inverse statistic analysis developed by Simonsen et al. (Eur. Phys. J. 27 (2002) 583) and Jensen et al. (Physica A 324 (2003) 338). Specifically, we study the time-averaged distributions of waiting times needed to obtain a certain increase (decrease) ρ in the price of an investment. The analysis is performed for the Deutsch Mark (DM) against the US for the full year of 1998, but similar results are obtained for the Japanese Yen against the US. With high statistical significance, the presence of “resonance peaks” in the waiting time distributions is established. Such peaks are a consequence of the trading habits of the market participants as they are not present in the corresponding tick (business) waiting time distributions. Furthermore, a new stylized fact, is observed for the (normalized) waiting time distribution in the form of a power law Pdf. This result is achieved by rescaling of the physical waiting time by the corresponding tick time thereby partially removing scale-dependent features of the market activity.
Extended q -Gaussian and q -exponential distributions from gamma random variables
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2015-05-01
The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.
Understanding baseball team standings and streaks
NASA Astrophysics Data System (ADS)
Sire, C.; Redner, S.
2009-02-01
Can one understand the statistics of wins and losses of baseball teams? Are their consecutive-game winning and losing streaks self-reinforcing or can they be described statistically? We apply the Bradley-Terry model, which incorporates the heterogeneity of team strengths in a minimalist way, to answer these questions. Excellent agreement is found between the predictions of the Bradley-Terry model and the rank dependence of the average number team wins and losses in major-league baseball over the past century when the distribution of team strengths is taken to be uniformly distributed over a finite range. Using this uniform strength distribution, we also find very good agreement between model predictions and the observed distribution of consecutive-game team winning and losing streaks over the last half-century; however, the agreement is less good for the previous half-century. The behavior of the last half-century supports the hypothesis that long streaks are primarily statistical in origin with little self-reinforcing component. The data further show that the past half-century of baseball has been more competitive than the preceding half-century.
The Effect of General Statistical Fiber Misalignment on Predicted Damage Initiation in Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2014-01-01
A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensor, which is established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation.
Multiplicative processes in visual cognition
NASA Astrophysics Data System (ADS)
Credidio, H. F.; Teixeira, E. N.; Reis, S. D. S.; Moreira, A. A.; Andrade, J. S.
2014-03-01
The Central Limit Theorem (CLT) is certainly one of the most important results in the field of statistics. The simple fact that the addition of many random variables can generate the same probability curve, elucidated the underlying process for a broad spectrum of natural systems, ranging from the statistical distribution of human heights to the distribution of measurement errors, to mention a few. An extension of the CLT can be applied to multiplicative processes, where a given measure is the result of the product of many random variables. The statistical signature of these processes is rather ubiquitous, appearing in a diverse range of natural phenomena, including the distributions of incomes, body weights, rainfall, and fragment sizes in a rock crushing process. Here we corroborate results from previous studies which indicate the presence of multiplicative processes in a particular type of visual cognition task, namely, the visual search for hidden objects. Precisely, our results from eye-tracking experiments show that the distribution of fixation times during visual search obeys a log-normal pattern, while the fixational radii of gyration follow a power-law behavior.
Tomáš Václavík; Ross K. Meentemeyer
2009-01-01
Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges...
Generalization of symmetric α-stable Lévy distributions for q >1
NASA Astrophysics Data System (ADS)
Umarov, Sabir; Tsallis, Constantino; Gell-Mann, Murray; Steinberg, Stanly
2010-03-01
The α-stable distributions introduced by Lévy play an important role in probabilistic theoretical studies and their various applications, e.g., in statistical physics, life sciences, and economics. In the present paper we study sequences of long-range dependent random variables whose distributions have asymptotic power-law decay, and which are called (q,α)-stable distributions. These sequences are generalizations of independent and identically distributed α-stable distributions and have not been previously studied. Long-range dependent (q,α)-stable distributions might arise in the description of anomalous processes in nonextensive statistical mechanics, cell biology, finance. The parameter q controls dependence. If q =1 then they are classical independent and identically distributed with α-stable Lévy distributions. In the present paper we establish basic properties of (q,α)-stable distributions and generalize the result of Umarov et al. [Milan J. Math. 76, 307 (2008)], where the particular case α =2,qɛ[1,3) was considered, to the whole range of stability and nonextensivity parameters α ɛ(0,2] and q ɛ[1,3), respectively. We also discuss possible further extensions of the results that we obtain and formulate some conjectures.
Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan
2016-01-01
We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.
Sileshi, G
2006-10-01
Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.
The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang, E-mail: griv@bgu.ac.il
As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysismore » of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.« less
TSP Symposium 2012 Proceedings
2012-11-01
and Statistical Model 78 7.3 Analysis and Results 79 7.4 Threats to Validity and Limitations 85 7.5 Conclusions 86 7.6 Acknowledgments 87 7.7...Table 12: Overall Statistics of the Experiment 32 Table 13: Results of Pairwise ANOVA Analysis, Highlighting Statistically Significant Differences...we calculated the percentage of defects injected. The distribution statistics are shown in Table 2. Table 2: Mean Lower, Upper Confidence Interval
Uncertainties in obtaining high reliability from stress-strength models
NASA Technical Reports Server (NTRS)
Neal, Donald M.; Matthews, William T.; Vangel, Mark G.
1992-01-01
There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.
Recurrence and interoccurrence behavior of self-organized complex phenomena
NASA Astrophysics Data System (ADS)
Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.
2007-08-01
The sandpile, forest-fire and slider-block models are said to exhibit self-organized criticality. Associated natural phenomena include landslides, wildfires, and earthquakes. In all cases the frequency-size distributions are well approximated by power laws (fractals). Another important aspect of both the models and natural phenomena is the statistics of interval times. These statistics are particularly important for earthquakes. For earthquakes it is important to make a distinction between interoccurrence and recurrence times. Interoccurrence times are the interval times between earthquakes on all faults in a region whereas recurrence times are interval times between earthquakes on a single fault or fault segment. In many, but not all cases, interoccurrence time statistics are exponential (Poissonian) and the events occur randomly. However, the distribution of recurrence times are often Weibull to a good approximation. In this paper we study the interval statistics of slip events using a slider-block model. The behavior of this model is sensitive to the stiffness α of the system, α=kC/kL where kC is the spring constant of the connector springs and kL is the spring constant of the loader plate springs. For a soft system (small α) there are no system-wide events and interoccurrence time statistics of the larger events are Poissonian. For a stiff system (large α), system-wide events dominate the energy dissipation and the statistics of the recurrence times between these system-wide events satisfy the Weibull distribution to a good approximation. We argue that this applicability of the Weibull distribution is due to the power-law (scale invariant) behavior of the hazard function, i.e. the probability that the next event will occur at a time t0 after the last event has a power-law dependence on t0. The Weibull distribution is the only distribution that has a scale invariant hazard function. We further show that the onset of system-wide events is a well defined critical point. We find that the number of system-wide events NSWE satisfies the scaling relation NSWE ∝(α-αC)δ where αC is the critical value of the stiffness. The system-wide events represent a new phase for the slider-block system.
NASA Astrophysics Data System (ADS)
Queirós, S. M. D.; Tsallis, C.
2005-11-01
The GARCH algorithm is the most renowned generalisation of Engle's original proposal for modelising returns, the ARCH process. Both cases are characterised by presenting a time dependent and correlated variance or volatility. Besides a memory parameter, b, (present in ARCH) and an independent and identically distributed noise, ω, GARCH involves another parameter, c, such that, for c=0, the standard ARCH process is reproduced. In this manuscript we use a generalised noise following a distribution characterised by an index qn, such that qn=1 recovers the Gaussian distribution. Matching low statistical moments of GARCH distribution for returns with a q-Gaussian distribution obtained through maximising the entropy Sq=1-sumipiq/q-1, basis of nonextensive statistical mechanics, we obtain a sole analytical connection between q and left( b,c,qnright) which turns out to be remarkably good when compared with computational simulations. With this result we also derive an analytical approximation for the stationary distribution for the (squared) volatility. Using a generalised Kullback-Leibler relative entropy form based on Sq, we also analyse the degree of dependence between successive returns, zt and zt+1, of GARCH(1,1) processes. This degree of dependence is quantified by an entropic index, qop. Our analysis points the existence of a unique relation between the three entropic indexes qop, q and qn of the problem, independent of the value of (b,c).
Universal statistics of the knockout tournament
NASA Astrophysics Data System (ADS)
Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun
2013-11-01
We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
NASA Astrophysics Data System (ADS)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy
2018-03-01
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...
2018-03-06
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2008-05-01
Many random populations can be modeled as a countable set of points scattered randomly on the positive half-line. The points may represent magnitudes of earthquakes and tornados, masses of stars, market values of public companies, etc. In this article we explore a specific class of random such populations we coin ` Paretian Poisson processes'. This class is elemental in statistical physics—connecting together, in a deep and fundamental way, diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to random perturbations.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Invariance in the recurrence of large returns and the validation of models of price dynamics
NASA Astrophysics Data System (ADS)
Chang, Lo-Bin; Geman, Stuart; Hsieh, Fushing; Hwang, Chii-Ruey
2013-08-01
Starting from a robust, nonparametric definition of large returns (“excursions”), we study the statistics of their occurrences, focusing on the recurrence process. The empirical waiting-time distribution between excursions is remarkably invariant to year, stock, and scale (return interval). This invariance is related to self-similarity of the marginal distributions of returns, but the excursion waiting-time distribution is a function of the entire return process and not just its univariate probabilities. Generalized autoregressive conditional heteroskedasticity (GARCH) models, market-time transformations based on volume or trades, and generalized (Lévy) random-walk models all fail to fit the statistical structure of excursions.
Stokes-correlometry of polarization-inhomogeneous objects
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Dubolazov, A.; Bodnar, G. B.; Bachynskiy, V. T.; Vanchulyak, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of Stokes-correlometry description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of modulus (MSV) and phase (PhSV) of complex Stokes vector of skeletal muscle tissue. It was defined the values and ranges of changes of statistic moments of the 1st-4th orders, which characterize the distributions of values of MSV and PhSV. The second part presents the data of statistic analysis of the distributions of modulus MSV and PhSV. It was defined the objective criteria of differentiation of samples with urinary incontinence.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2006-01-01
A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.
Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A
2015-01-01
This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398
Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi
2014-05-01
The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
How Statistics "Excel" Online.
ERIC Educational Resources Information Center
Chao, Faith; Davis, James
2000-01-01
Discusses the use of Microsoft Excel software and provides examples of its use in an online statistics course at Golden Gate University in the areas of randomness and probability, sampling distributions, confidence intervals, and regression analysis. (LRW)
Statistical analysis of sperm sorting
NASA Astrophysics Data System (ADS)
Koh, James; Marcos, Marcos
2017-11-01
The success rate of assisted reproduction depends on the proportion of morphologically normal sperm. It is possible to use an external field for manipulation and sorting. Depending on their morphology, the extent of response varies. Due to the wide distribution in sperm morphology even among individuals, the resulting distribution of kinematic behaviour, and consequently the feasibility of sorting, should be analysed statistically. In this theoretical work, Resistive Force Theory and Slender Body Theory will be applied and compared. Full name is Marcos.
Wickham, Hadley; Hofmann, Heike
2011-12-01
We propose a new framework for visualising tables of counts, proportions and probabilities. We call our framework product plots, alluding to the computation of area as a product of height and width, and the statistical concept of generating a joint distribution from the product of conditional and marginal distributions. The framework, with extensions, is sufficient to encompass over 20 visualisations previously described in fields of statistical graphics and infovis, including bar charts, mosaic plots, treemaps, equal area plots and fluctuation diagrams. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Wanchuliak, O. Y.
2013-06-01
The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet-coefficients polarization maps of myocardium layers and death reasons.
Recurrence time statistics for finite size intervals
NASA Astrophysics Data System (ADS)
Altmann, Eduardo G.; da Silva, Elton C.; Caldas, Iberê L.
2004-12-01
We investigate the statistics of recurrences to finite size intervals for chaotic dynamical systems. We find that the typical distribution presents an exponential decay for almost all recurrence times except for a few short times affected by a kind of memory effect. We interpret this effect as being related to the unstable periodic orbits inside the interval. Although it is restricted to a few short times it changes the whole distribution of recurrences. We show that for systems with strong mixing properties the exponential decay converges to the Poissonian statistics when the width of the interval goes to zero. However, we alert that special attention to the size of the interval is required in order to guarantee that the short time memory effect is negligible when one is interested in numerically or experimentally calculated Poincaré recurrence time statistics.
Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Woods, Jorden
1992-01-01
The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.
Comparisons of non-Gaussian statistical models in DNA methylation analysis.
Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-06-16
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.
Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis
Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-01-01
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687
Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes
NASA Astrophysics Data System (ADS)
Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.
2012-02-01
Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.
Karulin, Alexey Y; Caspell, Richard; Dittrich, Marcus; Lehmann, Paul V
2015-03-02
Accurate assessment of positive ELISPOT responses for low frequencies of antigen-specific T-cells is controversial. In particular, it is still unknown whether ELISPOT counts within replicate wells follow a theoretical distribution function, and thus whether high power parametric statistics can be used to discriminate between positive and negative wells. We studied experimental distributions of spot counts for up to 120 replicate wells of IFN-γ production by CD8+ T-cell responding to EBV LMP2A (426 - 434) peptide in human PBMC. The cells were tested in serial dilutions covering a wide range of average spot counts per condition, from just a few to hundreds of spots per well. Statistical analysis of the data using diagnostic Q-Q plots and the Shapiro-Wilk normality test showed that in the entire dynamic range of ELISPOT spot counts within replicate wells followed a normal distribution. This result implies that the Student t-Test and ANOVA are suited to identify positive responses. We also show experimentally that borderline responses can be reliably detected by involving more replicate wells, plating higher numbers of PBMC, addition of IL-7, or a combination of these. Furthermore, we have experimentally verified that the number of replicates needed for detection of weak responses can be calculated using parametric statistics.
NASA Astrophysics Data System (ADS)
Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo
We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.
Investigation of Polarization Phase Difference Related to Forest Fields Characterizations
NASA Astrophysics Data System (ADS)
Majidi, M.; Maghsoudi, Y.
2013-09-01
The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.
Tsallis non-extensive statistics and solar wind plasma complexity
NASA Astrophysics Data System (ADS)
Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.
2015-03-01
This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
NASA Astrophysics Data System (ADS)
Schneider, Markus P. A.
This dissertation contributes to two areas in economics: the understanding of the distribution of earned income and to Bayesian analysis of distributional data. Recently, physicists claimed that the distribution of earned income is exponential (see Yakovenko, 2009). The first chapter explores the perspective that the economy is a statistical mechanical system and the implication for labor market outcomes is considered critically. The robustness of the empirical results that lead to the physicists' claims, the significance of the exponential distribution in statistical mechanics, and the case for a conservation law in economics are discussed. The conclusion reached is that physicists' conception of the economy is too narrow even within their chosen framework, but that their overall approach is insightful. The dual labor market theory of segmented labor markets is invoked to understand why the observed distribution may be a mixture of distributional components, corresponding to different generating mechanisms described in Reich et al. (1973). The application of informational entropy in chapter II connects this work to Bayesian analysis and maximum entropy econometrics. The analysis follows E. T. Jaynes's treatment of Wolf's dice data, but is applied to the distribution of earned income based on CPS data. The results are calibrated to account for rounded survey responses using a simple simulation, and answer the graphical analyses by physicists. The results indicate that neither the income distribution of all respondents nor of the subpopulation used by physicists appears to be exponential. The empirics do support the claim that a mixture with exponential and log-normal distributional components ts the data. In the final chapter, a log-linear model is used to fit the exponential to the earned income distribution. Separating the CPS data by gender and marital status reveals that the exponential is only an appropriate model for a limited number of subpopulations, namely the never married and women. The estimated parameter for never-married men's incomes is significantly different from the parameter estimated for never-married women, implying that either the combined distribution is not exponential or that the individual distributions are not exponential. However, it substantiates the existence of a persistent gender income gap among the never-married. References: Reich, M., D. M. Gordon, and R. C. Edwards (1973). A Theory of Labor Market Segmentation. Quarterly Journal of Economics 63, 359-365. Yakovenko, V. M. (2009). Econophysics, Statistical Mechanics Approach to. In R. A. Meyers (Ed.), Encyclopedia of Complexity and System Science. Springer.
Gaussian statistics for palaeomagnetic vectors
NASA Astrophysics Data System (ADS)
Love, J. J.; Constable, C. G.
2003-03-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
NASA Astrophysics Data System (ADS)
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
Statistical analysis of excitation energies in actinide and rare-earth nuclei
NASA Astrophysics Data System (ADS)
Levon, A. I.; Magner, A. G.; Radionov, S. V.
2018-04-01
Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our linear approach improves the comparison with experimental data at all desired spacings.
Fienen, Michael N.; Selbig, William R.
2012-01-01
A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.
Program for Weibull Analysis of Fatigue Data
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2005-01-01
A Fortran computer program has been written for performing statistical analyses of fatigue-test data that are assumed to be adequately represented by a two-parameter Weibull distribution. This program calculates the following: (1) Maximum-likelihood estimates of the Weibull distribution; (2) Data for contour plots of relative likelihood for two parameters; (3) Data for contour plots of joint confidence regions; (4) Data for the profile likelihood of the Weibull-distribution parameters; (5) Data for the profile likelihood of any percentile of the distribution; and (6) Likelihood-based confidence intervals for parameters and/or percentiles of the distribution. The program can account for tests that are suspended without failure (the statistical term for such suspension of tests is "censoring"). The analytical approach followed in this program for the software is valid for type-I censoring, which is the removal of unfailed units at pre-specified times. Confidence regions and intervals are calculated by use of the likelihood-ratio method.
Noise and the statistical mechanics of distributed transport in a colony of interacting agents
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Graewer, Johannes; Ronellenfitsch, Henrik; Mazza, Marco G.
Inspired by the process of liquid food distribution between individuals in an ant colony, in this work we consider the statistical mechanics of resource dissemination between interacting agents with finite carrying capacity. The agents move inside a confined space (nest), pick up the food at the entrance of the nest and share it with other agents that they encounter. We calculate analytically and via a series of simulations the global food intake rate for the whole colony as well as observables describing how uniformly the food is distributed within the nest. Our model and predictions provide a useful benchmark to assess which strategies can lead to efficient food distribution within the nest and also to what level the observed food uptake rates and efficiency in food distribution are due to stochastic fluctuations or specific food exchange strategies by an actual ant colony.
Quantum error-correction failure distributions: Comparison of coherent and stochastic error models
NASA Astrophysics Data System (ADS)
Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.
2017-06-01
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
Football fever: goal distributions and non-Gaussian statistics
NASA Astrophysics Data System (ADS)
Bittner, E.; Nußbaumer, A.; Janke, W.; Weigel, M.
2009-02-01
Analyzing football score data with statistical techniques, we investigate how the not purely random, but highly co-operative nature of the game is reflected in averaged properties such as the probability distributions of scored goals for the home and away teams. As it turns out, especially the tails of the distributions are not well described by the Poissonian or binomial model resulting from the assumption of uncorrelated random events. Instead, a good effective description of the data is provided by less basic distributions such as the negative binomial one or the probability densities of extreme value statistics. To understand this behavior from a microscopical point of view, however, no waiting time problem or extremal process need be invoked. Instead, modifying the Bernoulli random process underlying the Poissonian model to include a simple component of self-affirmation seems to describe the data surprisingly well and allows to understand the observed deviation from Gaussian statistics. The phenomenological distributions used before can be understood as special cases within this framework. We analyzed historical football score data from many leagues in Europe as well as from international tournaments, including data from all past tournaments of the “FIFA World Cup” series, and found the proposed models to be applicable rather universally. In particular, here we analyze the results of the German women’s premier football league and consider the two separate German men’s premier leagues in the East and West during the cold war times as well as the unified league after 1990 to see how scoring in football and the component of self-affirmation depend on cultural and political circumstances.
A Statistical Study on Neutron Star Masses
NASA Astrophysics Data System (ADS)
Cheng, Z.; Zhang, C. M.; Zhao, Y. H.; Wang, D. H.; Pan, Y. Y.; Lei, Y. J.
2013-11-01
We investigate the measurement of neutron star masses in different population of binaries. Based on the collection of the orbital parameters of 40 systems (46 sources), we apply the boot-strap method together with the Monte Carlo method to reconstruct the likelihood curves for each source separately. The cumulative analysis of the simulation result shows that the neutron star masses in X-ray systems and radio systems obey different distributions, and no evidence for the bimodal distribution could be found. Employing the Bayesian statistical techniques, we find that the most likely distributions for the high mass X-ray binaries (HMXBs), low mass X-ray binaries (LMXBs), double neutron star (DNS) systems, and neutron star-white dwarf (NS-WD) binary systems are (1.340±0.230) M_{⊙}, (1.505±0.125) M_{⊙}, (1.335±0.055) M_{⊙}, and (1.495±0.225) M_{⊙}, respectively. The statistical distribution has no significant deviation from the standard neutron star formation mechanism. It is noticed that the statistical results of the center masses of LMXBs and NS-WD systems are significantly higher than the other groups by about 0.16 M_{⊙}, which could be regarded as the evidence of accretion episodes. And if we regard the HMXBs and LMXBs as the progenitors of DNS and NS-WD systems, then we can draw the conclusion that the accretion effect must be very week during the evolution trajectory from HMXBs to DNS systems, and this could be the reason why the masses of DNS systems have such a narrow distribution.
Cloud Size Distributions from Multi-sensor Observations of Shallow Cumulus Clouds
NASA Astrophysics Data System (ADS)
Kleiss, J.; Riley, E.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.
2017-12-01
Combined radar-lidar observations have been used for almost two decades to document temporal changes of shallow cumulus clouds at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Since the ARM zenith-pointed radars and lidars have a narrow field-of-view (FOV), the documented cloud statistics, such as distributions of cloud chord length (or horizontal length scale), represent only a slice along the wind direction of a region surrounding the SGP site, and thus may not be representative for this region. To investigate this impact, we compare cloud statistics obtained from wide-FOV sky images collected by ground-based observations at the SGP site to those from the narrow FOV active sensors. The main wide-FOV cloud statistics considered are cloud area distributions of shallow cumulus clouds, which are frequently required to evaluate model performance, such as routine large eddy simulation (LES) currently being conducted by the ARM LASSO (LES ARM Symbiotic Simulation and Observation) project. We obtain complementary macrophysical properties of shallow cumulus clouds, such as cloud chord length, base height and thickness, from the combined radar-lidar observations. To better understand the broader observational context where these narrow FOV cloud statistics occur, we compare them to collocated and coincident cloud area distributions from wide-FOV sky images and high-resolution satellite images. We discuss the comparison results and illustrate the possibility to generate a long-term climatology of cloud size distributions from multi-sensor observations at the SGP site.
Change Detection in Rough Time Series
2014-09-01
Business Statistics : An Inferential Approach, Dellen: San Francisco. [18] Winston, W. (1997) Operations Research Applications and Algorithms, Duxbury...distribution that can present significant challenges to conventional statistical tracking techniques. To address this problem the proposed method...applies hybrid fuzzy statistical techniques to series granules instead of to individual measures. Three examples demonstrated the robust nature of the
An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum
ERIC Educational Resources Information Center
Cartier, Stephen F.
2009-01-01
As an alternative to the "thermodynamics first" or "quantum first" approaches to the physical chemistry curriculum, the statistical definition of entropy and the Boltzmann distribution are introduced in the first days of the course and the entire two-semester curriculum is then developed from these concepts. Once the tools of statistical mechanics…
Statistical Handbook on Aging Americans. 1994 Edition. Statistical Handbook Series Number 5.
ERIC Educational Resources Information Center
Schick, Frank L., Ed.; Schick, Renee, Ed.
This statistical handbook contains 378 tables and charts illustrating the changes in the United States' aging population based on data collected during the 1990 census and several other surveys. The tables and charts are organized by topic as follows: demographics (age and sex distribution, life expectancy, race and ethnicity, geographic…
The Birth-Death-Mutation Process: A New Paradigm for Fat Tailed Distributions
Maruvka, Yosef E.; Kessler, David A.; Shnerb, Nadav M.
2011-01-01
Fat tailed statistics and power-laws are ubiquitous in many complex systems. Usually the appearance of of a few anomalously successful individuals (bio-species, investors, websites) is interpreted as reflecting some inherent “quality” (fitness, talent, giftedness) as in Darwin's theory of natural selection. Here we adopt the opposite, “neutral”, outlook, suggesting that the main factor explaining success is merely luck. The statistics emerging from the neutral birth-death-mutation (BDM) process is shown to fit marvelously many empirical distributions. While previous neutral theories have focused on the power-law tail, our theory economically and accurately explains the entire distribution. We thus suggest the BDM distribution as a standard neutral model: effects of fitness and selection are to be identified by substantial deviations from it. PMID:22069453
Statistical Analysis of Research Data | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data. The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.
Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav
2014-12-04
A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teaching personnel working the elementary schools of Cordoba, Colombia, between 1958 and 1967. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of the teachers. For overall statistics in…
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teaching personnel working in the elementary schools of Narino, Colombia, between 1958 and 1967. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of the teachers. For overall statistics in…
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teaching personnel working in the elementary schools of Cauca, Colombia, between 1958 and 1967. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of the teachers. For overall statistics in…
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teaching personnel working in the elementary schools of Caldas, Colombia, between 1958 and 1967. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of the teachers. For overall statistics in…
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teaching personnel working in the elementary schools of Boyaca, Colombia, between 1958 and 1967. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of the teachers. For overall statistics in…
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teaching personnel working in the elementary schools of Huila, Colombia, between 1958 and 1967. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of the teachers. For overall statistics in…
Modeling and experiments of the adhesion force distribution between particles and a surface.
You, Siming; Wan, Man Pun
2014-06-17
Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.
Military Health Service System Ambulatory Work Unit (AWU).
1988-04-01
E-40 BBC-4 Ambulatory Work Unit Distribution Screen Passes BBC - Neurosurgery Clinic .... ............. . E-40 BBD -I Initial Record...Screen Failures BBD - Ophthalmology Clinic ... ............ E-41 BBD -2 Distribution Screen Failures BBD - Ophthalmology Clinic ............ E-41 BBD -3...Descriptive Statistics Distribution Screen Passes BBD - Ophthalmology Clinic ............ E-42 BBD -4 Ambulatory Work Unit Distribution Screen Passes BBD
ERIC Educational Resources Information Center
Leavy, Aisling
2006-01-01
This exploratory study, a one group pretest-posttest design, investigated the development of elementary preservice teachers' understandings of distribution as expressed in the measures and representations used to compare data distributions. During a semester-long mathematics methods course, participants worked in small groups on two statistical…
ERIC Educational Resources Information Center
Archer, Marc; Steele, Miriam; Lan, Jijun; Jin, Xiaochun; Herreros, Francisca; Steele, Howard
2015-01-01
The first distribution of Chinese infant-mother (n = 61) attachment classifications categorised by trained and reliability-tested coders is reported with statistical comparisons to US norms and previous Chinese distributions. Three-way distribution was 15% insecure-avoidant, 62% secure, 13% insecure-resistant, and 4-way distribution was 13%…
Titanic: A Statistical Exploration.
ERIC Educational Resources Information Center
Takis, Sandra L.
1999-01-01
Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)
Transportation statistics annual report 2000
DOT National Transportation Integrated Search
2001-01-01
The Transportation Statistics Annual Report (TSAR) is a Congressionally mandated publication with wide distribution. The TSAR provides the most comprehensive overview of U.S. transportation that is done on an annual basis. TSAR examines the extent of...
Statistical analysis of the count and profitability of air conditioners.
Rady, El Houssainy A; Mohamed, Salah M; Abd Elmegaly, Alaa A
2018-08-01
This article presents the statistical analysis of the number and profitability of air conditioners in an Egyptian company. Checking the same distribution for each categorical variable has been made using Kruskal-Wallis test.
Using Computer Graphics in Statistics.
ERIC Educational Resources Information Center
Kerley, Lyndell M.
1990-01-01
Described is software which allows a student to use simulation to produce analytical output as well as graphical results. The results include a frequency histogram of a selected population distribution, a frequency histogram of the distribution of the sample means, and test the normality distributions of the sample means. (KR)
Univariate Probability Distributions
ERIC Educational Resources Information Center
Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.
2012-01-01
We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…
Micro-organism distribution sampling for bioassays
NASA Technical Reports Server (NTRS)
Nelson, B. A.
1975-01-01
Purpose of sampling distribution is to characterize sample-to-sample variation so statistical tests may be applied, to estimate error due to sampling (confidence limits) and to evaluate observed differences between samples. Distribution could be used for bioassays taken in hospitals, breweries, food-processing plants, and pharmaceutical plants.
Statistical properties of radiation from VUV and X-ray free electron laser
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1998-03-01
The paper presents a comprehensive analysis of the statistical properties of the radiation from a self-amplified spontaneous emission (SASE) free electron laser operating in linear and nonlinear mode. The investigation has been performed in a one-dimensional approximation assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied in detail: time and spectral field correlations, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after the monochromator installed at the FEL amplifier exit and radiation spectrum. The linear high gain limit is studied analytically. It is shown that the radiation from a SASE FEL operating in the linear regime possesses all the features corresponding to completely chaotic polarized radiation. A detailed study of statistical properties of the radiation from a SASE FEL operating in linear and nonlinear regime has been performed by means of time-dependent simulation codes. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.
Statistics of Optical Coherence Tomography Data From Human Retina
de Juan, Joaquín; Ferrone, Claudia; Giannini, Daniela; Huang, David; Koch, Giorgio; Russo, Valentina; Tan, Ou; Bruni, Carlo
2010-01-01
Optical coherence tomography (OCT) has recently become one of the primary methods for noninvasive probing of the human retina. The pseudoimage formed by OCT (the so-called B-scan) varies probabilistically across pixels due to complexities in the measurement technique. Hence, sensitive automatic procedures of diagnosis using OCT may exploit statistical analysis of the spatial distribution of reflectance. In this paper, we perform a statistical study of retinal OCT data. We find that the stretched exponential probability density function can model well the distribution of intensities in OCT pseudoimages. Moreover, we show a small, but significant correlation between neighbor pixels when measuring OCT intensities with pixels of about 5 µm. We then develop a simple joint probability model for the OCT data consistent with known retinal features. This model fits well the stretched exponential distribution of intensities and their spatial correlation. In normal retinas, fit parameters of this model are relatively constant along retinal layers, but varies across layers. However, in retinas with diabetic retinopathy, large spikes of parameter modulation interrupt the constancy within layers, exactly where pathologies are visible. We argue that these results give hope for improvement in statistical pathology-detection methods even when the disease is in its early stages. PMID:20304733
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
NASA Astrophysics Data System (ADS)
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
Statistics of bow shock nonuniformity.
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1973-01-01
The statistical occurrence of pulsation or oblique structure about the earth's generally nonuniform bow shock is estimated at selected points by combining a three-dimensional distribution of interplanetary field directions obtained for a six-day solar wind sector with an index of local pulsation geometry. The result, obtained with a pulsation index of 1.6, is a set of distribution patterns showing the dependence of the pulsation index on the field orientation at the selected shock loci for this value of the index.
Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2005-11-01
We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.
Transient statistics in stabilizing periodic orbits
NASA Astrophysics Data System (ADS)
Meucci, R.; Gadomski, W.; Ciofini, M.; Arecchi, F. T.
1995-11-01
The statistics of chaotic and periodic transient time intervals preceding the stabilization of a given periodic orbit have been experimentally studied in a CO2 laser with modulated losses, subjected to a small subharmonic perturbation. As predicted by the theory, an exponential tail has been found in the probability distribution of chaotic transients. Furthermore, a fine periodic structure in the distributions of the periodic transients, resulting from the interaction of the control signal and the local structure of the chaotic attractor, has been revealed.
Classical statistical mechanics approach to multipartite entanglement
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.
2010-06-01
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.
Optical Logarithmic Transformation of Speckle Images with Bacteriorhodopsin Films
NASA Technical Reports Server (NTRS)
Downie, John D.
1995-01-01
The application of logarithmic transformations to speckle images is sometimes desirable in converting the speckle noise distribution into an additive, constant-variance noise distribution. The optical transmission properties of some bacteriorhodopsin films are well suited to implement such a transformation optically in a parallel fashion. I present experimental results of the optical conversion of a speckle image into a transformed image with signal-independent noise statistics, using the real-time photochromic properties of bacteriorhodopsin. The original and transformed noise statistics are confirmed by histogram analysis.
Photon counting statistics analysis of biophotons from hands.
Jung, Hyun-Hee; Woo, Won-Myung; Yang, Joon-Mo; Choi, Chunho; Lee, Jonghan; Yoon, Gilwon; Yang, Jong S; Soh, Kwang-Sup
2003-05-01
The photon counting statistics of biophotons emitted from hands is studied with a view to test its agreement with the Poisson distribution. The moments of observed probability up to seventh order have been evaluated. The moments of biophoton emission from hands are in good agreement while those of dark counts of photomultiplier tube show large deviations from the theoretical values of Poisson distribution. The present results are consistent with the conventional delta-value analysis of the second moment of probability.
Regional climate model downscaling may improve the prediction of alien plant species distributions
NASA Astrophysics Data System (ADS)
Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.
2014-12-01
Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
ERIC Educational Resources Information Center
Ministerio de Educacion Nacional, Bogota (Colombia). Instituto Colombiano de Pedagogia.
This document provides statistical data on the distribution and education of teacher personnel working in Colombian elementary schools between 1940 and 1968. The statistics cover the number of men and women, public and private schools, urban and rural location, and the amount of education of teachers. (VM)
ERIC Educational Resources Information Center
Holland, Bart K.
2006-01-01
A generally-educated individual should have some insight into how decisions are made in the very wide range of fields that employ statistical and probabilistic reasoning. Also, students of introductory probability and statistics are often best motivated by specific applications rather than by theory and mathematical development, because most…
2017-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE SECONDARY...BLANK ii Approved for public release. Distribution is unlimited. DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE...Problem and Motivation . . . . . . . . . . . . . . . . . . . 1 1.2 DOD Applicability . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Research
ERIC Educational Resources Information Center
Mount, Robert E.; Schumacker, Randall E.
1998-01-01
A Monte Carlo study was conducted using simulated dichotomous data to determine the effects of guessing on Rasch item fit statistics and the Logit Residual Index. Results indicate that no significant differences were found between the mean Rasch item fit statistics for each distribution type as the probability of guessing the correct answer…
2017-03-10
20 4. Statistical analysis methods to characterize distributions and trends...duration precipitation diagram from convective- permitting simulations for Barry Goldwater Range, Arizona. ix Figure 60: Statistically ...Same as Fig. 60 for other DoD facilities in the Southwest as labeled. Figure 62: Statistically significant model ensemble changes in rainfall
A Quantum Shuffling Game for Teaching Statistical Mechanics
ERIC Educational Resources Information Center
Black, P. J.; And Others
1971-01-01
A game simulating an Einstein model of a crystal producing a Boltzmann distribution. Computer-made films present the results with large distributions showing heat flow and some applications to entropy. (TS)
NASA Astrophysics Data System (ADS)
Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.
2009-08-01
Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.
Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.
Lim, Yu Rim; Park, Seong Jun; Park, Bo Jung; Cao, Jianshu; Silbey, Robert J; Sung, Jaeyoung
2012-04-10
We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.
Khan, Hafiz; Saxena, Anshul; Perisetti, Abhilash; Rafiq, Aamrin; Gabbidon, Kemesha; Mende, Sarah; Lyuksyutova, Maria; Quesada, Kandi; Blakely, Summre; Torres, Tiffany; Afesse, Mahlet
2016-12-01
Background: Breast cancer is a worldwide public health concern and is the most prevalent type of cancer in women in the United States. This study concerned the best fit of statistical probability models on the basis of survival times for nine state cancer registries: California, Connecticut, Georgia, Hawaii, Iowa, Michigan, New Mexico, Utah, and Washington. Materials and Methods: A probability random sampling method was applied to select and extract records of 2,000 breast cancer patients from the Surveillance Epidemiology and End Results (SEER) database for each of the nine state cancer registries used in this study. EasyFit software was utilized to identify the best probability models by using goodness of fit tests, and to estimate parameters for various statistical probability distributions that fit survival data. Results: Statistical analysis for the summary of statistics is reported for each of the states for the years 1973 to 2012. Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared goodness of fit test values were used for survival data, the highest values of goodness of fit statistics being considered indicative of the best fit survival model for each state. Conclusions: It was found that California, Connecticut, Georgia, Iowa, New Mexico, and Washington followed the Burr probability distribution, while the Dagum probability distribution gave the best fit for Michigan and Utah, and Hawaii followed the Gamma probability distribution. These findings highlight differences between states through selected sociodemographic variables and also demonstrate probability modeling differences in breast cancer survival times. The results of this study can be used to guide healthcare providers and researchers for further investigations into social and environmental factors in order to reduce the occurrence of and mortality due to breast cancer. Creative Commons Attribution License
Lee, L.; Helsel, D.
2007-01-01
Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.
Introductory Statistics in the Garden
ERIC Educational Resources Information Center
Wagaman, John C.
2017-01-01
This article describes four semesters of introductory statistics courses that incorporate service learning and gardening into the curriculum with applications of the binomial distribution, least squares regression and hypothesis testing. The activities span multiple semesters and are iterative in nature.
Berthias, F; Feketeová, L; Abdoul-Carime, H; Calvo, F; Farizon, B; Farizon, M; Märk, T D
2018-06-22
Velocity distributions of neutral water molecules evaporated after collision induced dissociation of protonated water clusters H+(H2O)n≤10 were measured using the combined correlated ion and neutral fragment time-of-flight (COINTOF) and velocity map imaging (VMI) techniques. As observed previously, all measured velocity distributions exhibit two contributions, with a low velocity part identified by statistical molecular dynamics (SMD) simulations as events obeying the Maxwell-Boltzmann statistics and a high velocity contribution corresponding to non-ergodic events in which energy redistribution is incomplete. In contrast to earlier studies, where the evaporation of a single molecule was probed, the present study is concerned with events involving the evaporation of up to five water molecules. In particular, we discuss here in detail the cases of two and three evaporated molecules. Evaporation of several water molecules after CID can be interpreted in general as a sequential evaporation process. In addition to the SMD calculations, a Monte Carlo (MC) based simulation was developed allowing the reconstruction of the velocity distribution produced by the evaporation of m molecules from H+(H2O)n≤10 cluster ions using the measured velocity distributions for singly evaporated molecules as the input. The observed broadening of the low-velocity part of the distributions for the evaporation of two and three molecules as compared to the width for the evaporation of a single molecule results from the cumulative recoil velocity of the successive ion residues as well as the intrinsically broader distributions for decreasingly smaller parent clusters. Further MC simulations were carried out assuming that a certain proportion of non-ergodic events is responsible for the first evaporation in such a sequential evaporation series, thereby allowing to model the entire velocity distribution.
NASA Astrophysics Data System (ADS)
Raschke, Mathias
2016-02-01
In this short note, I comment on the research of Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014) regarding the extreme value theory and statistics in the case of earthquake magnitudes. The link between the generalized extreme value distribution (GEVD) as an asymptotic model for the block maxima of a random variable and the generalized Pareto distribution (GPD) as a model for the peaks over threshold (POT) of the same random variable is presented more clearly. Inappropriately, Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014) have neglected to note that the approximations by GEVD and GPD work only asymptotically in most cases. This is particularly the case with truncated exponential distribution (TED), a popular distribution model for earthquake magnitudes. I explain why the classical models and methods of the extreme value theory and statistics do not work well for truncated exponential distributions. Consequently, these classical methods should be used for the estimation of the upper bound magnitude and corresponding parameters. Furthermore, I comment on various issues of statistical inference in Pisarenko et al. and propose alternatives. I argue why GPD and GEVD would work for various types of stochastic earthquake processes in time, and not only for the homogeneous (stationary) Poisson process as assumed by Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014). The crucial point of earthquake magnitudes is the poor convergence of their tail distribution to the GPD, and not the earthquake process over time.
Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach
NASA Astrophysics Data System (ADS)
Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.
2011-03-01
We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.
Universal statistics of the knockout tournament
Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun
2013-01-01
We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness. PMID:24217406
Pinning time statistics for vortex lines in disordered environments.
Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe C
2014-12-01
We study the pinning dynamics of magnetic flux (vortex) lines in a disordered type-II superconductor. Using numerical simulations of a directed elastic line model, we extract the pinning time distributions of vortex line segments. We compare different model implementations for the disorder in the surrounding medium: discrete, localized pinning potential wells that are either attractive and repulsive or purely attractive, and whose strengths are drawn from a Gaussian distribution; as well as continuous Gaussian random potential landscapes. We find that both schemes yield power-law distributions in the pinned phase as predicted by extreme-event statistics, yet they differ significantly in their effective scaling exponents and their short-time behavior.
Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.
Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N
2015-06-01
The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067.
Army Air Forces Statistical Digest, 1946. First Annual Number
1947-06-01
accordance with AAF Letter 5-5 dated 28 April 1947, the Army Air Forces Statistical Digest has been designated as the official AAF statisti- cal yearbook...more detailed exposition, Since the Digest is designed primarily as a reference. manual, the re- action of users to its contents is important in the...distributed by this Headquarters (Statistical Control Division, Office of the Air Comptroller) is hereby designated as the official AAF statistical yearbook
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
Integrating Experiential and Distributional Data to Learn Semantic Representations
ERIC Educational Resources Information Center
Andrews, Mark; Vigliocco, Gabriella; Vinson, David
2009-01-01
The authors identify 2 major types of statistical data from which semantic representations can be learned. These are denoted as "experiential data" and "distributional data". Experiential data are derived by way of experience with the physical world and comprise the sensory-motor data obtained through sense receptors. Distributional data, by…
24 CFR 902.52 - Distribution of survey to residents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Distribution of survey to residents... § 902.52 Distribution of survey to residents. (a) Sampling. A statistically valid number of units will be chosen to receive the Resident Service and Satisfaction Survey. These units will be randomly...
Gear Fatigue Crack Diagnosis by Vibration Analysis Using Embedded Modeling
2001-04-05
gave references on Wigner - Ville Distribution ( WVD ) and some statistical based methods including FM4, NA4 and NB4. There are limitations for vibration...Embedded Modeling DISTRIBUTION : Approved for public release, distribution unlimited This paper is part of the following report: TITLE: New Frontiers in
The Many Null Distributions of Person Fit Indices.
ERIC Educational Resources Information Center
Molenaar, Ivo W.; Hoijtink, Herbert
1990-01-01
Statistical properties of person fit indices are reviewed as indicators of the extent to which a person's score pattern is in agreement with a measurement model. Distribution of a fit index and ability-free fit evaluation are discussed. The null distribution was simulated for a test of 20 items. (SLD)
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution
statistical summary of the U.S. distribution systems World-class, high spatial/temporal resolution of solar Systems and Scenarios | Grid Modernization | NREL SMART-DS: Synthetic Models for Advanced , Realistic Testing: Distribution Systems and Scenarios SMART-DS: Synthetic Models for Advanced, Realistic
Descriptive Statistical Attributes of Special Education Data Sets
ERIC Educational Resources Information Center
Felder, Valerie
2013-01-01
Micceri (1989) examined the distributional characteristics of 440 large-sample achievement and psychometric measures. All the distributions were found to be nonnormal at alpha = 0.01. Micceri indicated three factors that might contribute to a non-Gaussian error distribution in the population. The first factor is subpopulations within a target…
A Hybrid Computer Simulation to Generate the DNA Distribution of a Cell Population.
ERIC Educational Resources Information Center
Griebling, John L.; Adams, William S.
1981-01-01
Described is a method of simulating the formation of a DNA distribution, on which statistical results and experimentally measured parameters from DNA distribution and percent-labeled mitosis studies are combined. An EAI-680 and DECSystem-10 Hybrid Computer configuration are used. (Author/CS)
Using Simulation to Teach Distributions
ERIC Educational Resources Information Center
Doane, David P.
2004-01-01
Many students doubt that statistical distributions are of practical value. Simulation makes it possible for students to tackle challenging, understandable projects that illustrate how distributions can be used to answer "what-if" questions of the type often posed by analysts. Course materials that have been developed over two years of classroom…
Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan
2016-01-01
The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.
NASA Astrophysics Data System (ADS)
Iwakoshi, Takehisa; Hirota, Osamu
2014-10-01
This study will test an interpretation in quantum key distribution (QKD) that trace distance between the distributed quantum state and the ideal mixed state is a maximum failure probability of the protocol. Around 2004, this interpretation was proposed and standardized to satisfy both of the key uniformity in the context of universal composability and operational meaning of the failure probability of the key extraction. However, this proposal has not been verified concretely yet for many years while H. P. Yuen and O. Hirota have thrown doubt on this interpretation since 2009. To ascertain this interpretation, a physical random number generator was employed to evaluate key uniformity in QKD. In this way, we calculated statistical distance which correspond to trace distance in quantum theory after a quantum measurement is done, then we compared it with the failure probability whether universal composability was obtained. As a result, the degree of statistical distance of the probability distribution of the physical random numbers and the ideal uniformity was very large. It is also explained why trace distance is not suitable to guarantee the security in QKD from the view point of quantum binary decision theory.
Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models
NASA Astrophysics Data System (ADS)
Rigler, E. J.; Wiltberger, M. J.; Love, J. J.
2017-12-01
Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Ploutz-Snyder, Robert; Fiedler, James
2011-01-01
As part of a 2009 Annals of Statistics paper, Gavrilov, Benjamini, and Sarkar report results of simulations that estimated the false discovery rate (FDR) for equally correlated test statistics using a well-known multiple-test procedure. In our study we estimate the distribution of the false discovery proportion (FDP) for the same procedure under a variety of correlation structures among multiple dependent variables in a MANOVA context. Specifically, we study the mean (the FDR), skewness, kurtosis, and percentiles of the FDP distribution in the case of multiple comparisons that give rise to correlated non-central t-statistics when results at several time periods are being compared to baseline. Even if the FDR achieves its nominal value, other aspects of the distribution of the FDP depend on the interaction between signed effect sizes and correlations among variables, proportion of true nulls, and number of dependent variables. We show examples where the mean FDP (the FDR) is 10% as designed, yet there is a surprising probability of having 30% or more false discoveries. Thus, in a real experiment, the proportion of false discoveries could be quite different from the stipulated FDR.
NASA Astrophysics Data System (ADS)
Bringi, V. N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W. L.; Schoenhuber, M.
2003-01-01
The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, `maritime-like' and `continental-like' clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.
Inverse Statistics and Asset Allocation Efficiency
NASA Astrophysics Data System (ADS)
Bolgorian, Meysam
In this paper using inverse statistics analysis, the effect of investment horizon on the efficiency of portfolio selection is examined. Inverse statistics analysis is a general tool also known as probability distribution of exit time that is used for detecting the distribution of the time in which a stochastic process exits from a zone. This analysis was used in Refs. 1 and 2 for studying the financial returns time series. This distribution provides an optimal investment horizon which determines the most likely horizon for gaining a specific return. Using samples of stocks from Tehran Stock Exchange (TSE) as an emerging market and S&P 500 as a developed market, effect of optimal investment horizon in asset allocation is assessed. It is found that taking into account the optimal investment horizon in TSE leads to more efficiency for large size portfolios while for stocks selected from S&P 500, regardless of portfolio size, this strategy does not only not produce more efficient portfolios, but also longer investment horizons provides more efficiency.
Renormalization-group theory for finite-size scaling in extreme statistics
NASA Astrophysics Data System (ADS)
Györgyi, G.; Moloney, N. R.; Ozogány, K.; Rácz, Z.; Droz, M.
2010-04-01
We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.
Statistical Distributions of Optical Flares from Gamma-Ray Bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.
2017-07-20
We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We alsomore » study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.« less
NASA Astrophysics Data System (ADS)
Arena, Dylan A.; Schwartz, Daniel L.
2014-08-01
Well-designed digital games can deliver powerful experiences that are difficult to provide through traditional instruction, while traditional instruction can deliver formal explanations that are not a natural fit for gameplay. Combined, they can accomplish more than either can alone. An experiment tested this claim using the topic of statistics, where people's everyday experiences often conflict with normative statistical theories and a videogame might provide an alternate set of experiences for students to draw upon. The research used a game called Stats Invaders!, a variant of the classic videogame Space Invaders. In Stats Invaders!, the locations of descending alien invaders follow probability distributions, and players need to infer the shape of the distributions to play well. The experiment tested whether the game developed participants' intuitions about the structure of random events and thereby prepared them for future learning from a subsequent written passage on probability distributions. Community-college students who played the game and then read the passage learned more than participants who only read the passage.
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate the origin of downward propagating leaders and a lognormal distribution to generate the corresponding returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for N number of years with an assumed ground flash density and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.