Sample records for district cooling phase

  1. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE PAGES

    An, Jingjing; Yan, Da; Hong, Tianzhen; ...

    2017-09-04

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  2. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Jingjing; Yan, Da; Hong, Tianzhen

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  3. District heating and cooling feasibility study, Dunkirk, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of this project is to perform a preliminary investigation of the technical and economic feasibility of implementing a district heating and cooling (DHC) system in the City of Dunkirk, New York. The study was conducted by first defining a heating and cooling (HC) load service area. Then, questionnaires were sent to prospective DHC customers. After reviewing the owners responses, large consumers of energy were interviewed for more detail of their HC systems, including site visits, to determine possibilities of retrofitting their systems to district heating and cooling. Peak HC loads for the buildings were estimated by Burns andmore » Roe's in-house computer programs. Based on the peak loads, certain customers were determined for suitability as anchor customers. Various options using cogeneration were investigated for possible HC sources. Equipment for HC sources and HC loads were sized and their associated costs estimated. Finally, economic analyses were performed. The conclusion is that it is technically and economically feasible to implement a district heating and cooling system in the City of Dunkirk. 14 figs., 15 tabs.« less

  4. Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heatingmore » and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.« less

  5. A thermodynamic analysis of a novel bidirectional district heating and cooling network

    DOE PAGES

    Zarin Pass, R.; Wetter, M.; Piette, M. A.

    2017-11-29

    In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less

  6. A thermodynamic analysis of a novel bidirectional district heating and cooling network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarin Pass, R.; Wetter, M.; Piette, M. A.

    In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less

  7. Phase Transformations During Cooling of Automotive Steels

    NASA Astrophysics Data System (ADS)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  8. District heating and cooling systems for communities through power plant retrofit distribution network. Volume 3. Final report, September 1, 1978-May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less

  9. Ground Source Geothermal District Heating and Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less

  10. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  11. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  12. Passive Two-Phase Cooling for Automotive Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate themore » concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.« less

  13. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facilitymore » was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.« less

  14. Building Modelling Methodologies for Virtual District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurav, Kumar; Choudhury, Anamitra R.; Chandan, Vikas

    District heating and cooling systems (DHC) are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., inmore » order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components interacting with each other. In this paper we present two building methodologies to model the consumer buildings. These models will be further integrated with network model and the control system layer to create a virtual test bed for the entire DHC system. The model is validated using data collected from a real life DHC system located at Lulea, a city on the coast of northern Sweden. The test bed will be then used for simulating various test cases such as peak energy reduction, overall demand reduction etc.« less

  15. Cubic γ-phase U-Mo alloys synthesized by splat-cooling

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, Nhu-T. H.; Tkach, I.; Mašková, S.; Havela, L.; Warren, A.; Scott, T.

    2013-09-01

    U-Mo alloys are the most promising materials fulfilling the requirements of using low enriched uranium (LEU) fuel in research reactors. From a fundamental standpoint, it is of interest to determine the basic thermodynamic properties of the cubic γ-phase U-Mo alloys. We focus our attention on the use of Mo doping together with ultrafast cooling (with high cooling rates ⩾106 K s-1), which helps to maintain the cubic γ-phase in U-Mo system to low temperatures and on determination of the low-temperature properties of these γ-U alloys. Using a splat cooling method it has been possible to maintain some fraction of the high-temperature γ-phase at room temperature in pure uranium. U-13 at.% Mo splat clearly exhibits the pure γ-phase structure. All the splats become superconducting with Tc in the range from 1.24 K (pure U splat) to 2.11 K (U-15 at.% Mo). The γ-phase in U-Mo alloys undergoes eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and tetragonal γ‧-phase upon annealing at 500 °C, while annealing at 800 °C has stabilized the initial γ phase. The α-U easily absorbs a large amount of hydrogen (UH3 hydride), while the cubic bcc phase does not absorb any detectable amount of hydrogen at pressures below 1 bar and at room temperature. At 80 bar, the U-15 at.% Mo splat becomes powder consisting of elongated particles of 1-2 mm, revealing amorphous state.

  16. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate itsmore » thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.« less

  17. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  18. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the

  19. Espresso coffee foam delays cooling of the liquid phase.

    PubMed

    Arii, Yasuhiro; Nishizawa, Kaho

    2017-04-01

    Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.

  20. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantagesmore » which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids« less

  1. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  2. Cooling induces phase separation in membranes derived from isolated CNS myelin

    PubMed Central

    Pusterla, Julio M.; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu

    2017-01-01

    Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4°C and 45°C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15°C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of

  3. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  4. Crystallization history of lunar picritic basalt sample 12002 - Phase-equilibria and cooling-rate studies

    NASA Technical Reports Server (NTRS)

    Walker, D.; Kirkpatrick, R. J.; Longhi, J.; Hays, J. F.

    1976-01-01

    Experimental crystallization of a lunar picrite composition (sample 12002) at controlled linear cooling rates produces systematic changes in the temperature at which crystalline phases appear, in the texture, and in crystal morphology as a function of cooling rate. Phases crystallize in the order olivine, chromium spinel, pyroxene, plagioclase, and ilmenite during equilibrium crystallization, but ilmenite and plagioclase reverse their order of appearance and silica crystallizes in the groundmass during controlled cooling experiments. The partition of iron and magnesium between olivine and liquid is independent of cooling rate, temperature, and pressure. Comparison of the olivine nucleation densities in the lunar sample and in the experiments indicates that the sample began cooling at about 1 deg C/hr. Pyroxene size, chemistry, and growth instability spacings, as well as groundmass coarseness, all suggest that the cooling rate subsequently decreased by as much as a factor of 10 or more. The porphyritic texture of this sample, then, is produced at a decreasing, rather than a discontinuously increasing, cooling rate.

  5. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    NASA Astrophysics Data System (ADS)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber

  6. District heating and cooling systems for communities through power plant retrofit and distribution network, city of Piqua, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    The feasibility analysis and evaluation of the Piqua, Ohio District Heating and Cooling Demonstration program is being conducted by the Piqua Municipal Power Co., the Piqua Law Dept., the Public Works Dept., a firm of economic analysts, and the Georgia Tech Engineering Dept. This volume contains information on the organization and composition of the demonstration team; characterization of the Piqua community; and the technical, environmental, institutional; financial, and economic assessments of the project. (LCL)

  7. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    NASA Astrophysics Data System (ADS)

    Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.

    2014-10-01

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  8. Phase-difference and spectroscopic imaging for monitoring of human brain temperature during cooling.

    PubMed

    Weis, Jan; Covaciu, Lucian; Rubertsson, Sten; Allers, Mats; Lunderquist, Anders; Ortiz-Nieto, Francisco; Ahlström, Håkan

    2012-12-01

    Decrease of the human brain temperature was induced by intranasal cooling. The main purpose of this study was to compare the two magnetic resonance methods for monitoring brain temperature changes during cooling: phase-difference and magnetic resonance spectroscopic imaging (MRSI) with high spatial resolution. Ten healthy volunteers were measured. Selective brain cooling was performed through nasal cavities using saline-cooled balloon catheters. MRSI was based on a radiofrequency spoiled gradient echo sequence. The spectral information was encoded by incrementing the echo time of the subsequent eight image records. Reconstructed voxel size was 1×1×5 mm(3). Relative brain temperature was computed from the positions of water spectral lines. Phase maps were obtained from the first image record of the MRSI sequence. Mild hypothermia was achieved in 15-20 min. Mean brain temperature reduction varied in the interval <-3.0; -0.6>°C and <-2.7; -0.7>°C as measured by the MRSI and phase-difference methods, respectively. Very good correlation was found in all locations between the temperatures measured by both techniques except in the frontal lobe. Measurements in the transversal slices were more robust to the movement artifacts than those in the sagittal planes. Good agreement was found between the MRSI and phase-difference techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  10. The CERES S'COOL Project: Development and Operational Phases

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Young, David F.; Racel, Anne M.

    1998-01-01

    As part of NASA's Mission to Planet Earth, the first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from the Tanegashima launch site in Japan in November 1997. The instrument will measure the radiation budget incoming and outgoing radiant energy - of the Earth. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children around the globe in making ground truth measurements at the time of a CERES overpass. They will report cloud type, height, fraction, and opacity, as well as the local surface conditions. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. National testing in April 1997 involved 8 schools (grades 3 to high school) across the United States. Global testing will be carried out in October 1997. Details of the S'COOL project, which is mainly Internet-based, are being developed in each of these phases according to feedback received from participants. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students. Broad participation in the S'COOL project is planned, both to obtain data from a wide range of geographic areas, and to involve as many students as

  11. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, Matthew; Lebedev, Valeri; Piot, Philippe

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility ofmore » nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.« less

  12. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    NASA Astrophysics Data System (ADS)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  13. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  14. Phase I, open-cycle absorption solar cooling. Part IV. Executive summary analysis and resolution of critical issues and recommendations for Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.D.

    The objective of this project is to advance lower cost solar cooling technology with the feasibility analysis, design and evaluation of proof-of-concept open cycle solar cooling concepts. The work is divided into three phases, with planned completion of each phase before proceeding with the following phase: Phase I - performance/economic/environmental related analysis and exploratory studies; Phase II - design and construction of an experimental system, including evaluative testing; Phase III - extended system testing during operation and engineering modifications as required. For Phase I, analysis and resolution of critical issues were completed with the objective of developing design specifications formore » an improved prototype OCA system.« less

  15. A phase quantification method based on EBSD data for a continuously cooled microalloyed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.; Wynne, B.P.; Palmiere, E.J., E-mail: e.j

    2017-01-15

    Mechanical properties of steels depend on the phase constitutions of the final microstructures which can be related to the processing parameters. Therefore, accurate quantification of different phases is necessary to investigate the relationships between processing parameters, final microstructures and mechanical properties. Point counting on micrographs observed by optical or scanning electron microscopy is widely used as a phase quantification method, and different phases are discriminated according to their morphological characteristics. However, it is difficult to differentiate some of the phase constituents with similar morphology. Differently, for EBSD based phase quantification methods, besides morphological characteristics, other parameters derived from the orientationmore » information can also be used for discrimination. In this research, a phase quantification method based on EBSD data in the unit of grains was proposed to identify and quantify the complex phase constitutions of a microalloyed steel subjected to accelerated coolings. Characteristics of polygonal ferrite/quasi-polygonal ferrite, acicular ferrite and bainitic ferrite on grain averaged misorientation angles, aspect ratios, high angle grain boundary fractions and grain sizes were analysed and used to develop the identification criteria for each phase. Comparing the results obtained by this EBSD based method and point counting, it was found that this EBSD based method can provide accurate and reliable phase quantification results for microstructures with relatively slow cooling rates. - Highlights: •A phase quantification method based on EBSD data in the unit of grains was proposed. •The critical grain area above which GAM angles are valid parameters was obtained. •Grain size and grain boundary misorientation were used to identify acicular ferrite. •High cooling rates deteriorate the accuracy of this EBSD based method.« less

  16. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    NASA Astrophysics Data System (ADS)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  17. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd 2Fe 14B system

    NASA Astrophysics Data System (ADS)

    Branagan, D. J.; McCallum, R. W.

    In order to evaluate the effects of additions on the solidification behavior of Nd 2Fe 14B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BHmax versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling.

  18. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    PubMed

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  19. Next-Generation Factory-Produced Cool Asphalt Shingles: Phase 1 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen M.; Chen, Sharon S.; Ban-Weiss, George A.

    As the least expensive category of high-slope roofing in the U.S., shingles are found on the roofs of about 80% of U.S. homes, and constitute about 80% (by product area) of this market. Shingles are also among the least reflective high-slope roofing products, with few cool options on the market. The widespread use of cool roofs in the two warmest U.S. climate zones could reduce annual residential cooling energy use in these zones by over 7%. This project targets the development of high-performance cool shingles with initial solar reflectance at least 0.40 and a cost premium not exceeding US$0.50/ft². Phasemore » 1 of the current study explored three approaches to increasing shingle reflectance. Method A replaces dark bare granules by white bare granules to enhance the near-infrared reflectance attained with cool pigments. Method B applies a white basecoat and a cool-color topcoat to a shingle surfaced with dark bare granules. Method C applies a visually clear, NIR-reflecting surface treatment to a conventionally colored shingle. Method A was the most successful, but our investigation of Method B identified roller coating as a promising top-coating technique, and our study of Method C developed a novel approach based on a nanowire mesh. Method A yielded red, green, brown, and black faux shingles with solar reflectance up to 0.39 with volumetric coloration. Since the base material is white, these reflectances can readily be increased by using less pigment. The expected cost premium for Method A shingles is less than our target limit of $0.50/ft², and would represent less than a 10% increase in the installed cost of a shingle roof. Using inexpensive but cool (spectrally selective) iron oxide pigments to volumetrically color white limestone synthesized from sequestered carbon and seawater appears to offer high albedo at low cost. In Phase 2, we plan to refine the cool shingle prototypes, manufacture cool granules, and manufacture and market high-performance cool

  20. Active two-phase cooling of an IR window for a hypersonic interceptor

    NASA Astrophysics Data System (ADS)

    Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.

    1993-06-01

    A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.

  1. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    DOE PAGES

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.« less

  2. Partage du zinc entre verre et phases silicatées dans des scories historiques et actuelles issues de la métallurgie du plomb dans le district de Príbram, République tchèque.

    NASA Astrophysics Data System (ADS)

    Ettler, Vojtěch; Johan, Zdenek; Touray, Jean-Claude; Jelínek, Emil

    2000-08-01

    Metallurgical slags of different ages resulting from Pb-metallurgy in the Příbram district (Czech Republic) have been studied. The chemical analysis (EPMA) of melilite, clinopyroxene, olivine and glassy matrix showed the following ZnO concentrations (in wt. %): 3.20-11.93 (melilite), 1.56 (clinopyroxene), 1.29-7.82 (olivine), 1.58-6.58 (glass). The Zn partition coefficient D = Cs / Cl between crystallized phases and coexisting glass was calculated. The values obtained are: 1.96-2.16 (melilite), 0.41 (clinopyroxene) and 0.79-1.19 (olivine). The distribution of zinc between the crystalline phases and glass depends on the phase assemblage, which reflects the blast furnace charge and temperature, as well as the cooling conditions of slags.

  3. DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay

    In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models ofmore » individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.« less

  4. Thermal performance of phase change wallboard for residential cooling application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less

  5. Measurement of spectral phase noise in a cryogenically cooled Ti:Sa amplifier (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nagymihaly, Roland S.; Jójárt, Péter; Börzsönyi, Ádám.; Osvay, Károly

    2017-05-01

    In most of cases the drift of the carrier envelope phase (CEP) of a chirped pulse amplifier (CPA) system is determined only [1], being the relevant parameter at laser-matter interactions. The need of coherent combination of multiple amplifier channels to further increase the peak power of pulses requires interferometric precision [2]. For this purpose, the stability of the group delay of the pulses may become equally important. Further development of amplifier systems requires the investigation of phase noise contributions of individual subsystems, like amplifier stages. Spectrally resolved interferometry (SRI), which is a completely linear optical method, makes the measurement of spectral phase noise possible of basically any part of a laser system [3]. By utilizing this method, the CEP stability of water-cooled Ti:Sa based amplifiers was investigated just recently, where the effects of seed and pump energy, repetition rate, and the cooling crystal mounts were thoroughly measured [4]. We present a systematic investigation on the noise of the spectral phase, including CEP, of laser pulses amplified in a cryogenically-cooled Ti:Sa amplifier of a CPA chain. The double-pass amplifier was built in the sample arm of a compact Michelson interferometer. The Ti:Sa crystal was cooled below 30 °K. The inherent phase noise was measured for different operation modes, as at various repetition rates, and pump depletion. Noise contributions of the vacuum pumps and the cryogenic refrigerator were found to be 43 and 47 mrad, respectively. We have also identified CEP noise having thermal as well as mechanical origin. Both showed a monotonically decreasing tendency towards higher repetition rates. We found that the widths of the noise distributions are getting broader towards lower repetition rates. Spectral phase noise with and without amplification was measured, and we found no significant difference in the phase noise distributions. The mechanical vibration was also measured in

  6. Superconducting phase transitions in mK temperature range in splat-cooled U0.85Pt0.15 alloys

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Tarnawski, Z.; Chrobak, M.; Sowa, S.; Duda, A.; Paukov, M.; Buturlim, V.; Havela, L.

    2018-05-01

    We present the temperature and magnetic-field dependence of the electrical resistivity (ρ(T,B)) in the mK temperature range used as a diagnostic tool for the superconductivity of U-Pt alloys prepared by splat-cooling technique. In most of the investigated alloys, a single resistivity drop was observed at the superconducting transition. For splat-cooled U0.85Pt0.15 (U-15 at% Pt) alloys, two drops were revealed around 0.6 K and 1 K tentatively attributed to the superconducting phase transitions of the γ-U phase and α-U phase. The ρ(T,B) characteristics were found to depend on the cooling rate. The superconductivity is characterized by very high upper critical fields, reaching 4.5 T in the 0 K limit.

  7. The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting temperatures.

    PubMed

    House, James R; Lunt, Heather C; Taylor, Rowan; Milligan, Gemma; Lyons, Jason A; House, Carol M

    2013-05-01

    Cooling vests (CV) are often used to reduce heat strain. CVs have traditionally used ice as the coolant, although other phase-change materials (PCM) that melt at warmer temperatures have been used in an attempt to enhance cooling by avoiding vasoconstriction, which supposedly occurs when ice CVs are used. This study assessed the effectiveness of four CVs that melted at 0, 10, 20 and 30 °C (CV₀, CV₁₀, CV₂₀, and CV₃₀) when worn by 10 male volunteers exercising and then recovering in 40 °C air whilst wearing fire-fighting clothing. When compared with a non-cooling control condition (CON), only the CV₀ and CV₁₀ vests provided cooling during exercise (40 and 29 W, respectively), whereas all CVs provided cooling during resting recovery (CV₀ 69 W, CV₁₀ 66 W, CV₂₀ 55 W and CV₃₀ 29 W) (P < 0.05). In all conditions, skin blood flow increased when exercising and reduced during recovery, but was lower in the CV₀ and CV₁₀ conditions compared with control during exercise (observed power 0.709) (P < 0.05), but not during resting recovery (observed power only 0.55). The participants preferred the CV₁₀ to the CV₀, which caused temporary erythema to underlying skin, although this resolved overnight after each occurrence. Consequently, a cooling vest melting at 10 °C would seem to be the most appropriate choice for cooling during combined work and rest periods, although possibly an ice-vest (CV₀) may also be appropriate if more insulation was worn between the cooling packs and the skin than used in this study.

  8. Free cooling phase-diagram of hard-spheres with short- and long-range interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, S.; Thornton, A. R.; Luding, S.

    2014-10-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.

  9. Moorhead district heating, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, R. E.

    1981-01-01

    The feasibility of developing a demonstration cogeneration hot water district heating system was studied. The district heating system would use coal and cogenerated heat from the Moorhead power plant to heat the water that would be distributed through underground pipes to customers or their space and domestic water heating needs, serving a substantial portion of the commercial and institutional loads as well as single and multiple family residences near the distribution lines. The technical feasibility effort considered the distribution network, retrofit of the power plant, and conversion of heating systems in customers' buildings to use hot water from the system. The system would be developed over six years. The economic analysis consisted of a market assessment and development of business plans for construction and operation of the system. Rate design methodology, institutional issues, development risk, and the proposal for implementation are discussed.

  10. Review of Two-phase Electronics Cooling for Army Vehicle Applications

    DTIC Science & Technology

    2010-09-01

    electronics occurred. Mudawar et al. (7) developed a spray cooler as part of the U.S. Department of Energy’s (DOE’s) Power Electronics and Electric...demonstrated by Mudawar (28) on the SEM-E BTPFL-C3 avionics Clamshell Module. By using direct two- phase jet-impingement and FC-72 dielectric fluid...cooling necessary for high heat flux electronic systems. One example is a study performed by Lee and Mudawar (13) with R134A and HFE1700 direct and

  11. Ejector gas cooling. Phase 1. Final report, 1 April 1987-30 April 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, C.D.; Silvetti, B.M.; Hrbek, R.

    1988-11-01

    Closed-circuit ejector cooling systems have never in the past achieved acceptable operating efficiencies in their vapor-compression cycle using standard refrigerants. Despite their long history, relative simplicity, quietness, rugged design, low maintenance and low cost, they could not compete with electric-motor-driven compressors. Phase I is an assessment of two immiscible fluids in an ejector cooling system with different latent heat capacity and molecular weights intended to require less heat in the boiler producing the propellant and taking more heat out in the evaporator cooling fluid. Actual tests corrected to standard conditions and neglecting thermal losses showed 0.5 closed-cycle thermal COP (excludingmore » stack losses), higher than ever previously achieved but below original expectations. Computer programs developed indicate higher COP values are attainable along with competitive first costs.« less

  12. The comprehensive community-based traffic safety program : phase I, problem identification for District 2 and District 7.

    DOT National Transportation Integrated Search

    1986-01-01

    This report contains the initial Problem Identification for the Comprehensive Community-Based Traffic Safety Program (CCBP). Two DMV districts, District 2 and District 7, have been selected as the pilot areas for the CCBP, and because both districts ...

  13. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    NASA Astrophysics Data System (ADS)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  14. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  15. A novel personal cooling system (PCS) incorporated with phase change materials (PCMs) and ventilation fans: An investigation on its cooling efficiency.

    PubMed

    Lu, Yehu; Wei, Fanru; Lai, Dandan; Shi, Wen; Wang, Faming; Gao, Chuansi; Song, Guowen

    2015-08-01

    Personal cooling systems (PCS) have been developed to mitigate the impact of severe heat stress for humans working in hot environments. It is still a great challenge to develop PCSs that are portable, inexpensive, and effective. We studied the performance of a new hybrid PCS incorporating both ventilation fans and phase change materials (PCMs). The cooling efficiency of the newly developed PCS was investigated on a sweating manikin in two hot conditions: hot humid (HH, 34°C, 75% RH) and hot dry (HD, 34°C, 28% RH). Four test scenarios were selected: fans off with no PCMs (i.e., Fan-off, the CONTROL), fans on with no PCMs (i.e., Fan-on), fans off with fully solidified PCMs (i.e., PCM+Fan-off), and fans on with fully solidified PCMs (i.e., PCM+Fan-on). It was found that the addition of PCMs provided a 54∼78min cooling in HH condition. In contrast, the PCMs only offered a 19-39min cooling in HD condition. In both conditions, the ventilation fans greatly enhanced the evaporative heat loss compared with Fan-off. The hybrid PCS (i.e., PCM+Fan-on) provided a continuous cooling effect during the three-hour test and the average cooling rate for the whole body was around 111 and 315W in HH and HD conditions, respectively. Overall, the new hybrid PCS may be an effective means of ameliorating symptoms of heat stress in both hot-humid and hot-dry environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fragile morphotropic phase boundary and phase stability in the near-surface region of the relaxor ferroelectric (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 : [001] field-cooled phase diagrams

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Wang, Ding; Yuan, Guoliang; Ma, He; Xu, Feng; Li, Jiefang; Viehland, D.; Gehring, Peter M.

    2016-11-01

    We have examined the effects of field cooling on the phase diagram of the relaxor system (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 (PZN-x PT ) for compositions near the morphotropic phase boundary (MPB). High-resolution diffraction measurements using Cu Kα x rays, which probe ≈3 μ m below the crystal surface, were made on field-cooled (FC) single-crystal specimens of PZN-4.5 %PT and PZN-6.5 %PT under electric fields of 1 and 2 kV/cm applied along [001] and combined with previous neutron diffraction data, which probe the entire crystal volume, for FC PZN-8 %PT [Ohwada et al., Phys. Rev. B 67, 094111 (2003), 10.1103/PhysRevB.67.094111]. A comparison to the zero-field-cooled (ZFC) PZN-x PT phase diagram reveals several interesting features: (1) The short-range monoclinic phase observed in the ZFC state on the low-PT side of the MPB is replaced by a monoclinic MA phase; (2) field cooling extends the tetragonal phase to higher temperatures and lower-PT concentrations; (3) the orthorhombic phase near the MPB is replaced by a monoclinic MC phase; (4) the vertical MPB in the ZFC phase diagram bends significantly towards the low-PT side in the FC state. These results demonstrate that both the phase stability and the nature of the MPB in PZN-PT within the near-surface regions are fragile in the presence of electric fields.

  17. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    NASA Astrophysics Data System (ADS)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  18. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  19. Performance analysis of phase-change material storage unit for both heating and cooling of buildings

    NASA Astrophysics Data System (ADS)

    Waqas, Adeel; Ali, Majid; Ud Din, Zia

    2017-04-01

    Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.

  20. Numerical modelling of phase-change material used for PV panels cooling

    NASA Astrophysics Data System (ADS)

    Sellami, Assia; Elotmani, Rabie; Kandoussi, Khalid; Eljouad, Mohamed; Hajjaji, Abdelowahed; Boutaous, M'Hamed

    2017-12-01

    Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.

  1. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 2: Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling

    DTIC Science & Technology

    2008-09-01

    TWO-PHASE FLOW IN HIGH-HEAT-FLUX MICRO-CHANNEL HEAT SINK FOR REFRIGERATION COOLING APPLICATIONS (Contract No. N00014-05-1-0408) by Issam Mudawar ...Refrigeration Cooling Applications 5b. GRANT NUMBER N00014-04-1-0408 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER Mudawar , Issam NA...ABSTRACT OF Mudawar , Issam PAGES U U U UU 465 19b. TELEPHONE NUMBER (Include area code) 765-494-5705 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std

  2. Experimental study of efficiency of solar panel by phase change material cooling

    NASA Astrophysics Data System (ADS)

    Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng

    2017-07-01

    The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.

  3. A study of the cool gas in the Large Magellanic Cloud. I. Properties of the cool atomic phase - a third H i absorption survey

    NASA Astrophysics Data System (ADS)

    Marx-Zimmer, M.; Herbstmeier, U.; Dickey, J. M.; Zimmer, F.; Staveley-Smith, L.; Mebold, U.

    2000-02-01

    The cool atomic interstellar medium of the Large Magellanic Cloud (LMC) seems to be quite different from that in the Milky Way. In a series of three papers we study the properties of the cool atomic hydrogen in the LMC (Paper I), its relation to molecular clouds using SEST-CO-observations (Paper II) and the cooling mechanism of the atomic gas based on ISO-[\\CII]-investigations (Paper III). In this paper we present the results of a third 21 cm absorption line survey toward the LMC carried out with the Australia Telescope Compact Array (ATCA). 20 compact continuum sources, which are mainly in the direction of the supergiant shell LMC 4, toward the surroundings of 30 Doradus and toward the eastern steep \\HI\\ boundary, have been chosen from the 1.4 GHz snapshot continuum survey of Marx et al. We have identified 20 absorption features toward nine of the 20 sources. The properties of the cool \\HI\\ clouds are investigated and are compared for the different regions of the LMC taking the results of Dickey et al. (survey 2) into account. We find that the cool \\HI\\ gas in the LMC is either unusually abundant compared to the cool atomic phase of the Milky Way or the gas is clearly colder (\\Tc\\ ~ 30 K) than that in our Galaxy (\\Tc\\ ~ 60 K). The properties of atomic clouds toward 30 Doradus and LMC 4 suggest a higher cooling rate in these regions compared to other parts of the LMC, probably due to an enhanced pressure near the shock fronts of LMC 4 and 30 Doradus. The detected cool atomic gas toward the eastern steep \\HI\\ boundary might be the result of a high compression of gas at the leading edge. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  4. Cooled High-Temperature Radial Turbine Program. Phase 2

    DTIC Science & Technology

    1992-05-01

    proposed for advanced engines with high power-to-weight and inproved SFC requirements. The addition of cooling to the blades of a metal radial turbine ...4 secl/2 ) 62.2 Blade - jet Speed Ratio 0.66 Adiabatic Efficiency (T-to-T, %) 87.0 Cooling flows for the gasifier turbine section are set at 5.7%. The...Way Cincinnati, OH 45215-6301 85 COOLED HIGH-TEMPERATURE RADIAL TURBINE PROGRAM DISTRIBUTION LIST Number Qf Copies General Electric Aircraft Engines

  5. Gray-Box Approach for Thermal Modelling of Buildings for Applications in District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurav, Kumar; Chandan, Vikas

    District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less

  6. Comparison of simulated and experimental results of temperature distribution in a closed two-phase thermosyphon cooling system

    NASA Astrophysics Data System (ADS)

    Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.

    2017-12-01

    Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.

  7. How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off.

    PubMed

    Irastorza, Ramiro M; Trujillo, Macarena; Berjano, Enrique

    2017-11-01

    All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5 mm long and 17G in diameter) with a constant temperature protocol (70°C) and a cooled electrode (30 mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15 mm for the dry electrode and 1.5 mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3 mm for the dry electrode and 30 mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. Copyright © 2017 John Wiley & Sons, Ltd.

  8. The effect of cooling rate on the phase formation and magnetocaloric properties in La0.6Ce0.4Fe11.0Si2.0 alloys

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Shao, Yanyan; Feng, Zaixin; Liu, Jian

    2018-04-01

    In this work, the microstructure, phase formation behavior of the NaZn13-type 1:13 phase and related magnetocaloric effect have been investigated in La0.6Ce0.4Fe11.0Si2.0 as-cast bulk and melt-spun ribbons with different cooling rates. A multi-phase structure consisting of 1:13, α-Fe and La-rich phases is observed in the induction-melted sample with slow cooling. By fast cooling in the melt spinning processing, the La-rich phase can be almost eliminated and thus 1:13 phases with volume fraction as high as 74.4% directly form in the absence of further heat treatment. The resulting maximum magnetic entropy change of 3.1 J/kg K in 2 T field appears at its Curie temperature of 210 K for the La0.6Ce0.4Fe11.0Si2.0 ribbon prepared in 25 m/s.

  9. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  10. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  11. Two-phase nanofluid-based thermal management systems for LED cooling

    NASA Astrophysics Data System (ADS)

    Kiseev, V.; Aminev, D.; Sazhin, O.

    2017-04-01

    This research focuses on two-phase thermal control systems, namely loop thermosyphons (LTS) filled with nanofluids, and their use as LED cooling devices. The behavior of the fluid in the thermosyphons and the mechanisms explaining the possible impact of nanoparticles on thermal properties of the working fluid as well as the processes in the LTS are addressed. Nanoparticle distribution in the nanofluid, methods of preparation of nanofluids and nanofluid degradation processes (aging) are studied. The results are obtained from a set of experiments on thermosyphon characteristics depending on the thermophysical properties of the working fluid, filling volume, geometry and materials of radiators. The impact of nanofluids on heat-transfer process occurring inside thermosyphon is also studied. Results indicate strong influence of nanoparticles on the thermal properties of the thermosyphons, with up to 20% increase of the heat transfer coefficient. Additionally, a method of calculating the hydrodynamic limit of the LTS is proposed, which allows for estimation of the maximum heat flux that can be transferred by means of the LTS. Possible ways for further improvement of the model are proposed. The nanofluids are shown to be effective means of enhancing two-phase systems of thermal management.

  12. Systematic optimization of laser cooling of dysprosium

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick

    2018-06-01

    We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.

  13. Laser cooling of molecular anions.

    PubMed

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  14. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  15. Immersion Cooling of Electronics in DoD Installations

    DTIC Science & Technology

    2016-05-01

    2012). Bitcoin Mining Electronics Cooling Development In January 2013, inventor/consultant Mark Miyoshi began development of a two-phase cooling...system using Novec 649 to be used for cooling bitcoin mining hardware. After a short trial period, hardware power supply and logic-board failures...are reports of bitcoin mining companies vertically stacking two-phase immersion baths to improve the floor space density, but this approach is likely

  16. Building a Construction Curriculum for Your School District

    ERIC Educational Resources Information Center

    Ruder, Robert

    2010-01-01

    Embracing the notion of going green, an affluent school district in Pennsylvania spent $83 million as part of the high school's renovation and expansion project. The three-level addition is now equipped with self-dimming lights, energy-efficient windows, a rooftop solar water heater, and a geothermal cooling and heating system. As a bonus for…

  17. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment.

    PubMed

    McFarlin, Brian K; Henning, Andrea L; Venable, Adam S; Williams, Randall R; Best Sampson, Jill N

    2016-08-01

    Recent advances in clothing design include the incorporation of phase change materials (PCM) and other active cooling components (ACC) to provide better body heat dissipation. The purpose of this study was to determine the effect of wearing a shirt containing multistage PCM/ACC on exercise capacity at low (5.0), moderate-high (7.5) and extreme (9.0) levels of the physiological strain index (PSI). Fourteen individuals tested two shirts (control vs. cooling) during 45-min of interval running in a hot, humid (35 ± 1 °C; 55 ± 6% RH) environment. The cooling shirt resulted in an 8% improvement in exercise capacity at a PSI of 7.5 (p < 0.05). The observed increase in exercise capacity would likely translate to a significant improvement in exercise performance. More research is needed to determine a best practice approach for the use of cooling clothing as a counter to exercise-induced heat exposure. Practitioner Summary: In this report, we demonstrate that when forced to exercise in a hot, humid environment, an individual's exercise capacity may increase by as much as 8% when wearing a shirt composed of multistage phase change material and active cooling components.

  18. Cooling of solar flares plasmas. 1: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.

    1995-01-01

    Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).

  19. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  20. Postexercise Cooling Rates in 2 Cooling Jackets

    PubMed Central

    Brade, Carly; Dawson, Brian; Wallman, Karen; Polglaze, Ted

    2010-01-01

    Abstract Context: Cooling jackets are a common method for removing stored heat accumulated during exercise. To date, the efficiency and practicality of different types of cooling jackets have received minimal investigation. Objective: To examine whether a cooling jacket containing a phase-change material (PC17) results in more rapid postexercise cooling than a gel cooling jacket and a no-jacket (control) condition. Design: Randomized, counterbalanced design with 3 experimental conditions. Setting: Participants exercised at 75% V̇o2max workload in a hot climate chamber (temperature  =  35.0 ± 1.4°C, relative humidity  =  52 ± 4%) for 30 minutes, followed by postexercise cooling for 30 minutes in cool laboratory conditions (ambient temperature  =  24.9 ± 1.8°C, relative humidity  =  39% ± 10%). Patients or Other Participants: Twelve physically active men (age  =  21.3 ± 1.1 years, height  =  182.7 ± 7.1 cm, body mass  =  76.2 ± 9.5 kg, sum of 6 skinfolds  =  50.5 ± 6.9 mm, body surface area  =  1.98 ± 0.14 m2, V̇o2max  =  49.0 ± 7.0 mL·kg−1·min−1) participated. Intervention(s): Three experimental conditions, consisting of a PC17 jacket, a gel jacket, and no jacket. Main Outcome Measure(s): Core temperature (TC), mean skin temperature (TSk), and TC cooling rate (°C/min). Results: Mean peak TC postexercise was 38.49 ± 0.42°C, 38.57 ± 0.41°C, and 38.55 ± 0.40°C for the PC17 jacket, gel jacket, and control conditions, respectively. No differences were observed in peak TC cooling rates among the PC17 jacket (0.038 ± 0.007°C/min), gel jacket (0.040 ± 0.009°C/min), and control (0.034 ± 0.010°C/min, P > .05) conditions. Between trials, no differences were calculated for mean TSk cooling. Conclusions: Similar cooling rates for all 3 conditions indicate that there is no benefit associated with wearing the PC17 or gel jacket. PMID:20210620

  1. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  2. Magneto-optical cooling of atoms.

    PubMed

    Raizen, Mark G; Budker, Dmitry; Rochester, Simon M; Narevicius, Julia; Narevicius, Edvardas

    2014-08-01

    We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power.

  3. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  4. The nature of the fluids associated with the Monte Rosa gold district, NW Alps, Italy

    NASA Astrophysics Data System (ADS)

    Lattanzi, P.

    1990-12-01

    Recent O-isotope and fluid inclusion studies have provided evidence on the nature of the fluids associated with the late-Alpine quartz-gold deposits of the Monte Rosa district. The most abundant inclusions in quartz from these deposits contain a low salinity aqueous fluid (about 2% to 10% wt. NaCl eq.), and a CO2 phase (usually less than 20% mol), in places with minor methane. CO2 densities and total homogenization temperatures vary widely throughout the district, reflecting diverse conditions of trapping (P = 1 to 3 kb, T = 300° to 450°C). At Miniera dei Cani, unmixing between CO2-rich and H2O-rich fluids possibly occurred. A second type of inclusion contains an aqueous brine without recognizable CO2, and is especially abundant at Val Toppa. O-isotope studies suggest that fluids were largely equilibrated in a metamorphic environment. It is concluded that the gold-related fluids in the district were mainly of a metamorphic nature; at Val Toppa, both isotopic and fluid inclusion data point to contributions of unexchanged meteoric waters. Mechanisms of gold transport and precipitation are less contrained. A possible model involves transport of gold as bisulfide complexes, and precipitation due to one or more of the following processes: decrease of sulfur activity due to precipitation of sulfides, wall-rock reaction, cooling/dilution, and/or fluid unmixing.

  5. A community outbreak of Legionnaires' disease: evidence of a cooling tower as the source.

    PubMed

    Sabria, M; Alvarez, J; Dominguez, A; Pedrol, A; Sauca, G; Salleras, L; Lopez, A; Garcia-Nuñez, M A; Parron, I; Barrufet, M P

    2006-07-01

    A community outbreak of Legionella pneumonia in the district of Cerdanyola, Mataró (Catalonia, Spain) was investigated in an epidemiological, environmental and molecular study. Each patient was interviewed to ascertain personal risk-factors and the clinical and epidemiological data. Isolates of Legionella from patients and water samples were subtyped by pulsed-field gel electrophoresis. Between 7 August and 25 August 2002, 113 cases of Legionella pneumonia fulfilling the outbreak case definition criteria were reported, with 84 (74%) cases being located within a 500-m radius of the suspected cooling tower source. In this area, the relative risk of being infected was 54.6 (95% CI 25.3-118.1) compared with individuals living far from the cooling tower. Considering the population residing in the Cerdanyola district (28,256 inhabitants) as a reference population, the attack rate for the outbreak was 399.9 cases/100,000 inhabitants, and the case fatality rate was 1.8%. A single DNA subtype was observed among the ten clinical isolates, and one of the subtypes from the cooling tower matched exactly with the clinical subtype. Nine days after closing the cooling tower, new cases of pneumonia caused by Legionella ceased to appear. The epidemiological features of the outbreak, and the microbiological and molecular investigations, implicated the cooling tower as the source of infection.

  6. Legionnaires' disease bacteria in power plant cooling systems: Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyndall, R.L.; Christensen, S.W.; Solomon, J.A.

    1985-04-01

    Legionnaires' Disease Bacteria (Legionella) are a normal component of the aquatic community. The study investigated various environmental factors that affect Legionella profiles in power plant cooling waters. The results indicate that each of the four factors investigated (incubation temperature, water quality, the presence and type of associated biota, and the nature of the indigenous Legionella population) is important in determining the Legionella profile of these waters. Simple predictive relationships were not found. At incubation temperatures of 32/sup 0/ and 37/sup 0/C, waters from a power plant where infectious Legionella were not observed stimulated the growth of stock Legionella cultures moremore » than did waters from plants where infectious Legionella were prevalent. This observation is consistent with Phase I results, which showed that densities of Legionella were frequently reduced in closed-cycle cooling systems despite the often higher infectivity of Legionella in closed-cycle waters. In contrast, water from power plants where infectious Legionella were prevalent supported the growth of indigenous Legionella pneumophila at 42/sup 0/C, while water from a power plant where infectious Legionella were absent did not support growth of indigenous Legionella. Some Legionella are able to withstand a water temperature of 85/sup 0/C for several hours, thus proving more tolerant than was previously realized. Finally, the observation that water from two power plants where infectious Legionella were prevalent usually supported the growth of Group A Legionella at 45/sup 0/C indicates the presence, of soluble Legionella growth promoters in these waters. This test system could allow for future identification and control of these growth promoters and, hence, of Legionella. 25 refs., 23 figs., 10 tabs.« less

  7. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlationmore » of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.« less

  8. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; Song, Y.; Tang, J.; Li, Z.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Orestano, D.; Tortora, L.; Kuno, Y.; Ishimoto, S.; Filthaut, F.; Jokovic, D.; Maletic, D.; Savic, M.; Hansen, O. M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Dumbell, K.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Anderson, R. J.; Barclay, P.; Bayliss, V.; Boehm, J.; Bradshaw, T. W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Tucker, M.; Wilson, A.; Watson, S.; Bayes, R.; Nugent, J. C.; Soler, F. J. P.; Gamet, R.; Barber, G.; Blackmore, V. J.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Kurup, A.; Lagrange, J.-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Uchida, M. A.; Cobb, J. H.; Lau, W.; Booth, C. N.; Hodgson, P.; Langlands, J.; Overton, E.; Robinson, M.; Smith, P. J.; Wilbur, S.; Dick, A. J.; Ronald, K.; Whyte, C. G.; Young, A. R.; Boyd, S.; Franchini, P.; Greis, J. R.; Pidcott, C.; Taylor, I.; Gardener, R. B. S.; Kyberd, P.; Nebrensky, J. J.; Palmer, M.; Witte, H.; Bross, A. D.; Bowring, D.; Liu, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Freemire, B.; Hanlet, P.; Kaplan, D. M.; Mohayai, T. A.; Rajaram, D.; Snopok, P.; Suezaki, V.; Torun, Y.; Onel, Y.; Cremaldi, L. M.; Sanders, D. A.; Summers, D. J.; Hanson, G. G.; Heidt, C.; MICE Collaboration

    2017-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combined effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.

  9. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Full Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-08-01

    This report presents the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems.

  10. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  11. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  12. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  13. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    PubMed Central

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-01-01

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%. PMID:28468282

  14. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    PubMed

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  15. Analysis of a combined heating and cooling system model under different operating strategies

    NASA Astrophysics Data System (ADS)

    Dzierzgowski, Mieczysław; Zwierzchowski, Ryszard

    2017-11-01

    The paper presents an analysis of a combined heating and cooling system model under different operating strategies. Cooling demand for air conditioning purposes has grown steadily in Poland since the early 1990s. The main clients are large office buildings and shopping malls in downtown locations. Increased demand for heat in the summer would mitigate a number of problems regarding District Heating System (DHS) operation at minimum power, affecting the average annual price of heat (in summertime the share of costs related to transport losses is a strong cost factor). In the paper, computer simulations were performed for different supply network water temperature, assuming as input, real changes in the parameters of the DHS (heat demand, flow rates, etc.). On the basis of calculations and taking into account investment costs of the Absorption Refrigeration System (ARS) and the Thermal Energy Storage (TES) system, an optimal capacity of the TES system was proposed to ensure smooth and efficient operation of the District Heating Plant (DHP). Application of ARS with the TES system in the DHS in question increases net profit by 19.4%, reducing the cooling price for consumers by 40%.

  16. Effects of Cooling Rate on 6.5% Silicon Steel Ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jun; Macziewski, Chad; Jensen, Brandt

    Increasing Si content improves magnetic and electrical properties of electrical steel, with 6.5% Si as the optimum. Unfortunately, when Si content approaches 5.7%, the Fe-Si alloy becomes brittle. At 6.5%, the steel conventional cold rolling process is no longer applicable. The heterogeneous formation of B2 and D03 ordered phases is responsible for the embrittlement. The formation of these ordered phases can be impeded by rapid cooling. However, only the cooling rates of water and brine water were investigated. A comprehensive study of the effect of rapid cooling rate on the formation of the ordered phases was carried out by varyingmore » wheel speed and melt-injection rate. Thermal imaging employed to measure cooling rates while microstructures of the obtained ribbons are characterized using X-ray diffraction and TEM. The electrical, magnetic and mechanical properties are characterized using 4-pt probe, VSM, and macro-indentation methods. The relations between physical properties and ordered phases are established.« less

  17. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    DOE PAGES

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; ...

    2017-06-19

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combinedmore » effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.« less

  18. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  19. Weakly doped InP layers prepared by liquid phase epitaxy using a modulated cooling rate

    NASA Astrophysics Data System (ADS)

    Krukovskyi, R.; Mykhashchuk, Y.; Kost, Y.; Krukovskyi, S.; Saldan, I.

    2017-04-01

    Epitaxial structures based on InP are widely used to manufacture a number of devices such as microwave transistors, light-emitting diodes, lasers and Gunn diodes. However, their temporary instability caused by heterogeneity of resistivity along the layer thickness and the influence of various external or internal factors prompts the need for the development of a new reliable technology for their preparation. Weak doping by Yb, Al and Sn together with modulation of the cooling rate applied to prepare InP epitaxial layers is suggested to be adopted within the liquid phase epitaxy (LPE) method. The experimental results confirm the optimized conditions created to get a uniform electron concentration in the active n-InP layer. A sharp profile of electron concentration in the n+-InP(substrate)/n-InP/n+-InP epitaxial structure was observed experimentally at the proposed modulated cooling rate of 0.3 °С-1.5 °С min-1. The proposed technological method can be used to control the electrical and physical properties of InP epitaxial layers to be used in Gunn diodes.

  20. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet.

    PubMed

    Ao, Takashi; Matsumoto, Mitsuhiro

    2017-10-24

    We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.

  1. Cooling of Kilauea Iki lava lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, R.G.

    1982-02-01

    In 1959 Kilauea Iki erupted leaving a 110 to 120 m lake of molten lava in its crater. The resulting lava lake has provided a unique opportunity to study the cooling dynamics of a molten body and its associated hydrothermal system. Field measurements taken at Kilauea Iki indicate that the hydrothermal system above the cooling magma body goes through several stages, some of which are well modeled analytically. Field measurements also indicate that during most of the solidification period of the lake, cooling from above is controlled by 2-phase convection while conduction dominates the cooling of the lake from below.more » A summary of the field work related to the study of the cooling dynamics of Kilauea Iki is presented. Quantitative and qualitative cooling models for the lake are discussed.« less

  2. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  3. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-06-01

    A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.

  4. Advanced Heat Exchangers for Dry Cooling Systems, Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortini, Arthur J.; Horwath, Joseph

    Dry cooling systems are an option for industrial and utility power plants that cannot obtain permits for cooling water or where cooling water is unavailable. Currently available dry cooling systems are more expensive and less efficient than wet cooling systems, so significant improvements in efficiency are needed to make them economically viable. Previous attempts at using foams as cooling fin materials for power generating systems have focused on high thermal conductivity graphite foams made via the Oak Ridge process. Because these materials have high flow restrictions and hence low permeability with respect to air flow, their internal volume and surfacemore » area were not effectively used. Consequently, they performed poorly and offered no advantage over aluminum fins. A foam with a more open structure would provide increased permeability, enable greater airflow through the bulk material, increase the rate of heat transfer, and enable the material to outperform traditional fin structures. In this project, Ultramet designed, fabricated, and tested low flow restriction, high-efficiency foam-based heat exchangers. Calculations based on existing thermal and hydraulic data for Ultramet’s high-performance open-cell foams indicated that 65-ppi (pores per linear inch) pyrolytic graphite foam with a relative density of 15 vol%, produced by chemical vapor infiltration (CVI), would have an effectiveness significantly greater than that of a state-of-the-art Hamon/Balcke-Durr aluminum fin system and greater than that of the POCO graphite foams previously tested for the DOE National Energy Technology Laboratory. Using the same chevron design, test setup, and run conditions as were used with the Hamon/Balcke-Durr fin system and the POCO foams, Ultramet tested graphite foams with air flow velocities of 0.07–3.2 m/sec and pressure drops of 0.03–9.7 inH2O. The best-performing graphite foam architectures had air velocities in excess of 2.5 m/sec when the pressure drop was

  5. Parametric Cooling of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.

  6. Evaluation of Commercial Off-the-Shelf and Government Off-the-Shelf Microclimate Cooling Systems

    DTIC Science & Technology

    2005-08-01

    Appendix A - Request for Information (RFI) 23 Appendix B - Memorandum from Natick Soldier Center’s International Office 25 Appendix C - Cooling Power...Data Entry Forms 7 Figure 3. Evaporative Cooling Products 9 Figure 4. Passive Phase Change Product 10 Figure 5. Liquid Circulating...Microclimate Cooling System 13 Figure 6. Compressed Air Cooling Product 15 Figure 7. Vortex Tube 15 Figure 8. Active Phase

  7. Cooling rates of group IVA iron meteorites

    NASA Technical Reports Server (NTRS)

    Willis, J.; Wasson, J. T.

    1978-01-01

    Cooling rates of six group IVA iron meteorites were estimated by a taenite central Ni concentration-taenite half-width method. Calculated cooling rates range from 13 to 25 C/Myr, with an average of 20 C/Myr. No correlation between cooling rate and bulk Ni content is observed, and the data appear to be consistent with a uniform cooling rate as expected from an igneous core origin. This result differs from previous studies reporting a wide range in cooling rates that were strongly correlated with bulk Ni content. The differences result mainly from differences in the phase diagram and the selected diffusion coefficients. Cooling rates inferred from taenite Ni concentrations at the interface with kamacite are consistent with those based on taenite central Ni content.

  8. De-adoption of an evidence-based trauma intervention in schools: A retrospective report from an urban school district

    PubMed Central

    Nadeem, Erum; Ringle, Vanesa

    2017-01-01

    The de-adoption of evidence-based practices (EBPs) is a largely understudied topic. The present study examined factors related to the de-adoption of an EBP for students exposed to traumatic events in a large urban school district. Qualitative interviews conducted with school clinicians and district administrators two years after the district embarked on a large-scale roll-out of the EBP distinguished between factors that impacted partial de-adoption after one year (phase 1) and complete de-adoption by the district after two years (phase 2). Phase 1 factors included organizational consistency, workforce stability, prior success, positive student outcomes, school- and district- level supports, innovation-setting fit, and innovation-related issues. Phase 2 factors included district-level leadership changes, financial and workforce instability, and shifting priorities. Study results suggest that sustainment-enhancing strategies should be included in the early stages of program implementation to most effectively adapt to school- and system- level changes. PMID:28775793

  9. Collaborating To Serve Arizona Students & Families More Effectively: Phase 1 Report. Evaluation of Murphy School District-Department of Economic Security Collaborative Project.

    ERIC Educational Resources Information Center

    Izu, Jo Ann; Carreon, Tori

    This report presents the results of Phase I of an evaluation of the Murphy School District (MSD)-Department of Economic Security (DES) collaborative effort, one of the first interagency partnerships in the state of Arizona that attempts to address the needs of students and their families more effectively. The primary purposes of the evaluation are…

  10. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    NASA Astrophysics Data System (ADS)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  11. Improving prediction accuracy of cooling load using EMD, PSR and RBFNN

    NASA Astrophysics Data System (ADS)

    Shen, Limin; Wen, Yuanmei; Li, Xiaohong

    2017-08-01

    To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

  12. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  13. Immersion Cooling of Electronics in DoD Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, Henry; Herrlin, Magnus

    A considerable amount of energy is consumed to cool electronic equipment in data centers. A method for substantially reducing the energy needed for this cooling was demonstrated. The method involves immersing electronic equipment in a non-conductive liquid that changes phase from a liquid to a gas. The liquid used was 3M Novec 649. Two-phase immersion cooling using this liquid is not viable at this time. The primary obstacles are IT equipment failures and costs. However, the demonstrated technology met the performance objectives for energy efficiency and greenhouse gas reduction. Before commercialization of this technology can occur, a root cause analysismore » of the failures should be completed, and the design changes proven.« less

  14. Cool Science: K-12 Climate Change Art Displayed on Buses

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Thompson, S. R.

    2015-12-01

    Cool science is an art contest where K12 students create placards (7" x 22") to educate the public about climate change. Students are prompted to create their artwork in response to questions such as: What is the evidence for climate change? How does climate change impact your local community? What can you do to reduce the impacts of climate change? In each of three years, 500-600 student entrees have been submitted from more than 12 school districts across Massachusetts. A panel of judges including scientists, artists, rapid transit representatives, and educators chooses elementary, middle, and high school winners. Winners (6), runners-up (6), and honorable mentions (12) and their families and teachers are invited to an annual Cool Science Award Ceremony to be recognized and view winning artwork. All winning artwork is posted on the Cool Science website. The winning artwork (2 per grade band) is converted into placards (11" x 28") and posters (2.5' x 12') that are placed on the inside (placards) and outside (posters) of buses. Posters are displayed for one month. So far, Cool Science was implemented in Lowell, MA where over 5000 public viewers see the posters daily on the sides of Lowell Rapid Transit Authority (LRTA) buses, making approximately 1,000,000 impressions per year. Cool Science acts to increase climate literacy in children as well as the public, and as such promotes intergenerational learning. Using art in conjunction with science learning about climate change appears to be effective at engaging not just traditionally high achieving science students, but also those interested in the creative arts. Hearing winners' stories about how they created their artwork and what this contest meant to them supports the idea that Cool Science attracts a wide diversity of students. Parents discuss climate change with their children. Multiple press releases announcing the winners further promotes the awareness of climate change throughout school districts and their

  15. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  16. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    PubMed

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Short Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-08-01

    This report presents the a brief overview of the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems. A full report of thismore » case study is also available.« less

  18. Heat transfer characteristics of coconut oil as phase change material to room cooling application

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Harmen

    2017-03-01

    Thermal comfort in a room is one of human needs in the workplace and dwellings, so that the use of air conditioning system in tropical countries is inevitable. This equipment has an impact on the increase of energy consumption. One method of minimizing the energy use is by using the phase change material (PCM) as thermal energy storage. This material utilizes the temperature difference between day and night for the storage and release of thermal energy. PCM development on application as a material for air cooling inlet, partitioning and interior needs to be supported by the study of heat transfer characteristics when PCM absorbs heat from ambient temperature. This study was conducted to determine the heat transfer characteristics on coconut oil as a phase change material. There are three models of experiments performed in this research. Firstly, an experiment was conducted to analyze the time that was needed by material to phase change by varying the temperature. The second experiment analyzed the heat transfer characteristics of air to PCM naturally convection. The third experiment analyzed the forced convection heat transfer on the surface of the PCM container by varying the air velocity. The data of experimental showed that, increasing ambient air temperature resulted in shorter time for phase change. At temperatures of 30°C, the time for phase change of PCM with the thickness of 8 cm was 1700 min, and it was stable at temperatures of 27°C. Increasing air temperature accelerated the phase change in the material. While for the forced convection heat transfer, PCM could reduce the air temperature in the range of 30 to 35°C at about 1 to 2°C, with a velocity of 1-3 m/s.

  19. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  20. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    NASA Astrophysics Data System (ADS)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  1. Overnight storage of whole blood: cooling and transporting blood at room temperature under extreme temperature conditions.

    PubMed

    Thibault, L; Beauséjour, A; Jacques, A; Ducas, E; Tremblay, M

    2014-02-01

    Many countries allow the overnight storage of whole blood (WB) at ambient temperature. Some countries, such as Canada, also require a rapid cooling of WB with an active cooling system. Given the significant operational constraints associated with current cooling systems, an alternative method for cooling and transporting WB at 20-24°C was evaluated. Phase 22 cooling packs (TCP Reliable Inc., USA) were used in combination with vacuum-insulated panel (VIP) boxes. Temperature profiles of simulated WB units were studied in extreme temperatures (-35 and 40°C). The quality of blood components prepared using Phase 22 packs and CompoCool-WB (Fresenius HemoCare, Germany) was studied. Phase 22 packs reduced the temperature of simulated WB bags from 37 to 24°C in 1·7 ± 0·2 h. Used in combination with VIP boxes, Phase 22 packs maintain the temperature of bags between 20 and 24°C for 15 and 24 h, compared to 2 and 11 h with CompoCool-WB, when exposed at -35 and 40°C, respectively. The quality of platelet concentrates and plasma was comparable, regardless of the cooling system used. For red blood cell units, per cent haemolysis on day 42 was slightly higher in products prepared after cooling with Phase 22 packs compared to CompoCool-WB (0·33 ± 0·15% vs. 0·21 ± 0·06%; P < 0·05). Phase 22 packs combined with VIP boxes are an acceptable alternative to butane-1,4-diol cooling systems. This system allows blood manufacturers to transport WB to processing facilities in a broad range of environmental conditions. © 2013 International Society of Blood Transfusion.

  2. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  3. Optoelectrical Cooling of Polar Molecules to Submillikelvin Temperatures.

    PubMed

    Prehn, Alexander; Ibrügger, Martin; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2016-02-12

    We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by 3 orders of magnitude and increasing the phase-space density by a factor of ∼10(4), we generate an ensemble of 3×10(5) molecules with a temperature of about 420  μK, populating a single rotational state with more than 80% purity.

  4. Solar Heating and Cooling of Buildings: Phase 0. Executive Summary. Final Report.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Baltimore, MD.

    After the Westinghouse Electric Corporation made a comprehensive analysis of the technical, economic, social, environmental, and institutional factors affecting the feasibility of utilizing solar energy for heating and cooling buildings, it determined that solar heating and cooling systems can become competitive in most regions of the country in…

  5. Reading Treasures. Phase I and Phase II.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    Based on the premise that a school reading program must focus on the learner and the text, this guidebook is designed to serve as a resource for school districts, groups, or individuals involved in planning, implementing, and evaluating reading programs. The guidebook is divided into two phases. Phase 1, "Guidelines for Developing and…

  6. Brain temperature in volunteers subjected to intranasal cooling.

    PubMed

    Covaciu, L; Weis, J; Bengtsson, C; Allers, M; Lunderquist, A; Ahlström, H; Rubertsson, S

    2011-08-01

    Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods. Intranasal balloons catheters circulated with saline at 20°C were applied for 60 min in ten awake volunteers. No sedation was used. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects' personal experience were completed after the experiment. Brain temperature decrease measured by MRSI was -1.7 ± 0.8°C and by phase-mapping -1.8 ± 0.9°C (n = 9) at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 ± 0.3°C (n = 5). The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent in the MMSE test. Postcooling nasal examination detected increased nasal secretion in nine of the ten volunteers. Volunteers' acceptance of the method was good. Both MR techniques revealed brain temperature reductions after 60 min of intranasal cooling with balloons circulated with saline at 20°C in awake, unsedated volunteers.

  7. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  8. Oscillation Rules as the Pacific Cools

    NASA Image and Video Library

    2008-12-13

    The latest image of sea-surface height measurements from NASA U.S./French Jason-1 oceanography satellite shows the Pacific Ocean remains locked in a strong, cool phase of the Pacific Decadal Oscillation.

  9. Challenges and Opportunities in Gen3 Embedded Cooling with High-Quality Microgap Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Avram; Robinson, Franklin L.; Deisenroth, David C.

    2018-01-01

    Gen3, Embedded Cooling, promises to revolutionize thermal management of advanced microelectronic systems by eliminating the sequential conductive and interfacial thermal resistances which dominate the present 'remote cooling' paradigm. Single-phase interchip microfluidic flow with high thermal conductivity chips and substrates has been used successfully to cool single transistors dissipating more than 40kW/sq cm, but efficient heat removal from transistor arrays, larger chips, and chip stacks operating at these prodigious heat fluxes would require the use of high vapor fraction (quality), two-phase cooling in intra- and inter-chip microgap channels. The motivation, as well as the challenges and opportunities associated with evaporative embedded cooling in realistic form factors, is the focus of this paper. The paper will begin with a brief review of the history of thermal packaging, reflecting the 70-year 'inward migration' of cooling technology from the computer-room, to the rack, and then to the single chip and multichip module with 'remote' or attached air- and liquid-cooled coldplates. Discussion of the limitations of this approach and recent results from single-phase embedded cooling will follow. This will set the stage for discussion of the development challenges associated with application of this Gen3 thermal management paradigm to commercial semiconductor hardware, including dealing with the effects of channel length, orientation, and manifold-driven centrifugal acceleration on the governing behavior.

  10. Experimental and numerical simulation of passive decay heat removal by sump cooling after cool melt down

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knebel, J.U.; Kuhn, D.; Mueller, U.

    1997-12-01

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and themore » Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs.« less

  11. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  12. The design of aircraft brake systems, employing cooling to increase brake life

    NASA Technical Reports Server (NTRS)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  13. Analytical investigation of chord size and cooling methods on turbine blade cooling requirements. Book 1: Sections 1 through 8 and appendixes A through I

    NASA Technical Reports Server (NTRS)

    Faulkner, F. E.

    1971-01-01

    A study was conducted to determine the effect of chord size on air cooled turbine blades. In the preliminary design phase, eight turbine blade cooling configurations in 0.75-in., 1.0-in., and 1.5-in. chord sizes were analyzed to determine the maximum turbine inlet temperature capabilities. A pin fin convection cooled configuration and a film-impingement cooled configuration were selected for a final design analysis in which the maximum turbine inlet temperature was determined as a function of the cooling air inlet temperature and the turbine inlet total pressure for each of the three chord sizes. The cooling air flow requirements were also determined for a varying cooling air inlet temperature with a constant turbine inlet temperature. It was determined that allowable turbine inlet temperature increases with increasing chord for the convection cooled and transpiration cooled designs, however, the film-convection cooled designs did not have a significant change in turbine inlet temperature with chord.

  14. Influence of detergents on water drift in cooling towers

    NASA Astrophysics Data System (ADS)

    Vitkovicova, Rut

    An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  15. Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.

    1981-01-01

    A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.

  16. Physiologic and Functional Responses of MS Patients to Body Cooling Using Commercially Available Cooling Garments

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Luna, Bernadette; Webbon, Bruce W.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Personal cooling systems are widely used in industrial and aerospace environments to alleviate thermal stress. Increasingly they are also used by heat sensitive multiple sclerosis (HSMS) patients to relieve symptoms and improve quality of life. There are a variety of cooling systems commercially available to the MS community. However, little information is available regarding the comparative physiological changes produced by routine operation of these various systems. The objective of this study was to document and compare the patient response to two passive cooling vests and one active cooling garment. The Life Enhancement Technology, Inc. (LET) lightweight active cooling vest with cap, the MicroClimate Systems (MCS) Change of Phase garment, and the Steele Vest were each used to cool 13 male and 13 female MS subjects (31 to 67 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 C), were tested with one of the cooling garments. Oral, fight and left ear temperatures were logged manually every 5 min. An-n, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. Each subject was given a series of subjective and objective evaluation tests before and after cooling. The LET and Steele vests test groups had similar, significant (P less than 0.01) cooling effects on oral and ear canal temperature, which decreased approximately 0.4 C, and 0.3 C, respectively. Core temperature increased (N.S.) with all three vests during cooling. The LET vest produced the coldest (P less than 0.01) skin temperature. Overall, the LET vest provided the most improvement on subjective and objective performance measures. These results show that the garment configurations tested do not elicit a similar thermal response in all MS patients. Cooling with the LET active garment configuration resulted in the lowest body temperatures for the MS subjects; cooling with

  17. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    PubMed Central

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with

  18. Microstructures and Properties of W-Ti Alloys Prepared Under Different Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Dai, Weili; Liang, Shuhua; Yang, Qing; Zou, Juntao; Zhuo, Longchao

    2016-07-01

    W-(10 to 15) wt.% Ti alloys were sintered at 1400 or 1500 °C and cooled under different cooling conditions. The microstructures and properties of W-Ti alloys were affected by the cooling conditions. XRD, SEM, EBSD, and TEM were carried out to investigate the effects of cooling conditions and sintering temperature on the microstructures of W-Ti alloys. The nanohardness and elastic modulus of the alloys were also investigated. The results showed that when the temperature was 1500 °C, the content of Ti-rich phase in W-(10 to 15) wt.% Ti alloys decreased obviously with the increase of cooling rate (the average cooling rate of furnace cooling, air cooling and water cooling was 0.2, 10, and 280 °C/s, respectively). For the W-10 wt.% Ti alloy, the content decreased from 20.5 to 9.7%, and the grain size decreased from 2.33 to 0.67 μm. When the temperature decreased to 1400 °C, the grain size was also decreased sharply with the increase of cooling rate, but there was a little change in the microstructure. Meanwhile, the grain sizes were smaller than those of the alloys sintered at 1500 °C. The nanohardness and elastic modulus increased with the increase of cooling rate, and the alloys sintered at different temperatures had different nanohardness and elastic modulus which depended on the cooling conditions. Sintering at a proper temperature and then cooling at a certain cooling condition was a useful method to fabricate alloy with less Ti-rich phase and high properties.

  19. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel

    NASA Astrophysics Data System (ADS)

    Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong

    2016-11-01

    The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.

  20. Liquid cooling applications on automotive exterior LED lighting

    NASA Astrophysics Data System (ADS)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  1. Effect of Cooling Rate on Microstructure of Two Kinds of High Nb Containing Tial Alloys

    NASA Astrophysics Data System (ADS)

    Chai, L. H.; Feng, Z. Y.; Xiang, Z. L.; Cui, Y. S.; Zhou, F.; Chen, Z. Y.

    2017-09-01

    In this paper, high Nb-TiAl alloys with Cr and W additions were prepared by Vacuum induction melting method, and then were heat treated under three different cooling rates of slow cooling, furnace cooling and air cooling. The phase composition of the alloy was analyzed by X ray diffraction, and the microstructure of the alloy was observed by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive analyzer. The results show that the microstructure of Ti45Al8Nb0.2Cr and Ti45Al8Nb0.2W are fully lamellar structure with the main phase composition of α+γ after 3 different heat treatment conditions. The grain size of the two alloys decreases with decreasing of cooling rate, and the grain size of the alloyed with Cr alloy is smaller than that of the alloyed with W alloy. Most of the original massive β phase at grain boundaries and lamellar interfaces dissolved after heat treatment, and the transformation of β phase is easier for Ti45Al8Nb0.2Cr.

  2. Cool Science: Using Children's Art to Communicate Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.

    2013-12-01

    Cool Science is a K-12 Climate Change Science Art Competition. Working with teachers, parents, and students, the project aims to identify outstanding works of art by students about climate change and display the art throughout public mass transit. Cool Science has three distinct goals: 1) provide a convenient means for art and science teachers to incorporate climate change into their curriculum, 2) support teacher/student learning about climate change science, and 3) foster informal learning about climate change among people riding mass transit. By efficiently connecting formal and informal learning with one project, Cool Science is an innovative project that expands the way we engage and evaluate students. Using children's artwork to communicate complex scientific issues such as climate change is a powerful learning experience for the artist, teacher, and audience. Last year, Cool Science received nearly 600 entries from students representing 36 teachers from 32 school districts. Six winning entries went on public display with one highlighted each month from January through June. In addition, there were 6 Runner Ups and 12 Honorable Mentions. For the winning students, it is an unforgettable experience to see a nine-foot version of their artwork traveling around the streets on the side of a bus!

  3. Heating and cooling of the earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1990-01-01

    Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.

  4. Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Luo, Dehai; Chen, Yanan; Dai, Aiguo; Mu, Mu; Zhang, Renhe; Ian, Simmonds

    2017-12-01

    In this paper, we analyze observational and reanalysis data to demonstrate that the Atlantic Multidecadal Oscillation (AMO) significantly modulates winter Eurasian surface air temperature through its impact on the shape, frequency and persistence of Ural blocking (UB) events that last for 10-20 d. This impact results from changes in mid-high latitude westerly winds over Eurasia associated with the warming in the Barents-Kara Seas (BKS) through the AMO-driven high sea surface temperature and sea-ice decline and resultant weakening in meridional temperature gradients. The BKS warming has a strongest positive correlation with the AMO at a time lag of about 14 years. During the recent positive AMO phase, more persistent northwest-southeast (NW-SE) oriented UB events are favored by weakened westerly winds in Eurasian mid-high latitudes. Through cold atmospheric advection and radiative cooling, such UB events produce a strong, persistent and widespread cooling over Eurasia and enhance BKS warming during 1999-2015. However, the positive AMO phase cannot directly produce the Eurasian cooling if the UB is absent. Thus, we conclude that the recent AMO phase change is a major cause of the recent winter cooling over Eurasia through its impact on BKS temperature and sea ice, which in turn affect the meridional temperature gradient, the westerly winds and the UB events.

  5. Post-exercise cooling techniques in hot, humid conditions.

    PubMed

    Barwood, Martin James; Davey, Sarah; House, James R; Tipton, Michael J

    2009-11-01

    Major sporting events are often held in hot and humid environmental conditions. Cooling techniques have been used to reduce the risk of heat illness following exercise. This study compared the efficacy of five cooling techniques, hand immersion (HI), whole body fanning (WBF), an air cooled garment (ACG), a liquid cooled garment (LCG) and a phase change garment (PCG), against a natural cooling control condition (CON) over two periods between and following exercise bouts in 31 degrees C, 70%RH air. Nine males [age 22 (3) years; height 1.80 (0.04) m; mass 69.80 (7.10) kg] exercised on a treadmill at a maximal sustainable work intensity until rectal temperature (T (re)) reached 38.5 degrees C following which they underwent a resting recovery (0-15 min; COOL 1). They then recommenced exercise until T (re) again reached 38.5 degrees C and then undertook 30 min of cooling with (0-15 min; COOL 2A), and without face fanning (15-30 min; COOL 2B). Based on mean body temperature changes (COOL 1), WBF was most effective in extracting heat: CON 99 W; WBF: 235 W; PCG: 141 W; HI: 162 W; ACG: 101 W; LCG: 49 W) as a consequence of evaporating more sweat. Therefore, WBF represents a cheap and practical means of post-exercise cooling in hot, humid conditions in a sporting setting.

  6. School District Mergers: What One District Learned

    ERIC Educational Resources Information Center

    Kingston, Kathleen

    2009-01-01

    Throughout the planning process for a school district merger in a northwestern Pennsylvania school district, effective communication proved to be a challenge. Formed in 1932, this school district of approximately 1400 students was part of a utopian community; one established by a transportation system's corporation that was a major industrial…

  7. Directions for the '80s: Educational Master Plan. San Francisco Community College District.

    ERIC Educational Resources Information Center

    Duncan-Hall, Tyra L., Ed.

    Designed to assist staff in the San Francisco Community College District (SFCCD) in synthesizing the trends, events and issues that are likely to influence educational programs and services, this master plan assesses the district's internal and external environments and describes the SFCCD's two-phase planning process. Chapter 1 discusses the…

  8. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be usedmore » to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.« less

  9. Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer

    2018-02-01

    Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.

  10. Interfacial condensation induced by sub-cooled liquid jet

    NASA Astrophysics Data System (ADS)

    Rame, Enrique; Balasubramaniam, R.

    2016-11-01

    When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.

  11. Heating and Cooling of Coronal Loops with Turbulent Suppression of Parallel Heat Conduction.

    PubMed

    Bian, Nicolas; Emslie, A Gordon; Horne, Duncan; Kontar, Eduard P

    2018-01-10

    Using the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path λ T lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role. We also consider the magnitude and duration of the heat input that is necessary to account for the enhanced values of temperature and density at the beginning of the cooling phase and for the observed cooling times. We find through numerical modeling that in order to produce a peak temperature ≃1.5 × 10 7 K and a 200 s cooling time consistent with observations, the flare-heating profile must extend over a significant period of time; in particular, its lingering role must be taken into consideration in any description of the cooling phase. Comparison with observationally inferred values of post-flare loop temperatures, densities, and cooling times thus leads to useful constraints on both the magnitude and duration of the magnetic energy release in the loop, as well as on the value of the turbulent mean free path λ T .

  12. Performance of the dark energy camera liquid nitrogen cooling system

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Alvarez, R.; Bonati, M.; Derylo, G.; Estrada, J.; Flaugher, B.; Flores, R.; Lathrop, A.; Munoz, F.; Schmidt, R.; Schmitt, R. L.; Schultz, K.; Kuhlmann, S.; Zhao, A.

    2014-01-01

    The Dark Energy Camera, the Imager and its cooling system was installed onto the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile in September 2012. The imager cooling system is a LN2 two-phase closed loop cryogenic cooling system. The cryogenic circulation processing is located off the telescope. Liquid nitrogen vacuum jacketed transfer lines are run up the outside of the telescope truss tubes to the imager inside the prime focus cage. The design of the cooling system along with commissioning experiences and initial cooling system performance is described. The LN2 cooling system with the DES imager was initially operated at Fermilab for testing, then shipped and tested in the Blanco Coudé room. Now the imager is operating inside the prime focus cage. It is shown that the cooling performance sufficiently cools the imager in a closed loop mode, which can operate for extended time periods without maintenance or LN2 fills.

  13. Evidence of monotropic hexatic tilted smectic phase in the phase sequence of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Węgłowska, Dorota; Marzec, Monika

    2018-02-01

    Physical properties of a new ferroelectric liquid crystal have been studied by complementary methods: differential scanning calorimetry, polarizing optical microscopy, dielectric and X-ray diffraction. It was found that next to enantiotropic ferroelectric smectic C* phase, the monotropic smectic phase appears at cooling. X-ray diffraction measurements allowed to identify this phase as hexatic tilted smectic. Temperature dependence of spontaneous polarization, tilt angle of molecules and switching time were found in both liquid crystalline phases at cooling. Based on the dielectric results, the dielectric processes were identified as Goldstone mode in the smectic C* phase, whereas as the bond-orientation-like phason and the bulk domain mode in the monotropic hexatic tilted smectic phase.

  14. Solar heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  15. Solid-state transformations in the β-form of chlorpropamide on cooling to 100 K.

    PubMed

    Drebushchak, Tatiana N; Drebushchak, Valeri A; Boldyreva, Elena V

    2011-04-01

    A single-crystal X-ray diffraction study of the effect of cooling down to 100 K on the β-form of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, has revealed reversible phase transitions at ∼257 K and between 150 and 125 K: β (Pbcn, Z' = 1) ⇔ β(II) (P2/c, Z' = 2) ⇔ β(III) (P2/n, a' = 2a, Z' = 4); the sequence corresponds to cooling. Despite changes in the space group and number of symmetry-independent molecules, the volume per molecule changes continuously in the temperature range 100-300 K. The phase transition at ∼257 K is accompanied by non-merohedral twinning, which is preserved on further cooling and through the second phase transition, but the original single crystal does not crack. DSC (differential scanning calorimetry) and X-ray powder diffraction investigations confirm the phase transitions. Twinning disappears on heating as the reverse transformations take place. The second phase transition is related to a change in conformation of the alkyl tail from trans to gauche in 1/4 of the molecules, regularly distributed in the space. Possible reasons for the increase in Z' upon cooling are discussed in comparison to other reported examples of processes (crystallization, phase transitions) in which organic crystals with Z' > 1 have been formed. Implications for pharmaceutical applications are discussed. © 2011 International Union of Crystallography

  16. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank

  17. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  18. Rapid quantification of viable Legionella in nuclear cooling tower waters using filter cultivation, fluorescent in situ hybridization and solid-phase cytometry.

    PubMed

    Baudart, J; Guillaume, C; Mercier, A; Lebaron, P; Binet, M

    2015-05-01

    To develop a rapid and sensitive method to quantify viable Legionella spp. in cooling tower water samples. A rapid, culture-based method capable of quantifying as few as 600 Legionella microcolonies per litre within 2 days in industrial waters was developed. The method combines a short cultivation step of microcolonies on GVPC agar plate, specific detection of Legionella cells by a fluorescent in situ hybridization (FISH) approach, and a sensitive enumeration using a solid-phase cytometer. Following optimization of the cultivation conditions, the qualitative and quantitative performance of the method was assessed and the method was applied to 262 nuclear power plant cooling water samples. The performance of this method was in accordance with the culture method (NF-T 90-431) for Legionella enumeration. The rapid detection of viable Legionella in water is a major concern to the effective monitoring of this pathogenic bacterium in the main water sources involved in the transmission of legionellosis infection (Legionnaires' disease). The new method proposed here appears to be a robust, efficient and innovative means for rapidly quantifying cultivable Legionella in cooling tower water samples within 48 h. © 2015 The Society for Applied Microbiology.

  19. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS...

  20. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS...

  1. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John

    2017-10-01

    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  2. A simplified simulation model for a HPDC die with conformal cooling channels

    NASA Astrophysics Data System (ADS)

    Frings, Markus; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.

  3. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  4. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  5. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  6. Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod

    NASA Astrophysics Data System (ADS)

    Klotsche, K.; Thomas, C.; Hesse, U.

    2017-08-01

    The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.

  7. A Demographic Analysis of the Impact of Property Tax Caps on Indiana School Districts

    ERIC Educational Resources Information Center

    Hirth, Marilyn A.; Lagoni, Christopher

    2014-01-01

    In 2008, the Indiana legislature passed and the governor signed into law House Enrolled Act No. 1001, now referred to as Public Law 146-2008, which capped Indiana school districts' ability to raise revenues from the local property tax without local voter approval. To phase in the impact of the law, the state provided school districts with levy…

  8. CO2 evaporative cooling: The future for tracking detector thermal management

    NASA Astrophysics Data System (ADS)

    Tropea, P.; Daguin, J.; Petagna, P.; Postema, H.; Verlaat, B.; Zwalinski, L.

    2016-07-01

    In the last few years, CO2 evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO2 evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the construction of a common prototype in the next years.

  9. Solar residential heating and cooling system development test program

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  10. Global cooling?

    PubMed

    Damon, P E; Kunen, S M

    1976-08-06

    The world's inhabitants, including Scientists, live primarily in the Northern Hemisphere. It is quite natural to be concerned about events that occur close to home and neglect faraway events. Hence, it is not surprising that so little attention has been given to the Southern Hemisphere. Evidence for global cooling has been based, in large part, on a severe cooling trend at high northern latitudes. This article points out that the Northern Hemisphere cooling trend appears to be out of phase with a warming trend at high latitudes in the Southern Hemisphere. The data are scanty. We cannot be sure that these temperature fluctuations are be not the result of natural causes. How it seems most likely that human activity has already significantly perturbed the atmospheric weather system. The effect of particulate matter pollution should be most severe in the highly populated and industrialized Northern Hemisphere. Because of the rapid diffusion of CO(2) molecules within the atmosphere, both hemispheres will be subject to warming due to the atmospheric (greenhouse) effect as the CO(2) content of the atmosphere builds up from the combustion of fossil fuels. Because of the differential effects of the two major sources of atmospheric pollution, the CO(2) greenhouse effect warming trend should first become evident in the Southern Hemisphere. The socioeconomic and political consequences of climate change are profound. We need an early warning system such as would be provided by a more intensive international world weather watch, particularly at high northern and southern latitudes.

  11. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  12. Precontrol observations on lymphatic filariasis & geo-helminthiases in two coastal districts of rural Orrisa.

    PubMed

    Chhotray, G P; Ranjit, M R; Khuntia, H K; Acharya, A S

    2005-11-01

    Lymphatic filariasis (LF) is a major public health problem in India, accounting for 40 per cent of the global burden. The World Health Organization has launched a global programme to eliminate LF by 2020 and India is a signatory to it. Orissa, an eastern Indian State has long been known to be endemic for LF. Prior to implementation of mass drug administration programme it is important to collect baseline data on filariasis and geo-helminthiases in the State. The present cross-sectional survey was therefore carried out between February and December 2001 to obtain baseline information on both LF and geo-helminthiases before application of the control measures. The study was carried out in rural areas of Puri and Ganjam districts in two phases. In phase I, the distribution of microfilaraemia in two district was mapped out in randomly selected primary health centres (PHCs), and 12 microfilaraemic villages were identified in each district by cluster analysis for the phase II study. In phase II, detailed clinical and parasitological survey for LF and geo-helminthiases was carried out following the standard procedures. Wuchereria bancrofti was found to be widely prevalent in Puri district with certain pockets of Brugia malayi while W. bancrofti was the only species in Ganjam district. The microfilaraemia (Mf) rate was found to be 9.5 and 11.1 per cent; and circulating filarial antigenaemia (CFA) was 16.8 and 17.8 per cent in Puri and Ganjam respectively. The geometric mean intensity (GMI) of Mf per ml of blood among positive individuals was 387 in Puri and 454 in Ganjam. The overall disease rate in Puri was 7.9 and 8.9 per cent in Ganjam. The prevalence of chronic manifestations was found to be significantly higher (P<0.001) than the acute manifestations in both the districts. The prevalence of geo-helminthiases was 31.8 per cent in Puri and 42.1 per cent in Ganjam; and the heavy infection was found to be significantly higher (P<0.001) in Ganjam compared to Puri district

  13. Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling

    NASA Astrophysics Data System (ADS)

    Pohjonen, Aarne; Paananen, Joni; Mourujärvi, Juho; Manninen, Timo; Larkiola, Jari; Porter, David

    2018-05-01

    We present computer simulations of austenite decomposition to ferrite and bainite during cooling. The phase transformation model is based on Johnson-Mehl-Avrami-Kolmogorov type equations. The model is parameterized by numerical fitting to continuous cooling data obtained with Gleeble thermo-mechanical simulator and it can be used for calculation of the transformation behavior occurring during cooling along any cooling path. The phase transformation model has been coupled with heat conduction simulations. The model includes separate parameters to account for the incubation stage and for the kinetics after the transformation has started. The incubation time is calculated with inversion of the CCT transformation start time. For heat conduction simulations we employed our own parallelized 2-dimensional finite difference code. In addition, the transformation model was also implemented as a subroutine in commercial finite-element software Abaqus which allows for the use of the model in various engineering applications.

  14. A Tale of Three District Energy Systems: Metrics and Future Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pass, Rebecca Zarin; Wetter, Michael; Piette, Mary Ann

    Improving the sustainability of cities is crucial for meeting climate goals in the next several decades. One way this is being tackled is through innovation in district energy systems, which can take advantage of local resources and economies of scale to improve the performance of whole neighborhoods in ways infeasible for individual buildings. These systems vary in physical size, end use services, primary energy resources, and sophistication of control. They also vary enormously in their choice of optimization metrics while all under the umbrella-goal of improved sustainability. This paper explores the implications of choice of metric on district energy systemsmore » using three case studies: Stanford University, the University of California at Merced, and the Richmond Bay campus of the University of California at Berkeley. They each have a centralized authority to implement large-scale projects quickly, while maintaining data records, which makes them relatively effective at achieving their respective goals. Comparing the systems using several common energy metrics reveals significant differences in relative system merit. Additionally, a novel bidirectional heating and cooling system is presented. This system is highly energy-efficient, and while more analysis is required, may be the basis of the next generation of district energy systems.« less

  15. Demonstration of an efficient cooling approach for SBIRS-Low

    NASA Astrophysics Data System (ADS)

    Nieczkoski, S. J.; Myers, E. A.

    2002-05-01

    The Space Based Infrared System-Low (SBIRS-Low) segment is a near-term Air Force program for developing and deploying a constellation of low-earth orbiting observation satellites with gimbaled optics cooled to cryogenic temperatures. The optical system design and requirements present unique challenges that make conventional cooling approaches both complicated and risky. The Cryocooler Interface System (CIS) provides a remote, efficient, and interference-free means of cooling the SBIRS-Low optics. Technology Applications Inc. (TAI), through a two-phase Small Business Innovative Research (SBIR) program with Air Force Research Laboratory (AFRL), has taken the CIS from initial concept feasibility through the design, build, and test of a prototype system. This paper presents the development and demonstration testing of the prototype CIS. Prototype system testing has demonstrated the high efficiency of this cooling approach, making it an attractive option for SBIRS-Low and other sensitive optical and detector systems that require low-impact cryogenic cooling.

  16. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  17. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  18. A predictive model to evaluate the impact of the cooling profile on growth of psychrotrophic bacteria in raw milk from conventional and robotic milking.

    PubMed

    Christiansson, Anders

    2017-08-01

    This Research Communication explores the usefulness of predictive modelling to explain bacterial behaviour during cooling. A simple dynamic lag phase model was developed and validated. The model takes into account the effect of the cooling profile on the lag phase and growth in bulk tank milk. The time before the start of cooling was the most critical and should not exceed 1 h. The cooling rate between 30 and approximately 10 °C was the second most critical period. Cooling from 30 to 10 °C within 2 h ensured minimal growth of psychrotrophic bacteria in the milk. The cooling rate between 10 and 4 °C (the slowest phase of cooling) was of surprisingly little importance. Given a normal cooling profile to 10 °C, several hours of prolonged cooling time made practically no difference in psychrotrophic counts. This behaviour can be explained by the time/temperature dependence of the work needed by the bacteria to complete the lag phase at low temperature. For milk quality advisors, it is important to know that slow cooling below 10 °C does not result in high total counts of bacteria. In practice, slow cooling is occasionally found at farms with robotic milking. However, when comparing psychrotrophic growth in bulk milk tanks designed for robotic milking or conventional milking, the model predicted less growth for robotic milking for identical cooling profiles. It is proposed that due to the different rates of milk entering the tank, fewer bacteria will exit the lag phase during robotic milking and they will be more diluted than in conventional milking systems. At present, there is no international standard that specifies the cooling profile in robotic systems. The information on the insignificant effect of the cooling rate below 10 °C may be useful in the development of a standard.

  19. Effects of Nitrite and Erythorbate on Clostridium perfringens Growth during Extended Cooling of Cured Ham.

    PubMed

    Osterbauer, Katie J; King, Amanda M; Seman, Dennis L; Milkowksi, Andrew L; Glass, Kathleen A; Sindelar, Jeffrey J

    2017-10-01

    To control the growth of Clostridium perfringens in cured meat products, the meat and poultry industries commonly follow stabilization parameters outlined in Appendix B, "Compliance Guidelines for Cooling Heat-Treated Meat and Poultry Products (Stabilization)" ( U.S. Department of Agriculture, Food Safety and Inspection Service [USDA-FSIS], 1999 ) to achieve cooling (54.4 to 4.4°C) within 15 h after cooking. In this study, extended cooling times and their impact on C. perfringens growth were examined. Phase 1 experiments consisted of cured ham with 200 mg/kg ingoing sodium nitrite and 547 mg/kg sodium erythorbate following five bilinear cooling profiles: a control (following Appendix B guidelines: stage A cooling [54.4 to 26.7°C] for 5 h, stage B cooling [26.7 to 4.4°C] for 10 h), extended stage A cooling for 7.5 or 10 h, and extended stage B cooling for 12.5 or 15 h. A positive growth control with 0 mg/kg nitrite added (uncured) was also included. No growth was observed in any treatment samples except the uncured control (4.31-log increase within 5 h; stage A). Phase 2 and 3 experiments were designed to investigate the effects of various nitrite and erythorbate concentrations and followed a 10-h stage A and 15-h stage B bilinear cooling profile. Phase 2 examined the effects of nitrite concentrations of 0, 50, 75, 100, 150, and 200 mg/kg at a constant concentration of erythorbate (547 mg/kg). Results revealed changes in C. perfringens populations for each treatment of 6.75, 3.59, 2.43, -0.38, -0.48, and -0.50 log CFU/g, respectively. Phase 3 examined the effects of various nitrite and erythorbate concentrations at 100 mg/kg nitrite with 0 mg/kg erythorbate, 100 with 250, 100 with 375, 100 with 547, 150 with 250, and 200 with 250, respectively. The changes in C. perfringens populations for each treatment were 4.99, 2.87, 2.50, 1.47, 0.89, and -0.60 log CFU/g, respectively. Variability in C. perfringens growth for the 100 mg/kg nitrite with 547 mg/kg erythorbate

  20. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  1. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  2. AGN Heating in Simulated Cool-core Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan; Ruszkowski, Mateusz; Bryan, Greg L., E-mail: yuanlium@umich.edu

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss.more » However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.« less

  3. The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Treiman, A.H.; Essene, E.J.; Hemingway, B.S.; Westrum, E.F.; Wall, V.J.; Burriel, R.; Bohlen, S.R.

    1985-01-01

    Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol ?? K). Calculations from published experimental data on the reduction of ilmenite yield ??2980(I1) = -1153.9 kJ/(mol ?? K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of f{hook}O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling. ?? 1985.

  4. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  5. Breaking bad news about transitions to dying: a qualitative exploration of the role of the District Nurse.

    PubMed

    Griffiths, Jane; Ewing, Gail; Wilson, Charlotte; Connolly, Michael; Grande, Gunn

    2015-02-01

    UK District Nurses have an important role in enabling a good death. Patients and families need to know the patient is approaching the dying phase, yet evidence suggests breaking bad news about the patient's transition to dying rarely happens. District Nurses spend a lot of time with patients and families during the dying phase and are ideally placed to recognise and discuss the transition to dying. To explore the role of District Nurses in breaking bad news of transition to dying. Qualitative focus groups. Primary care (District Nurse service); Four National Health Service Trusts, North West England. A total of 40 District Nurses across the Trusts, all Registered General Nurse qualified. Median number of years as a District Nurse was 12.5. All had palliative cancer patients on their caseloads. District Nurses' role in breaking bad news of transition to dying was challenging, but the conversation was described as essential preparation for a good death. Four main challenges with the conversations were patients' responses to the prognosis (unawareness, denial and anger), timing the conversation, complexities of the home environment and limited preparation in this aspect of their work. District Nurses are with patients during their last weeks of life. While other colleagues can avoid breaking bad news of transition to dying, District Nurses have no choice if they are to provide optimal end of life care. While ideally placed to carry out this work, it is complex and they are unprepared for it. They urgently need carefully tailored training in this aspect of their work, to enable them to provide optimal end of life care. © The Author(s) 2014.

  6. Comparing Social Stories™ to Cool versus Not Cool

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  7. Film cooling for a closed loop cooled airfoil

    DOEpatents

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  8. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  9. Reflux cooling experiments on the NCSU scaled PWR facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doster, J.M.; Giavedoni, E.

    1993-01-01

    Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less

  10. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    NASA Astrophysics Data System (ADS)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  11. Developing management capacity building package to district health manager in northwest of Iran: A sequential mixed method study.

    PubMed

    Tabrizi, Jafar Sadegh; Gholipour, Kamal; Farahbakhsh, Mostafa; Jahanbin, Hasan; Karamuz, Majid

    2016-11-01

    To assess districts health managers educational needs and develop management training programmes. This mixed-method study was carried out between August 2014 and August 2015 in Tabriz, Iran. Four focus group discussion sessions and three semi-structured face-to-face interviews were conducted among district health managers and experts of a health centre. Besides, 52 questionnaires were completed to weigh and finalise management education module and courses. Interviews and focus group discussions were tape-recorded, transcribed and analysed using content analysis method. Data was analysed using SPSS17. There were 52 participants, of whom 40(78.8%) were men and 12(21.2%) were women. All of the subjects (100%) took part in the quantitative phase, while 25(48.08%) participated in the qualitative phase. In the qualitative section, 11(44%) participants were heads of unit/departments in provincial health centre and 14(56%) were district health managers. In the quantitative phase, 30(57.7%) participants were district health managers and 8(28.8%) were heads of units/departments. Moreover, 33(63.4%) participants had medical education. The job experience of 3(5.8%) participants in the current position was below five years. Districts health management training programme consisted of 10modules with 53 educational topics. The normalised score out of a total of 100 for rules and ethics was 75.51, health information management 71.19, management and leadership 69.27, district management 68.08, human resources and organisational creativity 67.58,quality improvement 66.6, health resources management 62.37, planning and evaluation 61.87, research in health system 59.15, and community participation was 53.15. Considering district health managers' qualification in health and medicine, they had not been trained in basic management. Almost all the management and leadership courses were prioritised as most necessary.

  12. Continuous Cooling Transformation in Cast Duplex Stainless Steels CD3MN and CD3MWCuN

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Chumbley, L. Scott; Gleeson, Brian

    2008-04-01

    The kinetics of brittle phase transformation in cast duplex stainless steels CD3MN and CD3MWCuN was investigated under continuous cooling conditions. Cooling rates slower than 5 °C/min. were obtained using a conventional tube furnace with a programable controller. In order to obtain controlled high cooling rates, a furnace equipped to grow crystals by means of the Bridgman method was used. Samples were soaked at 1100 °C for 30 min and cooled at different rates by changing the furnace position at various velocities. The velocity of the furnace movement was correlated to a continuous-cooling-temperature profile for the samples. Continuous-cooling-transformation (CCT) diagrams were constructed based on experimental observations through metallographic sample preparations and optical microscopy. These are compared to calculated diagrams derived from previously determined isothermal transformation diagrams. The theoretical calculations employed a modified Johnson-Mehl-Avrami (JMA) equation (or Avrami equation) under assumption of the additivity rule. Rockwell hardness tests were made to present the correlation between hardness change and the amount of brittle phases (determined by tint-etching to most likely be a combination of sigma + chi) after cooling.

  13. Material System Engineering for Advanced Electrocaloric Cooling Technology

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoshi

    Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor

  14. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  15. Mixing methodology, nursing theory and research design for a practice model of district nursing advocacy.

    PubMed

    Reed, Frances M; Fitzgerald, Les; Rae, Melanie

    2016-01-01

    To highlight philosophical and theoretical considerations for planning a mixed methods research design that can inform a practice model to guide rural district nursing end of life care. Conceptual models of nursing in the community are general and lack guidance for rural district nursing care. A combination of pragmatism and nurse agency theory can provide a framework for ethical considerations in mixed methods research in the private world of rural district end of life care. Reflection on experience gathered in a two-stage qualitative research phase, involving rural district nurses who use advocacy successfully, can inform a quantitative phase for testing and complementing the data. Ongoing data analysis and integration result in generalisable inferences to achieve the research objective. Mixed methods research that creatively combines philosophical and theoretical elements to guide design in the particular ethical situation of community end of life care can be used to explore an emerging field of interest and test the findings for evidence to guide quality nursing practice. Combining philosophy and nursing theory to guide mixed methods research design increases the opportunity for sound research outcomes that can inform a nursing model of care.

  16. Photothermal heating and cooling of nanostructures.

    PubMed

    Crane, Matthew Joseph; Zhou, Xuezhe; Davis, E James; Pauzauskie, Peter

    2018-06-11

    A vast range of insulating, semiconducting, and metallic nanomaterials have been studied over the past several decades with the aim of understanding how continuous-wave or pulsed laser radiation can influence their chemical functionality and local environment. Many fascinating observations have been made during laser irradiation including, but not limited to, the superheating of solvents, mass-transport-mediated morphology evolution, photodynamic therapy, morphology dependent resonances, and a range of phase transformations. In addition to laser heating, recent experiments have demonstrated the laser cooling of nanoscale materials through the emission of upconverted, anti-Stokes photons by trivalent rare-earth ions. This focus review outlines the analytical modeling of photothermal heat transport with an emphasis on the experimental validation of anti-Stokes laser cooling. This general methodology can be applied to a wide range of photothermal applications, including nanomedicine, photocatalysis, and the synthesis of new materials. The review concludes with an overview of recent advances and future directions for anti-Stokes cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Scaling behavior of nonisothermal phase separation.

    PubMed

    Rüllmann, Max; Alig, Ingo

    2004-04-22

    The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics

  18. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland... assessment (EA) involving Huron, Madison, and Sand Lake Wetland Management Districts (Districts). In this..., Madison Wetland Management District, Sand Lake Wetland Management District final CCP'' in the subject line...

  19. The Influence of Mo, Cr and B Alloying on Phase Transformation and Mechanical Properties in Nb Added High Strength Dual Phase Steels

    NASA Astrophysics Data System (ADS)

    Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.

    The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.

  20. Dilemmas Presented by State Agency Takeovers of Local School Districts.

    ERIC Educational Resources Information Center

    Steffy, Betty E.

    During the 1988-89 school year, two local school districts were placed into "Phase III" of the Kentucky Educational Improvement Act (1978), a category of state receivership in which much local decision-making power was transferred to Kentucky Department of Education officials. When state education department intervention occurs, major…

  1. Investigation of Spray Cooling Schemes for Dynamic Thermal Management

    NASA Astrophysics Data System (ADS)

    Yata, Vishnu Vardhan Reddy

    This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.

  2. Data-Driven Districts.

    ERIC Educational Resources Information Center

    LaFee, Scott

    2002-01-01

    Describes the use of data-driven decision-making in four school districts: Plainfield Public Schools, Plainfield, New Jersey; Palo Alto Unified School District, Palo Alto, California; Francis Howell School District in eastern Missouri, northwest of St. Louis; and Rio Rancho Public Schools, near Albuquerque, New Mexico. Includes interviews with the…

  3. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  4. Cooling of a magmatic system under thermal chaotic mixing

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego

    2015-04-01

    The cooling of a melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a 2D cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing even of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly affects the temperature field during time and greatly increases the cooling rates. This mechanism has implications for the lifetime of a magmatic body and may favor the appearance of chemical heterogeneities in igneous systems as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations. Among them, the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositionally zoning observed in many plutons worldwide.

  5. Cooling of a Magmatic System Under Thermal Chaotic Mixing

    NASA Astrophysics Data System (ADS)

    El Omari, Kamal; Le Guer, Yves; Perugini, Diego; Petrelli, Maurizio

    2015-07-01

    The cooling of a basaltic melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a two-dimensional (2D) cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly modulates the temperature fields over time and greatly increases the cooling rates. This mechanism has implications for the thermal lifetime of the magmatic body and may favor the appearance of chemical heterogeneities in the igneous system as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations, including the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositional zoning observed in many plutons worldwide.

  6. Constraints from fluid inclusions on sulfide precipitation mechanisms and ore fluid migration in the Viburnum Trend lead district, Missouri

    USGS Publications Warehouse

    Rowan, E.L.; Leach, D.L.

    1989-01-01

    Homogenization temperatures and freezing point depressions were determined for fluid inclusions in Bonneterre Dolomite-hosted dolomite cements in mine samples, as well as drill core from up to 13 km outside of the district. A well-defined cathodoluminescent zonation distinguishes dolomite growth zones as older or younger than main-stage mineralization. Homogenization temperatures and salinities in samples from mines are not systematically different from those of samples outside of the district. The absence of a significant, recognizable decrease in temperature either vertically within the section or east-west across the district, coupled with the minor amount of silica in the district, argues against cooling as a primary cause of sulfide precipitation. In a reduced sulfur mineralization model with Pb carried as chloride complexes, dilution is also a possible sulfide precipitation mechanism. The difference in Pb solubility in the extremes of the chloride concentration range, 3.9 vs. 5.9 molal, reaches 1 ppm only for pH values below approximately 4.5. The distribution of warm inclusions beyond the Viburnum Trend district implies that fluid migration was regional in scale. Elevated temperatures observed in fluid inclusions at shallow stratigraphic depths are consistent with a gravity flow hydrologic system characterized by rapid flow rates and the capacity for advective heat transport. -from Authors

  7. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    NASA Astrophysics Data System (ADS)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  8. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  9. Survey of Burglary and Vandalism Occurrence and Preventative Measures in Twenty-Five Large California School Districts. Summary Report.

    ERIC Educational Resources Information Center

    Fresno City Unified School District, CA. Office of Planning and Research Services.

    Twenty-three California school districts responded to a burglary and vandalism survey conducted by the Fresno Unified School District Burglary and Vandalism Prevention Project, which represents the first phase of a developing program to reduce vandalism occurrences and improve recovery of losses. This summary compiles survey data on 18,000…

  10. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    DOE PAGES

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; ...

    2017-08-11

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less

  11. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    NASA Astrophysics Data System (ADS)

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro

    2017-10-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g-1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as  -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.

  12. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  13. Passive temperature control based on a phase change metasurface.

    PubMed

    Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming

    2018-05-16

    In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.

  14. Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David

    2017-03-01

    Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.

  15. Phase II Testing of Liquid Cooling Garments Using a Sweating Manikin, Controlled by a Human Physiological Model

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Trevino, Luis; Bue,Grant; Rugh, John

    2006-01-01

    An Advanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA's liquid cooling garments (LCGs) used in advanced space suits for extravehicular applications. The manikin has 120 separate heated/sweating zones and is controlled by a finite element physiological model of the human thermoregulatory system. Previous testing showed the thermal sensation and comfort followed the expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/Arctic suit combination are compared to NASA physiological data to validate the manikin/model. Additional LCG configurations are assessed using the manikin and compared to the baseline LCG. Results can extend to other personal protective clothing, including HAZMAT suits, nuclear/biological/chemical protective suits, and fire protection suits.

  16. Legionella pollution in cooling tower water of air-conditioning systems in Shanghai, China.

    PubMed

    Lin, H; Xu, B; Chen, Y; Wang, W

    2009-02-01

    To determine Legionella pollution prevalence, describe the amount of Legionellae with respect to temperature in Shanghai cooling tower water (CTWs) in various types of public sites. Six urban districts were selected as the study fields, adopting multiple-phase sampling methods. Routine culture was used to identify Legionellae. Of the samples, 58.9% (189/321) were observed to be positive, 19.9% were isolated over 100 CFU ml(-1). Legionella pneumophila serogroup 1 was the most frequently isolated species (155/189, 82.0%), followed by Leg. micdadei that was at the second place (44/189, 23.3%). The mean CFU ml(-1) of Legionellae in CTWs reached its peak from July to September. Over all 15.4% of the samples exceeding 100 CFU ml(-1) were observed in a hospital setting. The prevalence of Legionella pollution in CTWs, especially in CTWs of subway stations and hospitals, is worrying, and the positive rate and CFU ml(-1) of Legionellae in CTWs have a close relationship with air temperature. The study demonstrates pollution prevalence rates in different types of sites and various seasons, and provides a proportion of different serogroups of Legionellae. It illuminates an urgent need for dealing with the potential risk of legionellosis in Shanghai, through improved control and prevention strategies.

  17. Sildenafil increases digital skin blood flow during all phases of local cooling in primary Raynaud's phenomenon

    PubMed Central

    Roustit, Matthieu; Hellmann, Marcin; Cracowski, Claire; Blaise, Sophie; Cracowski, Jean-Luc

    2012-01-01

    Digital skin vasoconstriction on local cooling is exaggerated in primary Raynaud’s phenomenon (RP) compared to controls. A significant part of such vasoconstriction relies on the nitric oxide (NO) pathway inhibition. We tested the effect of PDE5 inhibitor sildenafil, which potentiates the effect of NO, on skin blood flow. We recruited 15 patients with primary RP, performing local cooling without sildenafil (day 1), after a single 50 mg oral dose (day 2), and 100 mg (day 3). Skin blood flow, skin temperature and arterial pressure were recorded, and data were expressed as cutaneous vascular conductance (CVC). Sildenafil at 100 mg, but not 50 mg, significantly lessened the cooling-induced decrease in CVC. It also increased resting CVC and skin temperature. These data suggest that 100 mg sildenafil improves digital skin blood flow to local cooling in primary RP. The benefit of sildenafil “as required” should be confirmed in a randomized controlled trial. PMID:22453196

  18. X-Ray Burst Oscillations: From Flame Spreading to the Cooling Wake

    NASA Technical Reports Server (NTRS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2016-01-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such "cooling wake" models, a "canonical" cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an "asymmetric" model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.

  19. Evaluation of a liquid cooling garment as a component of the Launch and Entry Suit (LES)

    NASA Technical Reports Server (NTRS)

    Waligora, J.; Charles, J.; Fritsch, I.; Fortney, S.; Siconolfi, S.; Pepper, L.; Bagian, L.; Kumar, V.

    1994-01-01

    The LES is a partial pressure suit and a component of the shuttle life support system used during launch and reentry. The LES relies on gas ventilation with cabin air to provide cooling. There are conditions during nominal launch and reentry, landing, and post-landing phases when cabin temperature is elevated. Under these conditions, gas cooling may result in some discomfort and some decrement in orthostatic tolerance. There are emergency conditions involving loss of cabin ECS capability that would challenge crew thermal tolerance. The results of a series of tests are presented. These tests were conducted to assess the effectiveness of a liquid-cooled garment in alleviating thermal discomfort, orthostatic intolerance, and thermal intolerance during simulated mission phases.

  20. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  1. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  2. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

    NASA Astrophysics Data System (ADS)

    Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka

    We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.

  3. ASTROMAG coil cooling study

    NASA Astrophysics Data System (ADS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-12-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  4. ASTROMAG coil cooling study

    NASA Technical Reports Server (NTRS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  5. Mechano-caloric cooling device

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Luna, Jack; Abbassi, P.; Carandang, R. M.

    1989-01-01

    The mechano-caloric effect is potentially useful in the He II temperature range. Aside from demonstration work, little quantification effort appears to have been known since other refrigeration possibilities have been available for some time. Successful He II use-related system examples are as follows: in space, the utilization of the latent heat of vaporization has been quite successful in vapor-liquid phase separation (VLPS) in conjunction with thermomechanical force application in plugs. In magnet cooling systems, the possibility of using the mechano-caloric cooling effect in conjunction with thermo-mechanical circulation pump schemes, has been assessed (but not quantified yet to the extent desirable). A third example is quoted in conjunction with superfluid wind tunnel studies and liquid helium tow tank for surface vessels respectively. In all of these (partially future) R and D areas, the question of refrigerator effectiveness using the mechano-caloric effect appears to be relevant, possibly in conjunction with questions of reliability and simplicity. The present work is concerned with quantification of phenomena including simplified thermodynamic cycle calculations.

  6. Cooling Flows

    NASA Astrophysics Data System (ADS)

    Fabian, A.; Murdin, P.

    2000-11-01

    A subsonic cooling flow occurs when the hot gaseous atmosphere of a galaxy, group or cluster of galaxies cools slowly. Such atmospheres occur as a result of gas having fallen into the DARK MATTER well of the object and heated by gravitational energy release. A dominant cooling process is the emission of radiation by the gas. As cooling proceeds the gas sinks further in the potential well, giving ...

  7. The influence of liquid-gas velocity ratio on the noise of the cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Liu, Xuanzuo; Chen, Chi; Zhao, Zhouli; Song, Jinchun

    2018-05-01

    The noise from the cooling tower has a great influence on psychological performance of human beings. The cooling tower noise mainly consists of fan noise, falling water noise and mechanical noise. This thesis used DES turbulence model with FH-W model to simulate the flow and sound pressure field in cooling tower based on CFD software FLUENT and analyzed the influence of different kinds noise, which affected by diverse factors, on the cooling tower noise. It can be concluded that the addition of cooling water can reduce the turbulence and vortex noise of the rotor fluid field in the cooling tower at some extent, but increase the impact noise of the liquid-gas two phase. In general, the cooling tower noise decreases with the velocity ratio of liquid to gas increasing, and reaches the lowest when the velocity ratio of liquid to gas is close to l.

  8. Phase change thermal energy storage methods for combat vehicles, phase 1

    NASA Astrophysics Data System (ADS)

    Lynch, F. E.

    1986-06-01

    Three alternative cooling methods, based on latent heat absorption during phase changes, were studied for potential use in combat vehicle microclimate temperature control. Metal hydrides absorb heat as they release hydrogen gas. Plastic crystals change from one solid phase to another, absorbing heat in the process. Liquid air boils at cryogenic temperature and absorbs additional sensible heat as the cold gas mixes with the microclimate air flow. System designs were prepared for each of the three microclimate cooling concepts. These designs provide details about the three phase change materials, their containers and the auxiliary equipment needed to implement each option onboard a combat vehicle. The three concepts were compared on the basis of system mass, system volume and the energy required to regenerate them after use. Metal hydrides were found to be the lightest and smallest option by a large margin. The energy needed to regenerate a hydride thermal storage system can be extracted from the vehicle's exhaust gases.

  9. Experimental Testing and Numerical Modeling of Spray Cooling Under Terrestrial Gravity Conditions

    DTIC Science & Technology

    2005-01-01

    running safely. Mudawar (2000) identifies two heat flux ranges relative to the amount of heat dissipation. The high-flux range includes heat fluxes on...inferior to those of water ( Mudawar , 2000). Phase change cooling can exist in several forms, or cooling schemes. Pool boiling may be used in...addition to reducing the significant effects of flow orientation ( Mudawar , 2000). It is not fully known how low gravity affects flow boiling, as

  10. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  11. State and district policy influences on district-wide elementary and middle school physical education practices.

    PubMed

    Chriqui, Jamie F; Eyler, Amy; Carnoske, Cheryl; Slater, Sandy

    2013-01-01

    To examine the influence of state laws and district policies on district-wide elementary school and middle school practices related to physical education (PE) time and the percentage of moderate-to-vigorous physical activity (MVPA) time during PE. Multivariate, cross-sectional analysis of state laws, district wellness and PE policies, and district PE practices for school year 2010-2011 controlling for district-level urbanicity, region, size, race/ethnicity of students, and socioeconomic status and clustered on state. One hundred ninety-five public school districts located in 42 states. District-level PE coordinators for the included districts who responded to an online survey. Minutes and days of PE per week and percent time spent in MVPA during PE time. District PE coordinators reported significantly less PE time than national standards-82.9 and 189.6 minutes at the elementary school and middle school levels, respectively. Physical education was provided an average of 2.5 and 3.7 days per week, respectively; and the percentage of MVPA time in PE was 64.4% and 65.7%, respectively. At the elementary school level, districts in either states with laws governing PE time or in a state and district with a law/policy reported significantly more days of PE (0.63 and 0.67 additional days, respectively), and districts in states with PE time laws reported 18 more minutes of PE per week. At the middle school level, state laws were associated with 0.73 more days of PE per week. Neither state laws nor district policies were positively associated with percent MVPA time in PE. State laws and district policies can influence district-level PE practices-particularly those governing the frequency and duration of PE-although opportunities exist to strengthen PE-related laws, policies, and practices.

  12. District Computer Concerns: Checklist for Monitoring Instructional Use of Computers.

    ERIC Educational Resources Information Center

    Coe, Merilyn

    Designed to assist those involved with planning, organizing, and implementing computer use in schools, this checklist can be applied to: (1) assess the present state of instructional computer use in the district; (2) assist with the development of plans or guidelines for computer use; (3) support a start-up phase; and (4) monitor the…

  13. Detectors for low energy electron cooling in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlier, F. S.

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less

  14. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    NASA Astrophysics Data System (ADS)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  15. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect.

    PubMed

    An, Kyoung Jin; Lam, Yun Fat; Hao, Song; Morakinyo, Tobi Eniolu; Furumai, Hiroaki

    2015-12-01

    The potential use of rainwater harvesting in conjunction with miscellaneous water supplies and a rooftop garden with rainwater harvesting facility for temperature reduction have been evaluated in this study for Hong Kong. Various water applications such as toilet flushing and areal climate controls have been systematically considered depending on the availability of seawater toilet flushing using the Geographic Information System (GIS). For water supplies, the district Area Precipitation per Demand Ratio (APDR) has been calculated to quantify the rainwater utilization potential of each administrative district in Hong Kong. Districts with freshwater toilet flushing prove to have higher potential for rainwater harvest and utilization compared to the areas with seawater toilet flushing. Furthermore, the effectiveness of using rainwater harvesting for miscellaneous water supplies in Hong Kong and Tokyo has been analyzed and compared; this revives serious consideration of diurnal and seasonal patterns of rainfall in applying such technology. In terms of the cooling effect, the implementation of a rooftop rainwater harvesting garden has been evaluated using the ENVI-met model. Our results show that a temperature drop of 1.3 °C has been observed due to the rainwater layer in the rain garden. This study provides valuable insight into the applicability of the rainwater harvesting for sustainable water management practice in a highly urbanized city. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bichromatic Sisyphus Cooling

    NASA Astrophysics Data System (ADS)

    Cashen, M.; Yatsenko, L.; Metcalf, H.

    2001-05-01

    Sisyphus cooling arises when the conservative dipole force of a monochromatic optical standing wave (SW) is modified by optical pumping among multiple ground state sublevels at low intensity(J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. B6), 2023 (1989)., or among dressed state manifolds at high intensity(A. Aspect et al., Phys. Rev. Lett. 57), 1688 (1986). As part of our ongoing exploration of optical forces in non-monochromatic light, we have discovered a new type of Sisyphus cooling in a two-level atom where the optical pumping is driven by a second SW produced as a sideband from weak frequency modulation. Each beam of the carrier's SW has a Rabi frequency Ωc ~ 20 γ and is tuned below atomic resonance by δc ~ -38 γ. Thus the light shift at the antinodes is ω_c^ls ~ 8.6 γ. For the sideband, Ωs ~ 1.4 γ and δs ~ +1 γ so ω_s^ls ~ 1 γ. The resulting forces satisfy Fc > 8 F_s. By contrast, the excitation rate γ_s^p > 2 γ_c^p. We choose the relative spatial phase of the SW's to be π, so moving atoms are most likely to be excited at the red-tuned carrier nodes, and thus they climb more hills than they descend. We observe transverse cooling of a beam of He metastables when δc < 0 and heating otherwise, in contrast to Ref. 3 because here the excitation is at the nodes of the high intensity carrier SW. We also observe channeling of the slow atoms in the carrier's SW.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, B.

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heatingmore » Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.« less

  18. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phasemore » change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature

  19. A Detector Scenario for a Muon Cooling Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.

    1998-04-01

    As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.

  20. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Coast Guard District Commander or District Commander. 50.10-5 Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-5 Coast Guard District...

  1. Narrow-line laser cooling by adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  2. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  3. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi

    2018-03-01

    To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

  4. Renovating and Reconstructing in Phases--Specifying Phased Construction.

    ERIC Educational Resources Information Center

    Bunzick, John

    2002-01-01

    Discusses planning for phased school construction projects, including effects on occupancy (for example, construction adjacent to occupied space, construction procedure safety zones near occupied areas, and code-complying means of egress), effects on building systems (such as heating and cooling equipment and power distribution), and contract…

  5. A simulation for predicting potential cooling effect on LPG-fuelled vehicles

    NASA Astrophysics Data System (ADS)

    Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.

    2016-03-01

    Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.

  6. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  8. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  9. Latent cooling and microphysics effects in deep convection

    NASA Astrophysics Data System (ADS)

    Fernández-González, S.; Wang, P. K.; Gascón, E.; Valero, F.; Sánchez, J. L.

    2016-11-01

    Water phase changes within a storm are responsible for the enhancement of convection and therefore the elongation of its lifespan. Specifically, latent cooling absorbed during evaporation, melting and sublimation is considered the main cause of the intensification of downdrafts. In order to know more accurately the consequences of latent cooling caused by each of these processes (together with microphysical effects that they induce), four simulations were developed with the Wisconsin Dynamical and Microphysical Model (WISCDYMM): one with all the microphysical processes; other without sublimation; melting was suppressed in the third simulation; and evaporation was disabled in the fourth. The results show that sublimation cooling is not essential to maintain the vertical currents of the storm. This is demonstrated by the fact that in the simulation without sublimation, maximum updrafts are in the same range as in the control simulation, and the storm lifespan is similar or even longer. However, melting was of vital importance. The storm in the simulation without melting dissipated prematurely, demonstrating that melting is indispensable to the enhancement of downdrafts below the freezing level and for avoiding the collapse of low level updrafts. Perhaps the most important finding is the crucial influence of evaporative cooling above the freezing level that maintains and enhances mid-level downdrafts in the storm. It is believed that this latent cooling comes from the evaporation of supercooled liquid water connected with the Bergeron-Findeisen process. Therefore, besides its influence at low levels (which was already well known), this evaporative cooling is essential to strengthen mid-level downdrafts and ultimately achieve a quasi-steady state.

  10. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  11. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  12. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  13. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  14. Phase 3 geophysical studies in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, V.J.; Sadek, Hamdy; Smith, C.W.

    1982-01-01

    Detailed geophysical measurements have been made in the Rabathan area, Wadi Bidah district, Kingdom of Saudi Arabia, at the site of diamond drill holes RAB-1, -2, and -3; these measurements suggest that the causative source for the anomalous EM (electromagnetic) and SP (self-potential) responses is probably highly conductive zones of Precambrian siliceous-carbonaceous rocks. Although many of the zones are no more than a few meters wide, they commonly contain 50 to 80 percent carbonaceous material and locally abundant pyrite. In places, several thin layers of highly concentrated carbonaceous material interlayered with chert form a multiple conductive zone that is seen in the geophysical data as complex anomaly patterns. In the geologic environment of Wadi Bidah, massive sulfide-bearing zones cannot be distinguished from siliceous-carbonaceous zones on the basis of the EM-SP responses. In North America in similar environments, complex resistivity methods used in experimental research have successfully discriminated between sulfide and carbonaceous conductors. Tests of such methods in the Wadi Bidah district are recommended. Geologic, geochemical, and geophysical data at the Jabal Mohr prospect suggest the possibility of mineralized rocks at depth over a possible strike length of 400 m.

  15. Evaluation of the initial and chronic phases of toxocariasis after consumption of liver treated by freezing or cooling.

    PubMed

    Dutra, Gisele Ferreira; Pinto, Nitza Souto França; da Costa de Avila, Luciana Farias; de Lima Telmo, Paula; da Hora, Vanusa Pousada; Martins, Lourdes Helena Rodrigues; Berne, Maria Elisabeth Aires; Scaini, Carlos James

    2013-06-01

    Human toxocariasis is a neglected parasitic zoonosis of worldwide distribution. The consumption of raw or undercooked meat and offal from paratenic hosts of the Toxocara canis nematode can cause infection in humans, but there have been a lack of studies examining specific prophylactic measures to combat this mode of transmission. The aim of this study was to evaluate the establishment of infection by T. canis larvae at the initial and chronic phases of visceral toxocariasis after the consumption of mouse liver subjected to cold treatment. This study was divided into two stages using groups (G) of five donor mice inoculated with 2,000 eggs of T. canis. Two days post-inoculation, the livers of donor mice in G1 and G2 were kept at -20 °C and between 0 and 4 °C, respectively, for 10 days. In the first stage of the study, the livers of mice from G1, G2, and G3 (control) were subjected to a tissue digestion technique and found to be positive for infection. In the second stage, which evaluated infection in mice that had consumed livers from donor mice, receiver mice of G4 and G7 were fed with livers of donor mice from G1 (freezing), receiver mice of G5 and G8 were fed with livers of donor mice from G2 (cooling), and receiver mice of G6 and G9 with livers from G3 (control). Then, the tissue digestion technique was performed for recovering larvae from organs and carcasses of mice, at 2 days (G4, G5, and G6) and 60 days after liver consumption (G7, G8, and G9). It was observed that freezing inhibited the viability of 100 % of the larvae, while cooling promoted 87.7 and 95.7 % reductions in the intensity of infection at 2 and 60 days after liver consumption, respectively. Under the studied conditions, cold treatment shows great potential to help control this parasitosis, both in the initial and chronic phases of toxocariasis.

  16. Restaurant Food Cooling Practices†

    PubMed Central

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  17. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  18. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  19. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  20. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apfelbaum, Steven L.; Duvall, Kenneth W.; Nelson, Theresa M.

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric powermore » plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant

  1. Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.

    1994-01-01

    This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the

  2. California's Districts of Choice

    ERIC Educational Resources Information Center

    Kronholz, June

    2014-01-01

    This article describes the results of a California state law established in 2010 that created "Districts of Choice." The District of Choice law was meant to encourage districts to compete for students by offering innovative programs and this-school-fits-my-child options that parents wanted. This designation meant that children from any…

  3. Vapor cycle cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midolo, L.

    1980-07-08

    A description is given of a rotary vane cooling system including a two phase coolant, comprising: a vaporizable liquid working medium within said cooling system; an evaporator having an inlet and an outlet; a condenser having an inlet and an outlet; a two stage rotary vane compressor, including means for connecting the outlet of a first compressor stage to the inlet of a second compressor stage; said two stage rotary vane compressor being connected between the outlet of said evaporator and the inlet at said condenser; an expansion device connected between the outlet of said condenser and the inlet ofmore » said evaporator; said two stage compressor including a housing having a chamber therein, a rotor on a rotatable shaft; said rotor being positioned within said chamber; said rotor having a plurality of slidable vanes which form a plurality of cells, within said chamber, which change in volume as the rotor rotates; said plurality of cells including a pluraity of cells on one side of said rotor which corresponds to said first compressor stage and a plurality of cells on the other side of said rotor which corresponds to said second compressor stage; said cells corresponding to said first compressor stage having a greater maximum volume than the cells corresponding to said second compressor stage; and means for supplying at least a portion of the vapor resulting from the expansion in said expansion device to the inlet of the second compressor stage for providing cooling in the inlet of said second compressor stage.« less

  4. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  5. Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Benjamin J

    This presentation shows how NREL is approaching Zero Energy Districts, including key opportunities, design strategies, and master planning concepts. The presentation also covers URBANopt, an advanced analytical platform for district that is being developed by NREL.

  6. Food Defense Practices of School Districts in Northern U.S. States

    ERIC Educational Resources Information Center

    Klitzke, Carol J.

    2013-01-01

    This study assessed implementation of food defense practices in public schools in Montana, Wyoming, South Dakota, North Dakota, Iowa, Minnesota, and Wisconsin. The first phase involved a qualitative multi-site case study: one-day visits were made to five school districts in the states of Iowa, South Dakota, Minnesota, and Wisconsin. A principal,…

  7. The evolution of cooling flows. I - Self-similar cluster flows. [of gas in intergalactic medium

    NASA Technical Reports Server (NTRS)

    Chevalier, Roger A.

    1987-01-01

    The evolution of a cooling flow from an initial state of hydrostatic equilibrium in a cluster of galaxies is investigated. After gas mass and energy are injected into the cluster at an early phase, the gas approaches hydrostatic equilibrium over most of the cluster and cooling becomes important in the dense central regions. As time passes, cooling strongly affects an increasing amount of gas. The effects of mass removal from the flow, the inclusion of magnetic or cosmic-ray pressure, and heat conduction are considered individually.

  8. AGN self-regulation in cooling flow clusters

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Teyssier, R.

    2007-04-01

    We use three-dimensional high-resolution adaptive-mesh-refinement simulations to investigate if mechanical feedback from active galactic nucleus jets can halt a massive cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We start with a 3 × 109 Msolar black hole at the centre of a spherical halo with the mass of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in hydrostatic equilibrium within the dark matter's gravitational potential. The black hole accretes the surrounding gas at the Bondi rate, and a fraction of the accretion power is returned into the intracluster medium mechanically through the production of jets. The accretion, initially slow (~2 × 10-4 Msolaryr-1), becomes catastrophic, as the gas cools and condenses in the dark matter's potential. Therefore, it cannot prevent the cooling catastrophe at the centre of the cluster. However, after this rapid phase, where the accretion rate reaches a peak of ~0.2Msolaryr-1, the cavities inflated by the jets become highly turbulent. The turbulent mixing of the shock-heated gas with the rest of the intracluster medium puts a quick end to this short-lived rapid-growth phase. After dropping by almost two orders of magnitudes, the black hole accretion rate stabilizes at ~0.006 Msolaryr-1, without significant variations for several billions of years, indicating that a self-regulated steady state has been reached. This accretion rate corresponds to a negligible increase of the black hole mass over the age of the Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.

  9. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  10. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOEpatents

    Burdgick, Steven Sebastian; Sexton, Brendan Francis; Kellock, Iain Robertson

    2002-01-01

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  11. District Support of School Improvement: Highlights from Three Districts. Newsletter

    ERIC Educational Resources Information Center

    Center for Comprehensive School Reform and Improvement, 2009

    2009-01-01

    This newsletter addresses various supports that districts are utilizing to help keep students in school and on the path to graduation. Described herein are three districts that have been particularly successful in raising student achievement--even though they differ in their specific strategies, fund allocation, and demographic composition. A…

  12. Prospects of detecting baryon and quark superfluidity from cooling neutron stars

    PubMed

    Page; Prakash; Lattimer; Steiner

    2000-09-04

    Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.

  13. Cooling the vertical surface by conditionally single pulses

    NASA Astrophysics Data System (ADS)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  14. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heatedmore » culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.« less

  15. From drop impact physics to spray cooling models: a critical review

    NASA Astrophysics Data System (ADS)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  16. Water-cooled probe technique for the study of freeze lining formation

    NASA Astrophysics Data System (ADS)

    Verscheure, Karel; Campforts, Mieke; Verhaeghe, Frederik; Boydens, Eddy; Blanpain, Bart; Wollants, Patrick; van Camp, Maurits

    2006-12-01

    Furnace protection by water-cooled freeze linings becomes increasingly important as the metal producing industry attempts to achieve higher process intensities. Systematic investigations of the growth and the resulting microstructure and compositional profile of freeze linings are necessary to understand the behavior of freeze linings, their relation with the industrial process, and their interaction with the wall cooling system. We have developed a technique based on the submergence of a water-cooled probe into a liquid slag bath. Freeze linings of two industrial nonferrous slags have been produced using this technique and their growth, microstructural, and compositional profiles as a function of submergence time were determined. Thermodynamic equilibrium for the investigated slag systems was calculated and compared with the observed microstructures. The freeze linings form in approximately 15 minutes. Close to the water cooling, the freeze linings are predominantly amorphous in structure. With increasing distance from the water cooling, the proportion of crystalline phases increases and bath material is entrapped in the microstructure. Cellular crystals are observed close to the bath. The freeze linings exhibit an approximate homogeneous composition. The results demonstrate that the technique is a successful tool in obtaining information on the growth, microstructure, and composition of freeze linings in industrial water-cooled furnaces.

  17. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  18. Forming chondrules in impact splashes. I. Radiative cooling model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dullemond, Cornelis Petrus; Stammler, Sebastian Markus; Johansen, Anders

    2014-10-10

    The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of {sup 26}Al would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfermore » models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t {sub cool} and then drops with time t approximately as T ≅ T {sub 0}[(3/5)t/t {sub cool} + 2/5]{sup –5/3} for t > t {sub cool}. The time at which this temperature drop starts t {sub cool} depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.« less

  19. Helical muon beam cooling channel engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experimentsmore » that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb 3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb 3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb 3Sn solenoid as originally planned. Instead, a complementary project was approved

  20. Bridge waterproofing details : phase 2.

    DOT National Transportation Integrated Search

    2017-06-12

    The objective of this research is to provide the implementation roadmaps for the recommendations proposed in Phase I to enhance : the capability and robustness of the current waterproofing system in District 10-0 of PennDOT. Built upon the results ob...

  1. Development of a Single-Pass Amplifier for an Optical Stochastic Cooling Proof-of-Principle Experiment at Fermilab's IOTA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.

    2015-06-01

    Optical stochastic cooling (OSC) is a method of beam cooling which is expected to provide cooling rates orders of magnitude larger than ordinary stochastic cooling. Light from an undulator (the pickup) is amplified and fed back onto the particle beam via another undulator (the kicker). Fermilab is currently exploring a possible proof-of-principle experiment of the OSC at the integrable-optics test accelerator (IOTA) ring. To implement effective OSC a good correction of phase distortions in the entire band of the optical amplifier is required. In this contribution we present progress in experimental characterization of phase distortions associated to a Titanium Sapphiremore » crystal laser-gain medium (a possible candidate gain medium for the OSC experiment to be performed at IOTA). We also discuss a possible option for a mid-IR amplifier« less

  2. Experimental Investigations of Two-Phase Cooling in Microgap Channel

    DTIC Science & Technology

    2011-04-25

    several classification of micro to macro channel. In general, a microchannel is a channel for which the heat transfer characteristics deviate from...examined the heat transfer and fluid flow characteristics of two-phase flow in microchannels with hydraulic diameters of 150 - 450 micrometers for...inherent with two-phase microchannel heat sinks. Bar- Cohen and Rahim [5] performed a detailed analysis of microchannel /microgap heat transfer data

  3. Variability in the implementation of the No Child Left Behind Act in Wisconsin school districts and science departments

    NASA Astrophysics Data System (ADS)

    Miller, Christopher L.

    In the United States of America, the public education system is comprised of over 14,000 school districts. Each of these unique districts is being affected by the enactment of the No Child Left Behind Act of 2001. In turn, this diverse population of school districts is determining the impact on education of this sweeping federal education policy. This study examines eight of those school districts to determine their actions related to the early phase of the implementation of one portion of NCLB, the accountability provisions prescribing standardized assessment for the determination of Adequate Yearly Progress. Specifically, this study examines what these eight Wisconsin school districts, serving from 1,000 to over 5,000 students, did with the student achievement data resulting from their state assessment, the Wisconsin Knowledge and Concepts Examinations (WKCE). A wide variety of responses were found in how school districts used the WKCE data. The eight school districts were examined to determine what features of their organizations were responsible for how they responded to the enactment of the AYP provisions, specifically how they used the WCKE data. District responses were found to be determined by district size, governance structures, personnel, and dispositions. The interactions of these characteristics were considered in light of organizational studies using conceptualizations borrowed from ecology and the theory of evolution and by studies of school districts.

  4. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    PubMed

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  5. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    NASA Astrophysics Data System (ADS)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  6. Experimental study on natural circulation precooling of cryogenic pump system with gas phase inlet reflux configuration

    NASA Astrophysics Data System (ADS)

    Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.

    2003-12-01

    A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.

  7. A Multi-Center Controlled Study of the Acute and Chronic Effects of Cooling Therapy for MS

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Schwid, Steven W.; Cutter, Gary; Murray, Ronald; Bowen, James; Pellegrino, Richard; Guisado, Raul; Webbon, Bruce W.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    improvement in MSFC scores (acute phase 0.064 +/- 0.020, p = 0.0013; chronic phase 0.044 +/- 0.021, p = 0.0368) from before to after cooling. The change in MSFC scores during the acute cooling sessions was not related to the extent of change in oral temperatures. Both the RFD score and the MFIS indicate a significantly lower fatigue level during the cooling month compared to observation (RFD, 2.53 +/- 0.83,p = 0.0033; MFIS 7.63 +/- 1.56, p = 0.0001).

  8. Advanced Hybrid Cooling Loop Technology for High Performance Thermal Management

    DTIC Science & Technology

    2006-06-01

    and Chung, 2003; Estes and Mudawar , 1995]. Because of the pumping pressure and flow rate requirements, such pumped systems require large pumping and...United States, April 24-25, 2003. 8. Estes, K. and Mudawar , I., “Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays”, Journal of

  9. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    2001-01-01

    Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase. PMID:11259300

  10. 7 CFR 946.31 - Districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... included in either the Quincy or South Irrigation Districts which lies east of township vertical line R27E... Irrigation Districts which lies west of township line R28E. (c) District No. 3—The counties of Benton...

  11. 7 CFR 946.31 - Districts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... included in either the Quincy or South Irrigation Districts which lies east of township vertical line R27E... Irrigation Districts which lies west of township line R28E. (c) District No. 3—The counties of Benton...

  12. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  13. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, 1 March 1980-31 January 1984. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-31

    This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE andmore » G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.« less

  14. Districts for 104th Congress

    USGS Publications Warehouse

    ,

    1990-01-01

    This is a polygon coverage of 104th Congressional District boundaries obtained from the U.S. Bureau of the Census. The 103rd Congress was the first Congress that reflected the reapportionment and delineation of congressional districts based on the 1990 census. The next (104th) Congress reflects redelineation of districts that occurred for six states: Georgia, Louisiana, Maine, Minnesota, South Carolina, and Virginia. Congressional Districts U.S. House of Representatives Census TIGER/Line Files

  15. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1945-01-01

    An analysis of rim cooling, which cools the blade by condition alone, was conducted. Gas temperatures ranged from 1300 degrees to 1900 degrees F and rim temperatures from 0 degrees to 1000 degrees F below gas temperatures. Results show that gas temperature increases up to 200 degrees F are permissible provided that the blades are cooled by 400 degrees to 500 degrees F below the gas temperature. Relatively small amounts of blade cooling, at constant gas temperature, give large increases in blade life. Dependence of rim cooling on heat-transfer coefficient, blade dimensions, and thermal conductivity is determined by a single parameter.

  16. Reforming Districts: How Districts Support School Reform. A Research Report. Document R-03-6

    ERIC Educational Resources Information Center

    McLaughlin, Milbrey; Talbert, Joan

    2003-01-01

    School districts have participated in multiple rounds of education reform activity in the past few decades, yet few have made headway on system-wide school improvement. This paper addresses the questions of whether districts matter for school reform progress and what successful "reforming" districts do to achieve system change and to…

  17. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  18. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  19. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, J; Palmer, T

    2005-09-13

    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields}more » {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic

  20. Leadership Academies: A District Office Perspective

    ERIC Educational Resources Information Center

    Doll, Rick

    2016-01-01

    This article investigates district-level administrators' perceptions regarding the value of the partnership academies. The article uses input from seven district administrators who provided feedback regarding the value of the district and university partnership, specific benefits to the district, the differences between participants who envision…

  1. Cost analysis and efficiency of sub-district health facilities in two districts in Ghana.

    PubMed

    Aboagye, Anthony Q Q; Degboe, Arnold N K

    2011-01-01

    To establish the full costs borne by sub-district health facilities in providing services, we analysed the costs and revenues of 10 sub-district health facilities located in two districts in Ghana. The full costs were obtained by considering staff costs, cost of utilities, cost of using health facility equipment, cost of non-drug consumables, equipment maintenance expenses, amounts spent on training, community information sessions and other outreach activities as well as all other costs incurred in running the facilities. We found that (i) a large proportion of sub-district health facility costs is made up of staff salaries; (ii) at all facilities, internally generated funds (IGFs) are substantially lower than costs incurred in running the facilities; (iii) average IGF is several times higher in one district than the other; (iv) wide variations exist in efficiency indicators and (v) there is some evidence that sub-district health facilities may not necessarily be financially more efficient than hospitals in using financial resources. We suggest that the study should be replicated in other districts; but in the mean time, the health authorities should take note of the conclusions and recommendations of this study. Efforts should also be made to improve record keeping at these facilities. Copyright © 2010 John Wiley & Sons, Ltd.

  2. A small scale remote cooling system for a superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  3. Loran Automatic Vehicle Monitoring System, Phase I : Volume 2. Appendices.

    DOT National Transportation Integrated Search

    1977-08-01

    Presents results of the evaluation phase of a two phase program to develop an Automatic Vehicle Monitoring (AVM) system for the Southern California Rapid Transit District in Los Angeles, California. Tests were previously conducted on a Loran based lo...

  4. Experimental Investigation of Shear Driven Liquid Films for Film Cooling Applications in Liquid Rocket Engines

    DTIC Science & Technology

    2012-12-01

    6 1.1.1 Differences Between Hot-Fire at Subcritical Conditions and Cold Flow ........10 1.1.2 Differences at Supercritical Conditions...cooling. 1.1.2 Differences at Supercritical Conditions Liquid film cooling is expected to behave even more differently at supercritical conditions...phase will behave more like the mixing of two gases of dissimilar densities. Once enough heat is imparted into the supercritical fuel film, it

  5. Cooled-Spool Piston Compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  6. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  7. 7 CFR 958.27 - Districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; (2) changes in the relative position of existing districts with respect to onion production; (3) the... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN CERTAIN DESIGNATED... Districts. (a) For the purpose of selecting committee members, the following districts of the production...

  8. Cooling circuit for and method of cooling a gas turbine bucket

    DOEpatents

    Jacala, Ariel C. P.

    2002-01-01

    A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.

  9. Abundances of volatile-bearing phases in carbonaceous chondrites and cooling rates of meteorites based on cation ordering of orthopyroxenes

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra

    1989-01-01

    Results of preliminary calculations of volatile abundances in carbonaceous chondrites are discussed. The method (Ganguly 1982) was refined for the calculation of cooling rate on the basis of cation ordering in orthopyroxenes, and it was applied to the derivation of cooling rates of some stony meteorites. Evaluation of cooling rate is important to the analysis of condensation, accretion, and post-accretionary metamorphic histories of meteorites. The method of orthopyroxene speedometry is widely applicable to meteorites and would be very useful in the understanding of the evolutionary histories of carbonaceous chondrites, especially since the conventional metallographic and fission track methods yield widely different results in many cases. Abstracts are given which summarize the major conclusions of the volatile abundance and cooling rate calculations.

  10. District, Know Thyself

    ERIC Educational Resources Information Center

    Tupa, Megan; McFadden, Ledyard

    2009-01-01

    Finalists for the Broad Prize for Urban Education demonstrate that identifying strategies that fit the local context is essential in creating success for students. Long Beach Unified School District in California and Broward County Public Schools in Florida demonstrate how districts can use different strategies to achieve the same goals.

  11. Laser cooling of molecules by zero-velocity selection and single spontaneous emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, C. H. Raymond

    2010-11-15

    A laser-cooling scheme for molecules is presented based on repeated cycle of zero-velocity selection, deceleration, and irreversible accumulation. Although this scheme also employs a single spontaneous emission as in [Raymond Ooi, Marzlin, and Audretsch, Eur. Phys. J. D 22, 259 (2003)], in order to circumvent the difficulty of maintaining closed pumping cycles in molecules, there are two distinct features which make the cooling process of this scheme faster and more practical. First, the zero-velocity selection creates a narrow velocity-width population with zero mean velocity, such that no further deceleration (with many stimulated Raman adiabatic passage (STIRAP) pulses) is required. Second,more » only two STIRAP processes are required to decelerate the remaining hot molecular ensemble to create a finite population around zero velocity for the next cycle. We present a setup to realize the cooling process in one dimension with trapping in the other two dimensions using a Stark barrel. Numerical estimates of the cooling parameters and simulations with density matrix equations using OH molecules show the applicability of the cooling scheme. For a gas at temperature T=1 K, the estimated cooling time is only 2 ms, with phase-space density increased by about 30 times. The possibility of extension to three-dimensional cooling via thermalization is also discussed.« less

  12. Cooling the dark energy camera instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.L.; Cease, H.; /Fermilab

    2008-06-01

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been usedmore » when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.« less

  13. 22 CFR 92.3 - Consular districts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Consular districts. 92.3 Section 92.3 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES NOTARIAL AND RELATED SERVICES Introduction § 92.3 Consular districts. Where consular districts have been established, the geographic limits of the district...

  14. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  15. Comments on ionization cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  16. Continuous parametric feedback cooling of a single atom in an optical cavity

    NASA Astrophysics Data System (ADS)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  17. State-Level Guidance and District-Level Policies and Practices for Food Marketing in US School Districts.

    PubMed

    Merlo, Caitlin L; Michael, Shannon; Brener, Nancy D; Blanck, Heidi

    2018-06-07

    State agencies play a critical role in providing school districts with guidance and technical assistance on school nutrition issues, including food and beverage marketing practices. We examined associations between state-level guidance and the policies and practices in school districts regarding food and beverage marketing and promotion. State policy guidance was positively associated with districts prohibiting advertisements for junk food or fast food restaurants on school property. Technical assistance from states was negatively associated with 2 district practices to restrict marketing of unhealthy foods and beverages, but positively associated with 1 practice to promote healthy options. These findings may help inform the guidance that states provide to school districts and help identify which districts may need additional assistance to address marketing and promotion practices.

  18. Into the Second Century: Memphis Engineer District, 1976-1981

    DTIC Science & Technology

    1983-01-01

    stream out of Lake Itasca in central Minnesota, the river begins a 2,340-mile journey to the Gulf of Mexico. In making the long journey, the river...McKellar Lake in honor of the senior Senator from Tennessee, Kenneth D. McKellar. Part of Tennessee Chute was dredged and then used as a slack...Missouri; and the Reelfoot -Obion areas in west Tennessee to monitor flood control structures. Under Phase I operations the Memphis District provided

  19. Cooling characteristics of air cooled radial turbine blades

    NASA Astrophysics Data System (ADS)

    Sato, T.; Takeishi, K.; Matsuura, M.; Miyauchi, J.

    The cooling design and the cooling characteristics of air cooled radial turbine wheels, which are designed for use with the gas generator turbine for the 400 horse power truck gas turbine engine, are presented. A high temperature and high speed test was performed under aerodynamically similar conditions to that of the prototype engine in order to confirm the metal temperature of the newly developed integrated casting wheels constructed of the superalloys INCO 713C. The test results compared with the analytical value, which was established on the basis of the results of the heat transfer test and the water flow test, are discussed.

  20. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  1. Solar heat collector-generator for cooling purposes

    NASA Astrophysics Data System (ADS)

    Abdullah, K.

    1982-01-01

    The performance of an experimental LiBr-H2O solar collector powered absorption cooling system is described. A numerical model was developed of the energy, mass, and momentum balances across the heat-exchange loop to obtain the refrigerant vapor generation rate. The mechanism works by the thermosiphon principle, which eliminates mechanical devices from the loop. All leaks were fixed before measurements began with a test apparatus comprising a pyrex tube 1.87 m long with a 2.7 i.d. The refrigerant flow rate was monitored, along with temperature changes in the fluid and across the tube. Bubble initiation was observed from the free surface extending downward in the tube. Reynolds numbers varied from 6-43 in the liquid phase and 81-204 in the vapor phase. A formulation was made for the low-velocity two-phase flow and good agreement was demonstrated with the simulation.

  2. Coagulation chemistries for silica removal from cooling tower water.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants deliveredmore » promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.« less

  3. 7 CFR 930.6 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false District. 930.6 Section 930.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 930.6 District. District means one of the subdivisions of the production area described in § 930...

  4. 7 CFR 930.6 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false District. 930.6 Section 930.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 930.6 District. District means one of the subdivisions of the production area described in § 930...

  5. A District Level Planning Model.

    ERIC Educational Resources Information Center

    McHenry, W. E.; Achilles, C. M.

    This report examines school district planning models in South Carolina. It focuses on three questions: (1) Of those school districts conducting some type of systematic planning, how many are producing strategic plans? Long-range plans? Accountability reports? (2) In those same districts, how many are preparing adequate program-management…

  6. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  7. Mechanism of bandwidth improvement in passively cooled SMA position actuators

    NASA Astrophysics Data System (ADS)

    Gorbet, R. B.; Morris, K. A.; Chau, R. C. C.

    2009-09-01

    The heating of shape memory alloy (SMA) materials leads to a thermally driven phase change which can be used to do work. An SMA wire can be thermally cycled by controlling electric current through the wire, creating an electro-mechanical actuator. Such actuators are typically heated electrically and cooled through convection. The thermal time constants and lack of active cooling limit the operating frequencies. In this work, the bandwidth of a still-air-cooled SMA wire controlled with a PID controller is improved through optimization of the controller gains. Results confirm that optimization can improve the ability of the actuator to operate at a given frequency. Overshoot is observed in the optimal controllers at low frequencies. This is a result of hysteresis in the wire's contraction-temperature characteristic, since different input temperatures can achieve the same output value. The optimal controllers generate overshoot during heating, in order to cause the system to operate at a point on the hysteresis curve where faster cooling can be achieved. The optimization results in a controller which effectively takes advantage of the multi-valued nature of the hysteresis to improve performance.

  8. Thermal Isolation and Differential Cooling of Heterogeneously Integrated Devices

    DTIC Science & Technology

    2016-07-01

    materials with co-continuous phases , "Int. J. Heat Mass Transfer , vol. 51, pp. 2389-2397, 2008. [27] Y. Yamaji, T. Ando, T. Morifuji, M. Tomisaka...for Semi-infinite Heat Flux Tubes , "Journal of Heat Transfer , vol. 111, pp. 804-807, August 1, 1989. [34] S. Song, S. Lee and V. Au, "Closed-form...Underside Cooling Heat Transfer Coefficient

  9. Specific Features of the Domain Structure of BaTiO3 Crystals during Thermal Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Kiselev, D. A.; Ilina, T. S.; Malinkovich, M. D.; Sergeeva, O. N.; Bolshakova, N. N.; Semenova, E. M.; Kuznetsova, Yu. V.

    2018-04-01

    This paper presents the results of the study of the domain structure of barium titanate crystals in a wide temperature range including the Curie point ( T C) using the polarization-optical method in the reflected light and the force microscopy of the piezoelectric response. It is shown that a new a-c domain structure forms during cyclic heating of the crystal above T C and subsequent cooling to the ferroelectric phase. The role of uncompensated charges appeared on the crystal surface during the phase transition and their influence on the formation of the domain structure during cooling are discussed.

  10. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    NASA Astrophysics Data System (ADS)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  11. Cooled Water Production System,

    DTIC Science & Technology

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  12. The effect of internal mould water spray cooling on rotationally moulded polyethylene parts

    NASA Astrophysics Data System (ADS)

    McCourt, Mark P.; Kearns, Mark P.; Martin, Peter J.

    2018-05-01

    The conventional method of cooling during the rotational moulding process is through the use of forced air. During the cooling phase of a typical rotomoulding cycle, large volumes of high velocity room temperature air are forced across the outside of the rotating rotomoulding tool to encourage cooling of the metal mould and molten polymer. Since no cooling is applied to the inside of the mould, the inner surface of the polymer (polyethylene) cools more slowly and will have a tendency to be more crystalline and the polyethylene will have a higher density in this region. The side that cools more quickly (in contact with the inside mould wall) will be less crystalline, and will therefore have a lower density. The major consequence of this difference in crystallinity will be a buildup of internal stresses producing warpage and excessive shrinkage of the part with subsequent increased levels of scrap. Therefore excessive cooling on the outside of the mould should be avoided. One consequence of this effect is that the cooling time for a standard rotationally moulded part can be quite long and this has an effect on the overall economics of the process in terms of part manufacture. A number of devices are currently on the market to enhance the cooling of rotational moulding by introducing a water spray to the inside of the rotomoulding during cooling. This paper reports on one such device 'Rotocooler' which during a series of initial industrial trials has been shown to reduce the cycletime by approximately 12 to 16%, with minimal effect on the mechanical properties, leading to a part which has less warpage and shrinkage than a conventionally cooled part.

  13. An alternative cooling system to enhance the safety of Li-ion battery packs

    NASA Astrophysics Data System (ADS)

    Kizilel, Riza; Sabbah, Rami; Selman, J. Robert; Al-Hallaj, Said

    A passive thermal management system is evaluated for high-power Li-ion packs under stressful or abusive conditions, and compared with a purely air-cooling mode under normal and abuse conditions. A compact and properly designed passive thermal management system utilizing phase change material (PCM) provides faster heat dissipation than active cooling during high pulse power discharges while preserving sufficiently uniform cell temperature to ensure the desirable cycle life for the pack. This study investigates how passive cooling with PCM contributes to preventing the propagation of thermal runaway in a single cell or adjacent cells due to a cell catastrophic failure. Its effectiveness is compared with that of active cooling by forced air flow or natural convection using the same compact module and pack configuration corresponding to the PCM matrix technology. The effects of nickel tabs and spacing between the cells were also studied.

  14. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2018-06-14

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  15. Reinstating district nursing: A UK perspective.

    PubMed

    Morris, Hannah

    2017-09-01

    As policy directives gather pace for service provision to be delivered in primary care, district nursing has not been recognised as a valuable asset to facilitate this agenda. Investment in district nursing and specialist district nursing education has fallen. This is concurrent with an ageing district nursing workforce, a lack of recruitment and growing caseloads, as district nursing adapts to meet the challenges of the complexities of contemporary healthcare in the community. The district nurse role is complex and multifaceted and includes working collaboratively and creatively to coordinate care. Redressing the shortages of specialist district nurse practitioners with increased numbers of health care support workers will not replace the skill, knowledge, experience required to meet the complex care needs of today's society. District nursing needs to be reinstated as the valuable asset it is, through renewed investment in the service, research development and in specialist practice education. To prevent extinction district nurses need to be able to demonstrate and articulate the complexities and dynamisms of the role to reinstate themselves to their commissioners as a valuable asset for contemporary practice that can meet current health and social care needs effectively. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Suburban District Leaders' Perception of Their Practices

    ERIC Educational Resources Information Center

    Garcia France, Roxanne

    2013-01-01

    In the field of district leadership, most studies focus only on the context and conditions existing in large urban districts in need of reform. This study examined whether district leadership practices have applicability to district leaders working within the suburban context. In addition, it determined whether district conditions (i.e., district…

  17. A thermosyphon heat pipe cooler for high power LEDs cooling

    NASA Astrophysics Data System (ADS)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  18. District Consolidation: Rivals Coming Together

    ERIC Educational Resources Information Center

    Mart, Dan

    2011-01-01

    District consolidation is a highly emotional process. One key to success is sticking to the facts. In Iowa, school districts facing financial difficulties or enrollment concerns do not have to move directly to consolidation. In many cases, districts begin by developing sharing agreements. These sharing agreements may start with simple sharing of…

  19. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  20. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  1. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  2. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  3. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  4. Spiral Flows in Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Keshet, Uri

    2012-07-01

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  5. Measurement of temperature changes in cooling dead rats using magnetic resonance thermometry.

    PubMed

    Kuribayashi, Hideto; Cui, Fanlai; Hirakawa, Keiko; Kanawaku, Yoshimasa; Ohno, Youkichi

    2011-11-01

    Magnetic resonance imaging thermometry has been introduced as a technique for measurement of temperature changes in cooling dead rats. Rat pelvic magnetic resonance images were acquired sequentially more than 2h after euthanasia by halothane overdose. A series of temperature difference maps in cooling dead rats was obtained with calculating imaging phase changes induced by the water proton frequency shift caused by temperature changes. Different cooling processes were monitored by the temperature difference maps in the rats. Magnetic resonance imaging thermometry applied in the study of laboratory animals could theoretically reproduce a variety of causes of death with different environmental conditions. Outcomes from experimental animal studies could be translated into a temperature-based time of death estimation in forensics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    PubMed

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  7. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  8. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  9. From Districts to Schools: The Distribution of Resources across Schools in Big City School Districts

    ERIC Educational Resources Information Center

    Rubenstein, Ross; Schwartz, Amy Ellen; Stiefel, Leanna; Amor, Hella Bel Hadj

    2007-01-01

    While the distribution of resources across school districts is well studied, relatively little attention has been paid to how resources are allocated to individual schools inside those districts. This paper explores the determinants of resource allocation across schools in large districts based on factors that reflect differential school costs or…

  10. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  11. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  12. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  13. Efficacy of Liquid, Air, and Phase Change Material Torso Cooling During Light Exercise While Wearing NBC Clothing

    DTIC Science & Technology

    1998-03-01

    and Thermal Comfort 6 Blood Sampling 6 Statistical Analyses 6 RESULTS 7 Indices of Hydration Status 7 Liquid-Cooling and PCM Cooling Vests...of Uncooled Sites 12 Vapour Pressure 12 Ratings of Thermal Comfort and Perceived Exertion 18 Indices of Heat Tolerance 18 DISCUSSION 20...ill Figures 8A and B Changes in ratings of thermal comfort of the torso and whole body during light exercise at 40°C and 30% relative humidity while

  14. Dew point effect of cooled hydrogel pads on human stratum corneum biosurface.

    PubMed

    Xhauflaire-Uhoda, Emmanuelle; Paquet, Philippe; Piérard, Gérald E

    2008-01-01

    Cooled hydrogel pads are used to prevent overheating effects of laser therapy. They do not induce cold injuries to the skin, but their more subtle physiological effects have not been thoroughly studied. To describe the changes in transepidermal water loss and electrometric properties of the skin surface following application of cooled hydrogel pads. Measurements were performed on normal forearm skin of 27 healthy volunteers and on freshly excised skin from abdominoplasty. LaserAid hydrogel pads cooled to 4 degrees C were placed for 15 min on the forearm skin. Measurements of transepidermal water loss (TEWL) and electrometric properties (Corneometer, Nova DPM 900) were performed before application and after removal of the cooled pads. A consistent increase in corneometer units, dermal phase meter (DPM) values and TEWL were recorded at removal of the cooled hydrogel pads. Both the in vivo and in vitro assessments brought similar information. The similar changes disclosed in vitro and in vivo suggest that a common physical process is operating in these conditions. The observed phenomenon is opposite to the predicted events given by the Arrhenius law probably because of the combination of cooling and occlusion by the pads. A dew point effect (air temperature at which relative humidity is maximal) is likely involved in the moisture content of the stratum corneum. Thus, the biological impact of using cooling hydrogel pads during laser therapy is different from the effect of a cryogenic spray cooling procedure. The better preservation of the water balance in the stratum corneum by the cooled hydrogel pads could have a beneficial esthetic effect on laser treated areas. (c) 2008 S. Karger AG, Basel.

  15. The Partnership Pact: Fulfilling School Districts' Research Needs with University-District Partnerships

    ERIC Educational Resources Information Center

    Ralston, Nicole; Weitzel, Bruce; Waggoner, Jacqueline; Naegele, Zulema; Smith, Rebecca

    2016-01-01

    There has been a recent shift in university-district partnership models from traditional transactional partnerships, which lack a shared purpose, to transformational partnerships that are mutually beneficial to both universities and school districts. These transformational research-practice partnerships have gained popularity in the United States…

  16. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE PAGES

    Stratakis, D.

    2017-09-25

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  17. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, D.

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  18. Liquid Phase Miscibility Gap Materials

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Markworth, A. J.

    1985-01-01

    The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.

  19. Loran Automatic Vehicle Monitoring System, Phase I : Volume 1. Test Results.

    DOT National Transportation Integrated Search

    1977-08-01

    Presents results of the evaluation phase of a two phase program to develop an Automatic Vehicle Monitoring (AVM) system for the Southern California Rapid Transit District in Los Angeles, California. Tests were previously conducted on a Loran based lo...

  20. Analysis of County School Districts in Arkansas.

    ERIC Educational Resources Information Center

    Budd, Karol B.; Charlton, J.L.

    The 1948, Arkansas School District Reorganization Act was passed in an effort to reduce the 1589 small school districts to a smaller number. Those districts not consolidated would form county districts. As of the 1967-68 school year, 26 of these county districts remained. The purpose of this study was to provide information drawing attention to…

  1. Cooling without contact in bilayer dipolar Fermi gases

    NASA Astrophysics Data System (ADS)

    Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur

    2016-05-01

    We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).

  2. [Cooling shell in renal transplantation. Thermometric evaluation of a prototype].

    PubMed

    Desgrandchamps, F; Eugene, M; Tuchschmid, Y; Muller, F; Teillac, P; Idatte, J M; Le Duc, A

    1996-02-01

    We have developed a cooling system for renal transplants designed to eliminate the second period of warm ischaemia corresponding to the vascular anastomosis phase of renal transplantation. This is an autonomous and independent system which forms a shell around the transplant. Following application of the system, cooling is achieved by refrigeration of a Multitherm sponge contained in the wall of the shell. The thermometric characteristics of a prototype were evaluated in vitro and in vivo in pigs. This system allows the kidney to be preserved at a temperature of less than 10 degrees C for 1 hour without inducing any risk of lesions of the renal surface. Human applications should be developed in the near future.

  3. Phase Diagram of an Ethylene Glycol-Hexamethylphosphorotriamide System

    NASA Astrophysics Data System (ADS)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.

    2018-02-01

    The phase diagram of an ethylene glycol (EG)-hexamethylphosphorotriamide (HMPT) system is studied over two wide temperature intervals (+25°C…-90°C…+40°C) and (-150°C…+40°C) by means of differential scanning calorimetry using INTERTECH DSC Q100 and METTLER TA4000 DSC instruments (Switzerland) in the DSC30 mode with variable cooling/heating rates. Substantial overcooling of the liquid phase, a glass transition, and different types of interaction are observed in the system. No thermal effects are observed in intermediate range of concentrations during the slow cooling/heating processes, and the system remains liquid until the glass transition. The presence of such a metastable phase is attributed to a sharp rise in the viscosity of the system due to different kinds of interaction between the components. HMPT: 2EG and HMPT: EG compounds with crystallization temperatures of +5 and -0.5°C, respectively, are observed upon rapid cooling and slow heating. Changes in enthalpy are calculated for all of the observed thermal effects. The distinction from the phase diagram of H2O-HMFT (literary data) is explained by the difference in the interactions between system components and by the structural differences between EG and H2O.

  4. Semiconductor-to-metal phase change in MoTe2 layers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Davydov, Albert V.; Krylyuk, Sergiy; Kalish, Irina; Meshi, Louisa; Beams, Ryan; Kalanyan, Berc; Sharma, Deepak K.; Beck, Megan; Bergeron, Hadallia; Hersam, Mark C.

    2016-09-01

    Molybdenum ditelluride (MoTe2), which can exist in a semiconducting prismatic hexagonal (2H) or a metallic distorted octahedral (1T') phases, is one of the very few materials that exhibit metal-semiconductor transition. Temperature-driven 2H - 1T' phase transition in bulk MoTe2 occurs at high temperatures (above 900 °C) and it is usually accompanied by Te loss. The latter can exacerbate the control over reversibility of the phase transition. Here, we study effects of high-temperature annealing on phase transition in MoTe2 single crystals. First, MoTe2 were grown in sealed evacuated quartz ampoules from polycrystalline MoTe2 powder in an iodine-assisted chemical vapor transport process at 1000 °C. The 2H and 1T' phases were stabilized by controlling the cooling rate after the growth. In particular, slow cooling at 10 °C/h rate yielded the 2H phase whereas the 1T' phase was stabilized by ice-water quenching. Next, the phase conversion was achieved by annealing MoTe2 single crystals in vacuum-sealed ampoules at 1000 °C with or without additional poly-MoTe2 powder followed by fast or slow cooling. Similarly to the CVT growth, slow cooling and quenching consistently produced 2H and 1T' phases, respectively, regardless of the initial MoTe2 crystal structure. We will discuss structural and optical properties of the as-grown and phase-converted MoTe2 single crystals using TEM, SEM/EDS, XRD, XPS and Raman. Electrical characteristics of two-terminal devices made from metallic 1T' and bottom-gated FETs made from 2H exfoliated crystals will also be presented.

  5. Phase Transitions of Thermoelectric TAGS-85.

    PubMed

    Kumar, Anil; Vermeulen, Paul A; Kooi, Bart J; Rao, Jiancun; van Eijck, Lambert; Schwarzmüller, Stefan; Oeckler, Oliver; Blake, Graeme R

    2017-12-18

    The alloys (GeTe) x (AgSbTe 2 ) 100-x , commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200-500 °C. They adopt a rhombohedrally distorted rocksalt structure at room temperature and are reported to undergo a reversible phase transition to a cubic structure at ∼250 °C. However, we show that, for the optimal x = 85 composition (TAGS-85), both the structural and thermoelectric properties are highly sensitive to the initial synthesis method employed. Single-phase rhombohedral samples exhibit the best thermoelectric properties but can only be obtained after an annealing step at 600 °C during initial cooling from the melt. Under faster cooling conditions, the samples obtained are inhomogeneous, containing multiple rhombohedral phases with a range of lattice parameters and exhibiting inferior thermoelectric properties. We also find that when the room-temperature rhombohedral phase is heated, an intermediate trigonal structure containing ordered cation vacancy layers is formed at ∼200 °C, driven by the spontaneous precipitation of argyrodite-type Ag 8 GeTe 6 which alters the stoichiometry of the TAGS-85 matrix. The rhombohedral and trigonal phases of TAGS-85 coexist up to 380 °C, above which a single cubic phase is obtained and the Ag 8 GeTe 6 precipitates redissolve into the matrix. On subsequent cooling a mixture of rhombohedral, trigonal, and Ag 8 GeTe 6 phases is again obtained. Initially single-phase samples exhibit thermoelectric power factors of up to 0.0035 W m -1 K -2 at 500 °C, a value that is maintained on subsequent thermal cycling and which represents the highest power factor yet reported for undoped TAGS-85. Therefore, control over the structural homogeneity of TAGS-85 as demonstrated here is essential in order to optimize the thermoelectric performance.

  6. Marin County Teacher Learning Cooperative: Phase II, Volume 1.

    ERIC Educational Resources Information Center

    Balzan, Robert A.

    This report describes the second phase of a teacher learning cooperative project designed to coordinate the economic, physical, and human resources of a number of small elementary school districts in California and the Marin County Superintendent of Schools Office. Whereas the first phase dealt with the formation and implementation of the…

  7. Marin County Teacher Learning Cooperative: Phase II, Volume 2.

    ERIC Educational Resources Information Center

    Balzan, Robert A.

    This report describes the second phase of a teacher learning cooperative project designed to coordinate the economic, physical, and human resources of a number of small elementary school districts in California and the Marin County Superintendent of Schools Office. Whereas the first phase dealt with the formation and implementation of the…

  8. NASA Microclimate Cooling Challenges

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  9. EFFECT OF SOLID MEDIUM DURING COOLED STORAGE ON STALLION SPERM PARAMETERS.

    PubMed

    Santos, F C; Corcini, C D; Costa, V G; Gheller, S M; Nogueira, C E; da Rosa Curcio, B; Varel, A S

    2015-01-01

    Solid storage medium prevents cellular sedimentation, reduces metabolic demand via limiting movement, and avoids the modification of an extender composition in the sedimentary microenvironment. It has been proven to prolong spermatozoa viability in mammalians. This experiment aims to evaluate the effect of cool storage in solid phase extender on stallion sperms. Semen was collected from 10 Crioulo stallions (n=30) and submitted to treatments: control group (semen extender) and groups with gelatin addition in different concentrations (semen extender + 1%, 2% and 3%). Seminal analyses included motility, mitochondrial functionality, plasma membrane integrity, DNA and acrosome at 0; 24; 48 and 72 hours during cooled storage at 5 degree C. Motility, mitochondrial functionality, plasma membrane and acrosome integrity declined during storage time, with no statistical difference between treatments. DNA integrity did not significantly change during storage period. Solid medium was not harmful and did not improved stallion sperm parameters during cooled storage.

  10. The dry-heat loss effect of melt-spun phase change material fibres.

    PubMed

    Tjønnås, Maria Suong; Færevik, Hilde; Sandsund, Mariann; Reinertsen, Randi E

    2015-01-01

    Phase change materials (PCM) have the ability to store latent heat when they change phases, a property that gives clothing that incorporates PCM its cooling effect. This study investigated the effect of dry-heat loss (cooling) of a novel melt-spun PCM fibre on the basis of the area covered, mass, the latent heat of fusion and melting temperature, compared to a known PCM clothing product. PCM fibres with melting temperatures of 28.4 and 32.0°C and PCM packs with melting temperatures of 28.0 and 32.0°C were studied. The results showed that the PCM fibres had a larger initial peak cooling effect than that of the PCM packs. The duration of the cooling effect of PCM fibres was primarily dependent on the PCM mass and the latent heat of fusion capacity, and secondly on the covered area and melting temperature of the PCM. This study investigates the cooling effect of PCM fibres on a thermal manikin. The PCM fibres had a high but short-lasting cooling effect. This study contributes to the knowledge of how the body's temperature regulation may be affected by the cooling properties of clothing that incorporates PCM.

  11. Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2017-12-01

    The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some

  12. One Approach to Increasing Revenues for Your School District. (A Small School District's Successful Struggle).

    ERIC Educational Resources Information Center

    Dombrowski, Richard J.

    In 1983, Channahon School District 17 in Illinois was $1.3 million in debt. Real estate taxes constituted the school district's chief source of revenue, but because the state's oil industry kept its assessed valuations below the actual value of its property through the use of experts and lawyers, the school district was denied much of its income.…

  13. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  14. Physiologic and thermal responses of male and female patients with multiple sclerosis to head and neck cooling

    NASA Technical Reports Server (NTRS)

    Ku, Y. T.; Montgomery, L. D.; Wenzel, K. C.; Webbon, B. W.; Burks, J. S.

    1999-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. The objective of this study was to determine the thermal and physiologic responses of patients with multiple sclerosis to short-term maximal head and neck cooling. A Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used to cool the head and neck regions of 24 female and 26 male patients with multiple sclerosis in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 degrees C), were cooled for 30 min by the liquid cooling garment, which was operated at its maximum cooling capacity. Oral, right, and left ear temperatures and cooling system parameters were logged manually every 5 min. Forearm, calf, chest, and rectal temperatures, heart rate, and respiration rate were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. This protocol was performed during the winter and summer to investigate the seasonal differences in the way patients with multiple sclerosis respond to head and neck cooling. No significant differences were found between the male and female subject group's mean rectal or oral temperature responses during any phase of the experiment. The mean oral temperature decreased significantly (P < 0.05) for both groups approximately 0.3 degrees C after 30 min of cooling and continued to decrease further (approximately 0.1-0.2 degrees C) for a period of approximately 15 min after removal of the cooling helmet. The mean rectal temperatures decreased significantly (P < 0.05) in both male and female subjects in the winter studies (approximately 0.2-0.3 degrees C) and for the male subjects during the summer test (approximately 0.2 degrees C). However, the rectal temperature of the female subjects did not change significantly during any phase of the summer test. These data indicate that head and neck cooling may, in

  15. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1947-01-01

    An analysis is presented of rim cooling of gas-turbine blades; that is, reducing the temperature at the base of the blade (wheel rim), which cools the blade by conduction alone. Formulas for temperature and stress distributions along the blade are derived and, by the use of experimental stress-rupture data for a typical blade alloy, a relation is established between blade life (time for rupture), operating speed, and amount of rim cooling for several gas temperatures. The effect of blade parameter combining the effects of blade dimensions, blade thermal conductivity, and heat-transfer coefficient is determined. The effect of radiation on the results is approximated. The gas temperatures ranged from 1300F to 1900F and the rim temperature, from 0F to 1000F below the gas temperature. This report is concerned only with blades of uniform cross section, but the conclusions drawn are generally applicable to most modern turbine blades. For a typical rim-cooled blade, gas temperature increases are limited to about 200F for 500F of cooling of the blade base below gas temperature, and additional cooling brings progressively smaller increases. In order to obtain large increases in thermal conductivity or very large decreases in heat-transfer coefficient or blade length or necessary. The increases in gas temperature allowable with rim cooling are particularly small for turbines of large dimensions and high specific mass flows. For a given effective gas temperature, substantial increases in blade life, however, are possible with relatively small amounts of rim cooling.

  16. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  17. Evaluating the Effectiveness of Cooling Vest in a Hot and Humid Environment.

    PubMed

    Yi, Wen; Zhao, Yijie; Chan, Albert P C

    2017-05-01

    This study aims to evaluate the effectiveness of a newly designed hybrid cooling vest for construction workers in alleviating heat stress. Two types of cooling vests, namely, a commonly worn Vest A and a newly designed Vest B, were tested in a climatic chamber environment (34.0°C temperature, 60% relative humidity, and 0.4 m s-1 air velocity) using a sweating thermal manikin. Four test scenarios were included: fan off with no phase change materials (PCMs) (Fan-off), fan on with no PCMs (Fan-on), fan off with completely solidified PCMs (PCM + Fan-off), and fan on with completely solidified PCMs (PCM + Fan-on). Test results showed that Vests A and B provided a continuous cooling effect during the 3-h test. The average cooling power for the torso region of Vest B was 67 W, which was higher than that of Vest A (56 W). The addition of PCMs offered a cooling effect of approximately 60 min. Ventilation fans considerably improved the evaporative heat loss compared with the Fan-off condition. The newly designed hybrid cooling vest (Vest B) may be an effective means to reduce heat strain and enhance work performance in a hot and humid environment. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Texas ports and navigation districts : overview.

    DOT National Transportation Integrated Search

    2017-01-01

    The first Navigation District was established in 1909, and there are now 24 Navigation Districts statewide.1 Navigation districts generally provide for the construction and improvement of waterways in Texas for the purpose of navigation. The creation...

  19. Construction of continuous cooling transformation (CCT) diagram using Gleeble for coarse grained heat affected zone of SA106 grade B steel

    NASA Astrophysics Data System (ADS)

    Vimalan, G.; Muthupandi, V.; Ravichandran, G.

    2018-05-01

    A continuous cooling transformation diagram is constructed for simulated coarse grain heat affected zone (CGHAZ) of SA106 grade B carbon steel. Samples are heated to a peak temperature of 1200°C in the Gleeble thermo mechanical simulator and then cooled at different cooling rates varying from 0.1°C/s to 100°C/s. Microstructure of the specimens simulated at different cooling rates were characterised by optical microscopy and hardness was assessed by Vicker's hardness test and micro-hardness test. Transformation temperatures and the corresponding phase fields were identified from dilatometric curves and the same could be confirmed by correlating with the microstructures at room temperature. These data were used to construct the CCT diagram. Phase fields were found to have ferrite, pearlite, bainite and martensite or their combinations. With the help of this CCT diagram it is possible to predict the microstructure and hardness of coarse grain HAZ experiencing different cooling rates. The constructed CCT diagram becomes an important tool in evaluating the weldability of SA106 grade B carbon steel.

  20. Cooling in the Post-Sunrise Equatorial Topside Ionosphere During the 22-23 June 2015 Superstorm

    NASA Astrophysics Data System (ADS)

    Stoneback, R.; Hairston, M. R.; Coley, W. R.; Heelis, R. A.

    2015-12-01

    During the recovery phase of the 22-23 June 2015 superstorm multiple DMSP spacecraft observed two separate and short-lived (~ 30 minutes) events of localized cooling in the topside equatorial ionosphere (~840 km) in the post-sunrise region (between 6:15 and 7:30 local time). The ion temperatures dropped from the nominal 2000-3000° observed in these regions to 1000 to 1500°. This cooling effect was not observed on the corresponding duskside equatorial crossings of the DMSP spacecraft during this storm. Further, these cooling events do not normally occur during major storms; no such phenomenon was observed by DMSP during the March 2015 superstorm. Flow data from DMSP and the CINDI instruments on the C/NOFS spacecraft indicate these cooling events are associated with short-lived vertical flows bringing up cooler plasma from lower altitudes. The two cooling events correspond to large northward turnings of the IMF during the storm and these are being explored as a possible trigger mechanism.

  1. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  2. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  3. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  4. The Interrelationship of School District Expenditures and Student Academic Achievement in Oklahoma Public Elementary School Districts

    ERIC Educational Resources Information Center

    Moore, Glenn M.

    2012-01-01

    Purpose and Method of Study. The primary purpose of this quantitative study was to analyze the relationship between school district expenditures and student academic achievement in 102 public elementary school districts in the state of Oklahoma. The secondary purpose was to investigate the relationship between school district expenditures and…

  5. Evaluation of Massachusetts Office of District and School Turnaround Assistance to Commissioner's Districts and Schools: Impact of School Redesign Grants

    ERIC Educational Resources Information Center

    LiCalsi, Christina; Citkowicz, Martyna; Friedman, Lawrence B.; Brown, Megan

    2015-01-01

    The Massachusetts Office of District and School Turnaround (ODST) assists the Commissioner's Districts (the 10 largest districts in the state) and schools within those districts. The assistance focuses on turning around the lowest performing schools in the district while building district capacity to support improvement in other district schools.…

  6. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  7. Curved film cooling admission tube

    NASA Astrophysics Data System (ADS)

    Graham, R. W.; Papell, S. S.

    1980-10-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  8. Curved film cooling admission tube

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Papell, S. S. (Inventor)

    1980-01-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  9. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  10. Examining the relationship between school district size and science achievement in Texas including rural school administrator perceptions of challenges and solutions

    NASA Astrophysics Data System (ADS)

    Mann, Matthew James

    Rural and small schools have almost one-third of all public school enrollment in America, yet typically have the fewest financial and research based resources. Educational models have been developed with either the urban or suburban school in mind, and the rural school is often left with no other alternative except this paradigm. Rural based educational resources are rare and the ability to access these resources for rural school districts almost non-existent. Federal and state based education agencies provide some rural educational based programs, but have had virtually no success in answering rural school issues. With federal and state interest in science initiatives, the challenge that rural schools face weigh in. To align with that focus, this study examined Texas middle school student achievement in science and its relationship with school district enrollment size. This study involved a sequential transformative mixed methodology with the quantitative phase driving the second qualitative portion. The quantitative research was a non-experimental causal-comparative study conducted to determine whether there is a significant difference between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8 th grade science results and school district enrollment size. The school districts were distributed into four categories by size including: a) small districts (32-550); b) medium districts (551-1500); c) large districts (1501-6000); and d) mega-sized districts (6001-202,773). A one-way analysis of variance (ANOVA) was conducted to compare the district averages from the 2010 TAKS 8th grade science assessment results and the four district enrollment groups. The second phase of the study was qualitative utilizing constructivism and critical theory to identify the issues facing rural and small school administrators concerning science based curriculum and development. These themes and issues were sought through a case study method and through use of semi

  11. Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens

    2016-08-01

    We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.

  12. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  13. Renewable Heating and Cooling

    EPA Pesticide Factsheets

    Find information on the benefits of renewable heating and cooling technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  14. Budget Stability, Revenue Volatility, and District Relations: Determinants of Georgia ELOST Distribution to Municipal School Districts

    ERIC Educational Resources Information Center

    Reinagel, Tyler P.

    2014-01-01

    School districts across the United States are often forced into situations where limited public funds must be distributed among multiple districts. These are often reliant on distribution rates negotiated by district leadership and elected officials. An example of this is Georgia's 1% Education Local Option Sales Tax (ELOST). The tax is collected…

  15. Sterilization by Cooling in Isochoric Conditions: The Case of Escherichia coli

    PubMed Central

    Salinas-Almaguer, Samuel; Angulo-Sherman, Abril; Sierra-Valdez, Francisco Javier; Mercado-Uribe, Hilda

    2015-01-01

    High hydrostatic pressure (HHP) affects the structure, metabolism and survival of micro-organisms including bacteria. For this reason HHP is a promising treatment in the food industry. The aim of this work is to evaluate the effect of high pressure, under isochoric cooling conditions, on Escherichia coli, where such high pressure develops due to the fact water cannot expand. We combine survival curves obtained by spectrophotometry and images of atomic force microscopy in this study. Our results show that cooling at -20 and -30°C leads to a partial destruction of a Escherichia coli population. However, cooling at -15°C causes a total extermination of bacteria. This intriguing result is explained by the phase diagram of water. In the first case, the simultaneous formation of ice III and ice Ih crystals provides a safe environment for bacteria. In the second case (-15°C) Escherichia coli remains in a metastable and amorphous free-of-crystals liquid subjected to high pressure. Our work is the first experimental study carried out to inactivate Escherichia coli under isochoric cooling conditions. Unlike HHP, which is based on the application of an external load to augment the pressure, this technique only requires cooling. The method could be used for annihilation of other Escherichia coli strains and perhaps other micro-organisms. PMID:26480032

  16. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  17. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  18. Helical Channel Design and Technology for Cooling of Muon Beams

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.

    2010-11-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  19. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  20. Rate dependency and role of nitric oxide in the vascular response to direct cooling in human skin.

    PubMed

    Yamazaki, Fumio; Sone, Ryoko; Zhao, Kun; Alvarez, Guy E; Kosiba, Wojciech A; Johnson, John M

    2006-01-01

    Local cooling of nonglabrous skin without functional sympathetic nerves causes an initial vasodilation followed by vasoconstriction. To further characterize these responses to local cooling, we examined the importance of the rate of local cooling and the effect of nitric oxide synthase (NOS) inhibition in intact skin and in skin with vasoconstrictor function inhibited. Release of norepinephrine was blocked locally (iontophoresis) with bretylium tosylate (BT). Skin blood flow was monitored from the forearm by laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as the ratio of LDF to blood pressure. Local temperature was controlled over 6.3 cm2 around the sites of LDF measurement. Local cooling was applied at -0.33 or -4 degrees C/min. At -4 degrees C/min, CVC increased (P < 0.05) at BT sites in the early phase. At -0.33 degrees C/min, there was no early vasodilator response, but there was a delay in the onset of vasoconstriction relative to intact skin. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (intradermal microdialysis) decreased (P < 0.05) CVC by 28.3 +/- 3.8% at untreated sites and by 46.9 +/- 6.3% at BT-treated sites from the value before infusion. Rapid local cooling (-4 degrees C/min) to 24 degrees C decreased (P < 0.05) CVC at both untreated (saline) sites and L-NAME only sites from the precooling levels, but it transiently increased (P < 0.05) CVC at both BT + saline sites and BT + L-NAME sites in the early phase. After 35-45 min of local cooling, CVC decreased at BT + saline sites relative to the precooling levels (P < 0.05), but at BT + L-NAME sites CVC was not reduced below the precooling level (P = 0.29). These findings suggest that the rate of local cooling, but not functional NOS, is an important determinant of the early non-adrenergic vasodilator response to local cooling and that functional NOS, adrenergic nerves, as well as other mechanisms play roles in vasoconstriction during prolonged local

  1. Renewable Heating And Cooling

    EPA Pesticide Factsheets

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  2. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity.

    PubMed

    Maley, Matthew J; Minett, Geoffrey M; Bach, Aaron J E; Zietek, Stephanie A; Stewart, Kelly L; Stewart, Ian B

    2018-01-01

    The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.

  3. Non-intrusive cooling system

    DOEpatents

    Morrison, Edward F.; Bergman, John W.

    2001-05-22

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  4. Regional cooling facilitates termination of spiral-wave reentry through unpinning of rotors in rabbit hearts.

    PubMed

    Yamazaki, Masatoshi; Honjo, Haruo; Ashihara, Takashi; Harada, Masahide; Sakuma, Ichiro; Nakazawa, Kazuo; Trayanova, Natalia; Horie, Minoru; Kalifa, Jérôme; Jalife, José; Kamiya, Kaichiro; Kodama, Itsuo

    2012-01-01

    Moderate global cooling of myocardial tissue was shown to destabilize 2-dimensional (2-D) reentry and facilitate its termination. This study sought to test the hypothesis that regional cooling destabilizes rotors and facilitates termination of spontaneous and DC shock-induced subepicardial reentry in isolated, endocardially ablated rabbit hearts. Fluorescent action potential signals were recorded from 2-D subepicardial ventricular myocardium of Langendorff-perfused rabbit hearts. Regional cooling (by 5.9°C ± 1.3°C) was applied to the left ventricular anterior wall using a transparent cooling device (10 mm in diameter). Regional cooling during constant stimulation (2.5 Hz) prolonged the action potential duration (by 36% ± 9%) and slightly reduced conduction velocity (by 4% ± 4%) in the cooled region. Ventricular tachycardias (VTs) induced during regional cooling terminated earlier than those without cooling (control): VTs lasting >30 seconds were reduced from 17 of 39 to 1 of 61. When regional cooling was applied during sustained VTs (>120 seconds), 16 of 33 (48%) sustained VTs self-terminated in 12.5 ± 5.1 seconds. VT termination was the result of rotor destabilization, which was characterized by unpinning, drift toward the periphery of the cooled region, and subsequent collision with boundaries. The DC shock intensity required for cardioversion of the sustained VTs decreased significantly by regional cooling (22.8 ± 4.1 V, n = 16, vs 40.5 ± 17.6 V, n = 21). The major mode of reentry termination by DC shocks was phase resetting in the absence of cooling, whereas it was unpinning in the presence of cooling. Regional cooling facilitates termination of 2-D reentry through unpinning of rotors. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. What Do Effective District Leaders Do? Strategies for Evaluating District Leadership. Policy Snapshot

    ERIC Educational Resources Information Center

    Hornung, Katie; Yoder, Nick

    2014-01-01

    In the wake of the Common Core State Standards and teacher evaluation reform, school leaders increasingly look to district leaders for support, coaching, and leadership. District leaders--superintendents, assistant or area superintendents, specialists, principal supervisors, and school business administrators--can hold varying and multiple roles…

  6. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, B.; Chung, M.; Hanlet, P. M.

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  7. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE PAGES

    Freemire, B.; Chung, M.; Hanlet, P. M.; ...

    2018-01-30

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  8. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    NASA Astrophysics Data System (ADS)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  9. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  10. Anchorage School District Profile of Performance, 1999-2000. Part 1 District Overview. Assessment and Evaluation Report.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This profile is the report card of the Anchorage, Alaska, School District on the academic achievement of Anchorage students. Part 1 provides a summary of performance across the entire district on a variety of important indicators of success. Part 2, published separately, profiles each of the district's schools. Part 1 contains an overview of the…

  11. Emergency cooling system and method

    DOEpatents

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  12. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  13. 7 CFR 982.31 - Grower districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Grower districts. 982.31 Section 982.31 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... importance of production in each district and the number of growers in each district; (2) the geographic...

  14. 7 CFR 1210.401 - District conventions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false District conventions. 1210.401 Section 1210.401 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... multi-State districts, no one State shall have nominees for more than three of the four district...

  15. District Learning Tied to Student Learning

    ERIC Educational Resources Information Center

    McFadden, Ledyard

    2009-01-01

    Winners and finalists for the annual Broad Prize for Urban Education have consistently outperformed peer districts serving similar student populations. What makes the difference? These districts consistently demonstrate a learning loop that influences the district's ability to learn, which ultimately influences student opportunities to learn.…

  16. Efficient cooling of rocky planets by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  17. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  18. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  19. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  20. 7 CFR 959.24 - Districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN SOUTH TEXAS Order... following districts of the production area are hereby initially established: District No. 1: (Coastal Bend...

  1. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  2. State of the District Address, 1982.

    ERIC Educational Resources Information Center

    Koltai, Leslie

    This address by the Chancellor of the Los Angeles Community College District (LACCD) discusses recent and long-term changes in the district's programs, educational quality, and financial standing, and suggests means for future improvements. First, the paper highlights the district's achievements in improving transfer education and developing new…

  3. Conflict Management in Declining School Districts.

    ERIC Educational Resources Information Center

    Boyd, William Lowe; Wheaton, Dennis R.

    1983-01-01

    Professional literature about managing conflicts associated with declining enrollments indicates the existing tension in this area. A research study shows that, while upper-middle class districts may succeed using a rational approach to decision making, lower class districts, for various reasons, may not. Special problems of urban districts are…

  4. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  5. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.

    PubMed

    Wang, F; Annaheim, S; Morrissey, M; Rossi, R M

    2014-06-01

    Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The comprehensive community-based traffic safety program : phase II, program assessment for District 2 and District 7, final report.

    DOT National Transportation Integrated Search

    1987-01-01

    The program assessment phase was designed to identify community resources and address the recommendation, made in Phase I, that initial countermeasures should target the program areas of occupant protection, alcohol, selective enforcement, and pedest...

  7. Spin systems and Political Districting Problem

    NASA Astrophysics Data System (ADS)

    Chou, Chung-I.; Li, Sai-Ping

    2007-03-01

    The aim of the Political Districting Problem is to partition a territory into electoral districts subject to some constraints such as contiguity, population equality, etc. In this paper, we apply statistical physics methods to Political Districting Problem. We will show how to transform the political problem to a spin system, and how to write down a q-state Potts model-like energy function in which the political constraints can be written as interactions between sites or external fields acting on the system. Districting into q voter districts is equivalent to finding the ground state of this q-state Potts model. Searching for the ground state becomes an optimization problem, where optimization algorithms such as the simulated annealing method and Genetic Algorithm can be employed here.

  8. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  9. School District Energy Manual.

    ERIC Educational Resources Information Center

    Association of School Business Officials International, Reston, VA.

    This manual serves as an energy conservation reference and management guide for school districts. The School District Energy Program (SDEP) is designed to provide information and/or assistance to school administrators planning to implement a comprehensive energy management program. The manual consists of 15 parts. Part 1 describes the SDEP; Parts…

  10. Differences in Food and Beverage Marketing Policies and Practices in US School Districts, by Demographic Characteristics of School Districts, 2012.

    PubMed

    Merlo, Caitlin L; Michael, Shannon; Brener, Nancy D; Coffield, Edward; Kingsley, Beverly S; Zytnick, Deena; Blanck, Heidi

    2016-12-15

    Foods and beverages marketed in schools are typically of poor nutritional value. School districts may adopt policies and practices to restrict marketing of unhealthful foods and to promote healthful choices. Students' exposure to marketing practices differ by school demographics, but these differences have not yet been examined by district characteristics. We analyzed data from the 2012 School Health Policies and Practices Study to examine how food and beverage marketing and promotion policies and practices varied by district characteristics such as metropolitan status, size, and percentage of non-Hispanic white students. Most practices varied significantly by district size: a higher percentage of large districts than small or medium-sized districts restricted marketing of unhealthful foods and promoted healthful options. Compared with districts whose student populations were majority (>50%) non-Hispanic white, a higher percentage of districts whose student populations were minority non-Hispanic white (≤50% non-Hispanic white) prohibited advertising of soft drinks in school buildings and on school grounds, made school meal menus available to students, and provided families with information on school nutrition programs. Compared with suburban and rural districts, a higher percentage of urban districts prohibited the sale of soft drinks on school grounds and used several practices to promote healthful options. Preliminary findings showing significant associations between district demographics and marketing policies and practices can be used to help states direct resources, training, and technical assistance to address food and beverage marketing and promotion to districts most in need of improvement.

  11. Enrichment of PCDDs/PCDFs in the cooling system of municipal solid waste incineration plants.

    PubMed

    Kim, Sam-Cwan; Lee, Kil-Chul; Kim, Ki-Heon; Kwon, Myung-Hee; Song, Geum-Ju

    2007-01-01

    This study measured the levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), destroyed or formed in combustors and re-synthesized in cooling systems. For the proper control of PCDDs/PCDFs in municipal solid waste (MSW) incinerators, three grate-type MSW incinerators were selected, two of which had boilers, and one of which had a water spray tower (WST) as a cooling system. At the combustor outlets, dusts were in the range of 1640-4270 mg/Sm3 and PCDDs/PCDFs were in the range of 0.103-2.619 ng-TEQ/Sm3, showing the different values according to the grate structure of combustor and the flow direction of flue gas. After the flue gases passed through the cooling system, PCDDs/PCDFs at the waste heat boiler (WHB) outlets were enriched to levels that were 10.8-13.6 times higher than those at the furnace outlets, but PCDDs/PCDFs at the WST outlet was reduced to 5% of the level found at the furnace outlet. The emission patterns, such as the ratio of PCDFs to PCDDs, the ratio of gaseous-phase to particulate-phase PCDDs/PCDFs, and the compositional percentiles of each 2,3,7,8-substituted congener varied according to the types of air pollution control devices (APCDs). Reducing re-synthesis in the cooling system rather than enhancing the removal efficiencies of the APCDs seems to be more effective for lowering the levels of PCDDs/PCDFs in MSW incineration plants.

  12. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  13. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  14. District heating campaign in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stalebrant, R.E.

    During the fall of 1994 a district heating campaign was conducted in Sweden. The campaign was initiated because the Swedish district heating companies agreed that it was time to increase knowledge and awareness of district heating among the general public, especially among potential customers. The campaign involved many district heating companies and was organized as a special project. Advertising companies, media advisers, consultants and investigators were also engaged. The campaign was conducted in two stages, a national campaign followed by local campaign was conducted in two stages, a national campaign followed by local campaigns. The national campaign was conducted duringmore » two weeks of November 1994 and comprised advertising on commercial TV and in the press.« less

  15. Evolution of the protolunar disk: Dynamics, cooling timescale and implantation of volatiles onto the Earth

    NASA Astrophysics Data System (ADS)

    Charnoz, Sébastien; Michaut, Chloé

    2015-11-01

    It is thought that the Moon accreted from the protolunar disk that was assembled after the last giant impact on Earth. Due to its high temperature, the protolunar disk may act as a thermochemical reactor in which the material is processed before being incorporated into the Moon. Outstanding issues like devolatilisation and istotopic evolution are tied to the disk evolution, however its lifetime, dynamics and thermodynamics are unknown. Here, we numerically explore the long term viscous evolution of the protolunar disk using a one dimensional model where the different phases (vapor and condensed) are vertically stratified. Viscous heating, radiative cooling, phase transitions and gravitational instability are accounted for whereas Moon's accretion is not considered for the moment. The viscosity of the gas, liquid and solid phases dictates the disk evolution. We find that (1) the vapor condenses into liquid in ∼10 years, (2) a large fraction of the disk mass flows inward forming a hot and compact liquid disk between 1 and 1.7 Earth's radii, a region where the liquid is gravitationally stable and can accumulate, (3) the disk finally solidifies in 103 to 105 years. Viscous heating is never balanced by radiative cooling. If the vapor phase is abnormally viscous, due to magneto-rotational instability for instance, most of the disk volatile components are transported to Earth leaving a disk enriched in refractory elements. This opens a way to form a volatile-depleted Moon and would suggest that the missing Moon's volatiles are buried today into the Earth. The disk cooling timescale may be long enough to allow for planet/disk isotopic equilibration. However large uncertainties on the disk physics remain because of the complexity of its multi-phased structure.

  16. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  17. 7 CFR 983.11 - Districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA... where pistachios are produced that are not included in Districts 1 and 2. (4) District 4 consists of the...

  18. Case Study for the ARRA-Funded Ground Source Heat Pump Demonstration at Ball State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Liu, Xiaobing; Henderson, Jr., Hugh

    With funding provided by the American Recovery and Reinvestment Act (ARRA), 26 ground-source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects is a district central GSHP system installed at Ball State University (BSU) in Muncie, IN. Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam plant with four coal-fired and three natural-gas-fired steam boilers. Cooling was provided by five water-cooled centrifugal chillers at the District Energy Station Southmore » (DESS). The new district GSHP system replaced the existing coal-fired steam boilers and conventional water-cooled chillers. It uses ground-coupled heat recovery (HR) chillers to meet the simultaneous heating and cooling demands of the campus. The actual performance of the GSHP system was analyzed based on available measured data from August 2015 through July 2016, construction drawings, maintenance records, personal communications, and construction costs. Since Phase 1 was funded in part by the ARRA grant, it is the focus of this case study. The annual energy consumption of the GSHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. A cost analysis was performed to evaluate the simple payback of the GSHP system. The following sections summarize the results of the analysis, the lessons learned, and recommendations for

  19. Data and results from a study of internal convective cooling systems for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Dukes, W. H.; Helenbrook, R. G.

    1974-01-01

    An extensive survey of current and future airframe construction materials and coolants was conducted, so that the most promising candidates could be examined for cooled-panel, cooling-system and airframe concepts. Consideration was given to over 100 structural materials, 50 coolants, 6 classes of structural panel concepts, 4 classes of thermal panel concepts with numerous variations, and 3 overall cooled airframe design approaches, including unshielded, shielded, and dual temperature types. The concept identification and parametric comparison phase examined all major elements of the convectively cooled airframe, including the differing requirements at various locations on the aircraft. The parametric results were used for the investigation to two separate vehicles, a hypersonic transport with a length of 96 meters (314 feet) and a weight of 24,000 kg (528,600 lb) and a hypersonic research airplane, with a length of 25m (80 ft) and a weight of 20,300 kg (447,000 lb).

  20. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  1. An Analysis of the System Installation Costs of Diurnal Ice Storage Cooling Systems for Army Facilities

    DTIC Science & Technology

    1991-07-01

    integrate -into the existing -structure and HVAC system. Costs-for a eutectic salt system are shown in Table 5 to compare with the DIS cooling systems. The... eutectic salt system is not an ice storage system, but is a phase change system that stores energy iniits heat of fusion and changes phase at 47 ’F

  2. Mechanisms Related to Different Generations of gamma’ Precipitation During Continuous Cooling of a Nickel Base Superalloy

    DTIC Science & Technology

    2012-04-01

    strongly depen- dent on the cooling rate employed. Faster cooling rates, such as those encountered during water quenching the alloy from the high temperature...precipitates. Subsequently on quenching to a lower temperature a second generation of c0 precipitates are formed that are considerably smaller in size and...annealing after rapid quenching of the alloy from the high temperature single c phase field. Therefore, typically these studies have focused on amonomodal

  3. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  4. Understanding School District Budgets: A Guide For Local Leaders

    ERIC Educational Resources Information Center

    Perry, Mary

    2005-01-01

    A school district budget is more than numbers. It is a record of a district?s past decisions and a spending plan for its future. It shows a district?s priorities whether they have been clearly articulated or simply occurred by default. And it is a communications document that can tell constituents a lot about the district?s priorities and goals. A…

  5. Sharing Local Revenue: One District's Perspective

    ERIC Educational Resources Information Center

    Cline, David S.

    2011-01-01

    The vast majority of U.S. school districts are considered independent and have taxing authority; the remaining districts rely on revenue and budgetary approval from their local government. In the latter case, localities often use some form of negotiated process to determine the amount of revenue their school districts will receive. Typically, a…

  6. A Research Report of Small/Rural School Districts in New Mexico Compared to School Districts of Similiar Size Nationwide.

    ERIC Educational Resources Information Center

    Barker, Bruce O.; Muse, Ivan D.

    A 1982-83 survey produced data used to compare 17 small/rural K-12 New Mexico school districts (900 students or fewer) with 642 similar districts nationwide. Of New Mexico's 88 school districts, 43 were identified as qualifying (48.9%, enrolling 16,648 students), for comparison to 4,125 similar districts nationwide. A questionnaire mailed to…

  7. Differences in Food and Beverage Marketing Policies and Practices in US School Districts, by Demographic Characteristics of School Districts, 2012

    PubMed Central

    Michael, Shannon; Brener, Nancy D.; Coffield, Edward; Kingsley, Beverly S.; Zytnick, Deena; Blanck, Heidi

    2016-01-01

    Introduction Foods and beverages marketed in schools are typically of poor nutritional value. School districts may adopt policies and practices to restrict marketing of unhealthful foods and to promote healthful choices. Students’ exposure to marketing practices differ by school demographics, but these differences have not yet been examined by district characteristics. Methods We analyzed data from the 2012 School Health Policies and Practices Study to examine how food and beverage marketing and promotion policies and practices varied by district characteristics such as metropolitan status, size, and percentage of non-Hispanic white students. Results Most practices varied significantly by district size: a higher percentage of large districts than small or medium-sized districts restricted marketing of unhealthful foods and promoted healthful options. Compared with districts whose student populations were majority (>50%) non-Hispanic white, a higher percentage of districts whose student populations were minority non-Hispanic white (≤50% non-Hispanic white) prohibited advertising of soft drinks in school buildings and on school grounds, made school meal menus available to students, and provided families with information on school nutrition programs. Compared with suburban and rural districts, a higher percentage of urban districts prohibited the sale of soft drinks on school grounds and used several practices to promote healthful options. Conclusion Preliminary findings showing significant associations between district demographics and marketing policies and practices can be used to help states direct resources, training, and technical assistance to address food and beverage marketing and promotion to districts most in need of improvement. PMID:27978408

  8. Accountability in district nursing practice: key concepts.

    PubMed

    Griffith, Richard

    2015-03-01

    Public trust and confidence in district nurses is essential to the nurse-patient relationship that underpins effective care and treatment. That trust and confidence has even greater focus for district nurses who care for patients in their own homes. Those patients need to be able to count on the professionalism and probity of their district nurses. The professionalism and probity of district nurses is based on their accountability, which protects the public by imposing standards on district nurses and holds them answerable for their acts and omissions. This is the first of a series of articles on accountability in district nursing practice to mark the introduction of the revised Nursing and Midwifery Code on the 31 March 2015. This month's article considers the key concepts of accountability.

  9. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  10. Analysis of Radiant Cooling System Configurations Integrated with Cooling Tower for Different Indian Climatic Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin

    Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on averagemore » 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.« less

  11. Do School Districts Matter?

    ERIC Educational Resources Information Center

    Whitehurst, Grover J.; Chingos, Matthew M.; Gallaher, Michael R.

    2013-01-01

    School districts occupy center stage in education reform in the U.S. They manage nearly all public funding and are frequently the locus of federal and state reform initiatives, e.g., instituting meaningful teacher evaluation systems. Financial compensation for district leaders is high, with many being paid more than the chief state school officers…

  12. School District Cash Management. Program Audit.

    ERIC Educational Resources Information Center

    New York State Legislative Commission on Expenditure Review, Albany.

    New York State law permits school districts to invest cash not immediately needed for district operation and also specifies the kinds of investments that may be made in order to ensure the safety and liquidity of public funds. This audit examines cash management and investment practices in New York state's financially independent school districts.…

  13. Reading a District Budget: Reporter Guide

    ERIC Educational Resources Information Center

    McNeil, Michele

    2013-01-01

    Every school budget tells a story--about a district's spending plan, its priorities, goals, and financial health. The challenge is to wade through the jargon and numbers to unlock that story. Although budgets can vary significantly from district to district, and state to state, this primer seeks to introduce reporters to the fundamental components…

  14. Cold perception and cutaneous microvascular response to local cooling at different cooling temperatures.

    PubMed

    Music, Mark; Finderle, Zarko; Cankar, Ksenija

    2011-05-01

    The aim of the present study was to investigate the effect of quantitatively measured cold perception (CP) thresholds on microcirculatory response to local cooling as measured by direct and indirect response of laser-Doppler (LD) flux during local cooling at different temperatures. The CP thresholds were measured in 18 healthy males using the Marstock method (thermode placed on the thenar). The direct (at the cooling site) and indirect (on contralateral hand) LD flux responses were recorded during immersion of the hand in a water bath at 20°C, 15°C, and 10°C. The cold perception threshold correlated (linear regression analysis, Pearson correlation) with the indirect LD flux response at cooling temperatures 20°C (r=0.782, p<0.01) and 15°C (r=0.605, p<0.01). In contrast, there was no correlation between the CP threshold and the indirect LD flux response during cooling in water at 10°C. The results demonstrate that during local cooling, depending on the cooling temperature used, cold perception threshold influences indirect LD flux response. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    PubMed Central

    Minett, Geoffrey M.; Bach, Aaron J. E.; Zietek, Stephanie A.; Stewart, Kelly L.; Stewart, Ian B.

    2018-01-01

    Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker. PMID:29357373

  16. 33 CFR 3.40-1 - Eighth district.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... District § 3.40-1 Eighth district. (a) The District Office is in New Orleans, La. (b) The Eighth Coast..., Missouri, Kentucky, West Virginia, Tennessee, Arkansas, Oklahoma, New Mexico, Texas, Louisiana, Mississippi...

  17. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  18. School District Policies and Adolescents’ Soda Consumption

    PubMed Central

    Miller, Gabrielle F.; Sliwa, Sarah; Brener, Nancy D.; Park, Sohyun; Merlo, Caitlin L.

    2016-01-01

    Purpose Sugar-sweetened beverages (SSBs) are a significant source of calories and added sugars for youth ages 14–18 years in the United States. This study examined the relationship between district-level policies and practices and students’ consumption of regular soda, one type of SSB, in 12 large urban school districts. Methods Data from the 2012 School Health Policies and Practices Study and 2013 Youth Risk Behavior Surveillance System were linked by district. The outcome variable was soda consumption and exposure variables were district policies. We used multivariable logistic regression analyses to calculate adjusted odds ratios (AORs) and 95% confidence intervals (CIs) after controlling for student characteristics and district free/reduced-price meal eligibility. Results About 18% of students reported consuming regular soda at least once per day. Most districts required high schools to have nutrition education, maintain closed campuses, and required/recommended that schools restrict promotional products and sale of beverages. Fewer districts required/recommended that schools offer healthful alternative beverages. Students in districts that restricted promotional products had lower odds of regular soda consumption (AOR = .84, 95% CI = .71–1.00), as did students in districts that restricted access to SSBs and offered healthful beverages when other beverages were available (AOR = .72, 95% CI = .54–.93, AOR = .76, 95% CI = .63–.91). Conclusions This study demonstrates that certain district-level policies are associated with student consumption of regular soda. These findings add to a growing consensus that policies and practices that influence the availability of healthier foods and beverages are needed across multiple settings. PMID:27021401

  19. School District Policies and Adolescents' Soda Consumption.

    PubMed

    Miller, Gabrielle F; Sliwa, Sarah; Brener, Nancy D; Park, Sohyun; Merlo, Caitlin L

    2016-07-01

    Sugar-sweetened beverages (SSBs) are a significant source of calories and added sugars for youth ages 14-18 years in the United States. This study examined the relationship between district-level policies and practices and students' consumption of regular soda, one type of SSB, in 12 large urban school districts. Data from the 2012 School Health Policies and Practices Study and 2013 Youth Risk Behavior Surveillance System were linked by district. The outcome variable was soda consumption and exposure variables were district policies. We used multivariable logistic regression analyses to calculate adjusted odds ratios (AORs) and 95% confidence intervals (CIs) after controlling for student characteristics and district free/reduced-price meal eligibility. About 18% of students reported consuming regular soda at least once per day. Most districts required high schools to have nutrition education, maintain closed campuses, and required/recommended that schools restrict promotional products and sale of beverages. Fewer districts required/recommended that schools offer healthful alternative beverages. Students in districts that restricted promotional products had lower odds of regular soda consumption (AOR = .84, 95% CI = .71-1.00), as did students in districts that restricted access to SSBs and offered healthful beverages when other beverages were available (AOR = .72, 95% CI = .54-.93, AOR = .76, 95% CI = .63-.91). This study demonstrates that certain district-level policies are associated with student consumption of regular soda. These findings add to a growing consensus that policies and practices that influence the availability of healthier foods and beverages are needed across multiple settings. Published by Elsevier Inc.

  20. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  1. Cooling Water Intakes

    EPA Pesticide Factsheets

    Industries use large volumes of water for cooling. The water intakes pull large numbers of fish and other organisms into the cooling systems. EPA issues regulations on intake structures in order to minimize adverse environmental impacts.

  2. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  3. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  4. Dielectric relaxation studies in super-cooled liquid and glassy phases of anti-cancerous alkaloid: Brucine

    NASA Astrophysics Data System (ADS)

    Afzal, Aboothahir; Shahin Thayyil, M.; Sulaiman, M. K.; Kulkarni, A. R.

    2018-05-01

    Brucine has good anti-tumor effects, on both liver cancer and breast cancer. It has bioavailability of 40.83%. Since the bioavailability of the drug is low, an alternative method to increase its bioavailability and solubility is by changing the drug into glassy form. We used Differential Scanning Calorimetry (DSC) for studying the glass forming ability of the drug. Brucine was found to be a very good glass former glass transition temperature 365 K. Based on the DSC analysis we have used broadband dielectric spectroscopy (BDS) for studying the drug in the super cooled and glassy state. BDS is an effective tool to probe the molecular dynamics in the super cooled and glassy state. Molecular mobility is found to be present even in the glassy state of this active pharmaceutical ingredient (API) which is responsible for the instability. Our aim is to study the factors responsible for instability of this API in amorphous form. Cooling curves for dielectric permittivity and dielectric loss revealed the presence of structural (α) and secondary relaxations (β and γ). Temperature dependence of relaxation time is fitted by Vogel-Fulcher-Tammann equation and found the values of activation energy of the α relaxation, fragility and glass transition temperature. Paluch's anti correlation is also verified, that the width of the α-loss peak at or near the glass transition temperature Tg is strongly anticorrelated with the polarity of the molecule. The larger the dielectric relaxation strength Δɛ (Tg) of the system, the narrower is the α-loss peak (higher value of βKWW).

  5. Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis

    2009-01-01

    A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.

  6. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  7. Laminated turbine vane design and fabrication. [utilizing film cooling as a cooling system

    NASA Technical Reports Server (NTRS)

    Hess, W. G.

    1979-01-01

    A turbine vane and associated endwalls designed for advanced gas turbine engine conditions are described. The vane design combines the methods of convection cooling and selective areas of full coverage film cooling. The film cooling technique is utilized on the leading edge, pressure side, and endwall regions. The turbine vane involves the fabrication of airfoils from a stack of laminates with cooling passages photoetched on the surface. Cold flow calibration tests, a thermal analysis, and a stress analysis were performed on the turbine vanes.

  8. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  9. Circles of Leadership: Oregon District Redefines Coaching Roles to Find a Balance between School and District Goals

    ERIC Educational Resources Information Center

    Petti, Amy D.

    2010-01-01

    In this article, the author describes how an Oregon district redefines coaching roles to find a balance between school and district goals. As director of improvement for North Clackamas School District in Milwaukie, Oregon, near Portland, the author's role of coaching the coach was new, and the coaches welcomed the immediate feedback. Through the…

  10. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C.

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  11. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  12. Phase transformations of siderite ore by the thermomagnetic analysis data

    NASA Astrophysics Data System (ADS)

    Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.

  13. Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling

    NASA Technical Reports Server (NTRS)

    Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.

    1959-01-01

    An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.

  14. District heating with geothermally heated culinary water supply systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, D.R.; Schmitt, R.C.

    1979-09-01

    An initial feasibility study of using existing culinary water supply systems to provide hot water for space heating and air conditioning to a typical residential community is reported. The Phase I study has centered on methods of using low-to-moderate temperature water for heating purposes including institutional barriers, identification and description of a suitable residential commnity water system, evaluation of thermal losses in both the main distribution system and the street mains within the residential district, estimation of size and cost of the pumping station main heat exchanger, sizing of individual residential heat exchangers, determination of pumping and power requirements duemore » to increased flow through the residential area mains, and pumping and power requirements from the street mains through a typical residence. All results of the engineering study of Phase I are encouraging.« less

  15. Method of energy load management using PCM for heating and cooling of buildings

    DOEpatents

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  16. Method of energy load management using PCM for heating and cooling of buildings

    DOEpatents

    Stovall, Therese K.; Tomlinson, John J.

    1996-01-01

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  17. Method of energy load management using PCM for heating and cooling of buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material ismore » preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.« less

  18. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    PubMed

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  19. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  20. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    PubMed

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  1. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  2. School Library Certification Requirements - Phase II

    ERIC Educational Resources Information Center

    Franklin, Ann Y.

    1973-01-01

    All states and the District of Columbia were asked for information on revised certification requirements for school librarians or media specialists within each state. The requirements, frequently in the original wording, are reported. (See SLJ p.22, December 1972, LJ p.4043, December 15, 1972, for Phase I.) (5 references) (Author/SM)

  3. The missing Northern European winter cooling response to Arctic sea ice loss

    PubMed Central

    Screen, James A.

    2017-01-01

    Reductions in Arctic sea ice may promote the negative phase of the North Atlantic Oscillation (NAO−). It has been argued that NAO-related variability can be used an as analogue to predict the effects of Arctic sea ice loss on mid-latitude weather. As NAO− events are associated with colder winters over Northern Europe, a negatively shifted NAO has been proposed as a dynamical pathway for Arctic sea ice loss to cause Northern European cooling. This study uses large-ensemble atmospheric simulations with prescribed ocean surface conditions to examine how seasonal-scale NAO− events are affected by Arctic sea ice loss. Despite an intensification of NAO− events, reflected by more prevalent easterly flow, sea ice loss does not lead to Northern European winter cooling and daily cold extremes actually decrease. The dynamical cooling from the changed NAO is ‘missing', because it is offset (or exceeded) by a thermodynamical effect owing to advection of warmer air masses. PMID:28262679

  4. Laser cooling of rubidium atoms in a 2D optical lattice

    NASA Astrophysics Data System (ADS)

    Wei, Chunhua; Kuhn, Carlos C. N.

    2018-06-01

    Lossless polarization gradient cooling of ?? atoms in a far-detuned 2D optical lattice is demonstrated. Temperatures down to ?K and phase space densities as high as 1 / 1000 are achieved in a total duty cycle of ?. It is shown that utilizing the vector component of the optical lattice allows lower temperatures to be achieved when compared with pure scalar lattices.

  5. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    NASA Astrophysics Data System (ADS)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  6. Analysis of the Effect of Cooling Intensity Under Volume-Surface Hardening on Formation of Hardened Structures in Steel 20GL

    NASA Astrophysics Data System (ADS)

    Evseev, D. G.; Savrukhin, A. V.; Neklyudov, A. N.

    2018-01-01

    Computer simulation of the kinetics of thermal processes and structural and phase transformations in the wall of a bogie side frame produced from steel 20GL is performed with allowance for the differences in the cooling intensity under volume-surface hardening. The simulation is based on the developed method employing the diagram of decomposition of austenite at different cooling rates. The data obtained are used to make conclusion on the effect of the cooling intensity on propagation of martensite structure over the wall section.

  7. NREL, LiquidCool Solutions Partner on Energy-Efficient Cooling for

    Science.gov Websites

    denser and generate more heat. Liquid cooling, including the LiquidCool Solutions technology, offers a more energy-efficient solution that also allows for effective reuse of the heat rejected by the water, depending on the coolant temperature and heat exchanger specifications. These water temperatures

  8. Investigating the influence of photocatalytic cool wall adoption on meteorology and air quality in the Los Angeles basin

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.

    2017-12-01

    Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant

  9. Full-Day Kindergarten: A Case Study on the Perceptions of District Leaders in Four Suburban Pennsylvania School Districts

    ERIC Educational Resources Information Center

    Santoro, Elizabeth A.

    2011-01-01

    This qualitative study explored the reasons why suburban district leaders opted for full-day or half-day kindergarten programming in a sample of four local suburban districts operating such programs in Southeastern, Pennsylvania. The primary data source was interviews with key district leaders including school board members, superintendents,…

  10. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  11. Effectiveness-weighted control of cooling system components

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  12. Rural district hospitals - essential cogs in the district health system - and primary healthcare re-engineering.

    PubMed

    le Roux, K W D P; Couper, I

    2015-06-01

    The re-engineering of primary healthcare (PHC) is regarded as an essential precursor to the implementation of National Health Insurance in South Africa, but improvements in the provision of PHC services have been patchy. The authors contend that the role of well- functioning rural district hospitals as a hub from which PHC services can be most efficiently managed has been underestimated, and that the management of district hospitals and PHC clinics need to be co-located at the level of the rural district hospital, to allow for proper integration of care and effective healthcare provision.

  13. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    NASA Astrophysics Data System (ADS)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  14. What Do District Health Managers in Ghana Use Their Working Time for? A Case Study of Three Districts.

    PubMed

    Bonenberger, Marc; Aikins, Moses; Akweongo, Patricia; Bosch-Capblanch, Xavier; Wyss, Kaspar

    2015-01-01

    Ineffective district health management potentially impacts on health system performance and service delivery. However, little is known about district health managing practices and time allocation in resource-constrained health systems. Therefore, a time use study was conducted in order to understand current time use practices of district health managers in Ghana. All 21 district health managers working in three districts of the Eastern Region were included in the study and followed for a period of three months. Daily retrospective interviews about their time use were conducted, covering 1182 person-days of observation. Total time use of the sample population was assessed as well as time use stratified by managerial position. Differences of time use over time were also evaluated. District health managers used most of their working time for data management (16.6%), attending workshops (12.3%), financial management (8.7%), training of staff (7.1%), drug and supply management (5.0%), and travelling (9.6%). The study found significant variations of time use across the managerial cadres as well as high weekly variations of time use impulsed mainly by a national vertical program. District health managers in Ghana use substantial amounts of their working time in only few activities and vertical programs greatly influence their time use. Our findings suggest that efficiency gains are possible for district health managers. However, these are unlikely to be achieved without improvements within the general health system, as inefficiencies seem to be largely caused by external factors.

  15. Sexual Harassment Policies in Florida School Districts.

    ERIC Educational Resources Information Center

    Rienzo, Barbara A.; Moore, Michele Johnson

    1998-01-01

    Investigated the extent to which Florida's school districts complied with the Florida Department of Education's (FDOE) recommendations for addressing sexual harassment in schools. Surveys of district equity coordinators and analysis of policies indicated that most districts approved sexual harassment policies incorporating many FDOE…

  16. 7 CFR 905.13 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... described as lying within Regulation Area II, and County Commissioner's Districts Four and Five of Volusia County. (d) Citrus District Four shall include the Counties of Manatee, Sarasota, Hardee, Highlands...

  17. Cooling Tests of an Airplane Equipped with an NACA Cowling and a Wing-duct Cooling System

    NASA Technical Reports Server (NTRS)

    Turner, L I , Jr; Bierman, David; Boothy, W B

    1941-01-01

    Cooling tests were made of a Northrop A-17A attack airplane successively equipped with a conventional.NACA cowling and with a wing-duct cooling system. The method of cooling the engine by admitting air from the propeller slipstream into wing ducts, passing it first through the accessory compartment and then over the engine from rear to front, appeared to offer possibilities for improved engine cooling, increased cooling of the accessories, and better fairing of the power-plant installation. The results showed that ground cooling for the wing duct system without cowl flap was better than for the NACA cowling with flap; ground cooling was appreciably improved by installing a cowl flap. Satisfactory temperatures were maintained in both climb and high-speed flight, but, with the use of conventional baffles, a greater quantity of cooling air appeared to be required for the wing duct system.

  18. Cooling molten salt reactors using "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav; Klimko, Marek

    2014-08-01

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  19. The Little District that Could: Literacy Reform Leads to Higher Achievement in California District

    ERIC Educational Resources Information Center

    Kelly, Patricia R.; Budicin-Senters, Antoinette; King, L. McLean

    2005-01-01

    This article describes educational reform developed over a 10-year period in California's Lemon Grove School District, which resulted in a steady and remarkable upward shift in achievement for the students of this multicultural district just outside San Diego. Six elements of literacy reform emerged as the most significant factors affecting…

  20. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...