Sample records for disturbance force observer

  1. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  2. Shock and Vibration Control of a Golf-Swing Robot at Impacting the Ball

    NASA Astrophysics Data System (ADS)

    Hoshino, Yohei; Kobayashi, Yukinori

    A golf swing robot is a kind of fast motion manipulator with a flexible link. A robot manipulator is greatly affected by Corioli's and centrifugal forces during fast motion. Nonlinearity due to these forces can have an adverse effect on the performance of feedback control. In the same way, ordinary state observers of a linear system cannot accurately estimate the states of nonlinear systems. This paper uses a state observer that considers disturbances to improve the performance of state estimation and feedback control. A mathematical model of the golf robot is derived by Hamilton's principle. A linear quadratic regulator (LQR) that considers the vibration of the club shaft is used to stop the robot during the follow-through action. The state observer that considers disturbances estimates accurate state variables when the disturbances due to Corioli's and centrifugal forces, and impact forces work on the robot. As a result, the performance of the state feedback control is improved. The study compares the results of the numerical simulations with experimental results.

  3. Mesoscale disturbances in the tropical stratosphere excited by convection - Observations and effects on the stratospheric momentum budget

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Scott, Stanley; Loewenstein, Max; Bowen, Stuart; Legg, Marion

    1993-01-01

    Aircraft temperature and pressure measurements as well as satellite imagery are used to establish the amplitudes and the space and time scale of potential temperature disturbances over convective systems. A conceptual model is proposed for the generation of mesoscale gravity waves by convection. The momentum forcing that a reasonable distribution of convection might exert on the tropical stratosphere through convectively excited mesoscale gravity waves of the observed amplitudes is estimated. Aircraft measurements show that presence of mesoscale disturbances in the lower stratospheric temperature, disturbances that appear to be associated with underlying convection. If the disturbances are convectively excited mesoscale gravity waves, their amplitude is sufficient that their breakdown in the upper stratosphere will exert a zonal force comparable to but probably smaller than the planetary-scale Kelvin waves.

  4. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    NASA Astrophysics Data System (ADS)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  5. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  6. Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer.

    PubMed

    Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong

    2017-01-01

    Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.

  7. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  8. Tire Force Estimation using a Proportional Integral Observer

    NASA Astrophysics Data System (ADS)

    Farhat, Ahmad; Koenig, Damien; Hernandez-Alcantara, Diana; Morales-Menendez, Ruben

    2017-01-01

    This paper addresses a method for detecting critical stability situations in the lateral vehicle dynamics by estimating the non-linear part of the tire forces. These forces indicate the road holding performance of the vehicle. The estimation method is based on a robust fault detection and estimation approach which minimize the disturbance and uncertainties to residual sensitivity. It consists in the design of a Proportional Integral Observer (PIO), while minimizing the well known H ∞ norm for the worst case uncertainties and disturbance attenuation, and combining a transient response specification. This multi-objective problem is formulated as a Linear Matrix Inequalities (LMI) feasibility problem where a cost function subject to LMI constraints is minimized. This approach is employed to generate a set of switched robust observers for uncertain switched systems, where the convergence of the observer is ensured using a Multiple Lyapunov Function (MLF). Whilst the forces to be estimated can not be physically measured, a simulation scenario with CarSimTM is presented to illustrate the developed method.

  9. Effects of Meteorological Variability on the Thermosphere-Ionosphere System during the Moderate Geomagnetic Disturbed January 2013 Period As Simulated By Time-GCM

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Hagan, M. E.; Richmond, A. D.; Liu, H.; Yudin, V. A.

    2014-12-01

    The ionosphere-thermosphere system is affected by solar and magnetospheric processes and by meteorological variability. Ionospheric observations of total electron content during the current solar cycle have shown that variability associated with meteorological forcing is important during solar minimum, and can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to study the comparative importance of geomagnetic and meterological forcing.This study focuses on the January 2013 Stratospheric Sudden Warming (SSW) period, which is associated with a very disturbed middle atmosphere as well as with moderately disturbed solar geomagntic conditions. We employ the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) with a nudging scheme using Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of the meteorological and solar wind forcing on the upper atmosphere. The model results are evaluated by comparing with observations e.g., TEC, NmF2, ion drifts. We study the effect of the SSW on the wave spectrum, and the associated changes in the low latitude vertical drifts. These changes are compared to the impact of the moderate geomagnetic forcing on the TI-system during the January 2013 time period by conducting numerical experiments. We will present select highlights from our study and elude to the comparative importance of the forcing from above and below as simulated by the TIME-GCM.

  10. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, K.P.; DeStefano, S.

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R 2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007-2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement. ?? 2011 The Wildlife Society.

  11. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, Kyle P.; DeStefano, Stephen

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007–2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement.

  12. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  13. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    PubMed

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  14. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  15. Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System

    PubMed Central

    Scholz, Monika; Hutchison, Alan L.; Dinner, Aaron R.; Gilbert, Jack A.; Coleman, Maureen L.

    2016-01-01

    ABSTRACT Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems. PMID:27999158

  16. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    PubMed

    Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C

    2013-01-01

    Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  17. A "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Astrophysics Data System (ADS)

    Rupert, J. K.; Hampton, R. D.; Beech, G. S.

    2005-02-01

    In the late 1980s, microgravity researchers began to voice their concern that umbilical-transmitted energy could significantly degrade the acceleration environment of microgravity space science experiments onboard manned spacecraft. Since umbilicals are necessary for many experiments, control designers began to seek ways to compensate for these "indirect" disturbances. Hampton, et al., used the Kane s method to develop a model of the active rack isolation system (ARIS) that includes (1) actuator control forces, (2) direct disturbance forces, and (3) indirect, actuator-transmitted disturbances. Their model does not, however, include the indirect, umbilical-transmitted disturbances. Since the umbilical stiffnesses are not negligible, these indirect disturbances must be included in the model. Until the umbilicals have been appropriately included, the model will be incomplete. This Technical Memorandum presents a nonlinear model of ARIS with umbilicals included. Model verification was achieved by utilizing two commercial-off-the-shelf software tools. Various forces and moments were applied to the model to yield simulated responses of the system. Plots of the simulation results show how various critical points on an ARIS-outfitted international standard payload rack behave under the application of direct disturbances, indirect disturbances, and control forces. Simulations also show system response to a variety of initial conditions.

  18. The Utilization of the Behavioral Sciences in Long Range Forecasting and Policy Planning

    DTIC Science & Technology

    1975-06-30

    next. For purposes of analysis it is custcrrvary to place the observation and access interfaces together with either the inner or outer environment ...theorizing about governments the prinary object of analysis is the inner environment IE, IE £ Y x U (or some composition involving the inner...the compass, the environment is composed solely of magnetic lines of force. Environmental ^ changes which do not disturb these force lines are

  19. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  20. A "Kane's Dynamics" Model for the Active Rack Isolation System. Part 3; Addition of Umbilicals to the Nonlinear Model

    NASA Technical Reports Server (NTRS)

    Rupert, J. K.; Hampton, R. D.; Beech, G. S.

    2005-01-01

    In the late 1980s, microgravity researchers began to voice their concern that umbilical-transmitted energy could significantly degrade the acceleration environment of microgravity space science experiments onboard manned spacecraft. Since umbilicals are necessary for many experiments, control designers began to seek ways to compensate for these "indirect" disturbances. Hampton, et al., used the Kane s method to develop a model of the active rack isolation system (ARIS) that includes (1) actuator control forces, (2) direct disturbance forces, and (3) indirect, actuator-transmitted disturbances. Their model does not, however, include the indirect, umbilical-transmitted disturbances. Since the umbilical stiffnesses are not negligible, these indirect disturbances must be included in the model. Until the umbilicals have been appropriately included, the model will be incomplete. This Technical Memorandum presents a nonlinear model of ARIS with umbilicals included. Model verification was achieved by utilizing two commercial-off-the-shelf software tools. Various forces and moments were applied to the model to yield simulated responses of the system. Plots of the simulation results show how various critical points on an ARIS-outfitted international standard payload rack behave under the application of direct disturbances, indirect disturbances, and control forces. Simulations also show system response to a variety of initial conditions.

  1. Studies of hypokinesia in animals to solve urgent problems of space biology and medicine

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Bodya, K.; Reklevska, V.; Tomashevska, L.; Gayevskaya, M. S.; Ilina-Kakuyeva, Y. I.; Katsyuba-Ustiko, G.; Kovalenko, Y. A.; Kurkina, L. M.; Mailyan, E. S.

    1974-01-01

    The effects of hypokinesia on animals were studied by observing: (1) hormonal and mediator balance of the body; (2) gas exchange and tissue respiration; (3) protein content in skeletal muscles; (4) structure of skeletal muscles; and (5) function of skeletal muscles. Sharp limitation of motor activity causes interconnected processes of a dystropic and pathological character expressed as a reduction in the force of various muscle group with disturbance of velocity properties and motor coordination due to disturbances in the control link of the neuromuscular system.

  2. Astronaut-Induced Disturbances to the Microgravity Environment of the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.; Amir, Amir R.; Beck, Sherwin M.

    2001-01-01

    In preparation for the International Space Station, the Enhanced Dynamic Load Sensors Space Flight Experiment measured the forces and moments astronauts exerted on the Mir Space Station during their daily on-orbit activities to quantify the astronaut-induced disturbances to the microgravity environment during a long-duration space mission. An examination of video recordings of the astronauts moving in the modules and using the instrumented crew restraint and mobility load sensors led to the identification of several typical astronaut motions and the quantification or the associated forces and moments exerted on the spacecraft. For 2806 disturbances recorded by the foot restraints and hand-hold sensor, the highest force magnitude was 137 N. For about 96% of the time, the maximum force magnitude was below 60 N, and for about 99% of the time the maximum force magnitude was below 90 N. For 95% of the astronaut motions, the rms force level was below 9.0 N. It can be concluded that expected astronaut-induced loads from usual intravehicular activity are considerably less than previously thought and will not significantly disturb the microgravity environment.

  3. Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    NASA Astrophysics Data System (ADS)

    Ritter, P.; Lühr, H.; Doornbos, E.

    2010-06-01

    The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3-4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s) by substorms.

  4. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon L.; Crowley, Geoff

    2010-07-01

    We model the gravity waves (GWs) excited by Tropical Storm (TS) Noel at 0432 UT on 30 October 2007. Using forward ray tracing, we calculate the body forces which result from the saturation and dissipation of these GWs. We then analyze the 59 traveling ionospheric disturbances (TIDs) observed by the TIDDBIT ionospheric sounder at 0400-1000 UT near Wallops Island. These TIDs were located at the bottomside of the F layer at z = 230-290 km, had periods of τr = 15 to 90 min, horizontal wavelengths of λH = 100 to 3000 km, and horizontal phase speeds of cH = 140 to 650 m/s. 33 (˜60%) of the TIDs were propagating northwest(NW) and north(N)ward, from the direction of TS Noel 1700-2000 km away. We show that these TIDs were likely GWs. 40% of these GWs had phase speeds larger than 280m/s. This precluded a tropospheric source and suggested mesospheric and thermospheric sources instead. Using reverse ray tracing, we compare the GW locations with the regions of convective overshoot, mesospheric body forces, and thermospheric body forces. We identify 27 of the northwest/northward propagating GWs as likely being secondary GWs excited by thermospheric body forces. Three may have originated from mesospheric body forces, although this is much less likely. None are identified as primary GWs excited directly by TS Noel. 11 of these GWs with cH < 205 m/s likely reflected near the tropopause prior to detection. This secondary GW spectrum peaks at λH ˜ 100-300 km and cH ˜ 100-300 m/s. To our knowledge, this is the first identification and quantification of secondary GWs from thermospheric body forces.

  5. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  6. Observation of TEC perturbation associated with medium-scale traveling ionospheric disturbance and possible seeding mechanism of atmospheric gravity wave at a Brazilian sector

    NASA Astrophysics Data System (ADS)

    Jonah, O. F.; Kherani, E. A.; De Paula, E. R.

    2016-03-01

    In the present study, we document daytime total electron content (TEC) disturbances associated with medium-scale traveling ionospheric disturbances (MSTIDs), on few chosen geomagnetically quiet days over Southern Hemisphere of Brazilian longitude sector. These disturbances are derived from TEC data obtained using Global Navigation Satellite System (GNSS) receiver networks. From the keograms and cross-correlation maps, the TEC disturbances are identified as the MSTIDs that are propagating equatorward-eastward, having most of their average wavelengths longer in latitude than in longitude direction. These are the important outcomes of the present study which suggest that the daytime MSTIDs over Southern Hemisphere are similar to their counterparts in the Northern Hemisphere. Another important outcome is that the occurrence characteristics of these MSTIDs and that of atmospheric gravity wave (AGW) activities in the thermosphere are found to be similar on day-to-day basis. This suggests a possible connection between them, confirming the widely accepted AGW forcing mechanism for the generation of these daytime MSTIDs. The source of this AGW is investigated using the Geostationary Operational Environmental Satellite system (GOES) and Constellation Observing System for Meteorology, Ionosphere, and Climate satellite data. Finally, we provided evidences that AGWs are generated by convection activities from the tropospheric region.

  7. Unusual subauroral neutral wind disturbances during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Erickson, P. J.; Holt, J. M.

    2016-12-01

    Under the influence of geomagnetic storms, general circulation of the global thermosphere undergoes substantial changes that vary with latitudes. High latitude heating processes establish pressure gradients both vertically and horizontally. The equatorward wind surge and the associated westward wind enhancement are a typical disturbance wind characteristic that affacts ionosphere and thermosphere dynamics at mid-, low, and equatorial latitudes. At subauroral latitudes, however, new observations of neutral wind disturbances show some "abnormal" (unusual) behaviors in responding to complicated ion-neutral coupling processes. During the 2015 St. Patrick's Day great geomagnetic storm, incoherent scatter radar measurements at Millstone Hill show the following salient variations: (1) oscillating meridional wind disturbances with the Traveling Atmosphere Disturbance (TAD) feature; (2) vertical wind signature; (3) pre-mindnight poleward wind surges. The latter two variations appear to be associated with strong ion-neutral interaction developed during the subauroral polarization streams (SAPS) presence. Strong frictional heating caused by the relative velocity between the ions with SAPS speed and the neutrals leads to appreciable thermospheric upperwelling. Strong westward ion drifts shown as SAPS also enhance the wseward neutral flow, which subsequently causes a poleward component of the meridional wind due to the Coriolis force. This paper will present these observations of the wind and discuss ion-neutral coupling effects associated with SAPS.

  8. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  9. Novel Straight Road Driving Control of Power Assisted Wheelchair Based on Disturbance Estimation of Right and Left Wheels

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.

  10. Traveling Atmospheric Disturbances (TADs) in the thermosphere inferred from accelerometer data at three altitudes

    NASA Astrophysics Data System (ADS)

    Bruinsma, Sean; Forbes, Jeffrey

    2010-05-01

    Densities derived from accelerometer measurements on the GRACE, CHAMP and Air Force/SETA satellites near 490, 390, and 220 km, respectively, are used to elucidate global-scale characteristics of traveling atmospheric disturbances. The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 320 and 490 km since May 2001, and July 2002, respectively. They have recorded the response to virtually every significant geomagnetic storm during this period. CHAMP and GRACE are in (near) polar and quasi-circular orbits, sampling 24 hr local time approximately every 4 and 5 months, respectively. These capabilities offer unique opportunities to study the temporal and latitudinal responses of the thermosphere to geomagnetic disturbances. The Air Force/SETA accelerometer data have also been processed, but the analysis is more complicated due to data gaps. Significant and unambiguous TAD activity in the observed response of the thermosphere was detected for about 25 events with CHAMP and GRACE, and less than 10 with SETA. The atmospheric variability is evaluated by de-trending the data, allowing the extraction of specific ranges in horizontal scale, and analyzing density "residuals". The scale of the perturbation is decisive for its lifetime and relative amplitude. Sometimes the disturbances represent wave-like structures propagating far from the source, and these so-called ‘TADs' were detected and described for the May 2003 storm for the first time. Some TADs traveled over the pole into the opposite hemisphere; this was found in both CHAMP and GRACE data. Most TADs propagate equatorward, but poleward propagating TADs have on occasion been detected too. The estimated speeds and amplitudes of the observed TADs, and their dependence on altitude and solar and geomagnetic activity in particular, will be presented in this poster.

  11. Shallow water simulations of Saturn's giant storms at different latitudes

    NASA Astrophysics Data System (ADS)

    García-Melendo, E.; Sánchez-Lavega, A.

    2017-04-01

    Shallow water simulations are used to present a unified study of three major storms on Saturn (nicknamed as Great White Spots, GWS) at different latitudes, polar (1960), equatorial (1990), and mid-latitude (2010) (Sánchez-Lavega, 2004; Sánchez-Lavega et al., 2011). In our model, the three GWS are initiated by introducing a Gaussian function pulse at the latitude of the observed phenomena with controlled horizontal size and amplitude. This function represents the convective source that has been observed to trigger the storm. A growing disturbance forms when the pulse reacts to ambient winds, expanding zonally along the latitude band of the considered domain. We then compare the modeled potential vorticity with the cloud field, adjusting the model parameters to visually get the closest aspect between simulations and observations. Simulations of the 2010 GWS (planetographic latitude ∼+40º, zonal velocity of the source ∼-30 m s-1) indicate that the Coriolis forces and the wind profile structure shape the disturbance generating, as observed, a long region to the east of the convective source with a high speed peripheral anticyclonic circulation, and a long-lived anticyclonic compact vortex accompanied by strong zonal advection on the southern part of the storm forming a turbulent region. Simulations of the equatorial 1990 GWS (planetographic latitude +12º-+5º, zonal velocity of the source 365-400 m s-1) show a different behavior because of the intense eastward jet, meridional shear at the equatorial region, and low latitude dynamics. A round shaped source forms as observed, with the rapid growth of a Kelvin-Helmholtz instability on the north side of the source due to advection and to the strong meridional wind shear, whereas at the storm latitude the disturbance grows and propagates eastward. The storm nucleus is the manifestation of a Rossby wave, while the eastward propagating planetary-scale disturbance is a gravity-Rossby wave trapped around the equator. The simulated 1960 GWS disturbance (planetographic latitude +56º, zonal velocity 4 m s-1) formed a chain of periodic oval spots that mimic the few available observations of the phenomenon. For the mid and high latitude storms, simulations predict a strong injection of negative relative vorticity due to divergence of the upwelling storm material, which may produce large anticyclones on the anticyclonic side of the zonal profile, and a quick turbulent expansion on the background cyclonic regions. In general, simulations indicate that negative relative vorticity injected by storms determines the natural reaction to zonal winds at latitudes where Coriolis forces are dominant.

  12. Radiative Forcings from Albedo and Carbon Dynamics after Disturbance in Massachusetts Forests

    NASA Astrophysics Data System (ADS)

    MacLean, R. G.; Williams, C. A.

    2014-12-01

    Recent efforts have sought to compare and contrast the radiative forcings excited by forest disturbances due to both biogeochemical and biogeophysical mechanisms (Bonan et al., 2008) using either in situ measurements (e.g. Randerson et al., 2005; Randerson et al., 2006) or modeling (e.g. Brovkin et al., 2004). Study of boreal forest disturbances led to the important finding that the albedo increase from snow exposure after a canopy destroying fire offsets the warming from carbon emissions (Randerson et al. 2005). Similar study is lacking for temperate forests, leading to uncertainty about the net effect of albedo and carbon forcings following their disturbance. This work quantifies the gross and net radiative forcings from albedo and carbon mechanisms at two clear cut sites in Harvard Forest, Massachusetts, one a Norway spruce plantation clear cut in 2008 and the other a red pine plantation cleared in 1990. Carbon fluxes are estimated from detailed biomass inventories at both sites, as well as additional measurement with eddy covariance at the 2008 clearing. Associated radiative forcing is estimated with conventional methods estimating the perturbation to CO2 in the atmosphere and its lifetime considering ocean uptake (pulse response) and vegetation regrowth. Albedo change is assessed with Landsat derived albedo for both sites, as well as in situ measurements at the 2008 clearing. Associated radiative forcing is estimated with the model-derived radiative kernels provided by Shell et al (2008). From these extensive records we offer an in depth characterization of albedo and carbon forcings immediately following disturbance through to canopy closure and stem exclusion stages of forest growth in a mid-latitude temperate forest region.

  13. Lake microbial communities are resilient after a whole-ecosystem disturbance

    PubMed Central

    Shade, Ashley; Read, Jordan S; Youngblut, Nicholas D; Fierer, Noah; Knight, Rob; Kratz, Timothy K; Lottig, Noah R; Roden, Eric E; Stanley, Emily H; Stombaugh, Jesse; Whitaker, Rachel J; Wu, Chin H; McMahon, Katherine D

    2012-01-01

    Disturbances act as powerful structuring forces on ecosystems. To ask whether environmental microbial communities have capacity to recover after a large disturbance event, we conducted a whole-ecosystem manipulation, during which we imposed an intense disturbance on freshwater microbial communities by artificially mixing a temperate lake during peak summer thermal stratification. We employed environmental sensors and water chemistry analyses to evaluate the physical and chemical responses of the lake, and bar-coded 16S ribosomal RNA gene pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA) to assess the bacterial community responses. The artificial mixing increased mean lake temperature from 14 to 20 °C for seven weeks after mixing ended, and exposed the microorganisms to very different environmental conditions, including increased hypolimnion oxygen and increased epilimnion carbon dioxide concentrations. Though overall ecosystem conditions remained altered (with hypolimnion temperatures elevated from 6 to 20 °C), bacterial communities returned to their pre-manipulation state as some environmental conditions, such as oxygen concentration, recovered. Recovery to pre-disturbance community composition and diversity was observed within 7 (epilimnion) and 11 (hypolimnion) days after mixing. Our results suggest that some microbial communities have capacity to recover after a major disturbance. PMID:22739495

  14. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    PubMed

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Drive Control of an Electric Vehicle by a Non-linear Controller

    NASA Astrophysics Data System (ADS)

    Mubin, Marizan; Ouchi, Shigeto; Anabuki, Masatoshi; Hirata, Hiroshi

    The driving force of automobiles is transmitted by the frictional force between the tires and the road surface. This frictional force is a function of the weight of the car-body and the friction coefficient μ between the tires and the road surface. The friction coefficient μ is also a function of the following parameters: the slip ratio λ determined by the car-body speed and the wheel speed, and the condition of the road surface. Slippage of automobiles which causes much damage often occurs during accelerating and braking. In this paper, we propose a new drive control system which has an effect on acceleration and braking. In the drive control system, a non-linear controller designed by using a Lyapunov function is used. This non-linear controller has two functions: first one is μ control which moves the car-body, another one is λ control. The controller is designed in order that μ and λ work at noslip and with slip respectively. As another controller, a disturbance observer is used for estimating the car-body speed which is difficult to be measured. Then, this lead to the proof of the stability condition of the combined system which consists of two controllers: the non-linear controller and the disturbance observer. Finally, the effectiveness of this control system is proved by a very satisfactory simulation and experimental results for two cases.

  16. An Approach to Sensorless Detection of Human Input Torque and Its Application to Power Assist Motion in Electric Wheelchair

    NASA Astrophysics Data System (ADS)

    Kaida, Yukiko; Murakami, Toshiyuki

    A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.

  17. Model identification of terfenol-D magnetostrictive actuator for precise positioning control

    NASA Astrophysics Data System (ADS)

    Saleem, Ashraf; Ghodsi, Mojtaba; Mesbah, Mostefa; Ozer, Abdullah

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  18. Substorm-related thermospheric density and wind disturbances

    NASA Astrophysics Data System (ADS)

    Ritter, P.; Luhr, H.; Doornbos, E. N.

    2009-12-01

    The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermosphere response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at sonic speed to lower latitudes, and 3-4 hours later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed by substorms.

  19. Lee waves: Benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.; Sharman, R. D.

    1993-01-01

    The flow of an incompressible fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as dynamically incompressible, even though there exists a mean static upward density gradient. Even in the linear approximation - i.e., for small disturbances - this model explains a great many of the flow phenomena observed in the lee of mountains. However, nonlinearities do arise importantly, in three ways: (1) through amplification due to the decrease of mean density with height; (2) through the large (scaled) size of the obstacle, such as a mountain range; and (3) from dynamically singular levels in the fluid field. These effects produce a complicated array of phenomena - large departure of the streamlines from their equilibrium levels, high winds, generation of small scales, turbulence, etc. - that present hazards to aircraft and to lee surface areas. The nonlinear disturbances also interact with the larger-scale flow in such a manner as to impact global weather forecasts and the climatological momentum balance. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km), where recent observations show them to be of a length scale that must involve the coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the phenomena associated with these wave dynamics are being studied with a view to their potential impact on high performance aircraft, including the projected National Aerospace Plane (NASP). The presentation shows the results of analysis and of state-of-the-art numerical simulations, validated where possible by observational data, and illustrated with photographs from nature.

  20. Ketamine and MAG Lipase Inhibitor-Dependent Reversal of Evolving Depressive-Like Behavior During Forced Abstinence From Alcohol Drinking.

    PubMed

    Holleran, Katherine M; Wilson, Hadley H; Fetterly, Tracy L; Bluett, Rebecca J; Centanni, Samuel W; Gilfarb, Rachel A; Rocco, Lauren E R; Patel, Sachin; Winder, Danny G

    2016-07-01

    Although alcoholism and depression are highly comorbid, treatment options that take this into account are lacking, and mouse models of alcohol (ethanol (EtOH)) intake-induced depressive-like behavior have not been well established. Recent studies utilizing contingent EtOH administration through prolonged two-bottle choice access have demonstrated depression-like behavior following EtOH abstinence in singly housed female C57BL/6J mice. In the present study, we found that depression-like behavior in the forced swim test (FST) is revealed only after a protracted (2 weeks), but not acute (24 h), abstinence period. No effect on anxiety-like behavior in the EPM was observed. Further, we found that, once established, the affective disturbance is long-lasting, as we observed significantly enhanced latencies to approach food even 35 days after ethanol withdrawal in the novelty-suppressed feeding test (NSFT). We were able to reverse affective disturbances measured in the NSFT following EtOH abstinence utilizing the N-methyl D-aspartate receptor (NMDAR) antagonist and antidepressant ketamine but not memantine, another NMDAR antagonist. Pretreatment with the monoacylglycerol (MAG) lipase inhibitor JZL-184 also reduced affective disturbances in the NSFT in ethanol withdrawn mice, and this effect was prevented by co-administration of the CB1 inverse agonist rimonabant. Endocannabinoid levels were decreased within the BLA during abstinence compared with during drinking. Finally, we demonstrate that the depressive behaviors observed do not require a sucrose fade and that this drinking paradigm may favor the development of habit-like EtOH consumption. These data could set the stage for developing novel treatment approaches for alcohol-withdrawal-induced mood and anxiety disorders.

  1. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less

  2. Space Science

    NASA Image and Video Library

    2002-02-01

    This photograph depicts the Solar X-Ray Imager (SXI) being installed in the X-Ray Calibration Facility (XRCF) vacuum chamber for testing at the Marshall Space Flight Center (MSFC). The XRCF vacuum chamber simulates a space environment with low temperature and pressure. The x-ray images from SXI on the Geostationary Operational Environmental Satellite-12 (GOES-12) will be used by the National Oceanic and Atmospheric Administration (NOAA) and U.S. Air Force to forecast the intensity and speed of solar disturbances that could destroy satellite electronics or disrupt long-distance radio communications. The SXI will observe solar flares, coronal mass ejections, coronal holes, and active regions in the x-ray region of the electromagnetic spectrum. These features are the dominant sources of disturbances in space weather. The imager instrument consists of a telescope assembly with a 6.3-inch (16-centimeter) diameter grazing incidence mirror and a detector system. The imager was developed, tested, and calibrated by MSFC, in conjunction with the NASA Goddard Space Flight Center and U.S. Air Force.

  3. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    NASA Astrophysics Data System (ADS)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is presented. The developed theory is used to estimate vertical tire forces and predict tripped rollovers in situations involving road bumps, potholes, and lateral unknown force inputs. To estimate the tire-road friction coefficients at each individual tire of the vehicle, algorithms to estimate longitudinal forces and slip ratios at each tire are proposed. Subsequently, tire-road friction coefficients are obtained using recursive least squares parameter estimators that exploit the relationship between longitudinal force and slip ratio at each tire. The developed approaches are evaluated through simulations with industry standard software, CARSIM, with experimental tests on a Volvo XC90 sport utility vehicle and with experimental tests on a 1/8th scaled vehicle. The simulation and experimental results show that the developed approaches can reliably estimate the vehicle parameters and state variables needed for effective ESC and rollover prevention applications.

  4. Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1997-01-01

    Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.

  5. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, R. C.; Foss, J. F.

    1989-01-01

    The detailed response of a large single-stream shear layer to a sinusoidal forcing at x = 0 is quantitatively defined. Phase-averaged data are used to characterize the increased disturbance convection velocity and a width measure of the disturbance field. These findings are consistent with and complement those of Fiedler and Mensing (1985).

  6. Health Status of Women in the Armed Forces

    DTIC Science & Technology

    1991-12-01

    1984, howeper, women’s rates for acute upper respiratory infection, diarrheal disease, ribella, and infectious mononucleosis had declined to such an...were observed for induced abortions and acute upper respiratory infection for the 1973-77 cohort; alcohol abuse and complications of pregnancy for the...1978-82 cohort; and complications of pregnancy and transient situational disturbances for the 1983-87 cohort. The most vulnerable time for the

  7. Archaeological Investigations at Tarague Beach, Guam,

    DTIC Science & Technology

    1986-06-01

    project. Intermittant professional assistance, however, was provided by the following individuals: Charles Streck (5 days), Kanalei Shun (4 days). John...Freshwater is confined to surface discharge, with several perennial rivers and streams, and a large number of intermittent streams carrying most of the...and observed no latte structures. He does say, however, that Any sites there are likely to be disturbed unless Air Force excercises care in road

  8. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    NASA Technical Reports Server (NTRS)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral densities); converting PSDs to order analysis data; extracting harmonics; initializing and simultaneously tuning a harmonic model and a wheel structural model; initializing and tuning a broadband model; and verifying the harmonic/broadband/structural model against the measurement data. Functional operation is through a MATLAB GUI that loads test data, performs the various analyses, plots evaluation data for assessment and refinement of analysis parameters, and exports the data to documentation or downstream analysis code. The harmonic models are defined as specified functions of frequency, typically speed-squared. The reaction wheel structural model is realized as mass, damping, and stiffness matrices (typically from a finite element analysis package) with the addition of a gyroscopic forcing matrix. The broadband noise model is realized as a set of speed-dependent filters. The tuning of the combined model is performed using nonlinear least squares techniques. RWDMES is implemented as a MATLAB toolbox comprising the Fit Manager for performing the model extraction, Data Manager for managing input data and output models, the Gyro Manager for modifying wheel structural models, and the Harmonic Editor for evaluating and tuning harmonic models. This software was validated using data from Goodrich E wheels, and from GSFC Lunar Reconnaissance Orbiter (LRO) wheels. The validation testing proved that RWDMES has the capability to extract accurate disturbance models from flight reaction wheels with minimal user effort.

  9. Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livneh, Ben; Deems, Jeffrey S.; Buma, Brian; Barsugli, Joseph J.; Schneider, Dominik; Molotch, Noah P.; Wolter, K.; Wessman, Carol A.

    2015-04-01

    Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p ⩽ 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust-on-snow produced little compounding effects, due to the relatively exclusive nature of their impacts. Potential changes in water yield and peak streamflow timing have important implications for regional water management decisions.

  10. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  11. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  12. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  13. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  14. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  15. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    NASA Astrophysics Data System (ADS)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record to examine pre-disturbance albedo trends and to link historical land cover and disturbance history to post-disturbance early spring albedo values. We examine the impact of landscape heterogeneity on albedo in the growing and dormant seasons and quantify the effects of snow exposure changes from over-story canopy loss.

  16. Analysis and Modeling of the Arctic Oscillation Using a Simple Barotropic Model with Baroclinic Eddy Forcing.

    NASA Astrophysics Data System (ADS)

    Tanaka, H. L.

    2003-06-01

    In this study, a numerical simulation of the Arctic Oscillation (AO) is conducted using a simple barotropic model that considers the barotropic-baroclinic interactions as the external forcing. The model is referred to as a barotropic S model since the external forcing is obtained statistically from the long-term historical data, solving an inverse problem. The barotropic S model has been integrated for 51 years under a perpetual January condition and the dominant empirical orthogonal function (EOF) modes in the model have been analyzed. The results are compared with the EOF analysis of the barotropic component of the real atmosphere based on the daily NCEP-NCAR reanalysis for 50 yr from 1950 to 1999.According to the result, the first EOF of the model atmosphere appears to be the AO similar to the observation. The annular structure of the AO and the two centers of action at Pacific and Atlantic are simulated nicely by the barotropic S model. Therefore, the atmospheric low-frequency variabilities have been captured satisfactorily even by the simple barotropic model.The EOF analysis is further conducted to the external forcing of the barotropic S model. The structure of the dominant forcing shows the characteristics of synoptic-scale disturbances of zonal wavenumber 6 along the Pacific storm track. The forcing is induced by the barotropic-baroclinic interactions associated with baroclinic instability.The result suggests that the AO can be understood as the natural variability of the barotropic component of the atmosphere induced by the inherent barotropic dynamics, which is forced by the barotropic-baroclinic interactions. The fluctuating upscale energy cascade from planetary waves and synoptic disturbances to the zonal motion plays the key role for the excitation of the AO.

  17. Higher-order force moments of active particles

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  18. Upstream-advancing waves generated by three-dimensional moving disturbances

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joon; Grimshaw, Roger H. J.

    1990-02-01

    The wave field resulting from a surface pressure or a bottom topography in a horizontally unbounded domain is studied. Upstream-advancing waves successively generated by various forcing disturbances moving with near-resonant speeds are found by numerically solving a forced Kadomtsev-Petviashvili (fKP) equation, which shows in its simplest form the interplay of a basic linear wave operator, longitudinal and transverse dispersion, nonlinearity, and forcing. Curved solitary waves are found as a slowly varying similarity solution of the Kadomtsev-Petviashvili (KP) equation, and are favorably compared with the upstream-advancing waves numerically obtained.

  19. Overview of physical models of liquid entrainment in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey V.

    2018-03-01

    A number of recent papers devoted to development of physically-based models for prediction of liquid entrainment in annular regime of two-phase flow are analyzed. In these models shearing-off the crests of disturbance waves by the gas drag force is supposed to be the physical mechanism of entrainment phenomenon. The models are based on a number of assumptions on wavy structure, including inception of disturbance waves due to Kelvin-Helmholtz instability, linear velocity profile inside liquid film and high degree of three-dimensionality of disturbance waves. Validity of the assumptions is analyzed by comparison to modern experimental observations. It was shown that nearly every assumption is in strong qualitative and quantitative disagreement with experiments, which leads to massive discrepancies between the modeled and real properties of the disturbance waves. As a result, such models over-predict the entrained fraction by several orders of magnitude. The discrepancy is usually reduced using various kinds of empirical corrections. This, combined with empiricism already included in the models, turns the models into another kind of empirical correlations rather than physically-based models.

  20. Investigation of the physical scaling of sea spray spume droplet production

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Banner, M. L.; Peirson, W. L.; Asher, W.; Morison, R. P.

    2009-10-01

    In this paper we report on a laboratory study, the Spray Production and Dynamics Experiment (SPANDEX), conducted at the University of New South Wales Water Research Laboratory in Australia. The goals of SPANDEX were to illuminate physical aspects of spume droplet production and dispersion; verify theoretical simplifications used to estimate the source function from ambient droplet concentration measurements; and examine the relationship between the implied source strength and forcing parameters such as wind speed, surface turbulent stress, and wave properties. Observations of droplet profiles give reasonable confirmation of the basic power law profile relationship that is commonly used to relate droplet concentrations to the surface source strength. This essentially confirms that, even in a wind tunnel, there is a near balance between droplet production and removal by gravitational settling. The observations also indicate considerable droplet mass may be present for sizes larger than 1.5 mm diameter. Phase Doppler Anemometry observations revealed significant mean horizontal and vertical slip velocities that were larger closer to the surface. The magnitude seems too large to be an acceleration time scale effect. Scaling of the droplet production surface source strength proved to be difficult. The wind speed forcing varied only 23% and the stress increased a factor of 2.2. Yet, the source strength increased by about a factor of 7. We related this to an estimate of surface wave energy flux through calculations of the standard deviation of small-scale water surface disturbance, a wave-stress parameterization, and numerical wave model simulations. This energy index only increased by a factor of 2.3 with the wind forcing. Nonetheless, a graph of spray mass surface flux versus surface disturbance energy is quasi-linear with a substantial threshold.

  1. Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System

    NASA Astrophysics Data System (ADS)

    Rollison, Eric; Moura, John; Lauby, Mark

    2011-08-01

    In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html

  2. H Infinity Control of Magnetic Bearings to Ensure Both System and External Periodic Disturbance Robustness

    NASA Technical Reports Server (NTRS)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    Both self-excited and forced disturbances often lead to severe rotor vibrations in a magnetic bearing systems with long slender shafts. This problem has been studied using the H-infinity method, and stability with good robustness can be achieved for the linearized model of a magnetic bearing when small transient disturbances are applied. In this paper, the H-infinity control method for self-excited and forced disturbances is first reviewed. It is then applied to the control of a magnetic bearing rotor system. In modelling the system, the shaft is first discretized into 18 finite elements and then three levels of condensation are applied. This leads to a system with three masses and three compliant elements which can be described by six state variable coordinates. Simulation of the resultant system design has been performed at speeds up to 10,000 rpm. Disturbances in terms of different initial displacements, initial impulses, and external periodic inputs have been imposed. The simulation results show that good stability can be achieved under these different transient disturbances using the proposed controller while at the same time reducing the sensitivity to external periodic disturbances.

  3. Feral swine disturbance at important archaeological sites.

    PubMed

    Engeman, Richard M; Couturier, Kathy J; Felix, Rodney K; Avery, Michael L

    2013-06-01

    Feral swine are well known as environmentally destructive invasive animals in many areas around the world, where they degrade native habitats, harm rare plant and animal species, damage agricultural interests, and spread disease. We provide the first quantification of their potential as agents of disturbance at archaeological sites. Our study was conducted in south-central Florida at Avon Park Air Force Range, a base comprising over 40,000 ha and containing many archaeological sites. To determine the identifiable prevalence of feral swine disturbance, we examined 36 sites registered with the Florida State Historic Preservation Office and also eligible for inclusion in the National Register of Historic Places (NRHP). Moreover, we evaluated the extent of swine disturbance at a prehistoric site of extraordinary significance to Florida's prehistory, "Dead Cow." Fifteen of the 36 NRHP-eligible sites (42 %) had some level of swine disturbance, including 14 of 30 (47 %) sites known to have artifacts within 20 cm of the surface (well within swine rooting depths). At the Dead Cow site, we documented disturbance at 74 % of shovel test points. Sites with shallow artifact depositions appeared highly vulnerable to disturbance by feral swine, threatening destruction of artifact stratigraphy and provenience. Our observations likely are a minimal representation of accumulated damage. These irreplaceable sites tell the area's land use story across the millennia. That they are under threat from feral swine should serve broad notice of potential threats that feral swine may pose to archaeological sites globally, making effective swine management imperative for site protection.

  4. Motor function in microgravity: movement in weightlessness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1996-01-01

    Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (<1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.

  5. Active disturbance rejection control for output force creep characteristics of ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie

    2014-07-01

    Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.

  6. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats.

    PubMed

    Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw

    2014-09-01

    It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  7. A Study on the Effects of J2 Perturbations on a Drag-Free Control System for Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Vess, Melissa Fleck; Starin, Scott R.

    2003-01-01

    Low Earth Orbit (LEO) missions provide a unique means of gathering information about many of Earth s aspects such as climate, atmosphere, and gravitational field. Among the greatest challenges of LEO missions are designing, predicting, and maintaining the spacecraft orbit. The predominant perturbative forces acting on a spacecraft in LEO are J2 and higher order gravitational components, the effects of which are fairly easy to predict, and atmospheric drag, which causes the greatest uncertainty in predicting spacecraft ephemeris. The continuously varying atmospheric drag requires increased spacecraft tracking in order to accurately predict spacecraft location. In addition, periodic propulsive maneuvers typically must be planned and performed to counteract the effects of drag on the spacecraft orbit. If the effects of drag could be continuously and autonomously counteracted, the uncertainty in ephemeris due to atmospheric drag would essentially be eliminated from the spacecraft dynamics. One method of autonomous drag compensation that has been implemented on some missions is drag-free control. Drag-free control of a spacecraft was initially proposed in the 1960's and is discussed extensively by Lange. His drag-free control architecture consists of a free-floating proof mass enclosed within a spacecraft, isolating it from external disturbance forces such as atmospheric drag and solar radiation pressure. Under ideal conditions, internal disturbance forces can be ignored or mitigated, and the orbit of the proof mass depends only on gravitational forces. A sensor associated with the proof mass senses the movement of the spacecraft relative to the proof mass. Using the sensor measurements, the spacecraft is forced to follow the orbit of the proof mass by using low thrust propulsion, thus counteracting any non-gravitational disturbance forces. If the non-gravitational disturbance forces are successfully removed, the spacecraft s orbit will be affected only by well-known gravitational forces and will thus be easier to predict.

  8. Development of Skylab experiment T-013 crew/vehicle disturbances

    NASA Technical Reports Server (NTRS)

    Conway, B. A.; Woolley, C. T.; Kurzhals, P. R.; Reynolds, R. B.

    1972-01-01

    A Skylab experiment to determine the characteristics and effects of crew-motion disturbances was developed. The experiment will correlate data from histories of specified astronaut body motions, the disturbance forces and torques produced by these motions, and the resultant spacecraft control system response to the disturbances. Primary application of crew-motion disturbance data will be to the sizing and design of future manned spacecraft control and stabilization systems. The development of the crew/vehicle disturbances experiment is described, and a mathematical model of human body motion which may be used for analysis of a variety of man-motion activities is derived.

  9. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests.

    PubMed

    Reed, Daniel C; Rassweiler, Andrew; Carr, Mark H; Cavanaugh, Kyle C; Malone, Daniel P; Siegel, David A

    2011-11-01

    We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.

  10. Disturbance in forest ecosystems caused by pathogens and insects

    Treesearch

    Philip M. Wargo; Philip M. Wargo

    1995-01-01

    Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...

  11. Environmental Assessment Realignment of the Air Force Reserve 940th Air Refueling Group to McClellan Air Force Base, California

    DTIC Science & Technology

    1993-03-01

    Construction activities for the Proposed Action and alternatives would take place on a concrete aircraft parking apron, or on areas previously disturbed by...activities for the Proposed Action would take place on a concrete aircraft parking apron, or areas previously disturbed by past grading activities, except...therefore, no significant impacts would occur. Biological Resources. No threatened or endangered species or sensitive habitats exist within the project areas

  12. Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Norris, Jesse

    2016-07-01

    Extratropical cyclones, including winter westerly disturbances (WWD) over central Asia, are fundamental features of the atmosphere that maintain energy, momentum, and moisture at global scales while intimately linking large-scale circulation to regional-scale meteorology. Within high mountain Asia, WWD are the primary contributor to regional precipitation during winter. In this work, we present a novel WWD tracking methodology, which provides an inventory of location, timing, intensity, and duration of events, allowing for a comprehensive study of the factors that relate WWD to orographic precipitation, on an individual event basis and in the aggregate. We identify the relationship between the strength of disturbances, the state of the background environment during their propagation, and precipitation totals in the Karakoram/western Himalaya. We observe significant differences in convective and mechanical instability contributions to orographic precipitation as a function of the relationship between the intensity of WWD and the background temperature and moisture fields, which exhibit strong intraseasonal variability. Precipitation is primarily orographically forced during intense WWD with strong cross-barrier winds, while weaker WWD with similar precipitation totals are observed to benefit from enhanced instability due to high moisture content and temperature at low levels, occurring primarily in the late winter/premonsoon. The contribution of these factors is observed to fluctuate on a per-case basis, indicating important influences of intraseasonal oscillations and tropical-extratropical interactions on regional precipitation.

  13. Regulation of the position of statoliths in Chara rhizoids.

    PubMed

    Hejnowicz, Z; Sievers, A

    1981-01-01

    The behavior of statoliths in rhizoids differently oriented with respect to the gravity vector indicates that there are cytoskeleton elements which exert forces on the statoliths, mostly in the longitudinal directions. Compared to the sum of the forces acting on a statolith, the gravitational force is a relatively small component, i.e., less than 1/5 of the cytoskeleton force. The balance is disturbed by displacing the rhizoid from the normal vertical orientation. It is also reversibly disturbed by cytochalasin B such that some statoliths move against the gravity force. Phalloidin stabilizes the position of the statoliths against cytochalasin B. We infer that microfilaments are involved in controlling the position of statoliths, and that there is a considerable tension on these microfilaments. The vibration frequency of the microfilaments corresponding to this tension is in the ultrasonic range.

  14. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance

    PubMed Central

    2012-01-01

    Background Humans are capable of fast adaptation to new unknown dynamics that affect their movements. Such motor learning is also believed to be an important part of motor rehabilitation. Bimanual training can improve post-stroke rehabilitation outcome and is associated with interlimb coordination between both limbs. Some studies indicate partial transfer of skills among limbs of healthy individuals. Another aspect of bimanual training is the (a)symmetry of bimanual movements and how these affect motor learning and possibly post-stroke rehabilitation. Methods A novel bimanual 2-DOF robotic system was used for both bimanual and unimanual reaching movements. 35 young healthy adults participated in the study. They were divided into 5 test groups that performed movements under different conditions (bimanual or unimanual movements and symmetric or asymmetric bimanual arm loads). The subjects performed a simple tracking exercise with the bimanual system. The exercise was developed to stimulate motor learning by applying a velocity-dependent disturbance torque to the handlebar. Each subject performed 255 trials divided into three phases: baseline without disturbance torque, training phase with disturbance torque and evaluation phase with disturbance torque. Results Performance was assessed with the maximal values of rotation errors of the handlebar. After exposure to disturbance torque, the errors decreased for both unimanual and bimanual training. Errors in unimanual evaluation following the bimanual training phase were not significantly different from errors in unimanual evaluation following unimanual training. There was no difference in performance following symmetric or asymmetric training. Changing the arm force symmetry during bimanual movements from asymmetric to symmetric had little influence on performance. Conclusions Subjects could adapt to an unknown disturbance torque that was changing the dynamics of the movements. The learning effect was present during both unimanual and bimanual training. Transfer of learned skills from bimanual training to unimanual movements was also observed, as bimanual training also improved single limb performance with the dominant arm. Changes of force symmetry did not have an effect on motor learning. As motor learning is believed to be an important mechanism of rehabilitation, our findings could be tested for future post-stroke rehabilitation systems. PMID:22805223

  15. An experimental and numerical study of wave motion and upstream influence in a stratified fluid

    NASA Technical Reports Server (NTRS)

    Hurdis, D. A.

    1974-01-01

    A system consisting of two superimposed layers of liquid of different densities, with a thin transition layer at the interface, provides a good laboratory model of an ocean thermocline or of an atmospheric inversion layer. This research was to gain knowledge about the propagation of disturbances within these two geophysical systems. The technique used was to observe the propagation of internal waves and of upstream influence within the density-gradient region between the two layers of liquid. The disturbances created by the motion of a vertical flat plate, which was moved longitudinally through this region, were examined both experimentally and numerically. An upstream influence, which resulted from a balance of inertial and gravitational forces, was observed, and it was possible to predict the behavior of this influence with the numerical model. The prediction included a description of the propagation of the upstream influence to steadily increasing distances from the flat plate and the shapes and magnitudes of the velocity profiles.

  16. Environmental Assessment for Proposed Royal Saudi Air Force F-15SA Beddown at Mountain Home Air Force Base

    DTIC Science & Technology

    2012-08-16

    designed for sophisticated air-to- ground attack capabilities and air-to-air superiority missions, using two crewmembers, a pilot and a weapon systems ...was added to the area of potential ground disturbance. This area comprises a total of 14.08 acres for all projects. As yet undefined infrastructure...upgrades, such as connecting new facilities to water and power systems would also add to the affected areas/ potential area of ground disturbance on

  17. Regarding tracer transport in Mars' winter atmosphere in the presence of nearly stationary, forced planetary waves

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffrey L.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    Large-scale transport of volatiles and condensates on Mars, as well as atmospheric dust, is ultimately driven by the planet's global-scale atmospheric circulation. This circulation arises in part from the so-called mean meridional (Hadley) circulation that is associated with rising/poleward motion in low latitudes and sinking/equatorward motion in middle and high latitudes. Intimately connected to the mean circulation is an eddy-driven component due to large-scale wave activity in the planet's atmosphere. During winter this wave activity arises both from traveling weather systems (i.e., barotropic and baroclinic disturbances) and from 'forced' disturbances (e.g., the thermal tides and surface-forced planetary waves). Possible contributions to the effective (net) transport circulation from forced planetary waves are investigated.

  18. Experimental studies of breaking of elastic tired wheel under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.

  19. Learning a locomotor task: with or without errors?

    PubMed

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them. Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.

  20. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.

  1. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    NASA Astrophysics Data System (ADS)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  2. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  3. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Astrophysics Data System (ADS)

    Duh, J. C.; Yang, Wen-Jei

    1989-09-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  4. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Technical Reports Server (NTRS)

    Duh, J. C.; Yang, Wen-Jei

    1989-01-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  5. 32 CFR 809a.7 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Definitions. 809a.7 Section 809a.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION INSTALLATION ENTRY POLICY, CIVIL DISTURBANCE INTERVENTION AND DISASTER ASSISTANCE Civil Disturbance Intervention and...

  6. 32 CFR 809a.7 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Definitions. 809a.7 Section 809a.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION INSTALLATION ENTRY POLICY, CIVIL DISTURBANCE INTERVENTION AND DISASTER ASSISTANCE Civil Disturbance Intervention and...

  7. 32 CFR 809a.7 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Definitions. 809a.7 Section 809a.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION INSTALLATION ENTRY POLICY, CIVIL DISTURBANCE INTERVENTION AND DISASTER ASSISTANCE Civil Disturbance Intervention and...

  8. 32 CFR 809a.7 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Definitions. 809a.7 Section 809a.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION INSTALLATION ENTRY POLICY, CIVIL DISTURBANCE INTERVENTION AND DISASTER ASSISTANCE Civil Disturbance Intervention and...

  9. 32 CFR 809a.7 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Definitions. 809a.7 Section 809a.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION INSTALLATION ENTRY POLICY, CIVIL DISTURBANCE INTERVENTION AND DISASTER ASSISTANCE Civil Disturbance Intervention and...

  10. Observations of Thermospheric Horizontal Winds at Watson Lake, Yukon Territory (lambda=65 Deg N)

    NASA Technical Reports Server (NTRS)

    Niciejewski, R. J.; Killeen, T. L.; Solomon, Stanley C.

    1996-01-01

    Fabry-Perot interferometer observations of the thermospheric O I (6300 A) emission have been conducted from an airglow observatory at a dark field site in the southeastern Yukon Territory, Canada, for the period November 1991 to April 1993. The experiment operated in unattended, remote fashion, has resulted in a substantial data set from which mean neutral winds have been determined. Dependent upon geomagnetic activity, the nocturnal location of the site is either equatorward of the auroral oval or within oval boundaries. The data set is rich enough to permit hourly binning of neutral winds based upon the K(sub p) geomagnetic disturbance index as well as the season. For cases of low geomagnetic activity the averaged vector horizontal neutral wind exhibits the characteristics of a midlatitude site displaying antisunward pressure-gradient-driven winds. As the geomagnetic activity rises in the late afternoon and evening winds slowly rotate sunward in an anticlockwise direction, initially remaining near 100 m/s in speed but eventually increasing to 300 m/s for K(sub p) greater than 5. For the higher levels of activity the observed neutral wind flow pattern resembles a higher-latitude polar cap pattern characterized by ion drag forcing of thermospheric neutral gases. In addition, rotational Coriolis forcing on the dusk side enhances the ion drag forcing, resulting in dusk winds which trace out the clockwise dusk cell plasma flow. On the dawn side the neutral winds also rotate in an anticlockwise direction as the strength of geomagnetic disturbances increase. Since the site is located at a transition latitude between the midlatitude and the polar cap the data set provides a sensitive test for general circulation models which attempt to parameterize the contribution of magnetospheric processes. A comparison with the Vector Spherical Harmonic (VSH) model indicates several regions of poor correspondence for December solstice conditions but reasonable agreement for the vernal equinox.

  11. Boundary control for a flexible manipulator based on infinite dimensional disturbance observer

    NASA Astrophysics Data System (ADS)

    Jiang, Tingting; Liu, Jinkun; He, Wei

    2015-07-01

    This paper focuses on disturbance observer and boundary control design for the flexible manipulator in presence of both boundary disturbance and spatially distributed disturbance. Taking the infinite-dimensionality of the flexural dynamics into account, this study proposes a partial differential equation (PDE) model. Since the spatially distributed disturbance is infinite dimensional, it cannot be compensated by the typical disturbance observer, which is designed by finite dimensional approach. To estimate the spatially distributed disturbance, we propose a novel infinite dimensional disturbance observer (IDDO). Applying the IDDO as a feedforward compensator, a boundary control scheme is designed to regulate the joint position and eliminate the elastic vibration simultaneously. Theoretical analysis validates the stability of both the proposed disturbance observer and the boundary controller. The performance of the closed-loop system is demonstrated by numerical simulations.

  12. Environmental Assessment: Maintenance of the Bear Lake Storm Water Retention Pond Whiteman Air Force Base, Missouri

    DTIC Science & Technology

    2010-10-01

    Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be...and fugitive dust The noise environment due to construction vehicle operations Biological resources and wetlands due to land and water disturbance...construction vehicle operations ; Biological resources and wetlands due to land and water disturbance; Water quality due to land and water disturbance

  13. Sleep disturbances and suicidal ideation in a sample of treatment-seeking Canadian Forces members and veterans.

    PubMed

    Don Richardson, J; Cyr, Kate St; Nelson, Charles; Elhai, Jon D; Sareen, Jitender

    2014-08-15

    This study examines the association between suicidal ideation and sleep disturbances in a sample of treatment-seeking Canadian Forces members and veterans, after controlling for probable posttraumatic stress disorder (PTSD), major depressive disorder (MDD), generalised anxiety disorder (GAD), and alcohol use disorder (AUD). Subjects included members and veterans of Canadian Forces seeking treatment at a hospital-based Operational Stress Injury Clinic (n=404). Sleep disturbances and nightmares were measured using individual items on the PTSD Checklist - Military Version (PCL - M), while the suicidality item of the Patient Health Questionnaire (PHQ-9) was used as a stand-alone item to assess presence or absence of suicidal ideation. Regression analyses were used to determine the respective impact of (1) insomnia and (2) nightmares on suicidal ideation, while controlling for presence of probable PTSD, MDD, GAD, and AUD. We found that 86.9% of patients reported having problems falling or staying asleep and 67.9% of patients reported being bothered by nightmares related to military-specific traumatic events. Neither sleep disturbances nor nightmares significantly predicted suicidal ideation; instead, probable MDD emerged as the most significant predictor. The clinical implications of these findings and their potential impact on treatment guidelines are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. On the question of instabilities upstream of cylindrical bodies

    NASA Technical Reports Server (NTRS)

    Morkovin, M. V.

    1979-01-01

    In an attempt to understand the unsteady vortical phenomena in perturbed stagnation regions of cylindrical bodies, a critical review of the theoretical and experimental evidence was made. Current theory is revealed to be incomplete, incorrect, or inapplicable to the phenomena observed experimentally. The formalistic approach via the principle of exchange of instabilities should most likely be replaced by a forced-disturbance approach. Also, many false conclusions were reached by ignoring that treatment of the base and perturbed flows in Hiemenz coordinate eta is asymptotic in nature. Almost surely the techniques of matched asymptotic expansions are expected to be used to capture correctly the diffusive and vorticity amplifying processes of the disturbances regarding the mean-flow boundary layer and outer potential field as eta and y/diameter approach infinity. The serious uncertainties in the experiments are discussed in detail.

  15. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  16. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  17. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    PubMed

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors that dictate organisms' spatial distribution in connected ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Observations and Numerical Modelling of Strong Meteotsunami of 13 June 2013 on the East Coast of the USA

    NASA Astrophysics Data System (ADS)

    Fine, I.; Sepic, J.; Rabinovich, A.; Thomson, R.

    2014-12-01

    A strong "derecho" (rapidly moving lines of convectively induced intense thunderstorms) was generated over the Midwestern United States on 12-13 June 2013 and propagated across the Appalachian Mountains to the Atlantic Ocean. Three hours after the derecho crossed the Atlantic coast, a ~2-m high meteotsunami wave was reported to have hit the New Jersey coast. Significant tsunami-like oscillations, with wave heights of ~0.6 m, were also recorded by a number of tide-gauges located along the eastern seaboard from Nova Scotia to South Carolina, at Bermuda, and by open-ocean DART 44402. These observations triggered the tsunami-alert mode of the DART station. Intense air pressure disturbances (with pressure change of 3-6 hPa in 20 min) and strong winds were observed at a number of National Oceanic and Atmospheric Administration (NOAA) and Automated Surface Observing System (ASOS) stations to be propagating simultaneously with the derecho system, indicating that the pressure disturbances were the primary cause for the sea level oscillations in Chesapeake and Delaware bays. The air pressure disturbance continued to propagate seaward over the continental shelf, thereby generating long waves via Proudman resonance at those areas of the shelf where the propagation speed of the air pressure disturbance matched the long wave speed. Upon reaching the shelf break, the long-waves were partly transmitted (reaching Bermuda 5 hours later) and partly reflected (returning to the east coast of the US and Canada 3 to 6 hours later). A numerical barotropic ocean model forced with idealized air pressure and wind fields was used successfully to simulate the event. The meteotsunami arrival times and maximum wave heights obtained from the model closely match the measured values and confirm initial assumptions regarding the partitioning between transmitted and reflected meteotsunami waves.

  19. Mechanical properties of cocoons constructed consecutively by a single silkworm caterpillar, Bombyx mori

    NASA Astrophysics Data System (ADS)

    Huang, S. Q.; Zhao, H. P.; Feng, X. Q.; Cui, W.; Lin, Z.; Xu, M. Q.

    2008-04-01

    Most animals have the ability to adapt, to some extends and in different ways, the variation or disturbance of environment. In our experiments, we forced a silkworm caterpillar to spin two, three or four thin cocoons by taking it out from the cocoon being constructed. The mechanical properties of these cocoons were studied by static tensile tests and dynamic mechanical thermal analysis. Though external disturbances may cause the decrease in the total weight of silk spun by the silkworm, a gradual enhancement was interestingly found in the mechanical properties of these thin cocoons. Scanning electron microscopy observations of the fractured specimens of the cocoons showed that there exist several different energy dissipation mechanisms occurred simultaneously at macro-, meso-, and micro-scales, yielding a superior capacity of cocoons to adsorb the energy of possible attacks from the outside and to protect efficiently its pupa against damage. Through evolution of millions of years, therefore, the silkworm Bombyx mori seems to have gained the ability to adapt external disturbances and to redesign a new cocoon with optimized protective function when its first cocoon has been damaged for some reasons.

  20. Final Environmental Assessment, Reeds Creek Restoration at Beale Air Force Base, California

    DTIC Science & Technology

    2012-08-01

    vegetated banks to provide basking and foraging habitat and escape cover during the active season; 3) upland habitat (e.g., bankside burrows , holes...Disturbance to all hibernacula and aestivation areas (i.e., rocks, burrows , logs, brush piles, etc.) as well as dewatering will be avoided during cold or...Disturbance Avoidance. Disturbance to all hibernacula and aestivation areas (i.e., rocks, burrows , logs, brush piles, etc.) as well as dewatering will be

  1. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives

    PubMed Central

    Chiu, Jeng-Jiann; Chien, Shu

    2013-01-01

    Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions. PMID:21248169

  2. Total electron content responses to HILDCAAs and geomagnetic storms over South America

    NASA Astrophysics Data System (ADS)

    Mara de Siqueira Negreti, Patricia; Rodrigues de Paula, Eurico; Nicoli Candido, Claudia Maria

    2017-12-01

    Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O / N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from ˜ 25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.

  3. Experimental demonstration of the importance of competition under disturbance.

    PubMed

    Violle, Cyrille; Pu, Zhichao; Jiang, Lin

    2010-07-20

    Ecologists have long recognized the roles of competition and disturbance in shaping ecological communities, and the combinatorial effects of these two factors have been the subject of substantial ecological research. Nevertheless, it is still unclear whether competition remains as an important structuring force in habitats strongly influenced by disturbance. The conventional belief remains that the importance of competition decreases with increasing disturbance, but limited theory suggests otherwise. Using protist communities established in laboratory microcosms, we demonstrate that disturbance does not diminish the importance of competition. Interspecific competition significantly increased rates of species extinction over a broad disturbance gradient, and increasing disturbance intensities increased, rather than decreased, the tempo of competitive exclusion. This community-level pattern is linked to the species-level pattern that interspecific competition led to most frequent extinctions of each species at the highest level of disturbance that the species can tolerate. Consequently, despite a strong tradeoff between competitive ability and disturbance tolerance across the competing species, species diversity generally declined with disturbance. The consistent structuring role of competition throughout the disturbance gradient underscores the need to understand competitive interactions and their consequences even in highly disturbed habitats.

  4. Predicting the Probability of Stand Disturbance

    Treesearch

    Gregory A. Reams; Joseph M. McCollum

    1999-01-01

    Forest managers are often interested in identifying and scheduling future stand treatment opportunities. One of the greatest management opportunities is presented following major stand level disturbances that result from natural or anthropogenic forces. Remeasurement data from the Forest Inventory and Analysis (FIA) permanent plot system are used to fit a set of...

  5. Forests planted for ecosystem restoration or conservation.

    Treesearch

    Constance A. Harrington

    1999-01-01

    Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...

  6. CHARACTER OF THE CHANGES IN FEAR MOTIVATED DECLARATIVE MEMORY IN THE HIGH IMMOBILIZATION "DEPRESSIVE" RATS.

    PubMed

    Nachkebia, N; Shavgulidze, M; Babilodze, M; Chkhartishvili, E; Rogava, N

    2016-10-01

    Present study investigated possible differences in the learning and memory of declarative memory task in rats selected according to the differences in immobilization response that is in high immobilization "depressive" and low immobilization "non-depressive" rats. Understanding the character of learning and memory disturbances in basal conditions of animal models of depression is still very topical for more intimate definition of the pathophysiology of major depressive disorder and appropriate searching the ways of its correction. Experiments were carried out on the adult white wild rats (with the weight 200-250 g, n=20). Selection of rats according to the level of immobilization was made by means of forced swim test. Learning and memory disturbances were studied using passive avoidance test that is fear motivated one trial declarative memory task. It was shown by us that 100% of low immobilization "non-depressive" rats remember painful stimulation and therefore they are not enter in the dark compartment during whole period of observation during testing session. Behavior of high immobilization "depressive" rats is not similar in passive avoidance camera; 50% of "depressive" rats, with long escape latency during training session (92±10 sec), remember painful stimulation during testing session and therefore they are not enter in the dark compartment during whole observation period. The remaining 50%, that are not differ significantly from the low immobility "non-depressive" rats by the latency of escape (5±1 sec) during training session, are not able to remember painful stimulation during testing session and therefore they enter in the dark compartment with shortest escape latency (6±1 sec). In conclusion, high immobility "depressive" rats perform passive avoidance declarative memory task at the chance level that is a direct indicator for the serious disturbances of declarative memory mechanisms in "depressive" rats selected in forced swim test according to the level of immobility.

  7. Turbulent structure of stably stratified inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Iida, Oaki

    2018-04-01

    Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.

  8. The effects of force-fledging and premature fledging on the survival of nestling songbirds

    USGS Publications Warehouse

    Streby, Henry M.; Peterson, Sean M.; Lehman, Justin A.; Kramer, Gunnar R.; Iknayan, Kelly J.; Andersen, David E.

    2013-01-01

    Despite the broad consensus that force-fledging of nestling songbirds lowers their probability of survival and therefore should be generally avoided by researchers, that presumption has not been tested. We used radiotelemetry to monitor the survival of fledglings of OvenbirdsSeiurus aurocapilla and Golden-winged Warblers Vermivora chrysoptera that we unintentionally force-fledged (i.e. nestlings left the nest in response to our research activities at typical fledging age), that fledged prematurely (i.e. nestlings left the nest earlier than typical fledging age), and that fledged independently of our activities. Force-fledged Ovenbirds experienced significantly higher survival than those that fledged independent of our activities, and prematurely fledged Ovenbirds had a similarly high survival to those that force-fledged at typical fledging age. We observed a similar, though not statistically significant, pattern in Golden-winged Warbler fledgling survival. Our results suggest that investigator-induced force-fledging of nestlings, even when deemed premature, does not necessarily result in reduced fledgling survival in these species. Instead, our results suggest that a propensity or ability to fledge in response to disturbance may be a predictor of a higher probability of fledgling survival.

  9. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes

    PubMed Central

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2018-01-01

    Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (−10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems. PMID:29628526

  10. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  11. Temporally and spatially partitioned behaviours of spinner dolphins: implications for resilience to human disturbance

    PubMed Central

    Johnston, David W.; Christiansen, Fredrik

    2017-01-01

    Selective forces shape the evolution of wildlife behavioural strategies and influence the spatial and temporal partitioning of behavioural activities to maximize individual fitness. Globally, wildlife is increasingly exposed to human activities which may affect their behavioural activities. The ability of wildlife to compensate for the effects of human activities may have implications for their resilience to disturbance. Resilience theory suggests that behavioural systems which are constrained in their repertoires are less resilient to disturbance than flexible systems. Using behavioural time-series data, we show that spinner dolphins (Stenella longirostris) spatially and temporally partition their behavioural activities on a daily basis. Specifically, spinner dolphins were never observed foraging during daytime, where resting was the predominant activity. Travelling and socializing probabilities were higher in early mornings and late afternoons when dolphins were returning from or preparing for nocturnal feeding trips, respectively. The constrained nature of spinner dolphin behaviours suggests they are less resilient to human disturbance than other cetaceans. These dolphins experience the highest exposure rates to human activities ever reported for any cetaceans. Over the last 30 years human activities have increased significantly in Hawaii, but the spinner dolphins still inhabit these bays. Recent abundance estimates (2011 and 2012) however, are lower than all previous estimates (1979–1981, 1989–1992 and 2003), indicating a possible long-term impact. Quantification of the spatial and temporal partitioning of wildlife behavioural schedules provides critical insight for conservation measures that aim to mitigate the effects of human disturbance. PMID:28280561

  12. Temporally and spatially partitioned behaviours of spinner dolphins: implications for resilience to human disturbance.

    PubMed

    Tyne, Julian A; Johnston, David W; Christiansen, Fredrik; Bejder, Lars

    2017-01-01

    Selective forces shape the evolution of wildlife behavioural strategies and influence the spatial and temporal partitioning of behavioural activities to maximize individual fitness. Globally, wildlife is increasingly exposed to human activities which may affect their behavioural activities. The ability of wildlife to compensate for the effects of human activities may have implications for their resilience to disturbance. Resilience theory suggests that behavioural systems which are constrained in their repertoires are less resilient to disturbance than flexible systems. Using behavioural time-series data, we show that spinner dolphins ( Stenella longirostris ) spatially and temporally partition their behavioural activities on a daily basis. Specifically, spinner dolphins were never observed foraging during daytime, where resting was the predominant activity. Travelling and socializing probabilities were higher in early mornings and late afternoons when dolphins were returning from or preparing for nocturnal feeding trips, respectively. The constrained nature of spinner dolphin behaviours suggests they are less resilient to human disturbance than other cetaceans. These dolphins experience the highest exposure rates to human activities ever reported for any cetaceans. Over the last 30 years human activities have increased significantly in Hawaii, but the spinner dolphins still inhabit these bays. Recent abundance estimates (2011 and 2012) however, are lower than all previous estimates (1979-1981, 1989-1992 and 2003), indicating a possible long-term impact. Quantification of the spatial and temporal partitioning of wildlife behavioural schedules provides critical insight for conservation measures that aim to mitigate the effects of human disturbance.

  13. Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest.

    PubMed

    Câmara, Talita; Leal, Inara R; Blüthgen, Nico; Oliveira, Fernanda M P; Queiroz, Rubens T de; Arnan, Xavier

    2018-03-05

    Anthropogenic disturbance and climate change might negatively affect the ecosystem services provided by mutualistic networks. However, the effects of such forces remain poorly characterized. They may be especially important in dry forests, which (1) experience chronic anthropogenic disturbances (CADs) as human populations exploit forest resources, and (2) are predicted to face a 22% decline in rainfall under climate change. In this study, we investigated the separate and combined effects of CADs and rainfall levels on the specialization of mutualistic networks in the Caatinga, a seasonally dry tropical forest typical of north-eastern Brazil. More specifically, we examined interactions between plants bearing extrafloral nectaries (EFNs) and ants. We analysed whether differences in network specialization could arise from environmentally mediated variation in the species composition, namely via the replacement of specialist by generalist species. We characterized these ant-plant networks in 15 plots (20 × 20 m) that varied in CAD intensity and mean annual rainfall. We quantified CAD intensity by calculating three indices related to the main sources of disturbance in the Caatinga: livestock grazing (LG), wood extraction (WE) and miscellaneous resource use (MU). We determined the degree of ant-plant network specialization using four metrics: generality, vulnerability, interaction evenness and H 2 '. Our results indicate that CADs differentially influenced network specialization: we observed positive, negative, and neutral responses along LG, MU and WE gradients, respectively. The pattern was most pronounced with LG. Rainfall also shaped network specialization, markedly increasing it. While LG and rainfall were associated with changes in network species composition, this trend was not related to the degree of species specialization. This result suggests that shifts in network specialization might be related to changes in species behaviour, not species composition. Our study highlights the vulnerability of such dry forest ant-plant networks to climate change. Moreover, dry forests experience highly heterogeneous anthropogenic disturbances, creating a geographic mosaic of selective forces that may shape the co-evolution of interactions between ants and EFN-bearing plants. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  14. Vibration isolation and damping in high precision equipment

    NASA Astrophysics Data System (ADS)

    Bukkems, B.; Ruijl, T.; Simons, J.

    2017-06-01

    All systems located in a laboratory environment or factory are subject to disturbances. These disturbances can either come from the surroundings, e.g. floor-induced vibrations, or from the system itself, e.g. stage-induced vibrations. In many cases it is needed to minimize the effect of these disturbances. This can either be done by isolating the system from its disturbance source or by applying damping to the system. In this paper we present various cases in which we have effectively reduced the impact of disturbances on the system's performance, either by improving its isolation system, by minimizing the impact of stage reaction forces, or by designing polymer damping into the system.

  15. Response of South American Ecosystems to Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.

    2009-12-01

    The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.

  16. Development of vibration isolation platform for low amplitude vibration

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2014-03-01

    The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.

  17. Diagnosis of dynamic process over rainband of landfall typhoon

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li

    2010-07-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.

  18. Nonlinear critical-layer evolution of a forced gravity wave packet

    NASA Astrophysics Data System (ADS)

    Campbell, L. J.; Maslowe, S. A.

    2003-10-01

    In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.

  19. Cooperative solution in the synthesis of multidegree-of-freedom shock isolation systems

    NASA Astrophysics Data System (ADS)

    Hati, S. K.; Rao, S. S.

    1983-01-01

    It is noted that there are essentially two major criteria in the synthesis of shock isolation stems. One is related to the minimization of the relative displacement between the main mass (which is to be isolated from vibration) and the base (where disturbance is given); the other concerns the minimization of force transmitted to the main mass. From the available literature, it is observed that nearly all the investigators have considered the design problem by treating one of these factors as the objective and the other as a constraint. This problem is treated here as a multicriteria optimization problem, and the trade-off between the two objectives is determined by using a game theory approach. The synthesis of a multidegree-of-freedom shock isolation system under a sinusoidal base disturbance is given as an example problem to illustrate the theory.

  20. Differential recolonization of Atlantic intertidal habitats after disturbance reveals potential bottom-up community regulation.

    PubMed

    Petzold, Willy; Scrosati, Ricardo A

    2014-01-01

    In the spring of 2014, abundant sea ice that drifted out of the Gulf of St. Lawrence caused extensive disturbance in rocky intertidal habitats on the northern Atlantic coast of mainland Nova Scotia, Canada. To monitor recovery of intertidal communities, we surveyed two wave-exposed locations in the early summer of 2014. Barnacle recruitment and the abundance of predatory dogwhelks were low at one location (Tor Bay Provincial Park) but more than 20 times higher at the other location (Whitehead). Satellite data indicated that the abundance of coastal phytoplankton (the main food source for barnacle larvae) was consistently higher at Whitehead just before the barnacle recruitment season, when barnacle larvae were in the water column. These observations suggest bottom-up forcing of intertidal communities. The underlying mechanisms and their intensity along the NW Atlantic coast could be investigated through studies done at local and regional scales.

  1. Survey of Tsunamis Formed by Atmospheric Forcing on the East Coast of the United States

    NASA Astrophysics Data System (ADS)

    Lodise, J.; Shen, Y.; Wertman, C. A.

    2014-12-01

    High-frequency sea level oscillations along the United States East Coast have been linked to atmospheric pressure disturbances observed during large storm events. These oscillations have periods similar to tsunami events generated by earthquakes and submarine landslides, but are created by moving surface pressure anomalies within storm systems such as mesoscale convective systems or mid-latitude cyclones. Meteotsunamis form as in-situ waves, directly underneath a moving surface pressure anomaly. As the pressure disturbances move off the east coast of North America and over the continental shelf in the Atlantic Ocean, Proudman resonance, which is known to enhance the amplitude of the meteotsunami, may occur when the propagation speed of the pressure disturbance is equal to that of the shallow water wave speed. At the continental shelf break, some of the meteotsunami waves are reflected back towards the coast. The events we studied date from 2007 to 2014, most of which were identified using an atmospheric pressure anomaly detection method applied to atmospheric data from two National Data Buoy Center stations: Cape May, New Jersey and Newport, Rhode Island. The coastal tidal records used to observe the meteotsunami amplitudes include Montauk, New York; Atlantic City, New Jersey; and Duck, North Carolina. On average, meteotsunamis ranging from 0.1m to 1m in amplitude occurred roughly twice per month, with meteotsunamis larger than 0.4m occurring approximately 4 times per year, a rate much higher than previously reported. For each event, the amplitude of the recorded pressure disturbance was compared to the meteotsunami amplitude, while radar and bathymetry data were analyzed to observe the influence of Proudman resonance on the reflected meteotsunami waves. In-situ meteotsunami amplitudes showed a direct correlation with the amplitude of pressure disturbances. Meteotsunamis reflected off the continental shelf break were generally higher in amplitude when the average storm speed was closer to that of the shallow water wave speed, which suggests that Proudman resonance has a significant influence on meteotsunami amplitude over the continental shelf. Through the application of these findings the frequency and severity of future meteotsunamis can be better predicted along the east coast of the United States.

  2. Quiet swimming at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas

    2015-04-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.

  3. Quiet swimming at low Reynolds number.

    PubMed

    Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas

    2015-04-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.

  4. Lee waves, benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.

    1992-01-01

    The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.

  5. Boundary-layer receptivity of sound with roughness

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Hoos, Jon A.; Radeztsky, Ronald H.

    1991-01-01

    An experimental study of receptivity was carried out using an acoustical disturbance in the freestream. The receptivity was enhanced by using a uniform two-dimensional roughness strip (tape). The roughness strip generated the local adjustment in the flow needed to couple the long-wavelength sound wave with the short-wavelength T-S wave. The method proved to be highly sensitive, with slight changes in the forcing frequency or in the height of the 2D roughness element having a strong effect on the amplitude of the observed T-S wave.

  6. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    PubMed

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in deep hard rock masses.

  8. Preliminary Calibration Report of an Apparatus to Measure Vibration Characteristics of Low Frequency Disturbance Source Devices

    NASA Technical Reports Server (NTRS)

    Russell, James W.; Marshall, Robert A.; Finley, Tom D.; Lawrence, George F.

    1994-01-01

    This report presents a description of the test apparatus and the method of testing the low frequency disturbance source characteristics of small pumps, fans, camera motors, and recorders that are typical of those used in microgravity science facilities. The test apparatus will allow both force and acceleration spectra of these disturbance devices to be obtained from acceleration measurements over the frequency range from 2 to 300 Hz. Some preliminary calibration results are presented.

  9. Dual keel Space Station payload pointing system design and analysis feasibility study

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.

    1988-01-01

    A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.

  10. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    NASA Astrophysics Data System (ADS)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  12. ENSO regimes and the late 1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Kane, Terence J.; Matear, Richard J.; Chamberlain, Matthew A.

    South Pacific subtropical density compensated temperature and salinity (spiciness) anomalies are known to be associated with decadal equatorial variability, however, the mechanisms by which such disturbances are generated, advect and the degree to which they modulate the equatorial thermocline remains controversial. During the late 1970's a climate regime transition preceded a period of strong and sustained El Nino events. Using an ocean general circulation model forced by the constituent mechanical and thermodynamic components of the reanalysed atmosphere we show that the late 1970's transition coincided with the arrival of a large-scale, subsurface cold and fresh water anomaly in the centralmore » tropical Pacific. An ocean reanalysis for the period 1990–2007 that assimilates subsurface Argo, XBT and CTD data, reveals that disturbances occur due to the subduction of negative surface salinity anomalies from near 30° S, 100° W which are advected along the σ=25–26 kgm{sup −3} isopycnal surfaces. These anomalies take, on average, seven years to reach the central equatorial Pacific where they may substantially perturb the thermocline before the remnants ultimately ventilate in the region of the western Pacific warm pool. Positive (warm–salty) disturbances, known to occur due to late winter diapycnal mixing and isopycnal outcropping, arise due to both subduction of subtropical mode waters and subsurface injection. On reaching the equatorial band (10° S–0° S) these disturbances tend to deepen the thermocline reducing the model's ENSO. In contrast the emergence of negative (cold–fresh) disturbances at the equator are associated with a shoaling of the thermocline and El Nino events. Process studies are used to show that the generation and advection of anomalous density compensated thermocline disturbances critically depend on stochastic forcing of the intrinsic ocean by weather. We further show that in the absence of the inter-annual component of the atmosphere forcing Central Pacific El Nino events are manifest.« less

  13. Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection.

    PubMed

    Blum, Yvonne; Vejdani, Hamid R; Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Hurst, Jonathan W; Daley, Monica A

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.

  14. Swing-Leg Trajectory of Running Guinea Fowl Suggests Task-Level Priority of Force Regulation Rather than Disturbance Rejection

    PubMed Central

    Blum, Yvonne; Vejdani, Hamid R.; Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain. PMID:24979750

  15. Production and fate of the G ring arc particles due to Aegaeon (Saturn LIII)

    NASA Astrophysics Data System (ADS)

    Madeira, Gustavo; Sfair, R.; Mourão, D. C.; Giuliatti Winter, S. M.

    2018-04-01

    The G ring arc hosts the smallest satellite of Saturn, Aegaeon, observed with a set of images sent by Cassini spacecraft. Along with Aegaeon, the arc particles are trapped in a 7:6 corotation eccentric resonance with the satellite Mimas. Due to this resonance, both Aegaeon and the arc material are confined to within 60° of corotating longitudes. The arc particles are dust grains which can have their orbital motions severely disturbed by the solar radiation force. Our numerical simulations showed that Aegaeon is responsible for depleting the arc dust population by removing them through collisions. The solar radiation force hastens these collisions by removing most of the 10 μm sized grains in less than 40 yr. Some debris released from Aegaeon's surface by meteoroid impacts can populate the arc. However, it would take 30 000 yr for Aegaeon to supply the observed amount of arc material, and so it is unlikely that Aegaeon alone is the source of dust in the arc.

  16. The Columbia River--on the Leading Edge

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.

    2005-05-01

    On the leading edge of the North American plate, the Columbia River is the largest of the world's 40 or so rivers with drainage areas greater than 500,000 square kilometers to drain toward a convergent plate boundary. This unique setting results in a unique continental river basin; marked by episodic and cataclysmic geologic disturbance, but also famously fecund with perhaps 10 to 16 million salmon historically spawning in its waters each year. Now transformed by dams, transportation infrastructure, dikes and diversions, the Columbia River presents an expensive conundrum for management of its many values. Inclusion of river ecology and geomorphology in discussions of river management is generally limited to observations of the last 200 years-a time period of little natural disturbance and low sediment transport. However, consideration of longer timescales provides additional perspective of historical ecologic and geomorphic conditions. Only 230 km from its mouth, the Columbia River bisects the volcanic arc of the Cascade Range, forming the Columbia River Gorge. Cenozoic lava flows have blocked the river, forcing diversions and new canyon cutting. Holocene eruptions of Mount Mazama (Crater Lake), Mount Hood, Mount St. Helens, and Mount Rainier have shed immense quantities of sediment into the lower Columbia River, forming a large percentage of the Holocene sediment transported through the lower river. Quaternary landslides, perhaps triggered by great earthquakes, have descended from the 1000-m-high gorge walls, also blocking and diverting the river, one as recently as 550 years ago. These geologic disturbances, mostly outside the realm of historical observation and operating at timescales of 100s to 1000s of years in the gorge and elsewhere, have clearly affected basin geomorphology, riverine ecology, and past and present cultural utilization of river resources. The historic productivity of the river, however, hints at extraordinary resilience (and perhaps dependence) of the Columbia River system to such disturbances, many of which are similar to engineered disturbances of the last 200 years.

  17. Coupling modes between liquid/gas coaxial jets and transverse acoustic waves

    NASA Astrophysics Data System (ADS)

    Helland, Chad; Hilliker, Cullen; Forliti, David; University of St. Thomas Team

    2017-11-01

    The interactions between shear flows and acoustic disturbances plays a very important role in many propulsion and energy applications. Liquid jets, either independent or air assisted, respond to acoustic disturbances in a manner that alters the primary and secondary atomization processes. The current study focused on the response of an air-assisted liquid jet to disturbances associated with a transverse acoustic wave. The jet is placed in the pressure node (velocity antinode) region of the resonant mode shape. It has been shown in previous studies, under certain conditions, that the acoustic forces can cause the jet flow to distort and atomize. Both liquid and coaxial gas/ liquid jet flows have been shown to distort via acoustic forces. The purpose of the current study is to understand the predictive characteristics that cause the distortion behaviors of a liquid and coaxial jet flow, and how a how a coaxial flow affects the behavior.

  18. Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD

    NASA Astrophysics Data System (ADS)

    Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata

    2016-04-01

    Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.

  19. Data conditioning for gravitational wave detectors: A Kalman filter for regressing suspension violin modes

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel; Mukherjee, Soma

    2001-03-01

    Interferometric gravitational wave detectors operate by sensing the differential light travel time between free test masses. Correspondingly, they are sensitive to anything that changes the physical distance between the test masses, including physical motion of the masses themselves. In ground-based detectors the test masses are suspended as pendula, in order that they be approximately ``free'' above the pendulumn frequency. Still, thermal or other excitations of the suspension wires' violin modes do impart a force on the masses that appears as a strong, albeit narrow-band, ``signal'' in the detectors waveband. Gravitational waves, on the other hand, change the distance between the test masses without disturbing the suspensions. Consequently, violin modes can confound attempts to observe gravitational waves since ``signals'' that are correlated with a disturbance of the suspension violin modes are not likely due to a passing gravitational wave. Here we describe the design of a Kalman filter that determines the time-dependent vibrational state of a detector's suspension ``violin'' modes from time dependent observations of the detector output. From the estimated state we can predict that component of the detector output due to suspension excitations, thermal or otherwise. The wire state can be examined for evidence of suspension disturbances that might, in the absence of such a diagnostic, be mistaken for gravitational wave signals. Additionally, from the wire state we can subtractively remove the contribution from suspension disturbances, thermal or otherwise, from the detector output, leaving a residual free from this instrumental artifact. We demonstrate the filter's effectiveness both through numerical simulations and application to real data taken on the LIGO 40 M prototype detector.

  20. Novel disturbance-observer-based control for systems with high-order mismatched disturbances

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Liu, Fei; Wang, Zhiguo; Dong, Na

    2018-01-01

    A novel disturbance-observer-based control method is investigated to attenuate the high-order mismatched disturbances. First, a finite-time disturbance observer (FTDO) is proposed to estimate the disturbances as well as the derivatives. By incorporating the outputs of FTDO, the original system is then reconstructed, where the mismatched disturbances are transformed to the matched ones that are compensated by feed-forward algorithm. Moreover, a feedback control law is developed to achieve the stability and tracking performance requirements for the systems. Finally, the proposed composite control method is applied to an unmanned helicopter system. The simulation results demonstrate that the proposed control method exhibits excellent control performance in the presence of high-order matched and mismatched disturbances.

  1. The effects of patch-potentials on the gravity probe B gyroscopes.

    PubMed

    Buchman, S; Turneaure, J P

    2011-07-01

    Gravity probe B (GP-B) was designed to measure the geodetic and frame dragging precessions of gyroscopes in the near field of the Earth using a drag-free satellite in a 642 km polar orbit. Four electrostatically suspended cryogenic gyroscopes were designed to measure the precession of the local inertial frame of reference with a disturbance drift of about 0.1 marc sec/yr-0.2 marc sec/yr. A number of unexpected gyro disturbance effects were observed during the mission: spin-speed and polhode damping, misalignment and roll-polhode resonance torques, forces acting on the gyroscopes, and anomalies in the measurement of the gyro potentials. We show that all these effects except possibly polhode damping can be accounted for by electrostatic patch potentials on both the gyro rotors and the gyro housing suspension and ground-plane electrodes. We express the rotor and housing patch potentials as expansions in spherical harmonics Y(l,m)(θ,φ). Our analysis demonstrates that these disturbance effects are approximated by a power spectrum for the coefficients of the spherical harmonics of the form V(0)(2)/l(r) with V(0) ≈ 100 mV and r ≈ 1.7.

  2. Blade row interaction effects on flutter and forced response

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.

    1993-01-01

    In the flutter or forced response analysis of a turbomachine blade row, the blade row in question is commonly treated as if it is isolated from the neigboring blade rows. Disturbances created by vibrating blades are then free to propagate away from this blade row without being disturbed. In reality, neighboring blade rows will reflect some portion of this wave energy back toward the vibrating blades, causing additional unsteady forces on them. It is of fundamental importance to determine whether or not these reflected waves can have a significant effect on the aeroelastic stability or forced response of a blade row. Therefore, a procedure to calculate intra-blade-row unsteady aerodynamic interactions was developed which relies upon results available from isolated blade row unsteady aerodynamic analyses. In addition, an unsteady aerodynamic influence coefficient technique is used to obtain a model for the vibratory response in which the neighboring blade rows are also flexible. The flutter analysis shows that interaction effects can be destabilizing, and the forced response analysis shows that interaction effects can result in a significant increase in the resonant response of a blade row.

  3. Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe

    2016-11-01

    In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.

  4. I Meant to Do That: Determining the Intentions of Action in the Face of Disturbances

    PubMed Central

    Horowitz, Justin; Patton, James

    2015-01-01

    Our actions often do not match our intentions when there are external disturbances such as turbulence. We derived a novel modeling approach for determining this motor intent from targeted reaching motions that are disturbed by an unexpected force. First, we demonstrated how to mathematically invert both feedforward (predictive) and feedback controls to obtain an intended trajectory. We next examined the model’s sensitivity to a realistic range of parameter uncertainties, and found that the expected inaccuracy due to all possible parameter mis-estimations was less than typical movement-to-movement variations seen when humans reach to similar targets. The largest sensitivity arose mainly from uncertainty in joint stiffnesses. Humans cannot change their intent until they acquire sensory feedback, therefore we tested the hypothesis that a straight-line intent should be evident for at least the first 120 milliseconds following the onset of a disturbance. As expected, the intended trajectory showed no change from undisturbed reaching for more than 150 milliseconds after the disturbance onset. Beyond this point, however, we detected a change in intent in five out of eight subjects, surprisingly even when the hand is already near the target. Knowing such an intent signal is broadly applicable: enhanced human-machine interaction, the study of impaired intent in neural disorders, the real-time determination (and manipulation) of error in training, and complex systems that embody planning such as brain machine interfaces, team sports, crowds, or swarms. In addition, observing intent as it changes might act as a window into the mechanisms of planning, correction, and learning. PMID:26327405

  5. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    PubMed Central

    Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert

    2017-01-01

    Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation. PMID:29021739

  6. Composite Intelligent Learning Control of Strict-Feedback Systems With Disturbance.

    PubMed

    Xu, Bin; Sun, Fuchun

    2018-02-01

    This paper addresses the dynamic surface control of uncertain nonlinear systems on the basis of composite intelligent learning and disturbance observer in presence of unknown system nonlinearity and time-varying disturbance. The serial-parallel estimation model with intelligent approximation and disturbance estimation is built to obtain the prediction error and in this way the composite law for weights updating is constructed. The nonlinear disturbance observer is developed using intelligent approximation information while the disturbance estimation is guaranteed to converge to a bounded compact set. The highlight is that different from previous work directly toward asymptotic stability, the transparency of the intelligent approximation and disturbance estimation is included in the control scheme. The uniformly ultimate boundedness stability is analyzed via Lyapunov method. Through simulation verification, the composite intelligent learning with disturbance observer can efficiently estimate the effect caused by system nonlinearity and disturbance while the proposed approach obtains better performance with higher accuracy.

  7. A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Zhiling; Meng, Bin; Sun, Hongfei

    2017-09-01

    The nonlinear disturbance observer (NDO) proposed by W. H. Chen et al. needs an assumption that the disturbance varies slowly relative to the observer dynamics (i.e. ?), so as to ensure the convergence of the disturbance observer. When ?, however, there is no guarantee of the convergence in theory. To solve the problem, this paper presents a new NDO, namely high-order nonlinear disturbance observer (HONDO), for a nonlinear system with an unknown fast time-varying disturbance (i.e. ?). The HONDO not only inherits all the advantages of the usual NDO, but also guarantees the convergence of the estimated error for a nonlinear system with a fast time-varying disturbance. Therefore, the HONDO proposed in this paper broadens the application scope of the conventional NDOs, thus is a supplement to the theory of NDO. The numerical simulation for the cruise control of an air-breathing hypersonic vehicle further verifies the effectiveness of the HONDO-based control.

  8. Unusual ISS Rate Signature

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    On November 23, 2011 International Space Station Guidance, Navigation, and Control reported unusual pitch rate disturbance. These disturbances were an order of magnitude greater than nominal rates. The Loads and Dynamics team was asked to review and analyze current accelerometer data to investigate this disturbance. This paper will cover the investigation process under taken by the Loads and Dynamics group. It will detail the accelerometers used and analysis performed. The analysis included performing Frequency Fourier Transform of the data to identify the mode of interest. This frequency data is then reviewed with modal analysis of the ISS system model. Once this analysis is complete and the disturbance quantified, a forcing function was produced to replicate the disturbance. This allows the Loads and Dynamics team to report the load limit values for the 100's of interfaces on the ISS.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T

    We present a study, based on simulations with SERDYCA, a spatially-explicit individual-based model of rodent dynamics, on the relation between population persistence and the presence of numerous isolated disturbances in the habitat. We are specifically interested in the effect of disturbances that do not fragment the environment on population persistence. Our results suggest that the presence of disturbances in the absence of fragmentation can actually increase the average time to extinction of the modeled population. The presence of disturbances decreases population density but can increase the chance for mating in monogamous species and consequently, the ratio of juveniles in themore » population. It thus provides a better chance for the population to restore itself after a severe period with critically low population density. We call this the ''disturbance-forced localization effect''.« less

  10. Disturbing effects of attitude control maneuvers on the orbital motion of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    The position of the spin axis of the Helios A spacecraft has been maintained and updated by a series of attitude control maneuvers, by means of a sequence of unbalanced jet forces which produce an additional disturbed motion of the spacecraft's center of mass. The character of this motion, its magnitude and direction was studied. For practical purposes of the orbit determination of the spacecraft, a computer program is given which shows how the components of the disturbing acceleration in the spacecraft-fixed reference frame can be easily computed.

  11. Volcano ecology: flourishing on the flanks of Mount St. Helens

    Treesearch

    Rhonda Mazza; Charlie Crisafulli

    2016-01-01

    Mount St. Helens’ explosive eruption on May 18, 1980, was a pivotal moment in the field of disturbance ecology. The subsequent sustained, integrated research effort has shaped the development of volcano ecology, an emerging field of focused research. Excessive heat, burial, and impact force are some of the disturbance mechanisms following an eruption. They are also...

  12. Simulation of Nonlinear Instabilities in an Attachment-Line Boundary Layer

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1996-01-01

    The linear and the nonlinear stability of disturbances that propagate along the attachment line of a three-dimensional boundary layer is considered. The spatially evolving disturbances in the boundary layer are computed by direct numerical simulation (DNS) of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either by forcing at the in ow or by applying suction and blowing at the wall. Quasi-parallel linear stability theory and a nonparallel theory yield notably different stability characteristics for disturbances near the critical Reynolds number; the DNS results con rm the latter theory. Previously, a weakly nonlinear theory and computations revealed a high wave-number region of subcritical disturbance growth. More recent computations have failed to achieve this subcritical growth. The present computational results indicate the presence of subcritically growing disturbances; the results support the weakly nonlinear theory. Furthermore, an explanation is provided for the previous theoretical and computational discrepancy. In addition, the present results demonstrate that steady suction can be used to stabilize disturbances that otherwise grow subcritically along the attachment line.

  13. The Effect of Acoustic Forcing on Instabilities and Breakdown in Swept-Wing Flow over a Backward-Facing Step

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Shishkov, Olga; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2016-01-01

    Instability interaction and breakdown were experimentally investigated in the flow over a swept backward-facing step. Acoustic forcing was used to excite the Tollmien-Schlichting (TS) instability and to acquire phase-locked results. The phase-averaged results illustrate the complex nature of the interaction between the TS and stationary cross flow instabilities. The weak stationary cross flow disturbance causes a distortion of the TS wavefront. The breakdown process is characterized by large positive and negative spikes in velocity. The positive spikes occur near the same time and location as the positive part of the TS wave. Higher-order spectral analysis was used to further investigate the nonlinear interactions between the TS instability and the traveling cross flow disturbances. The results reveal that a likely cause for the generation of the spikes corresponds to nonlinear interactions between the TS, traveling cross flow, and stationary cross flow disturbances. The spikes begin at low amplitudes of the unsteady and steady disturbances (2-4% U (sub e) (i.e. boundary layer edge velocity)) but can achieve very large amplitudes (20-30 percent U (sub e) (i.e. boundary layer edge velocity)) that initiate an early, though highly intermittent, breakdown to turbulence.

  14. Forced Retirement from Professional Rugby Union is Associated with Symptoms of Distress.

    PubMed

    Brown, James Craig; Kerkhoffs, Gino; Lambert, Mike I; Gouttebarge, Vincent

    2017-07-01

    Rugby has a higher injury burden than other popular sports, such as football. Athletes who are forced to retire as a result of injury are associated with poor mental health. With its high injury burden, professional rugby players might be at risk of mental health conditions associated with injury-related forced retirement. This study aimed to compare mental health between former professional rugby players who were and weren't forced to retire. A questionnaire including the 4DSQ (distress), GHQ-12 (anxiety/depression), PROMIS short-form (sleep disturbance) and AUDIT-C (alcohol misuse) was completed by retired professional players from Ireland, France and South Africa. The questionnaire asked players whether or not they were forced to retire, as well as the reason for retirement. Players forced to retire were more than twice as likely to report symptoms of distress in comparison to those that retired voluntarily (odds ratio: 2.1, 95% confidence interval: 1.2-3.6, p<0.001). None of the other mental health measures (anxiety/depression, sleep disturbance or alcohol misuse) were associated with forced retirement. In conclusion, rugby players that were forced to retire may require support structures and longitudinal monitoring. Future studies should begin monitoring players during their careers to accurately assess the effect of retirement on mental health. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Klebanoff (K-) modes in boundary layers (BLs) over compliant surfaces

    NASA Astrophysics Data System (ADS)

    Ali, Reza; Carpenter, Peter

    2002-11-01

    We investigate the effect of wall compliance on K-modes. These are associated with streaks observed in the transitional BL, generated by spanwise modulation of the streamwise velocity, and are thought to be the mechanism for bypass transition. They have been widely studied over flat-plate, rigid surfaces but not compliant surfaces. A novel velocity-vorticity formulation is adopted for the numerical simulations, and a freestream spanwise body force is used to generate the streaks. We find compliant walls are less receptive than rigid walls, i.e. freestream turbulence generates weaker disturbances over compliant walls. This effect intensifies with increasing compliance. Where a compliant panel is embedded into a rigid surface, the leading and trailing edges of the panel can introduce a stabilising or destabilising disturbance on the streaks depending on the Reynolds number. It is therefore possible to optimise the wall to suppress streaks and hence bypass. K-modes can also act as a theoretical model for the near-wall structures that generate the high skin-friction drag in turbulent BLs. In this scenario, increasing compliance increases the spanwise spacing and weakens the streak. This explains experimental observations that wall compliance reduces skin-friction drag and turbulence levels in turbulent BLs.

  16. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  17. Diagnostic studies of the Antarctic vortex during the 1987 Airborne Antarctic Ozone Experiment - Ozone miniholes

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Austin, J.; Browell, E. V.; Mccormick, M. P.; Krueger, A. J.

    1989-01-01

    Localized rapid reductions in total ozone (miniholes), which were observed during the Airborne Antarctic Ozone Experiment, are studied with particular attention given to meteorological aspects. It is suggested that miniholes are forced by tropospheric weather features and that they are largely reversible distortions to the airflow around the vortex. The relationship between the miniholes and upper tropospheric and lower stratospheric synoptic-scale disturbances is studied. Trajectory calculations are presented which demonstrate the exchange of air from low latitudes with air from within the vortex, with the vortex air subsequently moving to lower latitudes.

  18. Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems

    NASA Astrophysics Data System (ADS)

    Khan, Ayub; Tyagi, Arti

    2018-05-01

    In this paper, we have studied the hybrid projective synchronisation for incommensurate, integer and commensurate fractional-order financial systems with unknown disturbance. To tackle the problem of unknown bounded disturbance, fractional-order disturbance observer is designed to approximate the unknown disturbance. Further, we have introduced simple sliding mode surface and designed adaptive sliding mode controllers incorporating with the designed fractional-order disturbance observer to achieve a bounded hybrid projective synchronisation between two identical fractional-order financial model with different initial conditions. It is shown that the slave system with disturbance can be synchronised with the projection of the master system generated through state transformation. Simulation results are presented to ensure the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. Also, synchronisation error for commensurate, integer and incommensurate fractional-order financial systems is studied in numerical simulation.

  19. Quantum correlations from a room-temperature optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Purdy, T. P.; Grutter, K. E.; Srinivasan, K.; Taylor, J. M.

    2017-06-01

    The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks.

  20. Disturbance observer based pitch control of wind turbines for disturbance rejection

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Chen, Xu; Tang, Jiong

    2016-04-01

    In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.

  1. The substorm current reconfiguration scenario and related observations in the magnetic field and thermosphere

    NASA Astrophysics Data System (ADS)

    Ritter, Patricia; Luehr, Hermann

    The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere during magnetospheric substorms. This paper presents substorm related observations of the magnetic field on ground and by the CHAMP satellite, their implications for the substorm current reconfiguration scenario, and thermospheric air density signatures after substorm onsets. Based on a large number of events, the average high and low latitude magnetic field signatures after substorm onsets reveal that the magnetic field observations cannot be described adequately by a simple current wedge model. A satisfactory agreement between model results and observations at satellite altitude and on ground can be achieved only if the current reconfiguration scenario combines the following four elements: (1) a gradual decrease of the tail lobe field; (2) a re-routing of a part of the cross-tail current through the ionosphere; (3) eastward ionospheric currents at low and mid latitudes driven by Region-2 field-aligned currents (FACs); and (4) a partial ring current connected to these Region-2 FACs. With the onset of energy input into the ionosphere we observe that the thermospheric density is enhanced first at high latitudes on the night side. The disturbance then travels at an average speed of 650 m/s to lower latitudes, and reaches the equator after 3-4 hours. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward.

  2. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  3. XTRAN2L - A PROGRAM FOR SOLVING THE GENERAL-FREQUENCY UNSTEADY TWO-DIMENSIONAL TRANSONIC SMALL-DISTURBANCE EQUATIONS

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.

    1994-01-01

    The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.

  4. Thermospheric Airglow Perturbations in the Upper Atmosphere Caused by Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2017-12-01

    The Midlatitude Allsky imaging Network for Geophysical Observations (MANGO) consists of seven allsky imagers distributed across the United States recording observations of large-scale airglow perturbations. The imagers are filtered at 630 nm, a forbidden oxygen line, in order to record the predominant source of airglow at 250 km altitude. While the ubiquitous airglow layer is challenging to observe when under uniform conditions, waves in the upper atmosphere cause ripples in the airglow layer which can easily be imaged by appropriate instrumentation. MANGO is the first network to record perturbations in the airglow layer on a continent-size scale. Large and Mid-scale Traveling Ionospheric Disturbances (LSTIDs and MSTIDs) are recorded that are caused by auroral forcing, mountain turbulence, and tidal variations. On August 25, airglow perturbations centered on the Hurricane Harvey path were observed by MANGO. These images and connections to other complimentary data sets such as GPS will be presented.

  5. Quantifying small-scale spatio-temporal variability of snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Hagenmuller, P.; Bebi, P.; Jenkins, M. J.; Giunta, A. D.; Schneebeli, M.

    2017-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception, wind speed reduction, and changes to the energy balance. The lack of snowpack observations in forests limits our ability to understand the evolution of snow stratigraphy and its spatio-temporal variability as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack under canopies of a spruce forest in the central Rocky Mountains, USA, using the SnowMicroPen (SMP), a high resolution digital penetrometer. Weekly-repeated penetration force measurements were recorded along 10 m transects every 0.3 m in winter 2015 and bi-weekly along 20 m transects every 0.5 m in 2016 in three study plots beneath canopies of undisturbed, bark beetle-disturbed and harvested forest stands, and an open meadow. To disentangle information about layer hardness and depth variabilities, and to quantitatively compare the different SMP profiles, we applied a matching algorithm to our dataset, which combines several profiles by automatically adjusting their layer thicknesses. We linked spatial and temporal variabilities of penetration force and depth, and thus snow stratigraphy to forest and meteorological conditions. Throughout the season, snow stratigraphy was more heterogeneous in undisturbed but also beneath bark beetle-disturbed forests. In contrast, and despite remaining small diameter trees and woody debris, snow stratigraphy was rather homogenous at the harvested plot. As expected, layering at the non-forested plot varied only slightly over the small spatial extent sampled. At the open and harvested plots, persistent crusts and ice lenses were clearly present in the snowpack, while such hard layers barely occurred beneath undisturbed and disturbed canopies. Due to settling, hardness significantly increased with depth at open and harvested plots, which was less distinctive at the other two plots. Our results contribute to the general understanding of forest-snowpack interactions and, if combined with density and specific surface area estimates, can be used to validate snowpack and microwave models for avalanche formation and SWE retrieval in forests.

  6. Control of tropical instability waves in the Pacific

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Lawrence, S. P.; Murray, M. J.; Mutlow, C. T.; Stockdale, T. N.; Llewellyn-Jones, D. T.; Anderson, D. L. T.

    Westward-propagating waves with periods of 20-30 days and wavelengths of ˜ 1,100km are a prominent feature of sea-surface temperatures (SSTs) in the equatorial Pacific and Atlantic Oceans. They have been attributed to instabilities due to current shear. We compare SST observations from the spaceborne Along Track Scanning Radiometer (ATSR) and TOGA-TAO moored buoys with SSTs from a model of the tropical Pacific forced with observed daily windstress data. The phases of the strongest “Tropical Instability Waves” (TIWs) in the model are in closer correspondence with those observed than we would expect if these waves simply developed from infinitesimal disturbances (in which case their phases would be arbitrary). If we filter out the intraseasonal component of the windstress, all phase-correspondence is lost. We conclude that the phases of these waves are not arbitrary, but partially determined by the intraseasonal winds. The subsurface evolution of the model suggests a possible control mechanism is through interaction with remotely-forced subsurface Kelvin and Rossby waves. This is supported by an experiment which shows how zonal wind bursts in the west Pacific can modify the TIW field, but other mechanisms, such as local feedbacks, are also possible.

  7. A CME-Driven Solar Wind Disturbance Observed at both Low and High Heliographic Latitudes

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; McComas, D. J.; Phillips, J. L.; Pizzo, V. J.; Goldstein, B. E.; Forsyth, R. J.; Lepping, R. P.

    1995-01-01

    A solar wind disturbance produced by a fast coronal mass ejection, CME, that departed from the Sun on February 20, 1994 was observed in the ecliptic plane at 1 AU by IMP 8 and at high heliographic latitudes at 3.53 AU by Ulysses. In the ecliptic the disturbance included a strong forward shock but no reverse shock, while at high latitudes the disturbance was bounded by a relatively weak forward-reverse shock pair. It is clear that the disturbance in the ecliptic plane was driven primarily by the relative speed between the CME and a slower ambient solar wind ahead, whereas at higher latitudes the disturbance was driven by expansion of the CME. The combined IMP 8 and Ulysses observations thus provide a graphic illustration of how a single fast CME can produce very different types of solar wind disturbances at low and high heliographic latitudes. Simple numerical simulations help explain observed differences at the two spacecraft.

  8. (-)-Terpinen-4-ol changes intracellular Ca2+ handling and induces pacing disturbance in rat hearts.

    PubMed

    Gondim, Antonio Nei Santana; Lara, Aline; Santos-Miranda, Artur; Roman-Campos, Danilo; Lauton-Santos, Sandra; Menezes-Filho, José Evaldo Rodrigues; de Vasconcelos, Carla Maria Lins; Conde-Garcia, Eduardo Antonio; Guatimosim, Silvia; Cruz, Jader S

    2017-07-15

    (-)-Terpinen-4-ol is a naturally occurring plant monoterpene and has been shown to have a plethora of biological activities. The objective of this study was to investigate the effects of (-)-terpinen-4-ol on the rat heart, a key player in the control and maintenance of arterial blood pressure. The effects of (-)-terpinen-4-ol on the rat heart were investigated using isolated left atrium isometric force measurements, in vivo electrocardiogram (ECG) recordings, patch clamp technique, and confocal microscopy. It was observed that (-)-terpinen-4-ol reduced contraction force in an isolated left atrium at millimolar concentrations. Conversely, it induced a positive inotropic effect and extrasystoles at micromolar concentrations, suggesting that (-)-terpinen-4-ol may have arrhythmogenic activity on cardiac tissue. In anaesthetized animals, (-)-terpinen-4-ol also elicited rhythm disturbance, such as supraventricular tachycardia and atrioventricular block. To investigate the cellular mechanism underlying the dual effect of (-)-terpinen-4-ol on heart muscle, experiments were performed on isolated ventricular cardiomyocytes to determine the effect of (-)-terpinen-4-ol on L-type Ca 2+ currents, Ca 2+ sparks, and Ca 2+ transients. The arrhythmogenic activity of (-)-terpinen-4-ol in vitro and in vivo may be explained by its effect on intracellular Ca 2+ handling. Taken together, our data suggest that (-)-terpinen-4-ol has cardiac arrhythmogenic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis Of Laryngeal Biomechanics Of Deaf Speakers Utilizing High-Speed Cinematography

    NASA Astrophysics Data System (ADS)

    Metz, Dale E.; Whitehead, Robert L.

    1982-02-01

    Since the formalization of the myoelastic-aerodynamic theory of vocal fold vibration, it has been generally accepted that biomechanical and aerodynamic forces determine the nature of vocal fold vibration patterns, speaking fundamental frequency and vocal intensity. The speech of the deaf is frequently characterized by abnormal voice qualities and aberrant frequency and intensity variations suggesting mismanagement of the biomechanical and aerodynamic forces acting on the larynx. Unfortunately, efforts to remediate these abnormal laryngeal activities are frequently ineffective. It is reasonable to suggest that more effective remedial strategies could be developed if we had a better understanding of the underlying nature of the problems deaf persons experience when trying to control laryngeal functioning for speech purposes. Toward this end, we are employing high speed laryngeal filming procedures in conjunction with glottal impedance, respiratory kinematic and acous-tical measurement procedures to assess abnormal laryngeal functioning of deaf speakers. All data are collected simultaneously and are time-locked to facilitate analysis of specific laryngeal events. This unique combination of instrumentation has provided important insights regarding laryngeal functioning of the deaf. For example, we have observed that deaf speakers may assume abnormal glottal configurations during phonation that pro-hibit normal laryngeal functioning and disturb upper airway dynamics. Also, normal vibratory patterns are frequently disturbed. Instrumentation, data collection protocols, analysis procedures and selected findings will be discussed.

  10. Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi

    2017-09-01

    A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.

  11. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes.

    PubMed

    Seidl, Rupert; Rammer, Werner

    2017-07-01

    Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.

  12. Disentangling Woodland Caribou Movements in Response to Clearcuts and Roads across Temporal Scales

    PubMed Central

    Beauchesne, David; Jaeger, Jochen AG.; St-Laurent, Martin-Hugues

    2013-01-01

    Although prey species typically respond to the most limiting factors at coarse spatiotemporal scales while addressing biological requirements at finer scales, such behaviour may become challenging for species inhabiting human altered landscapes. We investigated how woodland caribou, a threatened species inhabiting North-American boreal forests, modified their fine-scale movements when confronted with forest management features (i.e. clearcuts and roads). We used GPS telemetry data collected between 2004 and 2010 on 49 female caribou in a managed area in Québec, Canada. Movements were studied using a use – availability design contrasting observed steps (i.e. line connecting two consecutive locations) with random steps (i.e. proxy of immediate habitat availability). Although caribou mostly avoided disturbances, individuals nonetheless modulated their fine-scale response to disturbances on a daily and annual basis, potentially compromising between risk avoidance in periods of higher vulnerability (i.e. calving, early and late winter) during the day and foraging activities in periods of higher energy requirements (i.e. spring, summer and rut) during dusk/dawn and at night. The local context in which females moved was shown to influence their decision to cross clearcut edges and roads. Indeed, although females typically avoided crossing clearcut edges and roads at low densities, crossing rates were found to rapidly increase in greater disturbance densities. In some instance, however, females were less likely to cross edges and roads as densities increased. Females may then be trapped and forced to use disturbed habitats, known to be associated with higher predation risk. We believe that further increases in anthropogenic disturbances could exacerbate such behavioural responses and ultimately lead to population level consequences. PMID:24223713

  13. Disentangling woodland caribou movements in response to clearcuts and roads across temporal scales.

    PubMed

    Beauchesne, David; Jaeger, Jochen Ag; St-Laurent, Martin-Hugues

    2013-01-01

    Although prey species typically respond to the most limiting factors at coarse spatiotemporal scales while addressing biological requirements at finer scales, such behaviour may become challenging for species inhabiting human altered landscapes. We investigated how woodland caribou, a threatened species inhabiting North-American boreal forests, modified their fine-scale movements when confronted with forest management features (i.e. clearcuts and roads). We used GPS telemetry data collected between 2004 and 2010 on 49 female caribou in a managed area in Québec, Canada. Movements were studied using a use--availability design contrasting observed steps (i.e. line connecting two consecutive locations) with random steps (i.e. proxy of immediate habitat availability). Although caribou mostly avoided disturbances, individuals nonetheless modulated their fine-scale response to disturbances on a daily and annual basis, potentially compromising between risk avoidance in periods of higher vulnerability (i.e. calving, early and late winter) during the day and foraging activities in periods of higher energy requirements (i.e. spring, summer and rut) during dusk/dawn and at night. The local context in which females moved was shown to influence their decision to cross clearcut edges and roads. Indeed, although females typically avoided crossing clearcut edges and roads at low densities, crossing rates were found to rapidly increase in greater disturbance densities. In some instance, however, females were less likely to cross edges and roads as densities increased. Females may then be trapped and forced to use disturbed habitats, known to be associated with higher predation risk. We believe that further increases in anthropogenic disturbances could exacerbate such behavioural responses and ultimately lead to population level consequences.

  14. Observation of an ionospheric disturbance caused by a gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Inan, U. S.

    1988-01-01

    A first observation of an ionospheric disturbance from a gamma-ray burst is reported. The burst, GB30801, occurred at 22:14:18 UT on August 1, 1983, and was one of the strongest ever observed. The total fluence was 0.002 erg/sq cm, most of which occurred in the first 4 s of the burst. Simultaneously, a change was observed in the amplitude of a VLF radio signal from a transmitter in Rugby, England indicative of an ionospheric disturbance. Weaker disturbances were also recorded at the same receiving site on signals from VLF stations in Annapolis, Maryland and Lualualei, Hawaii. The times of the burst and the disturbances are coincident within the 10-s resolution of the VLF recording system. No similar disturbances were observed within 60 hr around the time of the burst. In the future, a network of VLF burst monitors may provide measurements of the total ionizing energy fluence from a burst, as well as some limited directional information.

  15. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-06-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  16. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  17. Direct simulation of a self-similar plane wake

    NASA Technical Reports Server (NTRS)

    Moser, Robert D.; Rogers, Michael M.

    1994-01-01

    Direct simulations of two time-developing turbulent wakes have been performed. Initial conditions for the simulations were obtained from two realizations of a direct simulation of a turbulent boundary layer at momentum thickness Reynolds number 670. In addition, extra two dimensional disturbances were added in one of the cases to mimic two dimensional forcing. The unforced wake is allowed to evolve long enough to attain self similarity. The mass-flux Reynolds number (equivalent to the momentum thickness Reynolds number in spatially developing wakes) is 2000, which is high enough for a short k(exp -5/3) range to be evident in the streamwise one dimensional velocity spectrum. Several turbulence statistics have been computed by averaging in space and over the self-similar period in time. The growth rate in the unforced flow is low compared to experiments, but when this growth-rate difference is accounted for, the statistics of the unforced case are in reasonable agreement with experiments. However, the forced case is significantly different. The growth rate, turbulence Reynolds number, and turbulence intensities are as much as ten times larger in the forced case. In addition, the forced flow exhibits large-scale structures similar to those observed in transitional wakes, while the unforced flow does not.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler, M.; Seiß, M.; Hoffmann, H.

    The reconstruction of the orbital evolution of the propeller structure Blériot orbiting in Saturn’s A ring from recurrent observations in Cassini ISS images yielded a considerable offset motion from the expected Keplerian orbit. This offset motion can be composed by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7, and 2.2 years, respectively. In this paper we present results from N -body simulations, where we integrated the orbital evolution of a moonlet, which is placed at the radial position of Blériot under the gravitational action of the Saturnian satellites. Our simulations yield that, especiallymore » the gravitational interactions with Prometheus, Pandora, and Mimas are forcing the moonlet to librate with the right frequencies, but the libration amplitudes are too small to explain the observations. Thus, further mechanisms are needed to explain the amplitudes of the forced librations—e.g., moonlet–ring interactions. Here, we develop a model, where the moonlet is allowed to be slightly displaced with respect to its created gaps breaking the point symmetry and causing a repulsive force in this way. As a result, the evolution of the moonlet’s longitude can be described by a harmonic oscillator. In the presence of external forcing by the outer moons, the libration amplitudes get the more amplified the closer the forcing frequency is to the eigenfrequency of the disturbed propeller oscillator. Applying our model to Blériot, it is possible to reproduce a libration period of 13 years with an amplitude of about 2000 km.« less

  19. A Librational Model for the Propeller Blériot in the Saturnian Ring System

    NASA Astrophysics Data System (ADS)

    Seiler, M.; Sremčević, M.; Seiß, M.; Hoffmann, H.; Spahn, F.

    2017-05-01

    The reconstruction of the orbital evolution of the propeller structure Blériot orbiting in Saturn’s A ring from recurrent observations in Cassini ISS images yielded a considerable offset motion from the expected Keplerian orbit. This offset motion can be composed by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7, and 2.2 years, respectively. In this paper we present results from N-body simulations, where we integrated the orbital evolution of a moonlet, which is placed at the radial position of Blériot under the gravitational action of the Saturnian satellites. Our simulations yield that, especially the gravitational interactions with Prometheus, Pandora, and Mimas are forcing the moonlet to librate with the right frequencies, but the libration amplitudes are too small to explain the observations. Thus, further mechanisms are needed to explain the amplitudes of the forced librations—e.g., moonlet-ring interactions. Here, we develop a model, where the moonlet is allowed to be slightly displaced with respect to its created gaps breaking the point symmetry and causing a repulsive force in this way. As a result, the evolution of the moonlet’s longitude can be described by a harmonic oscillator. In the presence of external forcing by the outer moons, the libration amplitudes get the more amplified the closer the forcing frequency is to the eigenfrequency of the disturbed propeller oscillator. Applying our model to Blériot, it is possible to reproduce a libration period of 13 years with an amplitude of about 2000 km.

  20. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most amplified just downstream of the premixed branches. The effects of mixing width and differential diffusion are investigated and their roles on the flame stability are studied.

  1. A statistical study on the F2 layer vertical variation during nighttime medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Jeong, Se-Heon

    2017-03-01

    A statistical study on the relationship between the perturbation component (ΔTEC (total electron content)) and the F2 layer peak height (hmF2) during nighttime medium-scale traveling ionospheric disturbances is presented. The results are obtained by using a time-dependent computerized ionospheric tomography (CIT) technique. This was realized by using slant total electron content observations from a dense Global Positioning System receiver network over Japan (with more than 1000 receivers), together with a multiplicative algebraic reconstruction technique. Reconstructions from CIT were validated by using ionosonde and occultation measurements. A total of 36 different time snapshots of the ionosphere when medium-scale traveling ionospheric disturbances (MSTIDs) were eminent were analyzed. These were obtained from a data set covering years from 2011 to 2014. The reconstructed surface wavefronts of ΔTEC and hmF2 structure were found to be aligned along the northwest-southeast direction. These results confirm that nighttime MSTIDs are driven by electrodynamic forces related to Perkins instability which explains the northwest-southeast wavefront alignment based on the F region electrodynamics. Furthermore, from the statistical analysis hmF2 varied quasiperiodically in altitude with dominant peak-to-peak amplitudes between 10 and 40 km. In addition, ΔTEC and hmF2 were 60% anticorrelated.

  2. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  3. Direct observations of a flare related coronal and solar wind disturbance

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Hildner, E.; Macqueen, R. M.; Munro, R. H.; Poland, A. I.; Ross, C. L.

    1975-01-01

    Numerous mass ejections from the sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass and energy content of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.

  4. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  5. Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures

    NASA Astrophysics Data System (ADS)

    Zhang, S. Q.; Li, H. N.; Schmidt, R.; Müller, P. C.

    2014-02-01

    Thin-walled piezoelectric integrated smart structures are easily excited to vibrate by unknown disturbances. In order to design and simulate a control strategy, firstly, an electro-mechanically coupled dynamic finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Linear piezoelectric constitutive equations and the assumption of constant electric field through the thickness are considered. Based on the dynamic FE model, a disturbance rejection (DR) control with proportional-integral (PI) observer using step functions as the fictitious model of disturbances is developed for vibration suppression of smart structures. In order to achieve a better dynamic behavior of the fictitious model of disturbances, the PI observer is extended to generalized proportional-integral (GPI) observer, in which sine or polynomial functions can be used to represent disturbances resulting in better dynamics. Therefore the disturbances can be estimated either by PI or GPI observer, and then the estimated signals are fed back to the controller. The DR control is validated by various kinds of unknown disturbances, and compared with linear-quadratic regulator (LQR) control. The results illustrate that the vibrations are better suppressed by the proposed DR control.

  6. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  7. Direct Simulation of Evolution and Control of Nonlinear Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    2004-01-01

    The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.

  8. Final Environmental Assessment for a Solar Power System at Davis-Monthan Air Force Tucson, Arizona

    DTIC Science & Technology

    2009-09-01

    construction would occur in previously disturbed area, soil condition would not be substantially altered. Best Management Practices (BMP), to include...installation of silt fencing and sediment traps, water spray application, disturbed area revegatation, would be used to limit soil movement, stabilize...implementation of BMPs and adherence to the Arizona Pollutant Discharge Elimination System Permit would minimize the potential for exposed soils or other

  9. Final Environmental Assessment for Maintaining the Rim Canal at Avon Park Air Force Range, Florida

    DTIC Science & Technology

    2011-02-01

    Alternative would improve safety by more efficiently draining water off the runways and taxiways. Soil disturbance within the canal would temporarily...taxiways. Soil disturbance within the canal would temporarily attract foraging birds and increase the BASH hazard. The mulch and sediment mixture placed...maintain the canal. The Preferred Alternative would improve safety by more efficiently draining water off the runways and taxiways. Soil

  10. Biomechanics of conidial dispersal in the toxic mold Stachybotrys chartarum

    PubMed Central

    Tucker, Kathryn; Stolze, Jessica L.; Kennedy, Aaron H.; Money, Nicholas P.

    2007-01-01

    Conidial dispersal in Stachybotrys chartarum in response to low-velocity airflow was studied using a microflow apparatus. The maximum rate of spore release occurred during the first 5 min of airflow, followed by a dramatic reduction in dispersal that left more than 99% of the conidia attached to their conidiophores. Micromanipulation of undisturbed colonies showed that micronewton (μN) forces were needed to dislodge spore clusters from their supporting conidiophores. Calculations show that airspeeds that normally prevail in the indoor environment disturb colonies with forces that are 1,000-fold lower, in the nanonewton (nN) range. Low-velocity airflow does not, therefore, cause sufficient disturbance to disperse a large proportion of the conidia of S. chartarum. PMID:17267247

  11. Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin.

    PubMed

    Bonachea, Jaime; Bruschi, Viola M; Hurtado, Martín A; Forte, Luis M; da Silva, Mario; Etcheverry, Ricardo; Cavallotto, José L; Dantas, Marcilene F; Pejon, Osni J; Zuquette, Lázaro V; Bezerra, Maria Angélica de O; Remondo, Juan; Rivas, Victoria; Gómez-Arozamena, José; Fernández, Gema; Cendrero, Antonio

    2010-06-01

    An analysis of geomorphic system's response to change in human and natural drivers in some areas within the Río de la Plata basin is presented. The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers. Study areas of different size, socio-economic and geomorphic conditions have been selected: the Río de la Plata estuary and three sub-basins within its watershed. Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface. Data on river discharge were also gathered. Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the São Paulo metropolitan area. Rates in the estuary are somewhere in between. It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes. It appears that a marked increase in denudation, of a "technological" nature, is taking place in this basin and leading to an acceleration of sediment supply. This is coherent with similar increases observed in other regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Analysis of TMT primary mirror control-structure interaction

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.

    2008-07-01

    The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.

  13. Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav

    2018-07-01

    Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.

  14. Observer enhanced control for spin-stabilized tethered formation in earth orbit

    NASA Astrophysics Data System (ADS)

    Guang, Zhai; Yuyang, Li; Liang, Bin

    2018-04-01

    This paper addresses the issues relevant to control of spin-stabilized tethered formation in circular orbit. Due to the dynamic complexities and nonlinear perturbations, it is challenging to promote the control precision for the formation deployment and maintenance. In this work, the formation dynamics are derived with considering the spinning rate of the central body, then major attention is dedicated to develop the nonlinear disturbance observer. To achieve better control performance, the observer-enhanced controller is designed by incorporating the disturbance observer into the control loop, benefits from the disturbance compensation are demonstrated, and also, the dependences of the disturbance observer performance on some important parameters are theoretically and numerically analyzed.

  15. Effects of Forced Air Warming on Airflow around the Operating Table.

    PubMed

    Shirozu, Kazuhiro; Kai, Tetsuya; Setoguchi, Hidekazu; Ayagaki, Nobuyasu; Hoka, Sumio

    2018-01-01

    Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.

  16. Sleep Disturbance Partially Mediates the Relationship Between Intimate Partner Violence and Physical/Mental Health in Women and Men.

    PubMed

    Lalley-Chareczko, Linden; Segal, Andrea; Perlis, Michael L; Nowakowski, Sara; Tal, Joshua Z; Grandner, Michael A

    2015-07-05

    Intimate partner violence (IPV) is a worldwide health concern and an important risk factor for poor mental/physical health in both women and men. Little is known about whether IPV leads to sleep disturbance. However, sleep problems may be common in the context of IPV and may mediate relationships with mental/physical health. Data from the 2006 Behavioral Risk Factor Surveillance System (BRFSS) were used (N = 34,975). IPV was assessed in female and male participants for any history of being threatened by, physically hurt by, or forced to have sex with an intimate partner (THREAT, HURT, and SEX, respectively), and, further, as being forced to have sex with or physically injured by an intimate partner within the past year (SEXyr and HURTyr, respectively). These survey items were coded yes/no. Sleep disturbance was assessed as difficulty falling asleep, staying asleep, or sleeping too much at least 6 of the last 14 days. Logistic regression analyses, adjusted for age, sex, race, income, education, and physical/mental health, assessed whether IPV predicted sleep disturbance. Sobel-Goodman tests assessed whether relationships between IPV and physical/mental health were partially mediated by sleep disturbance. All IPV variables were associated with sleep disturbance, even after adjusting for the effects of age, sex, race/ethnicity, income, education, employment, marital status, physical health and mental health. THREAT was associated with sleep disturbance (odds ratio [OR] = 2.798, p < .0001), as was HURT (OR = 2.683, p < .0001), SEX (OR = 3.237, p < .0001), SEXyr (OR = 7.741, p < .0001), and HURTyr (OR = 7.497, p < .0001). In mediation analyses, all IPV variables were associated with mental health (p < .0001), and all were associated with physical health (p < .007) except SEXyr. Sleep disturbance partially mediated all relationships (Sobel p < .0005 for all tests). Mediation was around 30%, ranging from 18% (HURTyr and mental health) to 41% (HURT and physical health). IPV was strongly associated with current sleep disturbance above the effect of demographics and overall mental/physical health, even if the IPV happened in the past. Furthermore, sleep disturbance partially mediates the relationship between IPV and mental/physical health. Sleep interventions may potentially mitigate negative effects of IPV. © The Author(s) 2015.

  17. Evidence of an Emerging Disturbance of Earthen Levees Causing Disastrous Floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Moretti, G.; Albertson, J. D.

    2015-12-01

    A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of $500 Million (Figure). In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging disturbance of levees and related failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. Evidence collected suggested that it is quite likely that the levee failure of the Secchia River was of a similar mechanism as the observed failure of the Panaro River. Detailed numerical modeling of rainfall, river flow, and variably saturated flow occurring in disturbed levees in response to complex hydroclimatic forcing indicated that the levee failure of the Secchia River may have been triggered by direct river inflow into the den system or collapse of a hypothetical den separated by a 1-m earthen wall from the levee riverside, which saturated during the hydroclimatic event. It is important to bring these processes to the attention of hydrologists and geotechnical engineers as well as to trigger an interdisciplinary discussion on habitat fragmentation and wildlife shifts due to development and climate pressures. These disturbances come together with changes in extreme events to inform the broader concern of risk analysis due to floods.

  18. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    USGS Publications Warehouse

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing. These results have implications for water management and suggest that dust abatement efforts could be an important component of any climate adaptation strategies in the UCRB.

  19. Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer.

    PubMed

    Zong, Qun; Shao, Shikai

    2016-11-01

    This paper investigates decentralized finite-time attitude synchronization for a group of rigid spacecraft by using quaternion with the consideration of environmental disturbances, inertia uncertainties and actuator saturation. Nonsingular terminal sliding mode (TSM) is used for controller design. Firstly, a theorem is proven that there always exists a kind of TSM that converges faster than fast terminal sliding mode (FTSM) for quaternion-descripted attitude control system. Controller with this kind of TSM has faster convergence and reduced computation than FTSM controller. Then, combining with an adaptive parameter estimation strategy, a novel terminal sliding mode disturbance observer is proposed. The proposed disturbance observer needs no upper bound information of the lumped uncertainties or their derivatives. On the basis of undirected topology and the disturbance observer, decentralized attitude synchronization control laws are designed and all attitude errors are ensured to converge to small regions in finite time. As for actuator saturation problem, an auxiliary variable is introduced and accommodated by the disturbance observer. Finally, simulation results are given and the effectiveness of the proposed control scheme is testified. Copyright © 2016. Published by Elsevier Ltd.

  20. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Hong; Guo, Lei

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  1. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE PAGES

    Liu, Yunlong; Wang, Hong; Guo, Lei

    2018-03-26

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  2. Testing genotypic variation of an invasive plant species in response to soil disturbance and herbivory.

    PubMed

    Bayliss, Shannon L J; terHorst, Casey P; Lau, Jennifer A

    2017-04-01

    Herbivores, competitors, and predators can inhibit biological invasions ("biotic resistance" sensu Elton 1959), while disturbance typically promotes biological invasions. Although biotic resistance and disturbance are often considered separately in the invasion literature, these two forces may be linked. One mechanism by which disturbance may facilitate biological invasions is by decreasing the effectiveness of biotic resistance. The effects of both disturbance and biotic resistance may vary across invading genotypes, and genetic variation in the invasive propagule pool may increase the likelihood that some genotypes can overcome biotic resistance or take greater advantage of disturbance. We conducted an experimental field trial in which we manipulated soil disturbance (thatch removal and loosening soil) and the presence of insect herbivores and examined their effects on the invasion success of 44 Medicago polymorpha genotypes. As expected, insecticide reduced leaf damage and increased Medicago fecundity, suggesting that insect herbivores in this system provide some biotic resistance. Soil disturbance increased Medicago fecundity, but did not alter the effectiveness of biotic resistance by insect herbivores. We found significant genetic variation in Medicago in response to disturbance, but not in response to insect herbivores. These results suggest that the ability of Medicago to invade particular habitats depends on the amount of insect herbivory, the history of disturbance in the habitat, and how the specific genotypes in the invader pool respond to these factors.

  3. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Fisk, J.; Holm, J. A.; Bailey, V. L.; Gough, C. M.

    2014-12-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging U.S. forests. We tested whether three forest ecosystem models—Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models—could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  4. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J.; Holm, J. A.; Bailey, V.; Gough, C. M.

    2014-07-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  5. Indirect Measurement of Rotor Dynamic Imbalance for Control Moment Gyroscopes via Gimbal Disturbance Observer.

    PubMed

    Huang, Liya; Wu, Zhong; Wang, Kan

    2018-06-07

    The high-precision speed control of gimbal servo systems is the key to generating high-precision torque for control moment gyroscopes (CMGs) in spacecrafts. However, the control performance of gimbal servo systems may be degraded significantly by disturbances, especially a dynamic imbalance disturbance with the same frequency as the high-speed rotor. For assembled CMGs, it is very difficult to measure the rotor imbalance directly by using a dynamic balancing machine. In this paper, a gimbal disturbance observer is proposed to estimate the dynamic imbalance of the rotor assembled in the CMG. First, a third-order dynamical system is established to describe the disturbance dynamics of the gimbal servo system, in which the rotor dynamic imbalance torque along the gimbal axis and the other disturbances are modeled to be periodic and bounded, respectively. Then, the gimbal disturbance observer is designed for the third-order dynamical system by using the total disturbance as a virtual measurement. Since the virtual measurement is derived from the inverse dynamics of the gimbal servo system, the information of the rotor dynamic imbalance can be obtained indirectly only using the measurements of gimbal speed and three-phase currents. Semi-physical experimental results demonstrate the effectiveness of the observer by using a CMG simulator.

  6. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances.

    PubMed

    Pashaei, Shabnam; Badamchizadeh, Mohammadali

    2016-07-01

    This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga.

    PubMed

    Leal, Laura C; Andersen, Alan N; Leal, Inara R

    2014-01-01

    Anthropogenic disturbance can have important indirect effects on ecosystems by disrupting species interactions. Here we examine the effects of anthropogenic disturbance on distance dispersal by ants for the diaspores of myrmecochorous Euphorbiaceae in Brazilian Caatinga. Rates of diaspore removal and distances removed of Croton sonderianus and Jatropha mollissima were observed at 24 sites ranging from low to very high disturbance (primarily grazing by livestock, hunting and firewood collection). Despite a large number of seed-disperser ant species, there were only two species providing high-quality distance-dispersal services, Dinoponera quadriceps (40% of all observed seed removals) and Ectatomma muticum (33%). D. quadriceps was responsible for 97% of all removals >2 m, and 100% of all removals >5 m. Removal rates did not vary with disturbance for C. sonderianus (small elaiosome), but declined with increasing disturbance for J. mollissima (large elaiosome). The number of removals by Ectatomma was highest at intermediate levels of disturbance, whereas those by Dinoponera decreased systematically with increasing levels of disturbance. Mean dispersal distance was four times higher at sites experiencing low disturbance, where removals >5 m represented a third of all removal events, compared with very highly disturbed sites, where no removals >5 m were observed. Despite high overall diversity there is very limited functional redundancy in disperser ant species, resulting in low disperser resilience in relation to disturbance. This is likely to have important implications for recruitment by myrmecochorous plants, and therefore on vegetation composition and structure, at sites subject to high anthropogenic disturbance.

  8. Global ICME-Mars Interaction and Induced Atmospheric Loss

    NASA Astrophysics Data System (ADS)

    Fang, X.; Ma, Y.; Manchester, W.

    2013-12-01

    Without the shielding of a strong intrinsic magnetic field, the present-day Mars atmosphere is more vulnerable to external solar wind forcing than the Earth's atmosphere. Therefore interplanetary coronal mass ejections (ICMEs) are expected to drive disturbances in the Mars environment in a profoundly different way, which, however, is poorly understood due to the lack of coordinated solar wind and Mars observations. In this study, three sophisticated models work in concert to simulate the physical domain extending from the solar corona to near-Mars space for the 13 May 2005 ICME event. The Space Weather Modeling Framework (SWMF) will be used to investigate the interaction of the ICME with the ambient solar wind and monitor its propagation from the Sun to the planet. A 3-D MHD model for Mars will be applied to assess the planetary atmospheric/ionospheric responses during the ICME passage of Mars. In the Mars weak magnetic field environment, the ion kinetic effects are important and will be included through the use of a 3-D Monte Carlo pickup ion transport model. These physics-based modeling efforts enable us to provide a global and time series view of the Mars response to transient solar wind disturbances and induced atmospheric loss, which is currently not possible due to the limitation of observations.

  9. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhamad, J.; Kusano, K.; Inoue, S.

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into twomore » groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.« less

  10. The Effect of Subauroral Polarization Streams on Ionosphere and Thermosphere During the 2015 St. Patrick's Day Storm: Global Ionosphere-Thermosphere Model Simulations

    NASA Astrophysics Data System (ADS)

    Guo, Jia-Peng; Deng, Yue; Zhang, Dong-He; Lu, Yang; Sheng, Cheng; Zhang, Shun-Rong

    2018-03-01

    Using the Millstone Hill incoherent scatter radar observations during 2015 St. Patrick's Day storm, subauroral polarization streams (SAPSs) have been specified in the nonhydrostatic Global Ionosphere-Thermosphere Model simulations. The results reveal that the effect of SAPS on the coupled thermosphere-ionosphere system includes the following: (1) Sudden frictional heating of SAPS results in acoustic-gravity waves in the thermosphere. The vertical oscillation is localized, while the meridional disturbance propagates poleward and equatorward. (2) The SAPS-associated horizontal wind field includes an enhanced westward wind within SAPS channel and a twin of vortex-like winds north (clockwise) and south (anticlockwise) of subauroral latitudes. (3) Due to the neutral-ion drag, ions in the vicinity of SAPS channel oscillate vertically with neutrals, resulting in a perturbation of 0.3 TECu in ionospheric total electron content. The SAPS-induced traveling atmospheric disturbances can elevate the plasma and increase the total electron content in midlatitude ionosphere. (4) It is confirmed that the Coriolis force can contribute to the poleward turning of the neutral wind during the post-SAPS interval. In addition, the traveling atmospheric disturbance induced by the variation of auroral input and high-latitude convection is possibly the primary cause of the poleward neutral wind surge during the magnetic storm on 17-18 March 2015. The combination of the two factors can make the northward meridional wind surge reach a magnitude of 100 m/s. This study improves our understanding of the SAPS's effect on neutral dynamics and ion-neutral coupling processes during geomagnetically disturbed intervals.

  11. Biweekly disturbance capture and attribution: case study in western Alberta grizzly bear habitat

    NASA Astrophysics Data System (ADS)

    Hilker, Thomas; Coops, Nicholas C.; Gaulton, Rachel; Wulder, Michael A.; Cranston, Jerome; Stenhouse, Gordon

    2011-01-01

    An increasing number of studies have demonstrated the impact of landscape disturbance on ecosystems. Satellite remote sensing can be used for mapping disturbances, and fusion techniques of sensors with complimentary characteristics can help to improve the spatial and temporal resolution of satellite-based mapping techniques. Classification of different disturbance types from satellite observations is difficult, yet important, especially in an ecological context as different disturbance types might have different impacts on vegetation recovery, wildlife habitats, and food resources. We demonstrate a possible approach for classifying common disturbance types by means of their spatial characteristics. First, landscape level change is characterized on a near biweekly basis through application of a data fusion model (spatial temporal adaptive algorithm for mapping reflectance change) and a number of spatial and temporal characteristics of the predicted disturbance patches are inferred. A regression tree approach is then used to classify disturbance events. Our results show that spatial and temporal disturbance characteristics can be used to classify disturbance events with an overall accuracy of 86% of the disturbed area observed. The date of disturbance was identified as the most powerful predictor of the disturbance type, together with the patch core area, patch size, and contiguity.

  12. Large-Scale Alfvenic Impulses on the Sun: How They Are Generated and What We Learn From Them

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara

    2004-01-01

    NASA GSFC The Sun's atmosphere hosts a wide variety of magnetosonic disturbances. These wave modes are detected, almost exclusively, by examining images of the Sun's magnetic atmosphere and looking for propagating distortions. Although none of the Sun's plasma parameters are measured directly, we derive a great deal of information from these observations. In fact, by modeling these propagating disturbances, we may be able to derive the most accurate estimates plasma parameters. From observations absorption, refraction, reflection, and coupling of numerous wave modes, we advance our knowledge of the Sun's magnetic field, temperature, density, and current. The Sun's continuous oscillation, coronal mass ejections, flares, and other dynamic phenomena can produce wave disturbances which are observable from near-Earth space. Several of these disturbances have been traced from the inner corona out into the heliosphere. From the generation of these disturbances, we are able to learn about the phenomena which create them as well as the media through which they re-propagating. The presentation will include a discussion of the generation of Alfvenic disturbances on the Sun, ways we observe these disturbances, and how recent advances in modeling and analysis have brought us closer to determining solar in situ parameters.

  13. Form of the compensatory stepping response to repeated laterally directed postural disturbances.

    PubMed

    Hurt, Christopher P; Rosenblatt, Noah J; Grabiner, Mark D

    2011-10-01

    A compensatory stepping response (CSR) is a common strategy to restore dynamic stability in response to a postural disturbance. Currently, few studies have investigated the CSR to laterally directed disturbances delivered to subjects during quiet standing. The purpose of this study was to characterize the CSR of younger adults following exposure to a series of similar laterally directed disturbances for which no instructions were given with regard to the recovery response. We hypothesized that in the absence of externally applied constraints to the recovery response, subjects would be equally as likely to perform a crossover step as a sidestep sequence (SSS). We further hypothesized that there would be an asymmetry in arm abduction that would be dependent on the disturbance direction. Finally, we were interested in characterizing the effect of practice on the CSR to repeated disturbances. Ten younger adults were exposed to thirty laterally directed platform disturbances that forced a stepping response. Subjects responded by primarily utilizing a SSS that differs from previously reported results. Further, five of the ten subjects utilized a different recovery response that was dependent on the direction of the disturbance (i.e., left or right). Greater arm abduction was characterized for the arm in the direction of the external disturbance in comparison with the contralateral arm. Lastly, subjects modified their recovery response to this task within 12 disturbances. Taken together, these results suggest that recovery responses to laterally directed disturbances can be quickly modified but can be quite variable between and within subjects.

  14. Generation of capillary instabilities by external disturbances in a liquid jet. Ph.D. Thesis - State Univ. of N.Y.

    NASA Technical Reports Server (NTRS)

    Leib, S. J.

    1985-01-01

    The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.

  15. [Ultrasonic scissors. New vs resterilized instruments].

    PubMed

    Gärtner, D; Münz, K; Hückelheim, E; Hesse, U

    2008-02-01

    The aim of this study was to compare reliability in handling and function of resterilized and single-use disposable ultrasonic scissors. In a prospective randomized study, the surgeon blindly tested new and resterilized ultrasonographic scissors. The parameters were force of activation, cutting effect, coagulation effect, error messages, and disturbing generator noise. Fifty-one new and 49 resterilized instruments in 94 operations were evaluated. The differences in force of activation, cutting effect, and coagulation were not significant. Error messages and disturbing noises were rare in both groups. Six new instruments and two resterilized instruments had to be exchanged because of problems during surgery. This study demonstrates comparable reliability in function and handling of resterilized and new ultrasonic scissors. The use of resterilized instruments leads to distinctly reduced costs and could contribute to efficiency in laparoscopic surgery.

  16. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. Published by Elsevier Ltd.

  17. Microcontroller-driven fluid-injection system for atomic force microscopy.

    PubMed

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  18. Exotic ecosystems: where root disease is not a beneficial component of temperate conifer forests

    Treesearch

    William J. Otrosina

    2003-01-01

    Forest tree species and ecosystems ahve evolved under climatic, geological, and biological forces over eons of time. The present flora represents the sum of these selective forces that have acted upon ancestral and modern species. Adaptations to climatic factors, soils, insects, diseases, and a host of disturbance events, operating at a variety of scales, ahve forged...

  19. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    PubMed

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  20. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.

  1. Disturbance influences oyster community richness and evenness, but not diversity.

    PubMed

    Kimbro, David L; Grosholz, Edwin D

    2006-09-01

    Foundation species in space-limited systems can increase diversity by creating habitat, but they may also reduce diversity by excluding primary space competitors. These contrasting forces of increasing associate diversity and suppressing competitor diversity have rarely been examined experimentally with respect to disturbance. In a benthic marine community in central California, where native oysters are a foundation species, we tested how disturbance influenced overall species richness, evenness, and diversity. Surprisingly, overall diversity did not peak across a disturbance gradient because, as disturbance decreased, decreases in overall species evenness opposed increases in overall species richness. Decreasing disturbance intensity (high oyster abundance) led to increasing species richness of sessile and mobile species combined. This increase was due to the facilitation of secondary sessile and mobile species in the presence of oysters. In contrast, decreasing disturbance intensity and high oyster abundance decreased the evenness of sessile and mobile species. Three factors likely contributed to this decreased evenness: oysters reduced abundances of primary sessile species due to space competition; oysters supported more rare mobile species; and oysters disproportionately increased the relative abundance of a few common mobile species. Our results highlight the need for further studies on how disturbance can differentially affect the evenness and richness of different functional groups, and ultimately how these differences affect the relationship between overall diversity and ecosystem function.

  2. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  3. Investigation of crew motion disturbances on Skylab-Experiment T-013. [for future manned spacecraft design

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Astronaut crew motions can produce some of the largest disturbances acting on a manned spacecraft which can affect vehicle attitude and pointing. Skylab Experiment T-013 was developed to investigate the magnitude and effects of some of these disturbances on the Skylab spacecraft. The methods and techniques used to carry out this experiment are discussed, and preliminary results of data analysis presented. Initial findings indicate that forces on the order of 300 N were exerted during vigorous soaring activities, and that certain experiment activities produced spacecraft angular rate excursions 0.03 to 0.07 deg/sec. Results of Experiment T-013 will be incorporated into mathematical models of crew-motion disturbances, and are expected to be of significant aid in the sizing, design, and analysis of stabilization and control systems for future manned spacecraft.

  4. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kaoru

    1993-02-14

    This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less

  5. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    NASA Astrophysics Data System (ADS)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  6. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J. P.; Holm, J. A.; Bailey, V.; Bohrer, G.; Gough, C. M.

    2015-01-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.

  7. Moderate forest disturbance as a stringent test for gap and big-leaf models

    DOE PAGES

    Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; ...

    2015-01-27

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experimentmore » in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.« less

  8. MANGO Imager Network Observations of Geomagnetic Storm Impact on Midlatitude 630 nm Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2017-12-01

    The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.

  9. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    NASA Astrophysics Data System (ADS)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus offering insight into the increased nonlinear growth of the wall-shear stress.

  10. High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.

    2015-12-01

    The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.

  11. Variations of ionospheric plasma at different altitudes before the 2005 Sumatra Indonesia Ms 7.2 earthquake

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Zhang, Xuemin; Novikov, Victor; Shen, Xuhui

    2016-09-01

    In recent years, many researchers pay more attention to abnormities before earthquake, and in this study, seismo-ionospheric synchronous disturbances at different altitudes by GPS and satellite observations were first studied around one Sumatra Indonesia Ms 7.2 earthquake that occurred on 5 July 2005. By using the same temporal and spatial methods, data of GPS-total electron content (TEC) from Jet Propulsion Laboratory, electron density (Ne) from Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions, and ion density (Ni) from Defense Meteorological Satellite Program were deeply analyzed. The ionospheric plasma disturbances in GPS-TEC and increasement of Ne at 710 km were found on 4 July, and plasma density at the three altitudes has all increased on 7 July after the earthquake. All the disturbances were not just above the epicenter. TEC perturbations have happened at the east of the epicenter for the two days, and electron density enhancement at 710 km has moved to west of the TEC perturbations at the same time on 4 July, which may be caused by E × B drift. The moving direction of upgoing plasma was simulated using SAMI2 model. The results have shown that the plasma will move to higher altitude along the geomagnetic force line, which could exactly account for the plasma density enhancement in the northern direction of the geomagnetic south latitude earthquake.

  12. Equatorial Ionospheric Disturbance Field-Aligned Plasma Drifts Observed by C/NOFS

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Balan, N.; Le, Huijun; Chen, Yiding; Zhao, Biqiang

    2018-05-01

    Using C/NOFS satellite observations, this paper studies the disturbance field-aligned plasma drifts in the equatorial topside ionosphere during eight geomagnetic storms in 2011-2015. During all six storms occurred in the solstices, the disturbance field-aligned plasma drift is from winter to summer hemisphere especially in the morning-midnight local time sector and the disturbance is stronger in June solstice. The two storms occurred at equinoxes have very little effect on the field-aligned plasma drift. Using the plasma temperature data from DMSP satellites and Global Positioning System-total electron content, it is suggested that the plasma density gradient seems likely to cause the disturbance winter-to-summer plasma drift while the role of plasma temperature gradient is opposite to the observed plasma drift.

  13. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  14. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  15. Compressional and Shear Wakes in a 2D Dusty Plasma Crystal

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Goree, J.; Ma, Z. W.; Dubin, D. H. E.

    2001-10-01

    A 2D crystalline lattice can vibrate with two kinds of sound waves, compressional and shear (transverse), where the latter has a much slower sound speed. When these waves are excited by a moving supersonic disturbance, the superposition of the waves creates a Mach cone, i.e., a V-shaped wake. In our experiments, the supersonic disturbance was a moving spot of argon laser light, and this laser light applied a force, due to radiation pressure, on the particles. The beam was swept across the lattice in a controlled and repeatable manner. The particles were levitated in an argon rf discharge. By moving the laser spot faster than the shear sound speed c_t, but slower than the compressional sound speed c_l, we excited a shear wave Mach cone. Alternatively, by moving the laser spot faster than c_l, we excited both cones. In addition to Mach cones, we also observed a wake structure that arises from the compressional wave’s dispersion. We compare our results to Dubin’s theory (Phys. Plasmas 2000) and to molecular dynamics (MD) simulations.

  16. Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Stuart; Hacker, Jorg M.; Cole, Jason N.

    2007-03-01

    Nauru, a small island in the tropical pacific, generates plumes of clouds that may grow to several hundred km length. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud streets. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. During the day the island surface layer was warmer than themore » marine surface layer and wind speed was lower than over the ocean. Surface heating forced the growth of a thermal internal boundary layer, above which a street of cumulus clouds formed. The production of clouds resulted in reduced downwelling shortwave irradiance at the island surface. A plume of warm-dry air was observed over the island which extended 15 – 20 km downwind.« less

  17. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    USGS Publications Warehouse

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  18. Discontinuous Observers Design for Finite-Time Consensus of Multiagent Systems With External Disturbances.

    PubMed

    Liu, Xiaoyang; Ho, Daniel W C; Cao, Jinde; Xu, Wenying

    This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.

  19. Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise.

    PubMed

    Goodall, S; Thomas, K; Barwood, M; Keane, K; Gonzalez, J T; St Clair Gibson, A; Howatson, G

    2017-08-01

    An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer

    NASA Astrophysics Data System (ADS)

    Wu, Yun-jie; Li, Guo-fei

    2018-01-01

    Based on sliding mode extended state observer (SMESO) technique, an adaptive disturbance compensation finite control set optimal control (FCS-OC) strategy is proposed for permanent magnet synchronous motor (PMSM) system driven by voltage source inverter (VSI). So as to improve robustness of finite control set optimal control strategy, a SMESO is proposed to estimate the output-effect disturbance. The estimated value is fed back to finite control set optimal controller for implementing disturbance compensation. It is indicated through theoretical analysis that the designed SMESO could converge in finite time. The simulation results illustrate that the proposed adaptive disturbance compensation FCS-OC possesses better dynamical response behavior in the presence of disturbance.

  1. Instrumented toys for studying power and precision grasp forces in infants.

    PubMed

    Serio, S M; Cecchi, F; Boldrini, E; Laschi, C; Sgandurra, G; Cioni, G; Dario, P

    2011-01-01

    Currently the study of infants grasping development is purely clinical, based on functional scales or on the observation of the infant while playing; no quantitative variables are measured or known for diagnosis of eventually disturbed development. The aim of this work is to show the results of a longitudinal study achieved by using a "baby gym" composed by a set of instrumented toys, as a tool to measure and stimulate grasping actions, in infants from 4 to 9 months of life. The study has been carried out with 7 healthy infants and it was observed, during infants development, an increase of precision grasp and a reduction of power grasp with age. Moreover the forces applied for performing both precision and power grasp increase with age. The proposed devices represent a valid tool for continuous and quantitative measuring infants manual function and motor development, without being distressful for the infant and consequently it could be suitable for early intervention training during the first year of life. The same system, in fact, could be used with infants at high risk for developmental motor disorder in order to evaluate any potential difference from control healthy infants.

  2. Hurricane genesis: on the breaking African easterly waves and critical layers

    NASA Astrophysics Data System (ADS)

    Asaadi, Ali; Brunet, Gilbert; Yau, Peter

    2015-04-01

    This study bring new understanding on the decades-old hurricane genesis problem that starts with westward travelling African easterly waves that can evolve into coherent cyclonic vortices depending on their strength and other nonlinear wave breaking processes. In general, observations indicate that only a small fraction of the African easterly waves that occur in a single hurricane season contribute to tropical cyclogenesis. However, this small fraction includes a large portion of named storms. In addition, a recent study by Dunkerton et al. (2009) has shown that named storms in the Atlantic and eastern Pacific basins are almost all associated with a cyclonic Kelvin "cat's eye" of a tropical easterly wave typical of critical layers, located equatorward of the easterly jet axis. To better understand the dynamics involved in hurricane genesis, the flow characteristics and the physical and dynamical mechanisms by which easterly waves form cat's eyes are investigated with the help of atmospheric reanalyzes and numerical simulations. We perform a climatological study of developing easterly waves covering the 1998-2001 hurricane seasons using ERA-Interim 6-hourly reanalysis data. Composite analyses for all named storms show a monotonic potential vorticity (PV) profile with weak meridional PV gradient and a cyclonic (i.e., south of the easterly jet axis) critical line for time periods of several days preceding the cat's eye formation. In addition, the developing PV anomaly composite shows a statistically significant companion wave-packet of non-developing easterly waves. A barotropic shallow water model is used to study the initial value and forced problems of disturbances on a parabolic jet and realistic profiles associated with weak basic state meridional PV gradients, leading to Kelvin cat's eye formation around the jet axis. The results highlight the synergy of the dynamical mechanisms, including wave breaking and PV redistribution within the nonlinear critical layer characterized by weak PV gradients, and the thermodynamical mechanisms such as convectively generated PV anomalies in the cat's eye formation in tropical cyclogenesis. These findings are consistent with the analytical theory of free and forced disturbances to an easterly parabolic jet (Brunet and Warn, 1990; Brunet and Haynes, 1995; Choboter et al., 2000). 1) Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587-5646. 2) Brunet, G., and T. Warn, 1990: Rossby Wave Critical Layers on a Jet. J. Atmos. Sci., 47, 1173-1178. 3) Brunet, and P. H. Haynes, 1995: The Nonlinear Evolution of Disturbances to a Parabolic Jet. J. Atmos. Sci., 52, 464-477. 4) Choboter, P. F., G. Brunet, and S. A. Maslowe, 2000: Forced Disturbances in a Zero Absolute Vorticity Gradient Environment. J. Atmos. Sci., 57, 1406-1419.

  3. Environmental Assessment for Proposed Royal Saudi Air Force F-15SA Beddown, Mountain Home AFB

    DTIC Science & Technology

    2012-08-01

    construction footprints was added to the area of potential ground disturbance. This area comprises a total of 14.08 acres for all projects. As yet...Affected Area (square feet)2 Potential Ground Disturbance (acres) New Impervious Surface (acres) January 2013-July 2013 Aircraft Parking... surface up to and including 3,000 feet above ground level (AGL) within a 5.9 statute mile radius of the airfield. Under the control of the Mountain Home

  4. Active vibration control on a quarter-car for cancellation of road noise disturbance

    NASA Astrophysics Data System (ADS)

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  5. Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Jiancheng; Zhu, Fanglai

    2018-03-01

    In this paper, the output consensus of a class of linear heterogeneous multi-agent systems with unmatched disturbances is considered. Firstly, based on the relative output information among neighboring agents, we propose an asymptotic sliding-mode based consensus control scheme, under which, the output consensus error can converge to zero by removing the disturbances from output channels. Secondly, in order to reach the consensus goal, we design a novel high-order unknown input observer for each agent. It can estimate not only each agent's states and disturbances, but also the disturbances' high-order derivatives, which are required in the control scheme aforementioned above. The observer-based consensus control laws and the convergence analysis of the consensus error dynamics are given. Finally, a simulation example is provided to verify the validity of our methods.

  6. Formation mechanism of orderly structures in Au films deposited on silicone oil surfaces [rapid communication

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2005-06-01

    An optical microscopy study of ordered structures, namely bands, and self-organized phenomena in a continuous gold film system deposited on silicone oil surfaces is presented. The bands are composed of a large number of parallel keys with different width w but nearly uniform length L; the characteristic length of the bands is of the order of 101 102 μm. After disturbed with an external force, the growth process of the bands is observed directly. The experiment indicates that the formation mechanism of bands can be explained in terms of the relaxation of the compressive stress, which mainly results from the characteristic boundary condition of the nearly free sustained films.

  7. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng

    2011-01-01

    In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.

  8. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  9. Discovery of Ubiquitous Fast Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; hide

    2016-01-01

    High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in one or both of the chromosphere or transition region at a speed much higher than the sound speed. The CLASP/SJ instrument provides a time series of 2D images taken with broadband filters centered on the Ly(alpha) line at a 0.6 s cadence. The fast propagating intensity disturbances are detected in the quiet Sun and in an active region, and at least 20 events are clearly detected in the field of view of 527'' x 527'' during the 5-minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km/s, and they are comparable to the local Alfven speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is of about 10'', and the widths are a few arcseconds, which is almost determined by the pixel size of 1.''03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation of the fast propagating intensity disturbances observed by CLASP is magneto-hydrodynamic fast mode waves.

  10. Exploring Ackermann and LQR stability control of stochastic state-space model of hexacopter equipped with robotic arm

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. N.; Akkad, M. A. Al; Abramov, I. V.

    2018-05-01

    This paper discusses the control of Unmanned Aerial Vehicles (UAVs) for active interaction and manipulation of objects. The manipulator motion with an unknown payload was analysed concerning force and moment disturbances, which influence the mass distribution, and the centre of gravity (CG). Therefore, a general dynamics mathematical model of a hexacopter was formulated where a stochastic state-space model was extracted in order to build anti-disturbance controllers. Based on the compound pendulum method, the disturbances model that simulates the robotic arm with a payload was inserted into the stochastic model. This study investigates two types of controllers in order to study the stability of a hexacopter. A controller based on Ackermann’s method and the other - on the linear quadratic regulator (LQR) approach - were presented. The latter constitutes a challenge for UAV control performance especially with the presence of uncertainties and disturbances.

  11. Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats

    PubMed Central

    Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.

    2013-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060

  12. Ambient seismic wave field

    PubMed Central

    NISHIDA, Kiwamu

    2017-01-01

    The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015

  13. Effects of plasma drag on low Earth orbiting satellites due to solar forcing induced perturbations and heating

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.; Weigel, Robert S.

    2015-07-01

    The upper atmosphere changes significantly in temperature, density and composition as a result of solar cycle variations, which causes severe storms and flares, and increases in the amount of absorbed solar radiation from solar energetic events. Satellite orbits are consequently affected by this process, especially those in low Earth orbit (LEO). In this paper, we present a model of atmospheric drag effects on the trajectory of two hypothetical LEO satellites of different ballistic coefficients, initially injected at h = 450 km. We investigate long-term trends of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during short intervals of strong geomagnetic disturbances or magnetic storms. We show dependence of orbital decay on the severity of both solar cycle and phase and the extent of geomagnetic perturbations. The result of the model compares well with observed decay profile of some existing LEO satellites and provide a justification of the theoretical considerations used here.

  14. The intra-articular pressure of the shoulder: an experimental study on the role of the glenoid labrum in stabilizing the joint.

    PubMed

    Habermeyer, P; Schuller, U; Wiedemann, E

    1992-01-01

    It was shown on human corpses that the glenohumeral joint may be compared to a piston surrounded by a valve. The glenoid labrum, then, should work like the valve block, sealing the joint from atmospheric pressure. In order to test this hypothesis, 18 human shoulder preparations were studied. The mean stabilizing force obtained by atmospheric pressure was 146 N. Additionally, 15 patients without any sign of instability and 17 patients with an anterior instability of the shoulder were tested under general anesthesia. In stable shoulder joints, traction at the arm caused negative intra-articular pressure that could be correlated to the amount of force exerted. In contrast, unstable shoulder joints with a tear of the glenoid labrum (Bankart lesion) did not exhibit this phenomenon. For unstable shoulder joints, the piston-and-valve model is no longer valid. This enlarges the current concept of shoulder joint stability in two ways: (a) the absence of negative intra-articular pressure disturbs joint mechanics and (b) altered pressure receptors might disturb motor coordination that dynamically protects the shoulder from dislocating forces.

  15. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep.

    PubMed

    Randerath, Winfried; Verbraecken, Johan; Andreas, Stefan; Arzt, Michael; Bloch, Konrad E; Brack, Thomas; Buyse, Bertien; De Backer, Wilfried; Eckert, Danny Joel; Grote, Ludger; Hagmeyer, Lars; Hedner, Jan; Jennum, Poul; La Rovere, Maria Teresa; Miltz, Carla; McNicholas, Walter T; Montserrat, Josep; Naughton, Matthew; Pepin, Jean-Louis; Pevernagie, Dirk; Sanner, Bernd; Testelmans, Dries; Tonia, Thomy; Vrijsen, Bart; Wijkstra, Peter; Levy, Patrick

    2017-01-01

    The complexity of central breathing disturbances during sleep has become increasingly obvious. They present as central sleep apnoeas (CSAs) and hypopnoeas, periodic breathing with apnoeas, or irregular breathing in patients with cardiovascular, other internal or neurological disorders, and can emerge under positive airway pressure treatment or opioid use, or at high altitude. As yet, there is insufficient knowledge on the clinical features, pathophysiological background and consecutive algorithms for stepped-care treatment. Most recently, it has been discussed intensively if CSA in heart failure is a "marker" of disease severity or a "mediator" of disease progression, and if and which type of positive airway pressure therapy is indicated. In addition, disturbances of respiratory drive or the translation of central impulses may result in hypoventilation, associated with cerebral or neuromuscular diseases, or severe diseases of lung or thorax. These statements report the results of an European Respiratory Society Task Force addressing actual diagnostic and therapeutic standards. The statements are based on a systematic review of the literature and a systematic two-step decision process. Although the Task Force does not make recommendations, it describes its current practice of treatment of CSA in heart failure and hypoventilation. Copyright ©ERS 2017.

  16. Continuous uniformly finite time exact disturbance observer based control for fixed-time stabilization of nonlinear systems with mismatched disturbances

    PubMed Central

    Liu, Chongxin; Liu, Hang

    2017-01-01

    This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966

  17. The strengths of r- and K-selection shape diversity-disturbance relationships.

    PubMed

    Bohn, Kristin; Pavlick, Ryan; Reu, Björn; Kleidon, Axel

    2014-01-01

    Disturbance is a key factor shaping species abundance and diversity in plant communities. Here, we use a mechanistic model of vegetation diversity to show that different strengths of r- and K-selection result in different disturbance-diversity relationships. R- and K-selection constrain the range of viable species through the colonization-competition tradeoff, with strong r-selection favoring colonizers and strong K-selection favoring competitors, but the level of disturbance also affects the success of species. This interplay among r- and K-selection and disturbance results in different shapes of disturbance-diversity relationships, with little variation of diversity with no r- and no K-selection, a decrease in diversity with r-selection with disturbance rate, an increase in diversity with K-selection, and a peak at intermediate values with strong r- and K-selection. We conclude that different disturbance-diversity relationships found in observations may reflect different intensities of r- and K-selection within communities, which should be inferable from broader observations of community composition and their ecophysiological trait ranges.

  18. A fast algorithm for automatic detection of ionospheric disturbances: DROT

    NASA Astrophysics Data System (ADS)

    Efendi, Emre; Arikan, Feza

    2017-06-01

    Solar, geomagnetic, gravitational and seismic activities cause disturbances in the ionospheric region of upper atmosphere that may disrupt or lower the quality of space based communication, navigation and positioning system signals. These disturbances can be categorized with respect to their amplitude, duration and frequency. Typically in the literature, ionospheric disturbances are investigated with gradient based methods on Total Electron Content (TEC) data estimated from ground based dual frequency Global Positioning System (GPS) receivers. In this study, a fast algorithm is developed for the automatic detection of the variability in Slant TEC (STEC) data. STEC is defined as the total number of electrons on the ray path between the ground based receiver and GPS satellite in the orbital height of 20,000 km. The developed method, namely, Differential Rate of TEC (DROT), is based on Rate of Tec (ROT) method. ROT is widely used in the literature and it is usually applied to Vertical TEC (VTEC) that corresponds to the projection of STEC to the vertical direction along the ray path at the Ionospheric Pierce Point (IPP) using a mapping function. The developed DROT method can be defined as the normalized metric norm between the ROT and its baseband trend structure. In this study, the performance of DROT is determined using synthetic data with variable bounds on the parameter set of amplitude, frequency and duration of disturbance. It is observed that DROT method can detect disturbances in three categories. For DROT values less than 50%, there is no significant disturbance in STEC data. For DROT values between 50% and 70%, a medium scale disturbance can be observed. For DROT values over 70%, severe disturbances such as Large Scale Traveling Ionospheric Disturbances (LSTIDs) can be observed. DROT method is highly sensitive to the amplitude of the wave-like oscillations. For a disturbance amplitude as low as 1.01 TECU, the disturbances that have durations longer than or equal to 20 min and frequencies higher than 1.095 mHz; or frequencies higher than 0.511 mHz and durations longer than 55 min can be detected automatically with DROT values of 50%. When DROT method is applied to midlatitude STEC values for disturbed days, it is observed that DROT method can detect the disturbances in near-real time, even if the GPS data from the station is uploaded with 15 min intervals.

  19. Sonoran pronghorn habitat use on landscapes disturbed by military activities

    USGS Publications Warehouse

    Krausman, P.R.; Harris, L.K.; Haas, S.K.; Koenen, Kiana K. G.; Devers, P.; Bunting, D.; Barb, M.

    2005-01-01

    The Sonoran pronghorn (Antilocapra americana sonoriensis) population in the United States declined to ???33 animals in January 2003. Low population numbers and unstable recruitment are concerns for biologists managing this subspecies. We examined habitat use by pronghorn from 1999 to 2002 on a portion of the Barry M. Goldwater Range (BMGR) used for military exercises. We overlaid locations of pronghorn (n= 1,203) on 377 1-km2 blocks within the North (NTAC) and South Tactical Ranges (STAC), BMGR; we classified vegetation associations and disturbance status (e.g., airfields, targets, roads) for each block. Locations of pronghorn were distributed in proportion to vegetation associations on NTAC and STAC. Sightings of pronghorns were biased toward disturbed blocks, with 73% of locations of pronghorn occurring in proximity to mock airfields, high-explosive hills (e.g., targets for live high-explosive bombs and rockets), other targets, and roads. Disturbed landscapes on the BMGR may attract Sonoran pronghorn by creating favorable forage. Habitat manipulations simulating the effects of military disturbances on the landscape (e.g., improved forage) may improve remaining Sonoran pronghorn habitat. Antilocapra americana sonoriensis, Barry M. Goldwater Air Force Range, disturbed habitat, habitat availability, habitat use, military activity, Sonoran pronghorn.

  20. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles.

    PubMed

    Eklund, T

    1985-01-01

    The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta pH across the membrane, while leaving delta psi much less disturbed indicating that transport inhibition by neutralization of the protonmotive force cannot be the only mechanism of action for the food preservatives tested.

  1. Supplemental Environmental Assessment to the U.S. Air Force February 1995 Environmental Assessment for the California Spaceport

    DTIC Science & Technology

    2011-08-01

    communities are adapted to periodic burning, and many plant species re-sprout readily after fire. Where disturbances are more frequent and intense...and missile operations include the following: continue supporting Air Force Space Command; incorporate flexibility that will permit adaptation to...designated critical habitat for southern steelhead trout located on VAFB (USAF 2011e). Abalone are gastropods Supplemental Environmental Assessment to the

  2. Steady state micro-g environment on Space Station

    NASA Technical Reports Server (NTRS)

    Waters, L.; Heck, M.; Deryder, L.

    1988-01-01

    In circular earth orbit, the Space Station (SS) will sense acceleration from external environmental forces due to the gravitational gradient, rotational accelerations, and atmospheric drag. This paper discusses these forces and how they will affect the SS micro-g environment. The effect of SS attitude on the micro-g profile is addressed. Sources for nonsteady state acceleration levels for which disturbance models are currently being developed are briefly considered.

  3. Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Abdrashitov, G.

    1943-01-01

    An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.

  4. Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.

    Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.

  5. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC technique. Keywords: Satellite, Dynamic Damping, Attitude Control, AFC Technique,

  6. Pointing control system design and performance evaluation of TPF coronagraph

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Chia; Blaurock, Carl; Mosier, Gary E.

    2004-09-01

    The Terrestrial Planet Finder (TPF) project aims to detect and characterize extra-solar Earth-like planets. The coronagraph telescope is one of the two mission concepts being studied. To reject the star flux and detect the planet flux in the visible light range, the coronagraph telescope must achieve a rejection ratio on the order of a billion to one. Dynamic jitter, introduced by environmental and on-board mechanical disturbances, degrades the optical performance, as characterized primarily by contrast ratio. The feasibility of using passive vibration isolation combined with active attitude and line-of-sight (LOS) control systems to stabilize the spacecraft and the optical components to the requisite level is being studied. The telescope is also required to slew between targets or rotate around the LOS. The slew mode control law must be designed to balance the need for efficient large-angle maneuvers while simultaneously avoiding the excitation of flexible modes in order to minimize settling time. This paper provides an overview of the current control design concept and sensor/actuator topology for TPF Coronagraph and illustrates the fine pointing performance of the telescope. This performance is primarily a function of the rejection of high-frequency dynamic disturbances, in this case due to reaction wheel disturbance forces/torques transmitted through the passive isolation stage. Trade studies between isolator force rejection and disturbance level reduction via wheel redesign are also presented to illustrate the requirements imposed on current technologies. Finally, the paper summarizes preliminary results on the slew/settle performance of the telescope.

  7. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection.

    PubMed

    Canuto, Enrico; Acuña-Bravo, Wilber; Agostani, Marco; Bonadei, Marco

    2014-07-01

    Solenoid current regulation is well-known and standard in any proportional electro-hydraulic valve. The goal is to provide a wide-band transfer function from the reference to the measured current, thus making the solenoid a fast and ideal force actuator within the limits of the power supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the voltage bound and the Nyquist frequency of the regulator. Typical analog regulators include three main terms: a feedforward channel, a proportional feedback channel and the electromotive force compensation. The latter compensation may be accomplished by integrative feedback. Here the problem is faced through a model-based design (Embedded Model Control), on the basis of a wide-band embedded model of the solenoid which includes the effect of eddy currents. To this end model parameters must be identified. The embedded model includes a stochastic disturbance dynamics capable of estimating and correcting the electromotive contribution together with parametric uncertainty, variability and state dependence. The embedded model which is fed by the measured current and the supplied voltage becomes a state predictor of the controllable and disturbance dynamics. The control law combines reference generator, state feedback and disturbance rejection to dispatch the PWM amplifier with the appropriate duty cycle. Modeling, identification and control design are outlined together with experimental result. Comparison with an existing analog regulator is also provided. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A dynamic load estimation method for nonlinear structures with unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.

    2018-02-01

    A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear structure with accurate results even with measurement noise, model error and environmental disturbances.

  9. A Fast Algorithm for Automatic Detection of Ionospheric Disturbances Using GPS Slant Total Electron Content Data

    NASA Astrophysics Data System (ADS)

    Efendi, Emre; Arikan, Feza; Yarici, Aysenur

    2016-07-01

    Solar, geomagnetic, gravitational and seismic activities cause disturbances in the ionospheric region of upper atmosphere for space based communication, navigation and positioning systems. These disturbances can be categorized with respect to their amplitude, duration and frequency. Typically in the literature, ionospheric disturbances are investigated with gradient based methods on Total Electron Content (TEC) data estimated from ground based dual frequency Global Positioning System (GPS) receivers. In this study, a detection algorithm is developed to determine the variability in Slant TEC (STEC) data. The developed method, namely Differential Rate of TEC (DRoT), is based on Rate of Tec (RoT) method that is widely used in the literature. RoT is usually applied to Vertical TEC (VTEC) and it can be defined as normalized derivative of VTEC. Unfortunately, the resultant data obtained from the application of RoT on VTEC suffer from inaccuracies due to mapping function and the resultant values are very noisy which make it difficult to automatically detect the disturbance due to variability in the ionosphere. The developed DRoT method can be defined as the normalized metric norm (L2) between the RoT and its baseband trend structure. In this study, the error performance of DRoT is determined using synthetic data with variable bounds on the parameter set of amplitude, frequency and period of disturbance. It is observed that DRoT method can detect disturbances in three categories. For DRoT values less than 50%, there is no significant disturbance in STEC data. For DRoT values between 50 to 70 %, a medium scale disturbance can be observed. For DROT values over 70 %, severe disturbances such Large Scale Travelling Ionospheric Disturbances (TID) or plasma bubbles can be observed. When DRoT is applied to the GPS-STECdata for stations in high latitude, equatorial and mid-latitude regions, it is observed that disturbances with amplitudes larger than 10% of the difference between the minimum and maximum values of STEC; frequencies higher than 0.15 mHz; and durations longer than 10 minutes can be automatically detected with more than 80% accuracy. This study is supported by TUBITAK EEAG 115E915 project.

  10. Global scale equatorial ionization anomaly (EIA) response to magnetospheric disturbances based on the May-June 1987 SUNDIAL-coordinated observations

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Walker, G. O.; Reddy, B. M.; de Paula, E. R.; Sobral, J. H. A.; Fejer, B. G.

    1993-07-01

    Equatorial ionization anomaly (EIA) responses to magnetospheric disturbances have been investigated using ionosonde and geomagnetic data sets obtained for different longitude sectors during the 9-day (28 May-7 June) globally-coordinated SUNDIAL 87 campaign. Attention is focused on the EIA response features of the two magnetically most-disturbed days of the campaign window, 29 May and 6 June. Anomalous EIA inhibition and development were simultaneously observed at widely separated (American and Asian) longitude sectors, accompanied respectively by events of morning electrojet reversal and evening partial ring current development. A numerical model of the low-latitude ionosphere has been used to quantify the role that a disturbance electric field could play in the observed EIA response features. The implications of the results on the global low-latitude disturbance electric field pattern is discussed.

  11. Main Battle Tank Flexible Gun Tube Disturbance Model: Three-Segment Model

    DTIC Science & Technology

    2002-10-01

    Laplace transform of equation (1) yields Ix,(s) F. (s)l [a] o2(s)[ = 2 , (s) (2) Theelmets f a]and[ 0{2(S) jjSO,(S)13o( s )) oP (S)J The elements of [a...contain the actuator force, F,, and the actuator displacement, x,, in addition to disturbances (s2y,(s), sOp( s ), Op (s)) and the responses 01(s), 02(s), •3...function. The portion of the response due to the disturbance is X, (s) B2 B13 B14 1fs2y(s) 2°s(s) B4 s OP (s) J (7) 02(S) B2 B33 B34 op (S)J 103S) -B2

  12. Effects of climate change on ecological disturbances [Chapter 8

    Treesearch

    Danielle M. Malesky; Barbara J. Bentz; Gary R. Brown; Andrea R. Brunelle; John M. Buffington; Linda M. Chappell; R. Justin DeRose; John C. Guyon; Carl L. Jorgensen; Rachel A. Loehman; Laura L. Lowrey; Ann M. Lynch; Marek Matyjasik; Joel D. McMillin; Javier E. Mercado; Jesse L. Morris; Jose F. Negron; Wayne G. Padgett; Robert A. Progar; Carol B. Randall

    2018-01-01

    This chapter describes disturbance regimes in the Intermountain Adaptation Partnership (IAP) region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term "disturbance regime" describes the general temporal and spatial characteristics of a disturbance agent (e.g., insects, disease, fire, weather, human...

  13. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress.

    PubMed

    Roussel, Jean-Romain; Clair, Bruno

    2015-12-01

    To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Influences on Teaching Style in Work with Disturbed Preschoolers.

    ERIC Educational Resources Information Center

    Lasher, Miriam G.; And Others

    Teaching styles of five teacher trainees and one experienced teacher were observed. Teachers worked in pairs with groups of four to five disturbed preschool children. Six 10-minute observations of each teacher were made during the year by direct observation and video tape recording. Observe actions and verbalizations of teachers and children were…

  15. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NASA Astrophysics Data System (ADS)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have long-term effects on ecosystems. Our synthetic simulations show that while tropical ecosystems uptake may reach pre-disturbance level after a decade, biomass stocks would most likely need more than a century to recover from a single extreme disturbance event.

  16. Error-tradeoff and error-disturbance relations for incompatible quantum measurements.

    PubMed

    Branciard, Cyril

    2013-04-23

    Heisenberg's uncertainty principle is one of the main tenets of quantum theory. Nevertheless, and despite its fundamental importance for our understanding of quantum foundations, there has been some confusion in its interpretation: Although Heisenberg's first argument was that the measurement of one observable on a quantum state necessarily disturbs another incompatible observable, standard uncertainty relations typically bound the indeterminacy of the outcomes when either one or the other observable is measured. In this paper, we quantify precisely Heisenberg's intuition. Even if two incompatible observables cannot be measured together, one can still approximate their joint measurement, at the price of introducing some errors with respect to the ideal measurement of each of them. We present a tight relation characterizing the optimal tradeoff between the error on one observable vs. the error on the other. As a particular case, our approach allows us to characterize the disturbance of an observable induced by the approximate measurement of another one; we also derive a stronger error-disturbance relation for this scenario.

  17. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process.

    PubMed

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-01-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force (F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force (F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  18. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-07-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force ( F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force ( F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  19. Application of the concept of dynamic trim control to automatic landing of carrier aircraft. [utilizing digital feedforeward control

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1980-01-01

    The results of a simulation study of an alternative design concept for an automatic landing control system are presented. The alternative design concept for an automatic landing control system is described. The design concept is the total aircraft flight control system (TAFCOS). TAFCOS is an open loop, feed forward system that commands the proper instantaneous thrust, angle of attack, and roll angle to achieve the forces required to follow the desired trajector. These dynamic trim conditions are determined by an inversion of the aircraft nonlinear force characteristics. The concept was applied to an A-7E aircraft approaching an aircraft carrier. The implementation details with an airborne digital computer are discussed. The automatic carrier landing situation is described. The simulation results are presented for a carrier approach with atmospheric disturbances, an approach with no disturbances, and for tailwind and headwind gusts.

  20. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  1. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    NASA Astrophysics Data System (ADS)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  2. Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

    PubMed Central

    Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang

    2014-01-01

    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556

  3. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  4. Non-normality and classification of amplification mechanisms in stability and resolvent analysis

    NASA Astrophysics Data System (ADS)

    Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.

    2018-05-01

    Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.

  5. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia.

    PubMed

    Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Rizzi, Giorgio; Ferrigno, Giancarlo; Nardocci, Nardo

    2012-07-23

    Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment.The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns.

  6. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia

    PubMed Central

    2012-01-01

    Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns. PMID:22824547

  7. Noise and disturbance of qubit measurements: An information-theoretic characterization

    NASA Astrophysics Data System (ADS)

    Abbott, Alastair A.; Branciard, Cyril

    2016-12-01

    Information-theoretic definitions for the noise associated with a quantum measurement and the corresponding disturbance to the state of the system have recently been introduced [F. Buscemi et al., Phys. Rev. Lett. 112, 050401 (2014), 10.1103/PhysRevLett.112.050401]. These definitions are invariant under relabeling of measurement outcomes, and lend themselves readily to the formulation of state-independent uncertainty relations both for the joint estimate of observables (noise-noise relations) and the noise-disturbance tradeoff. Here we derive such relations for incompatible qubit observables, which we prove to be tight in the case of joint estimates, and present progress towards fully characterizing the noise-disturbance tradeoff. In doing so, we show that the set of obtainable noise-noise values for such observables is convex, whereas the conjectured form for the set of obtainable noise-disturbance values is not. Furthermore, projective measurements are not optimal with respect to the joint-measurement noise or noise-disturbance tradeoffs. Interestingly, it seems that four-outcome measurements are needed in the former case, whereas three-outcome measurements are optimal in the latter.

  8. Quantum correlations from a room-temperature optomechanical cavity.

    PubMed

    Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M

    2017-06-23

    The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Quintessential inflation with α-attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulos, Konstantinos; Owen, Charlotte, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: c.owen@lancaster.ac.uk

    2017-06-01

    A novel approach to quintessential inflation model building is studied, within the framework of α-attractors, motivated by supergravity theories. Inflationary observables are in excellent agreement with the latest CMB observations, while quintessence explains the dark energy observations without any fine-tuning. The model is kept intentionally minimal, avoiding the introduction of many degrees of freedom, couplings and mass scales. In stark contrast to ΛCDM, for natural values of the parameters, the model attains transient accelerated expansion, which avoids the future horizon problem, while it maintains the field displacement mildly sub-Planckian such that the flatness of the quintessential tail is not liftedmore » by radiative corrections and violations of the equivalence principle (fifth force) are under control. In particular, the required value of the cosmological constant is near the eletroweak scale. Attention is paid to the reheating of the Universe, which avoids gravitino overproduction and respects nucleosynthesis constraints. Kination is treated in a model independent way. A spike in gravitational waves, due to kination, is found not to disturb nucleosynthesis as well.« less

  10. Quintessential inflation with α-attractors

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Konstantinos; Owen, Charlotte

    2017-06-01

    A novel approach to quintessential inflation model building is studied, within the framework of α-attractors, motivated by supergravity theories. Inflationary observables are in excellent agreement with the latest CMB observations, while quintessence explains the dark energy observations without any fine-tuning. The model is kept intentionally minimal, avoiding the introduction of many degrees of freedom, couplings and mass scales. In stark contrast to ΛCDM, for natural values of the parameters, the model attains transient accelerated expansion, which avoids the future horizon problem, while it maintains the field displacement mildly sub-Planckian such that the flatness of the quintessential tail is not lifted by radiative corrections and violations of the equivalence principle (fifth force) are under control. In particular, the required value of the cosmological constant is near the eletroweak scale. Attention is paid to the reheating of the Universe, which avoids gravitino overproduction and respects nucleosynthesis constraints. Kination is treated in a model independent way. A spike in gravitational waves, due to kination, is found not to disturb nucleosynthesis as well.

  11. Upper Atmospheric Response to the April 2010 Storm as Observed by GOCE, CHAMP, and GRACE and Modeled by TIME-GCM

    NASA Astrophysics Data System (ADS)

    Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean

    2014-05-01

    We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.

  12. Observations and assessment of forest carbon dynamics following disturbance in North America

    Treesearch

    S. J. Goetz; B. Bond-Lamberty; B. E. Law; J. A. Hicke; C. Huang; R. A. Houghton; S. McNulty; T. O’Halloran; M. Harmon; A. J. H. Meddens; E. M. Pfeifer; D. Mildrexler; E. S. Kasischke

    2012-01-01

    Disturbance processes of various types substantially modify ecosystem carbon dynamics both temporally and spatially, and constitute a fundamental part of larger landscape-level dynamics. Forests typically lose carbon for several years to several decades following severe disturbance, but our understanding of the duration and dynamics of post-disturbance forest carbon...

  13. Contact Disturbances, Self-Esteem and Life Satisfaction of University Students: A Structural Equation Modelling Study

    ERIC Educational Resources Information Center

    Tagay, Özlem

    2015-01-01

    Problem Statement: A literature analysis revealed that contact disturbances, self-esteem and life satisfaction have been examined in different studies separately. In particular, the researchers observed that the studies conducted on Gestalt contact disturbances are limited in number. In this study, the variables of contact disturbances,…

  14. Receptivity and Bypass Dynamics

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Criminale, W. O.; Joslin, R. D.; Jackson, T. L.

    1999-01-01

    Problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. Solutions to the temporal, initial-value problem .with an inhomogeneous forcing term imposed upon the flow are sought. It is shown that: (1) A transient disturbance lying located outside of the boundary layer can lead to the growth of an unstable Tollmein-Schlicting wave; (2) A resonance with the continuous spectrum may provide a mechanism for bypass transition; and (3) The continuum modes of a disturbance feed directly into the Tollmein-Schlicting wave downstream through non-parallel effects.

  15. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  16. Reconnaissance observations of long-term natural vegetation recovery in the Cape Thompson region, Alaska, and additions to the checklist of flora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, K.R.; Murray, B.M.; Murray, D.F.

    1985-06-01

    The diversity of disturbance types, landforms, vegetation and soils, together with the large, well-documented flora, makes Cape Thompson an ideal site to study long-term (20-year) environmental adjustments after impact. Man-caused disturbances there between 1958 and 1962 fall into three categories: runways, excavations and off-road vehicle trails. In addition, natural disturbance by frost action creates scars. Reestablished vegetation after 20 years consisted of species found in adjacent undisturbed landscapes. Vegetation on excavations and cut-and-fill surfaces consisted of 3 to 5% vascular plants, of which Deschampsia cespitosa and Sagina nivalis are the most important (in terms of cover and frequency) of themore » 33 species identified. Cryptogams generally made up less than 1% of the vegetation, with lichens showing the least reestablishment. Vehicle trails crossing both alkaline and acidic fell-fields are still visible. Dryas octopetala, dominant in the adjacent undisturbed tundra, has not been effective in either recolonizing the track areas or extending into the trail from either the center or sides. The tundra at Ogotoruk Creek has shown considerable resiliency in terms of reestablishment of vegetation, especially in the moister sites where bank slumping and lateral migration of vegetation is effective. On the more-exposed, better-drained sites, as on frost scars, the continuing interplay between physical and biological forces has prevented directional or progressive plant succession. 33 figs., 13 tabs.« less

  17. Computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  18. Uganda: Current Conditions and the Crisis in North Uganda

    DTIC Science & Technology

    2010-01-29

    for forced conscription and sexual exploitation.7 According to the United Nations the most disturbing aspect of this humanitarian crisis is the fact...have improved. These children are known as “Night Commuters.” Education for many of these children seems out of reach, since many are unable to stay...Children are losing vital educational opportunities; they are at greater risk for contracting HIV/AIDS and other STDs; and they are forced into child

  19. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly α line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in amore » field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s{sup −1}, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.« less

  1. Optical Investigation of Nanoconfined Crystal Growth

    NASA Astrophysics Data System (ADS)

    Kohler, F.; Dysthe, D. K.

    2015-12-01

    Crystals growing in a confined space exert forces on their surroundings. This crystallization force causes deformation of solids and is therefore particularly relevant for the comprehension of geological processes such as replacement and weathering [1]. In addition, these forces are relevant for the understanding of damages in porous building materials caused by crystallization, which is of great economical importance and fundamental for methods that can help to preserve our cultural heritage [2,3]. However, the exact behavior of the growth and the dissolution process in close contact to an interface are still not known in detail. The crystallization, the dissolution and the transport of material is mediated by a nanoconfined water film. We observe brittle NaClO3 crystals growing against a glass surface by optical methods such as reflective interference contrast microscopy (RICM) [4]. In order to carefully control the supersaturation of the fluid close to the crystal interface, a temperature regulated microfluidic system is used (fig. A). The interference based precision of RICM enables to resolve distance variations down to the sub nanometer range without any unwanted disturbances by the measuring method. The combination of RICM with a sensitive camera allows us to observe phenomena such as periodic, wavelike growth of atomic layers. These waves are particularly obvious when observing the difference between two consecutive images (fig. B). In contradiction to some theoretical results, which predict a smooth interface, some recent experiments have shown that the nanoconfined growth surfaces are rough. In combination with theoretical studies and Kinetic Monte Carlo simulations we aim at providing more realistic descriptions of surface energies and energy barriers which are able to explain the discrepancies between experiments and current theory. References:[1] Maliva, Diagenetic replacement controlled by force of crystallization, Geology, August (1988), v. 16 [2] G. W. Scherer, Cement and Concrete Research, 34 (2004) 1613[3] Flatt, R. J. , Caruso, F., Sanchez, A. S. A. and Scherer, G. W., Nature Communications, 5 (2014) 4832 [4] Sekine, S., Okamoto, A.,Hayashi, American Mineralogist, 96 (2011) 101

  2. Lunar tidal effects during the 2013 stratospheric sudden warming as simulated by the TIME-GCM

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Forbes, J. M.; Zhang, X.; Fejer, B. G.; Yudin, V. A.; Pedatella, N. M.

    2015-12-01

    Stratospheric Sudden Warmings (SSW) are associated with strong planetary wave activity in the winterpolar stratosphere which result in a very disturbed middle atmosphere. The changes in the middle atmospherealter the propagation conditions and the nonlinear interactions of waves and tides, and result in SSW signals in the upper atmosphere in e.g., neutral winds, electric fields, ionospheric currents and plasma distribution. The upper atmosphere changes can be significant at low-latitudes even during medium solar flux conditions. Observationsalso reveal a strong lunar signal during SSW periods in the low latitude vertical drifts and in ionospheric quantities. Forbes and Zhang [2012] demonstrated that during the 2009 SSW period the Pekeris resonance peak of the atmosphere was altered such that the M2 and N2 lunar tidal componentsgot amplified. This study focuses on the effect of the lunar tidal forcing on the thermosphere-ionosphere system during theJanuary 2013 SSW period. We employthe NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM)with a nudging scheme using the Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of meteorological forcing on the upper atmosphere. Additionally lunar tidal forcingis included at the lower boundary of the model. To delineate the lunar tidal effects a base simulation without lunar forcingis employed. Interestingly, Jicamarca observations of that period reveal a suppression of the daytime vertical drift before and after the drift enhancement due the SSW. The simulation suggests that the modulation of the vertical driftmay be caused by the interplay of the migrating solar and lunar semidiurnal tide, and therefore can only be reproduced by the inclusion of both lunar and solar tidal forcings in the model. In this presentation the changes due to the lunar tidal forcing will be quantified, and compared to observations.

  3. The interplay between climate change, forests, and disturbances.

    PubMed

    Dale, V H; Joyce, L A; McNulty, S; Neilson, R P

    2000-11-15

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.

  4. What drives uncertainty in model diagnoses of carbon dynamics in southern US forests: climate, vegetation, disturbance, or model parameters?

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gu, H.; Williams, C. A.

    2017-12-01

    Results from terrestrial carbon cycle models have multiple sources of uncertainty, each with its behavior and range. Their relative importance and how they combine has received little attention. This study investigates how various sources of uncertainty propagate, temporally and spatially, in CASA-Disturbance (CASA-D). CASA-D simulates the impact of climatic forcing and disturbance legacies on forest carbon dynamics with the following steps. Firstly, we infer annual growth and mortality rates from measured biomass stocks (FIA) over time and disturbance (e.g., fire, harvest, bark beetle) to represent annual post-disturbance carbon fluxes trajectories across forest types and site productivity settings. Then, annual carbon fluxes are estimated from these trajectories by using time since disturbance which is inferred from biomass (NBCD 2000) and disturbance maps (NAFD, MTBS and ADS). Finally, we apply monthly climatic scalars derived from default CASA to temporally distribute annual carbon fluxes to each month. This study assesses carbon flux uncertainty from two sources: driving data including climatic and forest biomass inputs, and three most sensitive parameters in CASA-D including maximum light use efficiency, temperature sensitivity of soil respiration (Q10) and optimum temperature identified by using EFAST (Extended Fourier Amplitude Sensitivity Testing). We quantify model uncertainties from each, and report their relative importance in estimating forest carbon sink/source in southeast United States from 2003 to 2010.

  5. Active Vibration Reduction of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0 mm, 3.75 mm, and 4.5 mm. Overall, the transmitted force was reduced to 2% of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under one watt. The test results will be used to guide future balancer designs.

  6. Active Vibration Reduction of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0, 3.75, and 4.5 mm. Overall, the transmitted force was reduced to 2 percent of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under 1 watt. The test results will be used to guide future balancer designs.

  7. Surface-layer turbulence, energy balance and links to atmospheric circulations over a mountain glacier in the French Alps

    NASA Astrophysics Data System (ADS)

    Litt, Maxime; Sicart, Jean-Emmanuel; Six, Delphine; Wagnon, Patrick; Helgason, Warren D.

    2017-04-01

    Over Saint-Sorlin Glacier in the French Alps (45° N, 6.1° E; ˜ 3 km2) in summer, we study the atmospheric surface-layer dynamics, turbulent fluxes, their uncertainties and their impact on surface energy balance (SEB) melt estimates. Results are classified with regard to large-scale forcing. We use high-frequency eddy-covariance data and mean air-temperature and wind-speed vertical profiles, collected in 2006 and 2009 in the glacier's atmospheric surface layer. We evaluate the turbulent fluxes with the eddy-covariance (sonic) and the profile method, and random errors and parametric uncertainties are evaluated by including different stability corrections and assuming different values for surface roughness lengths. For weak synoptic forcing, local thermal effects dominate the wind circulation. On the glacier, weak katabatic flows with a wind-speed maximum at low height (2-3 m) are detected 71 % of the time and are generally associated with small turbulent kinetic energy (TKE) and small net turbulent fluxes. Radiative fluxes dominate the SEB. When the large-scale forcing is strong, the wind in the valley aligns with the glacier flow, intense downslope flows are observed, no wind-speed maximum is visible below 5 m, and TKE and net turbulent fluxes are often intense. The net turbulent fluxes contribute significantly to the SEB. The surface-layer turbulence production is probably not at equilibrium with dissipation because of interactions of large-scale orographic disturbances with the flow when the forcing is strong or low-frequency oscillations of the katabatic flow when the forcing is weak. In weak forcing when TKE is low, all turbulent fluxes calculation methods provide similar fluxes. In strong forcing when TKE is large, the choice of roughness lengths impacts strongly the net turbulent fluxes from the profile method fluxes and their uncertainties. However, the uncertainty on the total SEB remains too high with regard to the net observed melt to be able to recommend one turbulent flux calculation method over another.

  8. Key landscape and biotic indicators of watersheds sensitivity to forest disturbance identified using remote sensing and historical hydrography data

    NASA Astrophysics Data System (ADS)

    Buma, Brian; Livneh, Ben

    2017-07-01

    Water is one of the most critical resources derived from natural systems. While it has long been recognized that forest disturbances like fire influence watershed streamflow characteristics, individual studies have reported conflicting results with some showing streamflow increases post-disturbance and others decreases, while other watersheds are insensitive to even large disturbance events. Characterizing the differences between sensitive (e.g. where streamflow does change post-disturbance) and insensitive watersheds is crucial to anticipating response to future disturbance events. Here, we report on an analysis of a national-scale, gaged watershed database together with high-resolution forest mortality imagery. A simple watershed response model was developed based on the runoff ratio for watersheds (n = 73) prior to a major disturbance, detrended for variation in precipitation inputs. Post-disturbance deviations from the expected water yield and streamflow timing from expected (based on observed precipitation) were then analyzed relative to the abiotic and biotic characteristics of the individual watershed and observed extent of forest mortality. The extent of the disturbance was significantly related to change in post-disturbance water yield (p < 0.05), and there were several distinctive differences between watersheds exhibiting post-disturbance increases, decreases, and those showing no change in water yield. Highly disturbed, arid watersheds with low soil: water contact time are the most likely to see increases, with the magnitude positively correlated with the extent of disturbance. Watersheds dominated by deciduous forest with low bulk density soils typically show reduced yield post-disturbance. Post-disturbance streamflow timing change was associated with climate, forest type, and soil. Snowy coniferous watersheds were generally insensitive to disturbance, whereas finely textured soils with rapid runoff were sensitive. This is the first national scale investigation of streamflow post-disturbance using fused gage and remotely sensed data at high resolution, and gives important insights that can be used to anticipate changes in streamflow resulting from future disturbances.

  9. [A five-year-old girl with epilepsy showing forced normalization due to zonisamide].

    PubMed

    Hirose, Mieko; Yokoyama, Hiroyuki; Haginoya, Kazuhiro; Iinuma, Kazuie

    2003-05-01

    A case of forced normalization in childhood is presented. When zonisamide was administered to a five-year-old girl with intractable epilepsy, disappearance of seizures was accompanied by severe psychotic episodes such as communication disturbance, personal relationship failure, and stereotyped behavior, which continued after the withdrawal of zonisamide. These symptoms gradually improved by administration of fluvoxamine, however epileptic attacks reappeared. Although most patients with forced normalization are adult and teenager, attention should be paid to this phenomenon as adverse psychotic effects of zonisamide even in young children. Fluvoxamine may be effective for the symptoms.

  10. The onset and growth of the 1990 equatorial disturbance on Saturn

    NASA Technical Reports Server (NTRS)

    Beebe, R. F.; Barnet, C.; Sada, P. V.; Murrell, A. S.

    1992-01-01

    Observational data are presented which are consistent with the generation of the Saturn equatorial surface brightenings observed in September, 1990, by a single convective disturbance which created constructively and destructively interfering wave patterns. The initial development, size, duration, and appearance of this storm are similar to the equatorial storms of 1876 and 1933. Attention is given to the motions of the initial convective disturbance and its expansion and mature phases.

  11. Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao

    2018-06-01

    This paper presents a distributed control law with disturbance observer for the autonomous assembly of a fleet of flexible spacecraft to construct a large flexible space structure. The fleet of flexible spacecraft is driven to the pre-assembly configuration firstly, and then to the desired assembly configuration. A distributed assembly control law with disturbance observer is proposed by treating the flexible dynamics as disturbances acting on the rigid motion of the flexible spacecraft. Theoretical analysis shows that the control law can actuate the fleet to the desired configuration. Moreover, the collision avoidance between the members is also considered in the process from initial configuration to pre-assembly configuration. Finally, a numerical example is presented to verify the feasibility of proposed mission planning and the effectiveness of control law.

  12. Freestream Effects on Boundary Layer Disturbances for HIFiRE-5 (Postprint)

    DTIC Science & Technology

    2015-01-01

    hypersonic wind tunnel . For Mach 6.5 and 7, there was no evidence of traveling crossflow waves . However, higher-frequency disturbances were observed. These...disturbances. The structure of these disturbances (phase velocity and wave angle) is similar in both wind tunnels . Coherence measurements in the ACE show that...These include detailed mapping of disturbance fields in the wind tunnel , including higher-frequency measurements, multi-point probe mea- surements to

  13. Ionospheric disturbance excited by the 2015 Kuchinoerabu-jima, southwest Japan, eruption

    NASA Astrophysics Data System (ADS)

    Aoki, Y.; Nishida, K.; Nakashima, Y.; Heki, K.

    2015-12-01

    Vertical displacements excited by volcanic eruptions, earthquakes, or tsunamis excites pressure waves in the atmosphere. The excited oscillation propagates to ionosphere where solar radiation ionize a part of atmosphere, resulting in a disturbance of the total electron content (TEC). Where numerous studies have reported ionospheric disturbance excited by earthquakes or tsunamis, much smaller number of studies have investigated that excited by volcanic eruptions. This study reports on the ionospheric disturbance excited by the 2015 Kuchinoerabu-jima eruption observed by continuous GPS observations. The 2015 Kuchinoerabu-jima eruption is a phreatomagmatic eruption occurred on 29 May 2015. The eruption is explosive with a column height up to 10,000 meters above the vent. The disturbance of TEC started from about 10 minutes after the eruption at approximately 100 km from the volcano. The disturbance then propagates outward for about 10 minutes. The velocity of pressure wave is estimated to be about 500 m/s, consistent with the average acoustic velocity in the ionosphere. The dominant frequency of the observed disturbance is about 11 mHz, much higher than the eigenfrequencies of Earth's atmosphere, 3.7 mHz and 4.4 mHz. The dominant frequency observed here might be related to the dominant frequency of the acoustic wave excited by the eruption and the dissipation of the medium. While the ionospheric disturbance associated with the 2003 Soufrière Hills lasted more than an hour, that in this study lasted only up to a few minutes. This difference might correspond to the difference in time scale of the excitation. The pressure wave excited by the eruption is also recorded by broadband seismometers in the Japanese islands. Our goal is thus to gain more insights into the mechanics of lithosphere-atmosphere-ionosphere coupling as well that of the 2015 Kuchinoerabu-jima eruption consisent with both seismic and GPS observations.

  14. Payload vibration isolation in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Alexander, Richard M.

    1990-01-01

    Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.

  15. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  16. Origins of hydrodynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  17. Quasi-finite-time control for high-order nonlinear systems with mismatched disturbances via mapping filtered forwarding technique

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Huang, X. L.; Lu, H. Q.

    2017-02-01

    In this study, a quasi-finite-time control method for designing stabilising control laws is developed for high-order strict-feedback nonlinear systems with mismatched disturbances. By using mapping filtered forwarding technique, a virtual control is designed to force the off-the-manifold coordinate to converge to zero in quasi-finite time at each step of the design; at the same time, the manifold is rendered insensitive to time-varying, bounded and unknown disturbances. In terms of standard forwarding methodology, the algorithm proposed here not only does not require the Lyapunov function for controller design, but also avoids to calculate the derivative of sign function. As far as the dynamic performance of closed-loop systems is concerned, we essentially obtain the finite-time performances, which is typically reflected in the following aspects: fast and accurate responses, high tracking precision, and robust disturbance rejection. Spring, mass, and damper system and flexible joints robot are tested to demonstrate the proposed controller performance.

  18. Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure

    NASA Astrophysics Data System (ADS)

    Elias, Laila M.; Dekens, Frank G.; Basdogan, Ipek; Sievers, Lisa A.; Neville, Timothy

    2003-02-01

    This paper presents a modeling methodology used to predict the performance of a flexible structure, such as a space telescope, in the presence of an on-board vibrational disturbance source, such as a reaction wheel assembly (RWA). Both decoupled and coupled analysis methods are presented. The decoupled method relies on blocked RWA disturbances, measured with the RWA hardmounted to a rigid surface. The coupled method corrects the blocked RWA disturbance boundary conditions using 'force filters' which depend on estimates of the interface accelerances of the RWA and spacecraft. Both methods were validated on the Micro-Precision Interferometer testbed at the Jet Propulsion Laboratory. Experimental results are encouraging, indicating that both methods provide sufficient accuracy compared to measured values; however, the coupled method provides the best results when the gyroscopic nature of the spinning RWA is captured in the RWA accelerance model. Additionally, the RWA disturbance cross spectral density terms are found to be influential.

  19. The Effect of Part-simulation of Weightlessness on Human Control of Bilateral Teleoperation: Neuromotor Considerations

    NASA Technical Reports Server (NTRS)

    Corker, K.; Bejczy, A. K.

    1984-01-01

    The effect of weightlessness on the human operator's performance in force reflecting position control of remote manipulators was investigated. A gravity compensation system was developed to simulate the effect of weightlessness on the operator's arm. A universal force reflecting hand controller (FRHC) and task simulation software were employed. Two experiments were performed because of anticipated disturbances in neuromotor control specification on the human operator in an orbital control environment to investigate: (1) the effect of controller stiffness on the attainment of a learned terminal position in the three dimensional controller space, and (2) the effect of controller stiffness and damping on force tracking of the contour of a simulated three dimensional cube using the part simulation of weightless conditions. The results support the extension of neuromotor control models, which postulate a stiffness balance encoding of terminal position, to three dimensional motion of a multilink system, confirm the existence of a disturbance in human manual control performance under gravity compensated conditions, and suggest techniques for compensation of weightlessness induced performance decrement through appropriate specification of hand controller response characteristics. These techniques are based on the human control model.

  20. Releasable Asbestos Field Sampler

    EPA Science Inventory

    Asbestos aerosolization (or releasability) is the potential for fibrous asbestos structures that are present in a material or on a solid surface to become airborne when the source is disturbed by human activities or natural forces. In turn, the magnitude of the airborne concentra...

  1. Midwinter Disturbances in the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Labitzke, K.

    1984-01-01

    The Middle Atmosphere is coupled to the troposphere during winter because planetary scale waves can propagate upwards if the prevailing winds are from the west. It is during this time of the year that the well-known midwinter disturbances are observed which ultimately affect the whole of the Middle Atmosphere. The mechanism of these disturbances is not completely understood. The large-scale circulation features up to the upper mesosphere are investigated to demonstrate the synoptic-scale behavior of the midwinter disturbances. Ground-based and satellite observations are combined. The interannual variability of the disturbances is discussed briefly. It is shown that the QBO (Quasi Biennial Oscillation) of the equatorial stratosphere appears to modulate the planetary waves during the northern winters, in the troposphere as well as in the Middle Atmosphere.

  2. Intraseasonal Oscillations over South America: A Study with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston

    2003-01-01

    The National Center for Atmospheric Research (NCAR) regional climate model version 2 (RegCM2) is used to investigate the observed characteristics of intraseasonal oscillations over South America. Our study is mainly concentrated on an intraseaonal mode, which is observed to account for a large portion of the intraseasonal variation, to have a standing feature and to be independent of the MJO. The NCEPDOE AMIP-II reanalysis is utilized to provide initial and lateral boundary conditions for the RegCM2 based upon the OOZ, 062, 122 and 182 data.Our results indicate that the intraseasonal oscillation still exists with time- averaged lateral boundary condition, which prevents the MJO and other outside disturbances from entering the model's domain, suggesting a locally forced oscillation responsible for ths intraseasonal mode independent of the MJO. Further experiments show that the annual and daily variabilities and a radiative-convective interaction are not essential to the locally forced intraseasonal oscillation. The intraseasonal oscillations over Amazon in our model essentially result from interactions among atmospheric continental- scale circulation, surface radiation, surface sensible and latent heat fluxes, and cumulus convection. The wavelet analyses of various surface energy fluxes and surface energy budget also verify that the primary cause of intraseasonal oscillation is the interaction of land surface processes with the atmosphere.

  3. Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.

    PubMed

    Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji

    2015-07-17

    Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.

  4. TOmographic Remote Observer of Ionospheric Disturbances

    DTIC Science & Technology

    2007-11-15

    ionosphere . The proposed spacecraft was an evolutionary design from the USUSat, Combat Sentinel, and USUSat II programs whose histories are shown in...Figure 1. The primary science instrument, TOROID for TOmographic Remote Observer of Ionospheric Disturbances, is a photometer for measuring the

  5. Modeling of Thermospheric Neutral Density Variations in Response to Geomagnetic Forcing using GRACE Accelerometer Data

    NASA Astrophysics Data System (ADS)

    Calabia, A.; Matsuo, T.; Jin, S.

    2017-12-01

    The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.

  6. Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood

    NASA Astrophysics Data System (ADS)

    Ikeshima, D.; Yamazaki, D.; Kanae, S.

    2016-12-01

    CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also by changing the input disturbance of "disturbed water storage", acceptable rate of uncertainty at the input may be discussed.

  7. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.

    PubMed

    Park, Hae-Won; Kim, Sangbae

    2015-03-25

    This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground height and model parameter variations.

  8. The dynamic behavior of an insoluble surfactant monolayer spreading on a thin liquid film

    NASA Astrophysics Data System (ADS)

    Matar, Omar Kamal

    The spreading of surface active material on thin liquid films is studied by investigating the dynamics of a finite reservoir of insoluble surfactant spreading on a thin layer of Newtonian liquid. The first part of this thesis examines the unperturbed spreading process. It is shown that Marangoni dominated spreading leads to large deformations in the underlying liquid layer which diminish when the relative contribution of surface diffusion, capillary and gravitational forces is increased. A comparison between experimental measurements of the film deformation obtained by Moiré topography with theoretical predictions, performed for the first time, reveals excellent agreement. This study also shows that the mass of surfactant that participates in the spreading is a miniscule fraction of the total mass deposited. Simulations of surfactant delivery in model pulmonary airways demonstrate the adverse effect of a non-uniform field of pre-existing contaminants on the spreading and the importance of its inclusion in determining an optimal set of conditions for rapid and efficacious spreading. The second part describes efforts aimed at identifying the physical mechanisms responsible for some unusual fingered spreading patterns observed experimentally. A linear stability analysis of self-similar solutions governing Marangoni dominated spreading in rectilinear geometry, conducted in the quasi-steady-state- approximation, predicts stable modes. A similar analysis including effects of surface diffusion and capillarity also yields asymptotically stable flow. A transient growth analysis of the non-normal operators governing the evolution of disturbances yields amplification of initially infinitesimal perturbations by orders of magnitude on time scales comparable to Marangoni shear times. Disturbances of all wavenumbers eventually decay in agreement with the long time analyses. Numerical simulations of the nonlinear governing equations, however, show that, for the parameter values considered, the large amplification is insufficient to drive sustained finger formation and unstable flow in the nonlinear regime. Simulations of mode coupling interactions reveal that coalescence of adjacent fingers leads to an overall shift of the fingering patterns to longer transverse length scales. Preliminary results also indicate that van der Waals forces can enhance the growth of transverse disturbances in the thinning region of the film leading to possible asymptotic growth.

  9. Disturbance to wintering western snowy plovers

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2001-01-01

    In order to better understand the nature of disturbances to wintering snowy plovers, I observed snowy plovers and activities that might disturb them at a beach near Devereux Slough in Santa Barbara, California, USA. Disturbance (activity that caused plovers to move or fly) to wintering populations of threatened western snowy plovers was 16 times higher at a public beach than at protected beaches. Wintering plovers reacted to disturbance at half the distance (∼40 m) as has been reported for breeding snowy plovers (∼80 m). Humans, dogs, crows and other birds were the main sources of disturbance on the public beach, and each snowy plover was disturbed, on average, once every 27 weekend min and once every 43 weekday min. Dogs off leash were a disproportionate source of disturbance. Plovers were more likely to fly from dogs, horses and crows than from humans and other shorebirds. Plovers were less abundant near trail heads. Over short time scales, plovers did not acclimate to or successfully find refuge from disturbance. Feeding rates declined with increased human activity. I used data from these observations to parameterize a model that predicted rates of disturbance given various management actions. The model found that prohibiting dogs and a 30 m buffer zone surrounding a 400 m stretch of beach provided the most protection for plovers for the least amount of impact to beach recreation.

  10. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations of actuator geometry in the supersonic base flow determined that inclined cavity and normal cavity actuators positioned on the base near the base edge could produce significant disturbances in the shear layer. The disturbances were able to be tracked in time with phase-locked schlieren imaging and particle image velocimetry (PIV). The final set of flow control experiments were therefore performed with an eight-actuator base using the inclined cavity actuator geometry. The actuators were able to cause moderate influences on the axisymmetric shear layer velocity profile and base pressure. The most substantial changes to the shear layer and base pressure were noted for the highest current and duty cycle tests. At 1 A and 20% duty cycle, the base pressure was reduced by 3.5%. Similar changes were noted for all modes and a range of frequencies from about 10-30 kHz. Increases in duty cycle between 4% and 20% caused a nearly linear decrease in base pressure. Analysis of the shear layer velocity profiles acquired through PIV show a local thickening of the shear layer in the region of the disturbances caused by the actuator. A slight increase in thickness was also observed away from the disturbance. Disturbances were able to be tracked at all frequencies and translated along the shear layer at a convective velocity of 430 +/- 20 m/s. A fairly clear trend of increasing velocity disturbance amplitude correlating to increasing base pressure changes was noted. Moreover, the ability of the disturbances to stay well organized further down the shear layer also appears to be a significant factor in the actuators' effect on base pressure. Consistent with these observations, it appears that increased duty cycle causes increased shear layer disturbance amplitudes. The use of PIV has enabled substantial insight to be gained into the effects of the actuators on the ensemble-averaged flow field and on the variability of the instantaneous flow field with and without control. A sensitive bimodal recirculation region behavior was found in the no-control flow field that the plasma actuators could force. The flow field and turbulence statistics in each mode were substantially different. Through analysis of past no-control base pressure measurements, it is believed that the bimodal behavior fluctuates at a characteristic frequency between 0.4 and 0.5 Hz [StD = [special character omitted](5x10-5)]. The flat time-averaged base pressure distribution is due to the superposition of a normally non-flat instantaneous base pressure distribution. Also, the standard deviation of the base pressure measurements is reduced when in one recirculation region mode as compared to when it is fluctuating between recirculation region modes.

  11. Disturbance, neutral theory, and patterns of beta diversity in soil communities.

    PubMed

    Maaß, Stefanie; Migliorini, Massimo; Rillig, Matthias C; Caruso, Tancredi

    2014-12-01

    Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.

  12. A new fuzzy-disturbance observer-enhanced sliding controller for vibration control of a train-car suspension with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Choi, Seung-Bok; Nguyen, Quoc Hung

    2018-05-01

    Semi-active train-car suspensions are always impacted negatively by uncertainty and disturbance (UAD). In order to deal with this, we propose a novel optimal fuzzy disturbance observer-enhanced sliding mode controller (FDO-SMC) for magneto-rheological damper (MRD)-based semi-active train-car suspensions subjected to UAD whose variability rate may be high but bounded. The two main parts of the FDO-SMC are an adaptive sliding mode controller (ad-SMC) and an optimal fuzzy disturbance observer (op-FDO). As the first step, the initial structures of the sliding mode controller (SMC) and disturbance observer (DO) are built. Adaptive update laws for the SMC and DO are then set up synchronously via Lyapunov stability analysis. Subsequently, an optimal fuzzy system (op-FS) is designed to fully implement a parameter constraint mechanism so as to guarantee the system stability converging to the desired state even if the UAD variability rate increases in a given range. As a result, both the ad-SMC and op-FDO are formulated. It is shown from the comparative work with existing controllers that the proposed method provides the best vibration control capability with relatively low consumed power.

  13. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System.

    PubMed

    Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang

    2017-12-06

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

  14. Studying the influence of strong meteorological disturbances in the Earth's lower atmosphere on variations of ionospheric parameters in the Asian region of Russia

    NASA Astrophysics Data System (ADS)

    Chernigovskaya, Marina; Kurkin, Vladimir; Orlov, Igor; Oinats, Alexey; Sharkov, Eugenii

    2010-05-01

    Short-period temporal variations of ionospheric parameters were analyzed to study probabilities of manifestation of strong meteorological disturbances in the Earth's lower atmosphere in variations of upper atmosphere parameters in a zone far removed from a disturbance source. In the analysis, we used data on maximum observed frequencies (MOF) of oblique sounding (OS) signals along Norilsk-Irkutsk, Magadan-Irkutsk, and Khabarovsk-Irkutsk paths in East Siberia and the Far East. These data were obtained during solar minimum at equinoxes (March, September) in 2008-2009. Analyzing effects of wave disturbances in ionospheric parameters, we take into account helio-geomagnetic and meteorological conditions in regions under study to do an effective separation between disturbances associated with magnetospheric-ionospheric coupling and those induced by the influence of the lower atmosphere on the upper one. The frequency analysis we conducted revealed time intervals with higher intensity of short-period oscillations which may have been interpreted as manifestation of large-scale traveling ionospheric disturbances (TIDs) whose sources were internal gravity waves (IGWs) with periods of 1-5 hours. The complex analysis of helio-geomagnetic, ionospheric, and atmospheric data as well as data on tropical cyclones established that the detected TIDs were unrelated to helio-geomagnetic disturbances (2008-2009 exhibited solar minimum and quiet geomagnetic conditions). The analysis of other potential sources of the observed short-period wave disturbances shows that observed TIDs do not always coincide in time with passage of local meteorological fronts through the region of subionospheric points of OS paths and are not associated with passage of solar terminator. An attempt was made to connect a number of detected TIDs with ionospheric responses to tropical cyclones (TC) which were in active phase in the north-west of the Pacific Ocean during the periods considered. A considerable increase in energy of short-period wave disturbances was observed along Khabarovsk-Irkutsk, Magadan-Irkutsk, and Norilsk-Irkutsk paths during the active tropical cyclogenesis in September 2008-2009. Intensity of the observed TIDs decreased as midpoints of OS paths moved westward away from potential IGW sources. Ionospheric responses to wave disturbance propagation from the same IGW sources differ in the OS paths under analysis. This must be associated with different geometry of the OS paths as well as with the fact that the IGW source under consideration changes in intensity and its coordinates (stages and motion paths of tropical cyclones) during TC development. Thus there is an angular dependence between the wave disturbance propagation direction and the line connecting midpoints of the OS paths. Velocities of wave disturbance propagation (~90-170 m/s) were measured from the delay period of TIDs passage in regions of midpoints of spaced-apart OS paths. Short-period TIDs can also be observed at spring equinox in March 2008-2009 under quiet helio-geomagnetic conditions and in the absence of active tropical cyclones in the north-west of the Pacific Ocean, but TIDs energy is much lower than that in autumn. Authors note it was not possible to identify potential IGW sources for some TIDs within the scope of this work. These TIDs may be related to ionospheric responses to seasonal transitions in the upper atmosphere dynamic regime during the equinoxes under study. Further systematic investigations in this area of study are required to store statistics of observations of ionospheric responses to strong meteorological disturbances. The study was supported by the RFBR grant № 09-05-00760.

  15. Haptograph Representation of Real-World Haptic Information by Wideband Force Control

    NASA Astrophysics Data System (ADS)

    Katsura, Seiichiro; Irie, Kouhei; Ohishi, Kiyoshi

    Artificial acquisition and reproduction of human sensations are basic technologies of communication engineering. For example, auditory information is obtained by a microphone, and a speaker reproduces it by artificial means. Furthermore, a video camera and a television make it possible to transmit visual sensation by broadcasting. On the contrary, since tactile or haptic information is subject to the Newton's “law of action and reaction” in the real world, a device which acquires, transmits, and reproduces the information has not been established. From the point of view, real-world haptics is the key technology for future haptic communication engineering. This paper proposes a novel acquisition method of haptic information named “haptograph”. The haptograph visualizes the haptic information like photograph. The proposed haptograph is applied to haptic recognition of the contact environment. A linear motor contacts to the surface of the environment and its reaction force is used to make a haptograph. A robust contact motion and sensor-less sensing of the reaction force are attained by using a disturbance observer. As a result, an encyclopedia of contact environment is attained. Since temporal and spatial analyses are conducted to represent haptic information as the haptograph, it is possible to be recognized and to be evaluated intuitively.

  16. 76 FR 25548 - Safety Zone; Coast Guard Use of Force Training Exercises, San Pablo Bay, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... disturbances to waterfowl and referenced a study by the USGS confirming foraging areas in San Pablo Bay are used by diving ducks. In the Consistency Determination, the USGS was contacted and determined that the...

  17. Addressing neuropsychiatric disturbances during rehabilitation after traumatic brain injury: current and future methods

    PubMed Central

    Arciniegas, David B.

    2011-01-01

    Cognitive, emotional, behavioral, and sensorimotor disturbances are the principal clinical manifestations of traumatic brain injury (TBI) throughout the early postinjury period. These post-traumatic neuropsychiatric disturbances present substantial challenges to patients, their families, and clinicians providing their rehabilitative care, the optimal approaches to which remain incompletely developed. In this article, a neuropsychiairically informed, neurobiologically anchored approach to understanding and meeting challenges is described. The foundation for thai approach is laid, with a review of clinical case definitions of TBI and clarification of their intended referents. The differential diagnosis of event-related neuropsychiatric disturbances is considered next, after which the clinical and neurobiological heterogeneity within the diagnostic category of TBI are discussed. The clinical manifestations of biomechanical force-induced brain dysfunction are described as a state of post-traumatic encephalopathy (PTE) comprising several phenomenologically distinct stages, PTE is then used as a framework for understanding and clinically evaluating the neuropsychiatric sequelae of TBI encountered commonly during the early post-injury rehabilitation period, and for considering the types and timings of neurorehabilitative interventions. Finally, directions for future research that may address productively the challenges to TBI rehabilitation presented by neuropsychiatric disturbances are considered. PMID:22034400

  18. Towards Understanding the Mechanism of Receptivity and Bypass Dynamics in Laminar Boundary Layers

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Criminale, W. O.; Joslin, R. D.; Jackson, T. L.

    1999-01-01

    Three problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. The first problem is the calculation of resonance within the continuous spectrum of the Blasius boundary layer. The second is calculation of the growth of Tollmien-Schlichting waves that are a direct result of disturbances that only lie outside of the boundary layer. And, the third problem is the calculation of non-parallel effects. Together, these problems represent a unified approach to the study of freestream disturbance effects that could lead to transition. Solutions to the temporal, initial-value problem with an inhomogeneous forcing term imposed upon the flow is sought. By solving a series of problems, it is shown that: A transient disturbance lying completely outside of the boundary layer can lead to the growth of an unstable Tollmien-Schlichting wave. A resonance with the continuous spectrum leads to strong amplification that may provide a mechanism for bypass transition once nonlinear effects are considered. A disturbance with a very weak unstable Tollmien-Schlichting wave can lead to a much stronger Tollmien-Schlichting wave downstream, if the original disturbance has a significant portion of its energy in the continuum modes.

  19. Coming down from the trees: Is terrestrial activity in Bornean orangutans natural or disturbance driven?

    PubMed Central

    Ancrenaz, Marc; Sollmann, Rahel; Meijaard, Erik; Hearn, Andrew J.; Ross, Joanna; Samejima, Hiromitsu; Loken, Brent; Cheyne, Susan M.; Stark, Danica J.; Gardner, Penny C.; Goossens, Benoit; Mohamed, Azlan; Bohm, Torsten; Matsuda, Ikki; Nakabayasi, Miyabi; Lee, Shan Khee; Bernard, Henry; Brodie, Jedediah; Wich, Serge; Fredriksson, Gabriella; Hanya, Goro; Harrison, Mark E.; Kanamori, Tomoko; Kretzschmar, Petra; Macdonald, David W.; Riger, Peter; Spehar, Stephanie; Ambu, Laurentius N.; Wilting, Andreas

    2014-01-01

    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated. PMID:24526001

  20. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.

  1. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature Inertial Measurement Unit (MIMU) to provide body rates for attitude propagation. Rate is computed by differentiating accumulated angle provided by the MIMU. The Observing Mode controller is required to maintain fine pointing while a large fully-articulated solar array (SA) maintains its panel normal to the solar incidence. This paper describes the disturbances to the attitude control resulting from the SA articulation. Observing Mode performance in the presence of this disturbance was assessed while the spacecraft was in an initial elliptical low altitude orbit during the commissioning phase, which started about two weeks after launch and lasted for 90 days. LRO demonstrated excellent pointing performance during Observing Mode nadir and inertial attitude target operations during this phase. Transient LRO attitude errors observed during commissioning resulted primarily from three sources, Diviner instrument calibrations, RW zero crossings, and SA articulation. Even during times of considerable disturbance from SA articulation, the attitude errors were maintained below the statistical attitude error requirement level of 15 arc-sec (3 sigma).

  2. Observations on cardiovascular and neuroendocrine disturbance in the Guillain-Barré syndrome

    PubMed Central

    Davies, A. G.; Dingle, H. R.

    1972-01-01

    Cardiovascular disturbances were found to be a common feature of patients with the Guillian-Barré syndrome who were severely paralysed, requiring assisted ventilation. Glycosuria was noted in association with these disturbances, and in five patients investigated we found impaired glucose tolerance tests at the height of the paralysis. Catecholamine and 17-hydroxycorticosteroid urinary excretions were found to be high in four patients investigated when the neuropathy was most severe, and in one patient plasma cortisol levels were high with loss of diurnal variation. With recovery from paralysis cardiovascular disturbances became less marked, catecholamine and 17-hydroxycorticosteroid urinary excretions reverted to normal, glucose tolerance improved but remained abnormal in three patients during the period of observation. It is suggested that increased levels of catecholamines and cortisol contributed to the development of impaired glucose tolerance and cardiovascular disturbances. PMID:4113954

  3. Delay of Transition Using Forced Damping

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J.

    2014-01-01

    Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.

  4. Rapid land use change after socio-economic disturbances: the collapse of the Soviet Union versus Chernobyl

    NASA Astrophysics Data System (ADS)

    Hostert, Patrick; Kuemmerle, Tobias; Prishchepov, Alexander; Sieber, Anika; Lambin, Eric F.; Radeloff, Volker C.

    2011-10-01

    Land use change is a principal force and inherent element of global environmental change, threatening biodiversity, natural ecosystems, and their services. However, our ability to anticipate future land use change is severely limited by a lack of understanding of how major socio-economic disturbances (e.g., wars, revolutions, policy changes, and economic crises) affect land use. Here we explored to what extent socio-economic disturbances can shift land use systems onto a different trajectory, and whether this can result in less intensive land use. Our results show that the collapse of the Soviet Union in 1991 caused a major reorganization in land use systems. The effects of this socio-economic disturbance were at least as drastic as those of the nuclear disaster in the Chernobyl region in 1986. While the magnitudes of land abandonment were similar in Ukraine and Belarus in the case of the nuclear disaster (28% and 36% of previously farmed land, respectively), the rates of land abandonment after the collapse of the Soviet Union in Ukraine were twice as high as those in Belarus. This highlights that national policies and institutions play an important role in mediating effects of socio-economic disturbances. The socio-economic disturbance that we studied caused major hardship for local populations, yet also presents opportunities for conservation, as natural ecosystems are recovering on large areas of former farmland. Our results illustrate the potential of socio-economic disturbances to revert land use intensification and the important role institutions and policies play in determining land use systems' resilience against such socio-economic disturbances.

  5. Hummingbird flight stability and control in freestream turbulent winds.

    PubMed

    Ravi, Sridhar; Crall, James D; McNeilly, Lucas; Gagliardi, Susan F; Biewener, Andrew A; Combes, Stacey A

    2015-05-01

    Airflow conditions close to the Earth's surface are often complex, posing challenges to flight stability and control for volant taxa. Relatively little is known about how well flying animals can contend with complex, adverse air flows, or about the flight control mechanisms used by animals to mitigate wind disturbances. Several recent studies have examined flight in the unsteady von Kármán vortex streets that form behind cylinders, generating flow disturbances that are predictable in space and time; these structures are relatively rare in nature, because they occur only the immediate, downstream vicinity of an object. In contrast, freestream turbulence is characterized by rapid, unpredictable flow disturbances across a wide range of spatial and temporal scales, and is nearly ubiquitous in natural habitats. Hummingbirds are ideal organisms for studying the influence of freestream turbulence on flight, as they forage in a variety of aerial conditions and are powerful flyers. We filmed ruby-throated hummingbirds (Archilochus colubris) maintaining position at a feeder in laminar and strongly turbulent (intensity ∼15%) airflow environments within a wind tunnel and compared their mean kinematics of the head, body, tail and wing, as well as variability in these parameters. Hummingbirds exhibited remarkably stable head position and orientation in both smooth and turbulent flow while maintaining position at the feeder. However, the hummingbird's body was less stable in turbulent flow and appeared to be most sensitive to disturbances along the mediolateral axis, displaying large lateral accelerations, translations and rolling motions during flight. The hummingbirds mitigated these disturbances by increasing mean wing stroke amplitude and stroke plane angle, and by varying these parameters asymmetrically between the wings and from one stroke to the next. They also actively varied the orientation and fan angle of the tail, maintaining a larger mean fan angle when flying in turbulent flow; this may improve their passive stability, but probably incurs an energetic cost as a result of increased drag. Overall, we observed many of the same kinematic changes noted previously for hummingbirds flying in a von Kármán vortex street, but we also observed kinematic changes associated with high force production, similar to those seen during load-lifting or high-speed flight. These findings suggest that flight may be particularly costly in fully mixed, freestream turbulence, which is the flow condition that hummingbirds are likely to encounter most frequently in natural habitats. © 2015. Published by The Company of Biologists Ltd.

  6. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  7. Elegant anti-disturbance control for discrete-time stochastic systems with nonlinearity and multiple disturbances

    NASA Astrophysics Data System (ADS)

    Wei, Xinjiang; Sun, Shixiang

    2018-03-01

    An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.

  8. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    PubMed

    Lopez-Quintero, Sandra V; Cancel, Limary M; Pierides, Alexis; Antonetti, David; Spray, David C; Tarbell, John M

    2013-01-01

    Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  9. High Glucose Attenuates Shear-Induced Changes in Endothelial Hydraulic Conductivity by Degrading the Glycocalyx

    PubMed Central

    Lopez-Quintero, Sandra V.; Cancel, Limary M.; Pierides, Alexis; Antonetti, David; Spray, David C.; Tarbell, John M.

    2013-01-01

    Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques. PMID:24260138

  10. Stress-gradient hypothesis explains susceptibility to Bromus tectorum invasion and community stability in North America's semi-arid Artemisia tridentata wyomingensis ecosystems

    USGS Publications Warehouse

    Reisner, Michael D.; Doescher, Paul S.; Pyke, David A.

    2015-01-01

    Results/Conclusions: Cattle herbivory, a novel disturbance and selective force, was a significant component of two overlapping stress gradients most strongly associated with observed shifts in interactions. Facilitation and competition were strongest and most frequent at the highest and lowest stress levels along both gradients, respectively. Contrasting ecological optima among native and non-native beneficiaries led to strikingly different patterns of interactions. The four native bunchgrasses with the strongest competitive response abilities exhibited the strongest facilitation at their upper limits of stress tolerance, while the two non-natives exhibited the strongest competition at the highest stress levels, which coincided with their maximum abundance. Artemisia facilitation enhanced stability at intermediate stress levels by providing a refuge for native bunchgrasses, which in turn reduced the magnitude of B. tectorum invasion. However, facilitation was a destabilizing force at the highest stress levels when native bunchgrasses became obligate beneficiaries dependent on facilitation for their persistence. B. tectorum dominated these communities, and the next fire may convert them to annual grasslands.

  11. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Deng, Zigang; Jin, Li’an; Li, Jipeng; Li, Yanxing; Zheng, Jun

    2018-07-01

    High-temperature superconducting (HTS) maglev, owning to the capability of passive stabilization, is potentially promising for high-speed transportation. The guidance force of bulk HTS materials above a permanent magnetic guideway has a nonlinear response due to the hysteresis effect. As a kind of rail transit, when the vehicle runs along the track, the curve and other disturbances will cause vibrations to the vehicle system. These physical factors will pose dynamic loads on the components, reducing structural reliability as well as affecting the ride comfort. The lateral motion, as an important part of the vehicle system dynamics, needs to be studied in the pursuit of HTS maglev realization. In this paper, we first measured the guidance forces of HTS bulks under different motion conditions, and analyzed the relationship between the lateral displacement, the movement velocity and the guidance force. Then, a mathematical model was built based on these experimental data. The key feature of this mathematical model is that it can describe the hysteresis characteristic of the guidance force. Based on this model, we investigated the lateral motion stability of the HTS levitation system, and found three singular points, one stable focus point, and two unstable saddle points. Lastly, a phase portrait was proposed to indicate the safe working region of the HTS maglev vehicle where the vehicle can automatically return to its equilibrium position. These experimental and simulation results are important to clarify the lateral motion stability under external disturbance or shock, and provide a reference basis for the design of levitation systems.

  12. The dynamics of a space station tethered refueling facility

    NASA Technical Reports Server (NTRS)

    Abbott, P.; Rudolph, L. K.; Fester, D. A.

    1986-01-01

    The fluid stored in a tethered orbital refueling facility is settled at the bottom of the storage tanks by gravity-gradient forces. The fluid motions (slosh) induced by outside disturbances must be limited to ensure the tank outlet is not uncovered during a fluid transfer. The dynamics of a LO2/LH2 TORF attached to the space station have been analyzed to identify design parameters necessary to limit fluid motion. Using the worst case disturbance of a shuttle docking at the space station, the fluid motion was found to be a function of tether length and allowable facility swing angle. Acceptable fluid behavior occurs for tether lengths of at least 1000 ft. To ensure motions induced by separate disturbances do not add to unacceptable values, a slosh damping coefficient of 5 percent is recommended.

  13. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.

  14. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  15. Numerical studies of surface tensions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    Liquid-vapor (bubble) interface disturbances caused by various types of accelerations, including centrifugal, lateral and axial impulses, gravity gradient and g-jitter accelerations associated with spinning and slew motion in microgravity, are reviewed. Understanding of bubble deformations and fluctuations is important in the development of spacecraft orbital and attitude control techniques to secure its normal operation. This review discusses bubble deformations and oscillations driven by various forces in the microgravity environment. The corresponding bubble mass center fluctuations and slosh reaction forces and torques due to bubble deformations are also reviewed.

  16. The response of an airplane to random atmospheric disturbances

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W

    1957-01-01

    The statistical approach to the gust-load problem which consists in considering flight through turbulent air to be a stationary random process is extended by including the effect of lateral variation of the instantaneous gust intensity on the aerodynamic forces. The forces obtained in this manner are used in dynamic analyses of rigid and flexible airplanes free to move vertically, in pitch, and in roll. The effect of the interaction of longitudinal, vertical, and lateral gusts on the wing stresses is also considered.

  17. Peculiarities of the ionospheric disturbances in the East-Asian region during geoactive periods on November 2004

    NASA Astrophysics Data System (ADS)

    Voeikov, S. V.; Zherebtsov, G. A.; Polekh, N. M.; Pirog, O. M.; Tatarinov, P. V.

    In this study we present the results of investigations of variations of ionospheric parameters in the sector 20--80 r N 60--180 r E during intensive geomagnetic storm on November 7-11 2004 The data obtained at ionosonds and receivers of the global GPS network and receiver located on board of low-orbital satellite CHAMP are used for the analysis During this storm with two main phases the periods of total absorption and the blanketing Es layers typical for high- intensity geomagnetic storms are observed at high latitudes The prolonged negative disturbances are observed at the mid latitudes The large-scale traveling ionospheric disturbance of the frontal type is registered after during postmeridian LT hours on November 8 An analysis of disturbance front form shows that it presents the fragment of circular disturbance propagated from the region of Chukotka This disturbance exists during several hours and reaches Ural in the west direction and the south region of China in the south direction The velocity of its moving decreases with propagation sim from 300 m c to 200m s The characteristic spatial size is about 2000 km A comparison of relative amplitudes of this large-scale disturbance according to the TEC Delta TEC TEC approx 70 and foF2 Delta N N approx 80 data suggests it to be extensive in altitude The similar disturbance of smaller intensity was observed on November 10 This work was supported by the Russian Foundation for Basic Research grant N grant 04-05-39008

  18. Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, O.

    1999-01-01

    Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.

  19. A Transfer of Training Study of Control Loader Dynamics

    NASA Technical Reports Server (NTRS)

    Cardullo, Frank M.; Stanco, Anthony A.; Kelly, Lon C.; Houck, Jacob A.; Grube, Richard C.

    2011-01-01

    The control inceptor used in a simulated vehicle is an important part in maintaining the fidelity of a simulation. The force feedback provided by the control inceptor gives the operator important cues to maintain adequate performance. The dynamics of a control inceptor are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot or driver control of the vehicle. The neuromuscular system has a very important role in manipulating the control inceptor within a vehicle. Many studies by McRuer, Aponso, and Hess have dealt with modeling the neuromuscular system and quantifying the effects of a high fidelity control loader as compared to a low fidelity control loader. Humans are adaptive in nature and their control behavior changes based on different control loader dynamics. Humans will change their control behavior to maintain tracking bandwidth and minimize tracking error. This paper reports on a quasi-transfer of training experiment which was performed at the NASA Langley Research Center. The quasi transfer of training study used a high fidelity control loader and a low fidelity control loader. Subjects trained in both simulations and then were transferred to the high fidelity control loader simulation. The parameters for the high fidelity control loader were determined from the literature. The low fidelity control loader parameters were found through testing of a simple computer joystick. A disturbance compensatory task is employed. The compensatory task involves implementing a simple horizon out the window display. A disturbance consisting of a sum of sines is used. The task consists of the subject compensating for the disturbance on the roll angle of the aircraft. The vehicle dynamics are represented as 1/s and 1/s2. The subject will try to maintain level flight throughout the experiment. The subjects consist of non-pilots to remove any effects of pilot experience. First, this paper discusses the implementation of the disturbance compensation task. Second, the high and low fidelity parameters used within the experiment are presented. Finally, an explanation of results from the experiments is presented.

  20. The Effect of Acoustic Disturbances on the Operation of the Space Shuttle Main Engine Fuel Flowmeter

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Szabo, Roland; Dorney, Dan; Zoladz, Tom

    2007-01-01

    The Space Shuttle Main Engine (SSME) uses a turbine fuel flowmeter (FFM) in its Low Pressure Fuel Duct (LPFD) to measure liquid hydrogen flowrates during engine operation. The flowmeter is required to provide accurate and robust measurements of flow rates ranging from 10000 to 18000 GPM in an environment contaminated by duct vibration and duct internal acoustic disturbances. Errors exceeding 0.5% can have a significant impact on engine operation and mission completion. The accuracy of each sensor is monitored during hot-fire engine tests on the ground. Flow meters which do not meet requirements are not flown. Among other parameters, the device is screened for a specific behavior in which a small shift in the flow rate reading is registered during a period in which the actual fuel flow as measured by a facility meter does not change. Such behavior has been observed over the years for specific builds of the FFM and must be avoided or limited in magnitude in flight. Various analyses of the recorded data have been made prior to this report in an effort to understand the cause of the phenomenon; however, no conclusive cause for the shift in the instrument behavior has been found. The present report proposes an explanation of the phenomenon based on interactions between acoustic pressure disturbances in the duct and the wakes produced by the FFM flow straightener. Physical insight into the effects of acoustic plane wave disturbances was obtained using a simple analytical model. Based on that model, a series of three-dimensional unsteady viscous flow computational fluid dynamics (CFD) simulations were performed using the MSFC PHANTOM turbomachinery code. The code was customized to allow the FFM rotor speed to change at every time step according to the instantaneous fluid forces on the rotor, that, in turn, are affected by acoustic plane pressure waves propagating through the device. The results of the simulations show the variation in the rotation rate of the flowmeter due to the interaction of the flow straightener wakes and the upstream propagating acoustic waves. A detailed analysis of the acoustic disturbance effects is presented along with an assessment of the impact on measurement accuracy.

  1. Robust nonlinear attitude control with disturbance compensation

    NASA Astrophysics Data System (ADS)

    Walchko, Kevin Jack

    Attitude control of small spacecraft is a particularly important component for many missions in the space program: Hubble Space Telescope for observing the cosmos, GPS satellites for navigation, SeaWiFS for studying phytoplankton concentrations in the ocean, etc. Typically designers use proportional derivative control because it is simple to understand and implement. However this method lacks robustness in the presence of disturbances and uncertainties. Thus to improve the fidelity of this simulation, two disturbances were included, fuel slosh and solar snap. Fuel slosh is the unwanted movement of fuel inside of a fuel tank. The fuel slosh model used for the satellite represents each sloshing mode as a mass-spring-damper. The mass represents the wave of fuel that propagates across the tank, the damper represents the baffling that hinders the movement, and the spring represents the force imparted to the spacecraft when the wave impacts the tank wall. This formulation makes the incorporation of multiple modes of interest simple, which is an advance over the typical one sloshing mode, pendulum model. Thermally induce vibrations, or solar snap, occur as a satellite transitions form the day-to-night or night-to-day side of a planet. During this transition, there is a sudden change in the amount of heat flux to the solar panels and vibrations occur. Few authors have looked at the effects of solar snap. The disturbance dynamics were based on the work by Earl Thorten. The simulated effects compared favorably with real flight data taken from satellites that have encountered solar snap. A robust sliding mode controller was developed and compared to a more traditional proportional derivative controller. The controllers were evaluated in the presents of fuel slosh and solar snap. The optimized baseline proportional derivative controller used in this work, showed little effort was needed to obtain better performance using sliding mode. In addition, a colored noise filter was developed to compensate for the fuel sloshing disturbance and incorporated into the sliding mode controller for greater performance increase at the expense of requiring a little more control effort.

  2. Bulk-Flow Analysis, part A

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1993-01-01

    The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.

  3. Volcano ecology: Disturbance characteristics and assembly of biological communities

    USDA-ARS?s Scientific Manuscript database

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  4. Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?

    NASA Technical Reports Server (NTRS)

    Courter, B. J.; Jex, H. R.

    1984-01-01

    Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.

  5. GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force Models

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Qu, Min

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude, near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.

  6. On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis

    NASA Astrophysics Data System (ADS)

    Shao, S.; Gao, Z.

    2017-10-01

    Stability of active disturbance rejection control (ADRC) is analysed in the presence of unknown, nonlinear, and time-varying dynamics. In the framework of singular perturbations, the closed-loop error dynamics are semi-decoupled into a relatively slow subsystem (the feedback loop) and a relatively fast subsystem (the extended state observer), respectively. It is shown, analytically and geometrically, that there exists a unique exponential stable solution if the size of the initial observer error is sufficiently small, i.e. in the same order of the inverse of the observer bandwidth. The process of developing the uniformly asymptotic solution of the system reveals the condition on the stability of the ADRC and the relationship between the rate of change in the total disturbance and the size of the estimation error. The differentiability of the total disturbance is the only assumption made.

  7. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV.

    PubMed

    Castañeda, Herman; Salas-Peña, Oscar S; León-Morales, Jesús de

    2017-01-01

    This paper addresses the design of attitude and airspeed controllers for a fixed wing unmanned aerial vehicle. An adaptive second order sliding mode control is proposed for improving performance under different operating conditions and is robust in presence of external disturbances. Moreover, this control does not require the knowledge of disturbance bounds and avoids overestimation of the control gains. Furthermore, in order to implement this controller, an extended observer is designed to estimate unmeasurable states as well as external disturbances. Additionally, sufficient conditions are given to guarantee the closed-loop stability of the observer based control. Finally, using a full 6 degree of freedom model, simulation results are obtained where the performance of the proposed method is compared against active disturbance rejection based on sliding mode control. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012

    NASA Astrophysics Data System (ADS)

    Kakinami, Yoshihiro; Yamamoto, Masayuki; Chen, Chia-Hung; Watanabe, Shigeto; Lin, Charles; Liu, Jenn-Yanq; Habu, Hiroto

    2013-08-01

    disturbances caused by a missile launched from North Korea on 12 December 2012 were investigated by using the GPS total electron content (TEC). The spatial characteristic of the front edge of V-shaped disturbances produced by missiles and rockets was first determined. Considering the launch direction and the height of estimated ionospheric points at which GPS radio signal pierces the ionosphere, the missile passed through the ionosphere at heights of 391, 425, and 435 km at 0056:30, 0057:00, and 0057:30 UT, respectively. The observed velocities of the missile were 2.8 and 3.2 km/s at that time, which was estimated from the traveling speed of the front edge of V-shaped disturbances. Westward and eastward V-shaped disturbances propagated at 1.8-2.6 km/s. The phase velocities of the westward and eastward V-shaped disturbances were much faster than the speed of acoustic waves reported in previous studies, suggesting that sources other than acoustic waves may have played an important role. Furthermore, the plasma density depletion that is often observed following missile and rocket launches was not found. This suggests that the depletion resulting from the missile's exhaust was not strong enough to be observed in the TEC distribution in the topside ionosphere.

  9. A method to identify aperiodic disturbances in the ionosphere

    NASA Astrophysics Data System (ADS)

    Wang, J.-S.; Chen, Z.; Huang, C.-M.

    2014-05-01

    In this paper, variations in the ionospheric F2 layer's critical frequency are decomposed into their periodic and aperiodic components. The latter include disturbances caused both by geophysical impacts on the ionosphere and random noise. The spectral whitening method (SWM), a signal-processing technique used in statistical estimation and/or detection, was used to identify aperiodic components in the ionosphere. The whitening algorithm adopted herein is used to divide the Fourier transform of the observed data series by a real envelope function. As a result, periodic components are suppressed and aperiodic components emerge as the dominant contributors. Application to a synthetic data set based on significant simulated periodic features of ionospheric observations containing artificial (and, hence, controllable) disturbances was used to validate the SWM for identification of aperiodic components. Although the random noise was somewhat enhanced by post-processing, the artificial disturbances could still be clearly identified. The SWM was then applied to real ionospheric observations. It was found to be more sensitive than the often-used monthly median method to identify geomagnetic effects. In addition, disturbances detected by the SWM were characterized by a Gaussian-type probability density function over all timescales, which further simplifies statistical analysis and suggests that the disturbances thus identified can be compared regardless of timescale.

  10. Strong Ionospheric Disturbances Observed by a Dense GPS Array After Large Earthquakes: Case Study of the 2003 Tokachi-oki Earthquake and its Geophysical Mechanism

    NASA Astrophysics Data System (ADS)

    Heki, K.; Ping, J.

    2004-12-01

    Ionospheric disturbances have been detected after, e.g. Northridge (Calais and Minster, 1995) and Denali (Ducic et al., 2003) earthquakes. Similar signals observed after the 2003 Tokachi-Oki Earthquake, the largest earthquake in Japan after the completion of GEONET, a nationwide array composed of over 1000 CGPS stations. We followed a standard procedure: applying a band-pass filter for the ionospheric combination of the L1 and L2 phase signals and calculating subioonospheric points (SIP) assuming thin ionosphere at the height of 350 km. Owing to the high density of SIP, many interesting features are observed and several important parameters were constrained, e.g. (1) apparent propagation speed, (2) directivity of disturbance signals, (3) decay during propagation, etc. As for (1), the observed speed of about 1 km/sec is significantly smaller than the Rayleigh Wave velocity, significantly faster than Travelling Ionospheric Disturbances (TID), but is consistent with the sound velocity at the ionospheric heights. The acoustic wave generated by sudden vertical movement of the Earth's surface first propagate upward. Then it will be refracted by height-dependent velocity structure resulting in horizontally propagating wave through the ionosphere. The observed TEC variation, with a wavelength of a few hundred km, may reflect electron density oscillation caused by the passage of such an acoustic wave. Regarding (2), there was a clear indication that the wave does not propagate northward. As first suggested by Calais et al. (1998), such a blocking is considered to be due to interaction between the geomagnetic field and the movement of charged particles comprising the ionosphere associated with the acoustic wave propagation. The model predicts that there will be no southward propagation of ionospheric disturbances caused by earthquakes in southern hemisphere mid-latitudes, which needs be confirmed by future earthquakes. The point (3) enabled the authors to define the empirical equation to calculate "Ionospheric disturbance magnitude" using the focal distance and disturbance amplitudes. Because the ionospheric disturbance monitoring does not require precise orbit information, such magnitudes could be determined near real time. This may help us, e.g. issue early warning message of Tsunami.

  11. Decadal trends in a coral community and evidence of changed disturbance regime

    NASA Astrophysics Data System (ADS)

    Wakeford, M.; Done, T. J.; Johnson, C. R.

    2008-03-01

    A 23 year data set (1981 2003 inclusive) and the spatially explicit individual-based model “Compete©” were used to investigate the implications of changing disturbance frequency on cover and taxonomic composition of a shallow coral community at Lizard Island, Australia. Near-vertical in situ stereo-photography was used to estimate rates of coral growth, mortality, recruitment and outcomes of pair-wise competitive interactions for 17 physiognomic groups of hard and soft corals. These data were used to parameterise the model, and to quantify impacts of three acute disturbance events that caused significant coral mortality: 1982—a combination of coral bleaching and Crown-of-Thorns starfish; 1990—cyclone waves; and 1996—Crown-of-Thorns starfish. Predicted coral community trajectories were not sensitive to the outcomes of competitive interactions (probably because average coral cover was only 32% and there was strong vertical separation among established corals) or to major changes in recruitment rates. The model trajectory of coral cover matched the observed trajectory accurately until the 1996 disturbance, but only if all coral mortality was confined to the 3 years of acute disturbance. Beyond that date (1997 2003), when the observed community failed to recover, it was necessary to introduce annual chronic background mortality to obtain a good match between modelled and observed coral cover. This qualitative switch in the model may reflect actual loss of resilience in the real community. Simulated over a century, an 8 year disturbance frequency most closely reproduced the mean community composition observed in the field prior to major disturbance events. Shorter intervals between disturbances led to reduced presence of the dominant hard coral groups, and a gradual increase in the slow growing, more resilient soft corals, while longer intervals (up to 16 years) resulted in monopolization by the fastest growing table coral, Acropora hyacinthus.

  12. Gender differences in gastrointestinal disturbances and plasma concentrations of tafenoquine in healthy volunteers after tafenoquine administration for post-exposure vivax malaria prophylaxis.

    PubMed

    Edstein, M D; Nasveld, P E; Kocisko, D A; Kitchener, S J; Gatton, M L; Rieckmann, K H

    2007-03-01

    In an open-label sequential cohort study, we compared gastrointestinal (GI) disturbances and plasma tafenoquine concentrations after administration of single-dose (400mg daily x 3 days; n=76 males, 11 females) and split-dose (200 mg twice daily x 3 days; n=73 males, 13 females) tafenoquine regimens in healthy Australian Defence Force volunteers for post-exposure malaria prophylaxis. The female and male volunteers had comparable demographic characteristics (age, weight, height) in the single- and split-dose treatment groups. GI disturbances were generally mild and self-limiting for both groups. The frequency of nausea and abdominal distress was over two-fold higher in females than in males for both treatment groups. Reporting of GI disturbances in the single-dose group differed significantly between males and females, but this gender difference was not seen for the split-dose group. In those volunteers who experienced GI disturbances, the mean plasma tafenoquine concentrations 12 h after the last dose of tafenoquine were approximately 1.3-fold higher in females than in males (means+/-SD: 737+/-118 ng/ml vs. 581+/-113 ng/ml). These preliminary findings suggest that further studies are required in a larger number of females to determine whether there is a need to reduce the dose of tafenoquine to minimise GI disturbances in females.

  13. A thermal oscillating two-stream instability

    NASA Technical Reports Server (NTRS)

    Dysthe, K. B.; Mjolhus, E.; Rypdal, K.; Pecseli, H. L.

    1983-01-01

    A theory for the oscillating two-stream instability, in which the Ohmic heating of the electrons constitutes the nonlinearity, is developed for an inhomogeneous and magnetized plasma. Its possible role in explaining short-scale, field-aligned irregularities observed in ionospheric heating experiments is emphasized. The theory predicts that the initial growth of such irregularities is centered around the level of upper hybrid resonance. Furthermore, plane disturbances nearly parallel to the magnetic meridian plane have the largest growth rates. Expressions for threshold, growth rate, and transverse scale of maximum growth are obtained. Special attention is paid to the transport theory, since the physical picture depends heavily on the kind of electron collisions which dominate. This is due to the velocity dependence of collision frequencies, which gives rise to the thermal forces

  14. Chaos, Chaos Control and Synchronization of a Gyrostat System

    NASA Astrophysics Data System (ADS)

    GE, Z.-M.; LIN, T.-N.

    2002-03-01

    The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.

  15. A high-fidelity method to analyze perturbation evolution in turbulent flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, S., E-mail: sasidharannair.1@osu.edu; Gaitonde, Datta V., E-mail: gaitonde.3@osu.edu

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier–Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state,more » its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted “baseline” and “twin”) of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier–Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, “native” forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.« less

  16. A high-fidelity method to analyze perturbation evolution in turbulent flows

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, S.; Gaitonde, Datta V.

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier-Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state, its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted "baseline" and "twin") of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier-Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, "native" forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.

  17. Low Resilience of the Particle-Attached Bacterial Community in Response to Frequent Wind-Wave Disturbance in Freshwater Mesocosms

    PubMed Central

    Shao, Keqiang; Gao, Guang; Tang, Xiangming; Wang, Yongping; Zhang, Lei; Qin, Boqiang

    2013-01-01

    The most common natural disturbances in shallow lakes are wind-induced waves, which cause catastrophic changes in the aquatic fauna of lakes. Recovery from these changes is always prolonged. The objective of this study was to understand the resilience and recovery of the particle-attached bacterial community composition (PABCC) after frequent wind-wave disturbance in a large shallow eutrophic lake. To accomplish this, we designed a mesocosm experiment including an undisturbed control, and a physically disturbed treatment that stimulated the superposition of two different intensities of wind-induced waves in the large shallow eutrophic Lake Taihu, China. The PABCC was determined by denaturing gradient gel electrophoresis, following by cloning and sequencing of the selected samples. We observed that the most marked change of the PABCC occurred in the disturbed treatment, in which the concentrations of suspended solids (SS) and the water turbidity varied strongly. However, we observed low recovery of the PABCC within 4 days post-disturbance when the investigated environmental factors had also recovered. Our results indicated that the resistance of the PABCC is low, and resilience is also low following frequent disturbance by wind-waves in a large shallow eutrophic lake. PMID:24334525

  18. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System

    PubMed Central

    Li, Xiangfei; Lin, Yuliang

    2017-01-01

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017

  19. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  20. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  1. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    PubMed Central

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  2. Investigation of Control Inceptor Dynamics and Effect on Human Subject Performance

    NASA Technical Reports Server (NTRS)

    Stanco, Anthony A.; Cardullo, Frank M.; Houck, Jacob A.; Grube, Richard C.; Kelly, Lon C.

    2013-01-01

    The control inceptor used in a vehicle simulation is an important part of adequately representing the dynamics of the vehicle. The inceptor characteristics are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot control of the vehicle. A quasi transfer of training experiment was performed employing a high fidelity and a low fidelity control inceptor. A disturbance compensatory task was employed which involved a simple horizon line disturbed in roll by a sum of sinusoids presented in an out-the-window display. Vehicle dynamics were modeled as 1/s and 1/s2. The task was to maintain level flight. Twenty subjects were divided between the high and the low fidelity training groups. Each group was trained to a performance asymptote, and then transferred to the high fidelity simulation. RMS tracking error, a PSD analysis, and a workload analysis were performed to quantify the transfer of training effect. Quantitative results of the experiments show that there is no significant difference between the high and low fidelity training groups for 1/s plant dynamics. For 1/s2 plant dynamics there is a greater difference in tracking performance and PSD; and the subjects are less correlated with the input disturbance function

  3. Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.

    2015-12-01

    The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.

  4. CUMULATIVE EFFECTS OF COASTAL HABITAT ALTERATIONS ON FISHERY RESOURCES: TOWARD PREDICTION AT REGIONAL SCALES

    EPA Science Inventory

    The integrity of aquatic ecosystems and habitats at the land-sea interface is challeneged by several forces, ranging from plot scale destruction and disturbance, to watershed scale perturbations, to global changes in climate and human demographis. The scientific challenge is to ...

  5. Inflatable bladder provides accurate calibration of pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J.

    1965-01-01

    Calibration of a pressure switch is accurately checked by a thin-walled circular bladder. It is placed in the pressure switch and applies force to the switch diaphragm when expanded by an external pressure source. The disturbance to the normal operation of the switch is minimal.

  6. Disturbances, Edges, and Bait in Science Education: Rousing Students To Create New Boundaries in Science.

    ERIC Educational Resources Information Center

    Donovan, Michael P.

    2001-01-01

    Points out the problem solving approach differences between experts and beginners' tactics. Recommends introducing new concepts into instruction to induce disequilibrium and force students to make new explanations. Uses chemical equilibrium as an example to explain the metaphor. (YDS)

  7. Effects of Wall Cooling on Hypersonic Boundary Layer Receptivity Over a Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2008-01-01

    Effects of wall cooling on the receptivity process induced by the interaction of slow acoustic disturbances in the free-stream are numerically investigated for a boundary layer flow over a 5-degrees straight cone. The free-stream Mach number is 6.0 and the Reynolds number is 7.8x10(exp 6)/ft. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using 3rd-order total variation diminishing (T VD) Runge-K utta scheme for time integration. Computations are performed for a cone with nose radius of 0.001 inch for adiabatic wall temperature (T(sub aw)), 0.75*T(sub aw), 0.5*T(sub aw), 0.40*T(sub aw), 0.30*T(sub aw), and 0.20*T(sub aw). Once the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations showed that wall cooling has strong stabilization effect on the first mode disturbances as was observed in the experiments. T ransition location moved to upstream when wall cooling was applied It is also found that the boundary layer is much more receptive to fast acoustic wave (by almost a factor of 50). When simulations performed using the same forcing frequency growth of the second mode disturbances are delayed with wall cooling and they attained values two times higher than that of adiabatic case. In 0.20*T(sub aw) case the transition Reynolds number is doubled compared to adiabatic conditions. The receptivity coefficient for adiabatic wall case (804 R) is 1.5225 and for highly cooled cones (241, and 161 R); they are in the order of 10(exp -3).

  8. Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Riley, Pete

    2001-01-01

    Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which pressure disturbances propagate in the wind.

  9. Observation of severe weather activities by Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Hung, R. J.

    1975-01-01

    A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.

  10. Characterization of a Double Mesospheric Bore Over Europe

    NASA Astrophysics Data System (ADS)

    Smith, Steven M.; Stober, Gunter; Jacobi, Christoph; Chau, Jorge L.; Gerding, Michael; Mlynczak, Martin G.; Russell, James M.; Baumgardner, Jeffrey L.; Mendillo, Michael; Lazzarin, Monica; Umbriaco, Gabriel

    2017-09-01

    Observations of a pair of mesospheric bore disturbances that propagated through the nighttime mesosphere over Europe are presented. The observations were made at the Padua Observatory, Asiago (45.9°N, 11.5°E), by the Boston University all-sky imager on 11 March 2013. The bores appeared over the northwest horizon, approximately 30 min apart, and propagated toward the southeast. Using additional satellite and radar data, we present evidence indicating the bores originated in the mesosphere from a single, larger-scale mesospheric disturbance propagating through the mesopause region. Furthermore, the large-scale mesospheric disturbance appeared to be associated with an intense weather disturbance that moved southeastward over the United Kingdom and western Europe during 10 and 11 March.

  11. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  12. Multi-finger Prehension: An overview

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.

    2009-01-01

    This paper reviews the available experimental evidence on what people do when they grasp an object with several digits and then manipulate it. In addition to the Introduction, the paper includes three parts each addressing a specific aspect of multi-finger prehension. Part II discusses manipulation forces, i.e. the resultant force and moment of force exerted on the object, and the digits contribution to such force production. Part III deals with internal forces defined as forces that cancel each other and do not disturb object equilibrium. The role of the internal forces in maintaining the object stability is discussed with respect to such issues as slip prevention, tilt prevention and resistance to perturbations. Part IV is devoted to the motor control of prehension. It covers such topics as prehension synergies, chain effects, the principle of superposition, inter-finger connection matrices and reconstruction of neural commands, mechanical advantage of the fingers, and the simultaneous digit adjustment to several mutually reinforcing or conflicting demands. PMID:18782719

  13. Neural network-based position synchronised internal force control scheme for cooperative manipulator system

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Xu, Fan; Lu, GuoDong

    2017-09-01

    More complex problems of simultaneous position and internal force control occur with cooperative manipulator systems than that of a single one. In the presence of unwanted parametric and modelling uncertainties as well as external disturbances, a decentralised position synchronised force control scheme is proposed. With a feedforward neural network estimating engine, a precise model of the system dynamics is not required. Unlike conventional cooperative or synchronised controllers, virtual position and virtual synchronisation errors are introduced for internal force tracking control and task space position synchronisation. Meanwhile joint space synchronisation and force measurement are unnecessary. Together with simulation studies and analysis, the position and the internal force errors are shown to asymptotically converge to zero. Moreover, the controller exhibits different characteristics with selected synchronisation factors. Under certain settings, it can deal with temporary cooperation by an intelligent retreat mechanism, where less internal force would occur and rigid collision can be avoided. Using a Lyapunov stability approach, the controller is proven to be robust in face of the aforementioned uncertainties.

  14. Causal feedforward control of a stochastically excited fuselage structure with active sidewall panel.

    PubMed

    Misol, Malte; Haase, Thomas; Monner, Hans Peter; Sinapius, Michael

    2014-10-01

    This paper provides experimental results of an aircraft-relevant double panel structure mounted in a sound transmission loss facility. The primary structure of the double panel system is excited either by a stochastic point force or by a diffuse sound field synthesized in the reverberation room of the transmission loss facility. The secondary structure, which is connected to the frames of the primary structure, is augmented by actuators and sensors implementing an active feedforward control system. Special emphasis is placed on the causality of the active feedforward control system and its implications on the disturbance rejection at the error sensors. The coherence of the sensor signals is analyzed for the two different disturbance excitations. Experimental results are presented regarding the causality, coherence, and disturbance rejection of the active feedforward control system. Furthermore, the sound transmission loss of the double panel system is evaluated for different configurations of the active system. A principal result of this work is the evidence that it is possible to strongly influence the transmission of stochastic disturbance sources through double panel configurations by means of an active feedforward control system.

  15. A game theoretic controller for a linear time-invariant system with parameter uncertainty and its application to the Space Station

    NASA Technical Reports Server (NTRS)

    Rhee, Ihnseok; Speyer, Jason L.

    1990-01-01

    A game theoretic controller is developed for a linear time-invariant system with parameter uncertainties in system and input matrices. The input-output decomposition modeling for the plant uncertainty is adopted. The uncertain dynamic system is represented as an internal feedback loop in which the system is assumed forced by fictitious disturbance caused by the parameter uncertainty. By considering the input and the fictitious disturbance as two noncooperative players, a differential game problem is constructed. It is shown that the resulting time invariant controller stabilizes the uncertain system for a prescribed uncertainty bound. This game theoretic controller is applied to the momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Inclusion of the external disturbance torque to the design procedure results in a dynamical feedback controller which consists of conventional PID control and cyclic disturbance rejection filter. It is shown that the game theoretic design, comparing to the LQR design or pole placement design, improves the stability robustness with respect to inertia variations.

  16. Health Effects of Shift Work

    PubMed Central

    LaDou, Joseph

    1982-01-01

    More than 13.5 million American workers, close to 20 percent of the work force, are assigned to evening or night shifts. In some industries such as automobile, petrochemical and textile manufacturing the proportion of shift workers is greater than 50 percent. As the popularity of shift work and other “alternative work schedules” grows, concern is increasing over the disturbance created in the lives of workers and their families by these economically and socially useful innovations. Twenty percent of workers are unable to tolerate shift work. Daily physiologic variations termed circadian rhythms are interactive and require a high degree of phase relationship to produce subjective feelings of wellbeing. Disturbance of these activities, circadian desynchronization, whether from passage over time zones or from shift rotation, results in health effects such as disturbance of the quantity and quality of sleep, disturbance of gastrointestinal and other organ system activities, and aggravation of diseases such as diabetes mellitus, epilepsy and thyrotoxicosis. Worker selection can reduce the number of health problems resulting from shift work. The periodic examination of shift workers is recommended. PMID:6962577

  17. Ground and CHAMP observations of field-aligned current circuits generated by lower atmospheric disturbances and expectations to the SWARM to clarify their three dimensional structure

    NASA Astrophysics Data System (ADS)

    Iyemori, Toshihiko; Nakanishi, Kunihito; Aoyama, Tadashi; Lühr, Hermann

    2014-05-01

    Acoustic gravity waves propagated to the ionosphere cause dynamo currents in the ionosphere. They divert along geomagnetic field lines of force to another hemisphere accompanying electric field and then flow in the ionosphere of another hemisphere by the electric field forming closed current circuits. The oscillating current circuits with the period of acoustic waves generate magnetic variations on the ground, and they are observed as long period geomagnetic pulsations. This effect has been detected during big earthquakes, strong typhoons, tornados etc. On a low-altitude satellite orbit, the spatial distribution (i.e., structure) of the current circuits along the satellite orbit should be detected as temporal magnetic oscillations, and the effect is confirmed by a CHAMP data analysis. On the spatial structure, in particular, in the longitudinal direction, it has been difficult to examine by a single satellite or from ground magnetic observations. The SWARM satellites will provide an unique opportunity to clarify the three dimensional structure of the field-aligned current circuits.

  18. Functional responses of uremic single skeletal muscle fibers to redox imbalances.

    PubMed

    Mitrou, G I; Poulianiti, K P; Koutedakis, Y; Jamurtas, A Z; Maridaki, M D; Stefanidis, I; Sakkas, G K; Karatzaferi, C

    2017-01-01

    The exact causes of skeletal muscle weakness in chronic kidney disease (CKD) remain unknown with uremic toxicity and redox imbalances being implicated. To understand whether uremic muscle has acquired any sensitivity to acute redox changes we examined the effects of redox disturbances on force generation capacity. Permeabilized single psoas fibers (N =37) from surgically induced CKD (UREM) and sham-operated (CON) rabbits were exposed to an oxidizing (10 mM Hydrogen Peroxide, H 2 O 2 ) and/or a reducing [10 mM Dithiothreitol (DTT)] agent, in a blind design, in two sets of experiments examining: A) the acute effect of the addition of H 2 O 2 on maximal (pCa 4.4) isometric force of actively contracting fibers and the effect of incubation in DTT on subsequent re-activation and force recovery (N =9 CON; N =9 UREM fibers); B) the effect of incubation in H 2 O 2 on both submaximal (pCa 6.2) and maximal (pCa 4.4) calcium activated isometric force generation (N =9 CON; N =10 UREM fibers). Based on cross-sectional area (CSA) calculations, a 14 % atrophy in UREM fibers was revealed; thus forces were evaluated in absolute values and corrected for CSA (specific force) values. A) Addition of H 2 O 2 during activation did not significantly affect force generation in any group or the pool of fibers. Incubation in DTT did not affect the CON fibers but caused a 12 % maximal isometric force decrease in UREM fibers (both in absolute force p =0.024, and specific force, p =0.027). B) Incubation in H 2 O 2 during relaxation lowered subsequent maximal (but not submaximal) isometric forces in the Pool of fibers by 3.5 % (for absolute force p =0.033, for specific force p =0.019) but not in the fiber groups separately. Force generation capacity of CON and UREM fibers is affected by oxidation similarly. However, DTT significantly lowered force in UREM muscle fibers. This may indicate that at baseline UREM muscle could have already been at a more reduced redox state than physiological. This observation warrants further investigation as it could be linked to disease-induced effects. HIPPOKRATIA 2017, 21(1): 3-7.

  19. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  20. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  1. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  2. Enforced Clonality Confers a Fitness Advantage

    PubMed Central

    Martínková, Jana; Klimešová, Jitka

    2016-01-01

    In largely clonal plants, splitting of a maternal plant into potentially independent plants (ramets) is usually spontaneous; however, such fragmentation also occurs in otherwise non-clonal species due to application of external force. This process might play an important yet largely overlooked role for otherwise non-clonal plants by providing a mechanism to regenerate after disturbance. Here, in a 5-year garden experiment on two short-lived, otherwise non-clonal species, Barbarea vulgaris and Barbarea stricta, we compared the fitness of plants fragmented by simulated disturbance (“enforced ramets”) both with plants that contemporaneously originate in seed and with individuals unscathed by the disturbance event. Because the ability to regrow from fragments is related to plant age and stored reserves, we compared the effects of disturbance applied during three different ontogenetic stages of the plants. In B. vulgaris, enforced ramet fitness was higher than the measured fitness values of both uninjured plants and plants established from seed after the disturbance. This advantage decreased with increasing plant age at the time of fragmentation. In B. stricta, enforced ramet fitness was lower than or similar to fitness of uninjured plants and plants grown from seed. Our results likely reflect the habitat preferences of the study species, as B. vulgaris occurs in anthropogenic, disturbed habitats where body fragmentation is more probable and enforced clonality thus more advantageous than in the more natural habitats preferred by B. stricta. Generalizing from our results, we see that increased fitness yielded by enforced clonality would confer an evolutionary advantage in the face of disturbance, especially in habitats where a seed bank has not been formed, e.g., during invasion or colonization. Our results thus imply that enforced clonality should be taken into account when studying population dynamics and life strategies of otherwise non-clonal species in disturbed habitats. PMID:26858732

  3. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  4. [Characteristics of eating behavior in overweight young people with biliary tract diseases among Bashkortostan population].

    PubMed

    Volevach, L V; Khismatullina, G Ia; Uliamaeva, V V; Gur'ev, R D; Kamalova, A A

    2014-01-01

    The goal of the present research was to study the types of nutritional behavior disturbances in overweight patients with the pathology biliary tract. 132 patients with chronic noncalculous cholecystitis aged from 18 to 35 were examined. The comprehensive clinical examination was conducted and types of eating behavior disturbances with the help DEBQ test (Dutch Eating Behavior Questionnaire) were examined. It was discovered that disturbances of eating behavior are observed in 82,9 percent of normal weight patients, in 100 percent of overweight and in 93,3 percent of patients with obesity. Restraint and emotional eating are more often observed in obesity. External eating is more often observed in overweight and normal weight persons than that emotional eating. Rational eating is rarely observed in all groups of examined persons.

  5. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks.

    PubMed

    Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang

    2014-08-01

    This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.

  6. Classification of instability modes in a model of aluminium reduction cells with a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Molokov, Sergei; El, Gennady; Lukyanov, Alexander

    2011-10-01

    A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele's modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele's modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.

  7. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Huang, Junji; Duan, Lian; Choudhari, Meelan; Missouri Univ of Sci; Tech Team; NASA Langley Research Center Team

    2017-11-01

    Direct numerical simulations (DNS) are used to examine the acoustic noise generation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube. The emphasis is on characterizing the freestream acoustic pressure disturbances radiated from the nozzle-wall turbulent boundary layer and comparing it with acoustic noise generated from a single, flat wall in an unconfined setting at a similar freestream Mach number to assess the effects of noise reverberation. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the boundary-layer parameters as well as to understand the acoustic source mechanisms. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Air Force Office of Scientific Research Award No. FA9550-14-1-0170.

  8. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs

    NASA Astrophysics Data System (ADS)

    Roff, George; Chollett, Iliana; Doropoulos, Christopher; Golbuu, Yimnang; Steneck, Robert S.; Isechal, Adelle L.; van Woesik, Robert; Mumby, Peter J.

    2015-09-01

    Environmental conditions play an important role in post-disturbance dynamics of ecosystems by modulating recovery of surviving communities and influencing patterns of succession. Here, we document the effects of wave exposure following a catastrophic disturbance on coral reefs in driving a phase shift to macroalgal dominance. In December 2012, a Category 5 super typhoon (`Typhoon Bopha') passed 50 km to the south of Palau (Micronesia), causing a major loss of reef corals. Immediately post-disturbance, a rapid and extensive phase shift of the macroalgae Liagora sp. (Rhodophyta) was observed at sites exposed to chronic wave exposure. To quantify the influence of biotic and abiotic drivers in modulating the extent of post-disturbance Liagora blooms, we compared benthic substrates and herbivore assemblages at sites surveyed pre- and post-disturbance across a gradient of wave exposure. Relative changes in herbivore biomass and coral cover before and after disturbance did not significantly predict the extent of Liagora cover, indicating that changes in herbivore biomass or reductions in grazing pressure were not directly responsible for driving the Liagora blooms. By contrast, the degree of wave exposure experienced at sites post-disturbance explained >90 % of model variance ( p < 0.001, R 2 = 0.69), in that Liagora was absent at low exposure sites, while most extensive blooms were observed at highly exposed sites. At regional scales, spatial maps of wave exposure accurately predicted the presence of Liagora at impacted sites throughout the Palau archipelago (>150 km distance), highlighting the predictive capacity of wave exposure as an explanatory variable and the deterministic nature of post-disturbance macroalgal blooms. Understanding how physical conditions modulate recovery of ecosystems after disturbance allows insight into post-disturbance dynamics and succession of communities, ultimately allowing management strategies to prioritise restoration efforts in regions that are most effective.

  9. United States forest disturbance trends observed with landsat time series

    Treesearch

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  10. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.

    PubMed

    Chen, Mou; Tao, Gang

    2016-08-01

    In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

  11. Electrokinetic instability in microchannel ferrofluid/water co-flows

    PubMed Central

    Song, Le; Yu, Liandong; Zhou, Yilong; Antao, Asher Reginald; Prabhakaran, Rama Aravind; Xuan, Xiangchun

    2017-01-01

    Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water interface when the applied DC electric field is beyond a threshold value. They are generated by the electric body force that acts on the free charge induced by the mismatch of ferrofluid and water electric conductivities. A nonlinear depth-averaged numerical model is developed to understand and simulate the interfacial electrokinetic behaviors. It considers the top and bottom channel walls’ stabilizing effects on electrokinetic flow through the depth averaging of three-dimensional transport equations in a second-order asymptotic analysis. This model is found accurate to predict both the observed electrokinetic instability patterns and the measured threshold electric fields for ferrofluids of different concentrations in shallow microchannels. PMID:28406228

  12. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal.

    PubMed

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S; Kaiser, David J; Goudreau, Sophie; Smargiassi, Audrey

    2016-08-11

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent's residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise.

  13. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  14. Bio-inspired sensing and control for disturbance rejection and stabilization

    NASA Astrophysics Data System (ADS)

    Gremillion, Gregory; Humbert, James S.

    2015-05-01

    The successful operation of small unmanned aircraft systems (sUAS) in dynamic environments demands robust stability in the presence of exogenous disturbances. Flying insects are sensor-rich platforms, with highly redundant arrays of sensors distributed across the insect body that are integrated to extract rich information with diminished noise. This work presents a novel sensing framework in which measurements from an array of accelerometers distributed across a simulated flight vehicle are linearly combined to directly estimate the applied forces and torques with improvements in SNR. In simulation, the estimation performance is quantified as a function of sensor noise level, position estimate error, and sensor quantity.

  15. Training Community Modeling and Simulation Business Plan, 2007 Edition. Volume 2: Data Call Responses and Analysis

    DTIC Science & Technology

    2009-02-01

    services; and • Other reconstruction assistance. D-14 17. Train Forces on Military Assistance to Civil Authorities ( MACA ) Develop environments...for training in the planning and execution of MACA in support of disaster relief (natural and man-made), military assistance for civil disturbances

  16. Habitat fragmentation and interspecific competition: Implications for lynx conservation [Chapter 4

    Treesearch

    Steven W. Buskirk

    2000-01-01

    Habitat fragmentation and interspecific competition are two important forces that potentially affect lynx populations. Fragmentation operates by various mechanisms, including direct habitat loss, vehicle collisions and behavioral disturbance from roads, and changes in landscape features such as edges. Competition takes two forms: Exploitation competition involves...

  17. Orbital construction demonstration study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The following items are discussed in reference to OCDA requirements; (1) flight mechanics and control, (2) effects of sun angle, (3) disturbance torques, (4) control system requirements, (5) OCDA orbit decay profile, and (6) aerodynamic drag forces. Structural design requirements are also given as well as basic design definition.

  18. Life without Father.

    ERIC Educational Resources Information Center

    Popenoe, David

    The increasing percentage of children living apart from their natural fathers is an unpredicted, and not widely discussed, trend. Fatherlessness is a major force behind many disturbing U.S. social problems. The institution of marriage acts as culture's chief vehicle to bind men to their children. The absence of fathers from children's lives is one…

  19. Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert Surfaces

    USDA-ARS?s Scientific Manuscript database

    Desert surfaces are typically stable and represent some of the oldest landforms on Earth. For surfaces without vegetation, the evolution of a desert pavements of gravel protects the surface from erosive forces and vegetation further protects the surface in arid and semi-arid rangelands. The suscep...

  20. Child Soldiers: Rights Denied, Hope Restored

    ERIC Educational Resources Information Center

    Carano, Kenneth T.; Bailey, Robert W.

    2012-01-01

    The forceful induction of children as child soldiers is an abhorrent violation of human rights. It is very disturbing that while many children are forcibly recruited into armed conflicts, others actually volunteer, due to their nightmarish alternatives. Although the practice has recently gained worldwide attention, awareness alone will not end the…

  1. Monitoring of the turbulent solar wind with the upgraded Large Phased Array of the Lebedev Institute of Physics: First results

    NASA Astrophysics Data System (ADS)

    Shishov, V. I.; Chashei, I. V.; Oreshko, V. V.; Logvinenko, S. V.; Tyul'bashev, S. A.; Subaev, I. A.; Svidskii, P. M.; Lapshin, V. B.; Dagkesamanskii, R. D.

    2016-12-01

    The design properties and technical characteristics of the upgraded Large Phased Array (LPA) are briefly described. The results of an annual cycle of observations of interplanetary scintillations of radio sources on the LPA with the new 96-beam BEAM 3 system are presented. Within a day, about 5000 radio sources displaying second-timescale fluctuations in their flux densities due to interplanetary scintillations were observed. At present, the parameters of many of these radio sources are unknown. Therefore, the number of sources with root-mean-square flux-density fluctuations greater than 0.2 Jy in a 3° × 3° area of sky was used to characterize the scintillation level. The observational data obtained during the period of the maximum of solar cycle 24 can be interpreted using a three-component model for the spatial structure of the solar wind, consisting of a stable global component, propagating disturbances, and corotating structures. The global component corresponds to the spherically symmetric structure of the distribution of the turbulent interplanetary plasma. Disturbances propagating from the Sun are observed against the background of the global structure. Propagating disturbances recorded at heliocentric distances of 0.4-1 AU and at all heliolatitudes reach the Earth's orbit one to two days after the scintillation enhancement. Enhancements of ionospheric scintillations are observed during night-time. Corotating disturbances have a recurrence period of 27 d . Disturbances of the ionosphere are observed as the coronal base of a corotating structure approaches the western edge of the solar limb.

  2. Influence of Freestream and Forced Disturbances on the Shear Layers of a Square Prism

    NASA Astrophysics Data System (ADS)

    Lander, Daniel Chapman

    Flow around the square prism, an archetypal bluff body, has applications in all areas of fluid mechanics: vibration, mixing, combustion and noise production to name a few. It also has distinct importance to wind loading on architectural and industrial structures such as tall buildings, bridges, and towers. The von-Karman (VK) vortex street is a major reason for its significance: a flow phenomenon which has received intense scrutiny from scientific and engineering communities for more than 100 years! However, the characteristics of the shear layers separating from the sharp edges, essential to the vortex shedding, have received comparatively little attention. This is surprising considering the Kelvin-Helmholtz (KH) instability of shear layers produce the first signatures of turbulence in the wake. Furthermore, the shear layers are conduits for the passage of vorticity between the boundary layer and the turbulent wake. Many details of their structure and role in the shedding process remain unexplored. This dissertation aims to address this deficiency. Specifically, this project considered the influence of three variables on the characteristics of the transition-to-turbulence in the square prism shear layers. These are: (1) Reynolds number; (2) freestream disturbances and (3) forced disturbances. In each case, the dynamics of the shear layer-wake interaction were considered. Particle image velocimetry and constant temperature anemometry measurements were used to document the shear layer during inception and evolution as it passes into the wake. With increasing Reynolds number, ReD = UinfinityD/nu, in the range 16,700-148,000, the transition-to-turbulence in the initially laminar shear layer moves toward separation. A coordinate system local to the time-averaged shear layer axis was used such that the tangent and normal velocities, turbulent stresses and gradient quantities could be obtained for the curved shear layer. Characteristic frequencies, lengths and transition points of the KH instability were documented and shown to exhibit features distinct from the plane mixing layer. The evolution of the integrated turbulent kinetic energy was documented and a linear region of growth was associated with the amplification of the KH instability. A scaling relationship of the Kelvin-Helmholtz to von-Karman frequencies was established for the square prism shear layer. ƒKH/ƒ VK was shown to be a power-law function of Re D, with differing characteristics to the much more studied circular cylinder. Increasing ReD up to ˜ 70,000 bolsters the Reynolds stresses in the shear layers as they enter the wake, shortening the wake formation length, LF. The shear layer diffusion length, LD was quantified and the Gerrard-Product, LF x LD, was introduced to account for constant St D in the presence of the reduced LF as function of ReD. A freestream disturbance condition with intensity □ u¯¯ 2¯ / U infinity = 0.065 and longitudinal integral length scale, Lxu = 0.33 was considered for the case of ReD = 50,000. Disturbances were introduced by means of small circular cylinder placed upstream of the stagnation streamline. The disturbance moved the time-averaged position of the shear layer towards the body but did not substantially alter the growth rate of its width. The "normal" transition-to-turbulence pathway, via laminar vortex formation and subsequent pairing of vortices in the initial stages of the shear layer was shown to be highly sensitive to external disturbances. The disturbance interrupted the typical transition pathway and was associated with a Bypass-transition mechanism, which subsequently increased the likelihood of intermittent shear layer reattachment on the downstream surface of the body. Triple decomposition was used to study the random and coherent components of the VK structures in the wake. Data indicated a narrowing and lengthening of the wake, which was accompanied by a rise in base pressure and a reduction in time-averaged drag. The unsteady coherent vorticity field revealed a streamwise elongation of the VK vortex structures, which complemented the time-averaged wake lengthening. It appears that the influence of freestream disturbances, in particular, by their stochastic nature, is to suppress the formation of the coherent structures in the shear layer. Forced disturbances imposed on the shear layers at the leading edges of the square prism were considered at ReD=16,700 for excitation frequencies ƒe = ƒ KH, ƒVK and 0. The response of the shear layer to forcing at steady and ƒVK frequencies had little impact on the time-averaged position or growth.

  3. Impact of disturbance electric fields in the evening on prereversal vertical drift and spread F developments in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil A.; Nogueira, Paulo A. B.; Santos, Angela M.; de Souza, Jonas R.; Batista, Inez S.; Sobral, Jose H. A.

    2018-04-01

    Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined.

  4. The disturbing function for polar Centaurs and transneptunian objects

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2017-10-01

    The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the Solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance, as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a p:q resonance do not depend on the value of the resonance order |p - q| but only on its parity. Thus, all even resonance order eccentricity amplitudes are ∝e2 and odd ones ∝e to lowest order in eccentricity e. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.

  5. Applied adaptive disturbance rejection using output redefinition on magnetic bearings

    NASA Astrophysics Data System (ADS)

    Matras, Alex Logan

    Recent work has shown Adaptive Disturbance Rejection to be an effective technique for rejecting forces due to imbalance, runout and base motion disturbances on flywheels supported by magnetic bearings over a large span of frequencies. Often the applicability of some of the adaptive methods is limited because they require certain properties (such as almost-strict positive realness) that magnetic bearings do not possess. In this thesis, one method for adaptive disturbance rejection, called Adaptive Feedforward Cancellation (AFC), is modified to allow for a much wider range of frequencies to be rejected. This is accomplished by redefining the output of the original system to be the output from a reduced order state estimator instead. This can give a new system with an infinite gain margin. Additionally, the adaptation laws for the two disturbance rejection gains are slightly modified so that each adapts to a different signal in order to provide the best performance. A detailed model of a magnetic bearing is developed and computer simulations based on that model are performed to give an initial test of the new control law. A state-of-the-art magnetic bearing setup is then developed and used to implement the new control laws and determine their effectiveness. The results are successful and validate the new ideas that are presented.

  6. Modern warfare as a significant form of zoogeomorphic disturbance upon the landscape

    NASA Astrophysics Data System (ADS)

    Hupy, Joseph P.; Koehler, Thomas

    2012-07-01

    The damage exerted by warfare on the physical landscape is one, of many, anthropogenic impacts upon the environment. Bombturbation is a term that describes the impacts of explosive munitions upon the landscape. Bombturbation, like many other forms of zoogeomorphology, is a disruptive force, capable of moving large amounts of sediments, and denuding landscapes to the point where changes in micro and mesotopography have long-term implications. The long term implication of bombturbative actions depends on the type and duration of explosive device that rendered the disturbance, and the geographic context of the landscape disturbed; i.e. cultural and physical factors. Recovery from bombturbative activity, in the context of this research, is measured by vegetative regrowth and soil development in cratered disturbances. A comparison and contrast between the two battlefields of Verdun, France and Khe Sanh, Vietnam show that bombturbative actions have significantly altered the topography at each location, thus influencing surface runoff and processes of soil development. Principals of the Runge pedogenic model, or the energy of water moving through the soil profile, best explain how the varying climate and parent material at each location influence post disturbance soil development rates. Whereas the data collected at Verdun suggest that explosive munitions have put that landscape on diverging path of development, thus rendering it much different post-disturbance landscape, Khe Sanh displays much different recovery patterns. Preliminary research at Khe Sanh indicates that reforestation and soil development following disturbance are not so much influenced by bombturbative patterns as land use activities in the area of study.

  7. Impact of Environmental and Disturbance Variables on Avian Community Structure along a Gradient of Urbanization in Jamshedpur, India

    PubMed Central

    Verma, Sushant Kumar; Murmu, Thakur Das

    2015-01-01

    Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583

  8. The Flora Mission for Ecosystem Composition, Disturbance and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.

    2005-01-01

    Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.

  9. Coordinated path following of multiple underacutated marine surface vehicles along one curve.

    PubMed

    Liu, Lu; Wang, Dan; Peng, Zhouhua

    2016-09-01

    This paper investigates the coordinated path following problem for a fleet of underactuated marine surface vehicles (MSVs) along one curve. The dedicated control design is divided into two tasks. One is to steer individual underactuated MSV to track the given spatial path, and the other is to force the vehicles dispersed on a parameterized path subject to the constraints of a communication network. Specifically, a robust individual path following controller is developed based on a line-of-sight (LOS) guidance law and a reduced-order extended state observer (ESO). The vehicle sideslip angle due to environmental disturbances can be exactly identified. Then, the vehicle coordination is achieved by a path variable containment approach, under which the path variables are evenly dispersed between two virtual leaders. Another reduced-order ESO is developed to identify the composite disturbance related to the speed of virtual leaders and neighboring vehicles. The proposed coordination design is distributed since the reference speed does not need to be known by all vehicles as a priori. The input-to-state stability of the closed-loop network system is established via cascade theory. Simulation results demonstrate the effectiveness of the proposed design method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Microsurgical Decompression of Inferior Alveolar Nerve After Endodontic Treatment Complications.

    PubMed

    Bianchi, Bernardo; Ferri, Andrea; Varazzani, Andrea; Bergonzani, Michela; Sesenna, Enrico

    2017-07-01

    Iatrogenic injury in oral surgery is the most frequent cause of sensory disturbance in the distribution of the inferior alveolar nerve (IAN) and mental nerve.Inferior alveolar nerve damage can occur during third molar extraction, implant location, orthognathic surgery, preprosthetic surgery, salivary gland surgery, local anesthetic injections or during the resection of benign or malignant tumors.Injuries to the IAN can be caused also by endodontic treatment of mandibular molars and premolars when filling material is forced into the tooth and mandibular canal.The sensory disturbances that could follow a damage of the IAN could be hypoesthesia, dysesthesia, hyperesthesia, anesthesia, and sometimes a painful anesthesia that strike ipsilateral lower lip, chin, and teeth. These can undermine life quality by affecting speech, chewing, and social interaction.Treatment of these complications is sometimes difficult and could consist in observation or in surgical decompression of the involved nerve to relieve the patient's symptoms and improve sensory recovery. The most debated points are the timing of intervention and the effective role of decompression in clinical outcome-improvement.The purpose of this article is to show authors' experience with 2 patients treated with microsurgical nerve decompression to remove endodontic material from the mandibular canal and providing also a comprehensive review of the literature.

  11. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    PubMed

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a soil bacterial community to disturbance. The resultant postdisturbance bacterial community composition dynamics and functionality were analyzed. The paper demonstrates the relatedness of community structure and stability under cultivation conditions prevalent in an arid area under irrigation with water of different qualities. The use of common agricultural practices to demonstrate these features has not been described before. The combination of a fundamental theoretical issue in ecology with common and concerning disturbances caused by agricultural practice makes this study unique. Furthermore, the results of the present study have applicable importance regarding soil conservation, as it enables a better characterization and monitoring of stressed soil bacterial communities and possible intervention to reduce the stress. It will also be of valued interest in coming years, as fresh water scarcity and the use of alternative water sources are expected to rise globally. Copyright © 2018 American Society for Microbiology.

  12. Visual disturbances in advanced cancer patients: clinical observations.

    PubMed

    Saita, L; Polastri, D; De Conno, F

    1999-03-01

    Visual disturbances in advanced cancer patients are very rarely signaled, evaluated, or adequately treated. The main causes of sight disturbances are primary eye tumors, ocular metastases, and some paraneoplastic syndromes. Sight alteration can also be associated with asthenia, fatigue, anemia, and hypovitaminosis. These symptoms can be monocular or binocular, and their gravity and evolution can vary. Based on a survey of 156 patients, we estimate the prevalence of visual disturbances to be 12% in advanced cancer patients.

  13. Using the risk-disturbance hypothesis to assess the relative effects of human disturbance and predation risk on foraging American Oystercatchers

    USGS Publications Warehouse

    Peters, K.A.; Otis, D.L.

    2005-01-01

    The risk-disturbance hypothesis asserts that animals perceive human disturbance similar to nonlethal predation stimuli, and exhibit comparable responses in the form of optimization tradeoffs. However, few studies have examined how natural predation risk factors interact with human-disturbance stimuli to elicit such responses. We observed American Oystercatcher (Haematopus palliatus) vigilance behavior from September-December 2002 on the Cape Romain National Wildlife Refuge, South Carolina. A set of models was constructed based on 340 focal-animal samples and models revealed relationships between vigilance behavior, predator density, and boat activity. Oystercatchers increased vigilance in response to aerial predators, particularly late in the season when predator species composition was dominated by Northern Harriers (Circus cyaneus). At a broader temporal scale, oystercatchers exhibited the highest vigilance rates during simultaneous peaks in boating disturbance and Osprey (Pandion haliaetus) activity. Due to this temporal overlap of stimuli, it is difficult to interpret what may have been driving the observed increased in vigilance. Foraging rates appeared to be primarily driven by habitat and tidal stage indicating that time lost to vigilance did not effectively reduce intake. Taken together, these findings provide some support for the risk-disturbance hypothesis, underscore the sensitivity of disturbance studies to temporal scale, and draw attention to the potential confounding effects of natural predation risk. ?? The Cooper Ornithological Society 2005.

  14. Dynamics and linear stability of thermocapillary spreading films on homogeneous and micropatterned surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey Michael

    The recent focus on microfluidic devices has generated substantial interest in small-scale transport phenomena. Because the surface to volume ratio scales inversely with the characteristic length scale, surface forces dominate in microscale systems. In particular, these forces can be manipulated to regulate the motion of thin liquid films. The dynamics and stability of thermocapillary spreading films are theoretically investigated in this dissertation for flow on homogeneous and chemically or topographically patterned substrates. Because the governing equations for spreading films driven by other forces are analogous, the approach and results are valid for general lubrication flows. Experiments have shown that films spreading on homogeneous substrates can undergo a flow transition from a uniform front at the advancing solid-liquid-vapor contact line to an array of parallel rivulets. This instability is investigated via a non-modal, transient analysis because the relevant linearized disturbance operators for spatially inhomogeneous thin films are nonnormal. Stability results for three different contact line models are compared. This investigation of thermocapillary driven spreading is also pursued in the context of characterizing a novel, open-architecture microfluidic device based on flow confinement to completely wetting microstripes through chemical micropatterning of the substrate. The resulting lateral curvature of the fluid significantly influences the dynamics of the liquid. Applied to the dip coating of these patterned substrates, hydrodynamic scaling arguments are used to derive a replacement for the classical Landau-Levich result for homogeneous substrates. Thermocapillary flow along wetting microstripes is then characterized. The lateral curvature modifies the expected spreading velocity and film profile and also suppresses the capillary ridge and instability observed at the advancing contact line on homogeneous surfaces. In addition, a lubrication-based model is derived to quantify the significant effects of lateral film curvature and fluid confinement on the transverse diffusive broadening in two microstreams merging at a ⋎ -junction. Finally, the analysis is extended to lubrication flow over chemically uniform but topographically patterned substrates. A transient analysis is employed to determine the evolution of disturbances to the capillary ridges induced by the substrate topography.

  15. Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kenneth A.; Grant, Glenn J.; Darsell, Jens T.

    Maintaining consistent tool depth relative to the part surface is a critical requirement for many Friction stir processing (FSP) applications. Force control is often used with the goal of obtaining a constant weld depth. When force control is used, if weld temperature decreases, flow stress increases and the tool is pushed up. If weld temperature increases, flow stress decreases and the tool dives. These variations in tool depth and weld temperature cause various types of weld defects. Robust temperature control for FSP maintains a commanded temperature through control of the spindle axis only. Robust temperature control and force control aremore » completely decoupled in control logic and machine motion. This results in stable temperature, force and tool depth despite the presence of geometric and thermal disturbances. Performance of this control method is presented for various weld paths and alloy systems.« less

  16. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential.

    PubMed

    Glaser, T A; Mukkada, A J

    1992-03-01

    Amastigotes of Leishmania donovani develop and multiply within the acidic phagolysosomes of mammalian macrophages. Isolated amastigotes are acidophilic; they catabolize substrates and synthesize macromolecules optimally at pH 5.5. Substrate transport in amastigotes has not been characterized. Here we show that amastigotes exhibit an uphill transport of proline (active transport) with an acid pH optimum (pH 5.5). It is dependent upon metabolic energy and is driven by proton motive force. Agents which selectively disturb the component forces of proton motive force, such as carbonyl cyanide chlorophenylhydrazone, nigericin and valinomycin, inhibit proline transport. Transport is sensitive to dicyclohexylcarbodiimide and insensitive to ouabain, demonstrating the involvement of a proton ATPase in the maintenance of proton motive force. It is suggested that the plasma membrane pH gradient probably makes the greatest contribution to proton motive force that drives substrate transport in the amastigote stage.

  17. The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei

    2017-11-01

    In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.

  18. Final Environmental Assessment for National Air & Space Intelligence Center and US Air Force School of Aerospace Medicine Field Training Activities at Wright-Patterson Air Force Base, Ohio

    DTIC Science & Technology

    2011-04-14

    characteristics in many locations and consequently most of the base has been mapped as disturbed urban land complexes. Major soil complexes represented...at WPAFB include: Warsaw-Fill land complex, Sloan-Fill land complex, Miamian- Urban land complex, Fox- Urban land complex, Linwood Muck, Westland- Urban ...land complex, and Warsaw- Urban land complex. 3.6.1 Proposed Action The project area for the alternative includes approximately 3.7 acres of property

  19. Heat transfer in aeropropulsion systems

    NASA Astrophysics Data System (ADS)

    Simoneau, R. J.

    1985-07-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  20. Applying PWM to control overcurrents at unbalanced faults of force-commutated VSCs used as static var compensators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Y.; Ekstroem, A.

    1997-01-01

    This study is devoted to investigating the possibility of controlling the overcurrent of a forced-commutated voltage source converter (VSC) by PWM when the ac system is undergoing large unbalanced disturbance. The converter is supposed to be used as a static var compensator at a high power level. A novel control strategy is proposed for controlling the reactive current and the dc side voltage independently. Digital simulation results are presented and compared with the results by using just the reactive current control with fundamental switching frequency.

  1. Heat transfer in aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1985-01-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  2. Disturbances of rod threshold forced by briefly exposed luminous lines, edges, disks and annuli

    PubMed Central

    Hallett, P. E.

    1971-01-01

    1. When the dark-adapted eye is exposed to a brief duration (2 msec) luminous line the resulting threshold disturbance is much sharper (decay constant of ca. 10 min arc) than would be expected in a system which is known to integrate the effects of light quanta over a distance of 1 deg or so. 2. When the forcing input is a pair of brief duration parallel luminous lines the threshold disturbance falls off sharply at the outsides of the pattern but on the inside a considerable spread of threshold-raising effects may occur unless the lines are sufficiently far apart. 3. The threshold disturbance due to a briefly exposed edge shows an overshoot reminiscent of `lateral inhibition'. 4. If the threshold is measured at the centre of a black disk presented in a briefly lit surround then (a) the dependence of threshold on time interval between test and surround suggests that the threshold elevation is due to a non-optical effect which is not `metacontrast'; (b) the dependence of threshold on black disk diameter is consistent with the notion that the spatial threshold disturbance is progressively sharpened as the separation of luminous edges increases. 5. If the threshold is measured at the centre of briefly exposed luminous disks of various diameters one obtains the same evidence for an `antagonistic centre-surround' system as that produced by other workers (e.g. Westheimer, 1965) for the steadily light-adapted eye. 6. The previous paper (Hallett, 1971) showed that brief illumination of the otherwise dark-adapted eye can rapidly and substantially change the extent of spatial integration. The present paper shows that brief illumination leads to substantial `inhibitory' effects. 7. Earlier approaches are reviewed: (a) the linear system signal/noise theory of the time course of threshold disturbances (Hallett, 1969b) is illustrated by the case of a small subtense flash superimposed on a large oscillatory background; (b) the spatial weighting functions of some other authors are given. 8. A possible non-linear model is briefly described: the line weighting function for the receptive field centre is taken to be a single Gaussian, as is customary, but the line weighting function for the inhibitory surround is bimodal. PMID:5145728

  3. The Scintillation Prediction Observations Research Task (SPORT): an International Science Mission Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Fry, Craig; hide

    2017-01-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat mission to address the compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at a single site, within a single longitude sector, from Jicamarca, Peru. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to enhance understanding between geography and magnetic geometry. SPORT is an international partnership between National Aeronautics and Space Administration (NASA), the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA), and encouraged by U.S. Southern Command. This talk will present an overview of the SPORT mission, observation strategy, and science objectives to improve predictions of ionospheric disturbances that affect radio propagation of telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator.

  4. Disturbance observer based active and adaptive synchronization of energy resource chaotic system.

    PubMed

    Wei, Wei; Wang, Meng; Li, Donghai; Zuo, Min; Wang, Xiaoyi

    2016-11-01

    In this paper, synchronization of a three-dimensional energy resource chaotic system is considered. For the sake of achieving the synchronization between the drive and response systems, two different nonlinear control approaches, i.e. active control with known parameters and adaptive control with unknown parameters, have been designed. In order to guarantee the transient performance, finite-time boundedness (FTB) and finite-time stability (FTS) are introduced in the design of active control and adaptive control, respectively. Simultaneously, in view of the existence of disturbances, a new disturbance observer is proposed to estimate the disturbance. The conditions of the asymptotic stability for the closed-loop system are obtained. Numerical simulations are provided to illustrate the proposed approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Evidence supporting the need for a common soil monitoring protocol

    Treesearch

    Derrick A. Reeves; Mark D. Coleman; Deborah S. Page-Dumroese

    2013-01-01

    Many public land management agencies monitor forest soils for levels of disturbance related to management activities. Although several soil disturbance monitoring protocols based on visual observation have been developed to assess the amount and types of disturbance caused by forest management, no common method is currently used on National Forest lands in the United...

  6. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats.

    PubMed

    Suttorp, Christiaan M; Xie, Rui; Lundvig, Ditte M S; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C; Wagener, Frank A D T G

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, "fast" and "slow" tooth movers during orthodontic treatment.

  7. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    PubMed Central

    Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402

  8. Uniform stable observer for the disturbance estimation in two renewable energy systems.

    PubMed

    Rubio, José de Jesús; Ochoa, Genaro; Balcazar, Ricardo; Pacheco, Jaime

    2015-09-01

    In this study, an observer for the states and disturbance estimation in two renewable energy systems is introduced. The restrictions of the gains in the proposed observer are found to guarantee its stability and the convergence of its error; furthermore, these results are utilized to obtain a good estimation. The introduced technique is applied for the states and disturbance estimation in a wind turbine and an electric vehicle. The wind turbine has a rotatory tower to catch the incoming air to be transformed in electricity and the electric vehicle has generators connected with its wheels to catch the vehicle movement to be transformed in electricity. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Approaching control for tethered space robot based on disturbance observer using super twisting law

    NASA Astrophysics Data System (ADS)

    Hu, Yongxin; Huang, Panfeng; Meng, Zhongjie; Wang, Dongke; Lu, Yingbo

    2018-05-01

    Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.

  10. A UV LED-based Charge Management System for LISA

    NASA Astrophysics Data System (ADS)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo Janet; Apple, Stephen; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) will be the first space instrument to observe gravitational waves in the millihertz frequency band. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 2.5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics in spacetime. A drag-free control system commands micronewton thrusters to force the spacecraft to fly in formation with the test masses and laser interferometers measure the minute variations in the distance, or light travel time, between these free-falling test masses caused by gravitational waves. The LISA observatory, with a planned launch in the early 2030s, is led by the European Space Agency with significant contributions from NASA. Recently, NASA has initiated strategic investments in key LISA technologies that will likely become U.S. flight hardware contributions to this ground-breaking mission. One of these payload elements is the Charge Management System (CMS), which controls the electric potential of the test masses relative to their housings to reduce spurious force noise acting on the test masses to below the required level. This talk, presented by University of Florida team that leads the CMS development, will describe this vital U.S. contribution to the LISA mission in the context of the envisioned LISA payload architecture and its in-flight sensitivity to gravitational waves.

  11. Threatened and Endangered Species Survey for Patrick Air Force Base, Florida

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Larson, Vickie L.; Hall, Patrice; Hensley, Melissa A.

    1997-01-01

    A review of previous environmental work conducted at Patrick Air Force Base (PAFB) indicated that several threatened, endangered, or species of special concern occurred or had the potential to occur there. This study was implemented to collect more information on protected species at PAFB. A map of landcover types was prepared for PAFB using aerial photography, groundtruthing, and a geographic information system (GIS). Herbaceous vegetation was the most common vegetation type. The second most abundant vegetation type was disturbed shrubs/exotics. The beach and associated dune vegetation comprised 3.2% of the land area, but was the most extensive natural community within PAFB. A few isolated mangrove communities exist along the Banana River. Seventy-seven species of vascular plants occurred on the dunes, including four species listed by state agencies: spider lily (Hymenocallis latifolia), prickly pear cactus (Opuntia stricta), beach star (Remirea maritima), and inkberry (Scaevola plumien). Surveys of other habitats revealed eighty-four species of vascular plants including two state-listed species: spider lily and prickly pear cactus. Many of these areas are dominated by invasive, exotic species, particularly Brazilian pepper (Schinus terebinthifolius) and Australian pine (Casuarina equisetifolia), and native species of open or disturbed sites such as camphorweed (Heterotheca subaxillaris) and beardgrass (Andropogon spp.). Due to the isolation of PAFB from other natural areas, most exotic plant populations on the base are not an immediate threat to intact native plant communities. Dune habitat was surveyed for the southeastem beach mouse (Peromyscus polionotus niveiventris) by quarterly trapping along eight 100 m transects. No beach mice were found. The limited extent of dune habitat, its fragmented condition, and the isolation of PAFB from extant populations of the beach mouse probably accounts for its absence. Surveys of birds on PAFB found an avifauna characteristic of species that occur in the Indian River Lagoon system. Twenty-five species of waterbirds were observed during quarterly surveys on PAFB, including five species listed as species of special concern by the state of Florida: Snowy Egret (Egretta thula), Little Blue Heron (Egretta caerulea), Tricolored Heron (Egretta tricolo4, White Ibis (Eudocimus albus), and Brown Pelican (Pelecanus occidentalis). The Golf Course was used extensively by almost all species of waterbirds on PAFB. Twenty-two species of shorebirds were observed on PAFB. Although no listed species were observed, the potential exists for several protected species of shorebirds to use the beach at PAFB during some parts of the year. The Airfield runways and associated grass areas were important sites at PAFB for loafing and feeding for some shorebirds. Surveys of rooftop nesting by Least Terns (Stema antillarum) on PAFB found a large colony on a rooftop in the PAFB Industrial Area. This colony produced some independent young. Two rooftop Least Tern colonies reported from previous years were inactive during 1996. A small number of Black Skimmers (Rhynchops nigee attempted to nest at the Least Ten colony but were unsuccessful. Surveys for the gopher tortoise (Gopherus polyphemus) revealed burrows and tortoises only at the Waste Study Site; five burrows and three tortoises were observed. No Florida scrub lizards (Sceloporus woodi), eastern indigo snakes (Drymarchon corais couperl), or diamondback terrapins (Malademys terrapin terrapin) were observed. American alligators (Alligator mississippiensis) were observed on the Golf Course and using ditches, ponds, and areas along the Banana River. The amount of dune habitat could be expanded by not mowing areas adjacent to the dunes to allow dune species to colonize and expand. Planting dune species as part of the beach renourishment project will also increase this habitat. Exotic plants dominate several areas on the base and are used by threatened, endangered, and species of special concern. However, the use of native vegetation in landscaping projects throughout the base would improve habitat for wildlife, and invasive, exotic plants should not be used in any horticultural plantings. Water quality of ponds, ditches, and canals is important for waterbirds; it should be maintained and protected from contamination. Nesting Least Terns are sensitive to disturbance; rooftops used for nesting should be protected from disturbance. Monitoring of Least Tern and Black Skimmer nesting should be continued to determine what roofs are being used and whether nesting is successful. Furthermore, based on the large numbers of waterbirds observed on PAFB, continued monitoring of them is recommended.

  12. Resonances arising from hydrodynamic memory in Brownian motion.

    PubMed

    Franosch, Thomas; Grimm, Matthias; Belushkin, Maxim; Mor, Flavio M; Foffi, Giuseppe; Forró, László; Jeney, Sylvia

    2011-10-05

    Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations. This hydrodynamic 'memory' translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin's pioneering experiments on Brownian motion, direct experimental observation of this colour is still elusive. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere's positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors, our results reveal that the particle-fluid-trap system can be considered a nanomechanical resonator in which the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications.

  13. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal

    PubMed Central

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S.; Kaiser, David J.; Goudreau, Sophie; Smargiassi, Audrey

    2016-01-01

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent’s residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise. PMID:27529260

  14. Imaging Ionospheric/Plasmaspheric Disturbances Triggered by the 2017 Total Solar Eclipse with the Very Large Array

    NASA Astrophysics Data System (ADS)

    Helmboldt, Joseph; Schinzel, Frank K.; VLA Low-band Ionosphere and Transient Experiment (VLITE)

    2018-01-01

    Along with many Americans and several other observatories, the Karl G. Jansky Very Large Array (VLA) was observing the Sun before, during, and after the total solar eclipse on 21 August 2017. However, the VLA also simultaneously conducted a unique set of observations aimed at characterizing the effects of the eclipse on Earth’s ionosphere/plasmasphere. While most of the VLA antennas were pointed at the Sun, 12 were looking at the bright radio galaxy M87. These 12 antennas are part of the VLA Low-band Ionosphere and Transient Experiment (VLITE; http://vlite.nrao.edu), a dedicated backend that continuously captures, correlates, and analyzes data in the 320-384 MHz frequency range. In addition to traditional synthesis imaging, VLITE also characterizes fluctuations in ionospheric/plasmaspheric density via measured variations in visibility phases. When observing a bright cosmic source, this can be done with unmatched precision, the equivalent of ~1-10 ppm. To look for ionospheric/plasmaspheric disturbances tied to the eclipse, a specialized spectral decomposition was applied to the M87 VLITE data. This method exploits the fact that disturbed flux tubes within the plasmasphere appear as magnetic eastward-directed waves to the VLA because the plasmasphere is dynamically dominated by co-rotation. The phase speeds of these waves are proportional to distance, allowing for a reconstruction of the electron density gradient as a function of (slant) range and time. The time ranges spanned by the large-scale ionospheric depletion seen within concurrent Global Positioning System (GPS) data as a function of longitude were mapped to the flux tubes imaged with this method using the M87 observations. With the exception of some solar flare-induced fluctuations, the observed disturbances appear confined to this part of the range/time image. This strongly implies the disturbances resulted from the rapid depletion and slower recovery of the ionosphere/plasmasphere system brought on by the eclipse. It should be noted that these disturbances are not apparent within the GPS data, highlighting VLITE as a uniquely capable ionospheric/plasmaspheric disturbance hunter.

  15. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckman, Gregory J.; Scallion, William I.

    2003-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch Mach 6 CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter (approximately 10 inches in length). Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parameters include angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.26 to 3.0 x10^6 per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (Mach 6 CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface acreage thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), holes through the wing from the windward surface to the leeside, deformation of the wing windward surface, and main landing gear door and/or gear deployment. The aerodynamic data were compared to the magnitudes and directions observed in flight, and the heating images were evaluated in terms of the location of the generated disturbances and how these disturbance might relate to the response of discrete gages on the Columbia Orbiter vehicle during entry. The measured aerodynamic increments were generally small in magnitude, as were the flight-derived values during most of the entry. Asymmetric boundary layer transition (ABLT) results were consistent with the flight-derived Shuttle ABLT model, but not with the observed flight trends for STS-107. The partially missing leading edge panel results best matched both the early aerodynamic and heating trends observed in flight. A progressive damage scenario is presented that qualitatively matches the flight observations for the full entry.

  16. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  17. Excitation of flare-induced waves in coronal loops and the effects of radiative cooling

    NASA Astrophysics Data System (ADS)

    Provornikova, Elena; Ofman, Leon; Wang, Tongjiang

    2018-01-01

    EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (∼1 MK) and hot (∼6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1-6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.

  18. Influence of Forest Disturbance on Hydrologic Extremes in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Middleton, R. S.; McDowell, N. G.; Xu, C.; Wilson, C. J.

    2015-12-01

    The Colorado River is one of the most important freshwater rivers in the United States: it provides water supply to more than 30 million people, irrigation to 5.7 million acres of cropland, and produces over 8 billion kilowatt hours of hydroelectric power each year. Our study focuses on changes to hydrological extremes and threshold responses across the Colorado River basin due to forest fires, infestations, and stress-induced tree mortality using a scenario-based approach to estimate forest cover disturbance. Scenarios include static vegetation reductions and dynamic reductions in forest compositions based on three CMIP5 global climate models and one emission scenario (1950-2099). For headwater systems, large intra-year variability exists, indicating the influence of climate on these snowmelt driven basins. Strong seasonality in flow responses are also noted; in the Piedra River higher runoff occurs during freshet under a no-forest condition, with the greatest changes observed for maximum streamflow. Conversely, during the recessional period, flows are lower in scenarios with reduced forest compositions. Low-flows appear to be affected in some basins but not others; for example small headwater systems demonstrate higher low-flows with increased disturbance. Global Climate Model scenarios indicate a range of responses in these basins, characterized by lower peak streamflow but with higher winter flows. This response is influenced by shifts in water, and energy balances associated with a combined response of changing climate and forest cover compositions. Results also clearly show how changes in extreme events are forced by shifts in major water balance parameters (runoff, evapotranspiration, snow water equivalent, and soil moisture) from headwater basins spanning a range of hydrological regimes and ecological environments across the Colorado.

  19. Microbial Communities Are Well Adapted to Disturbances in Energy Input

    PubMed Central

    Vallino, Joseph J.

    2016-01-01

    ABSTRACT Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic “unstable” communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating microbiomes in both host-associated and natural ecosystems. PMID:27822558

  20. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.

    1998-01-01

    This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.

  1. Stream succession: Channel changes after wildfire disturbance

    Treesearch

    Nicholas E. Scheidt

    2006-01-01

    One concept in geomorphology is that vegetation is a fundamental control on sediment and water supplies to streams and, therefore, on downstream fluvial processes and channel morphology. Within this paradigm, wildfire has been implicated as a major driving force behind landscape erosion and changes to stream channels, periodically yielding pulses of sediment from...

  2. Adaptive terminal sliding mode control for hypersonic flight vehicles with strictly lower convex function based nonlinear disturbance observer.

    PubMed

    Wu, Yun-Jie; Zuo, Jing-Xing; Sun, Liang-Hua

    2017-11-01

    In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Control of stationary crossflow modes in swept Hiemenz flows with dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Wang, Zhefu; Wang, Liang; Fu, Song

    2017-09-01

    Sensitivity analyses and non-linear parabolized stability equations are solved to provide a computational assessment of the potential use of a Dielectric Barrier Discharge (DBD) plasma actuator for a prolonging laminar region in swept Hiemenz flow. The derivative of the kinetic energy with respect to the body force is deduced, and its components in different directions are defined as sensitivity functions. The results of sensitivity analyses and non-linear parabolized stability equations both indicate that the introduction of a body force as the plasma actuator at the bottom of a crossflow vortex can mitigate instability to delay flow transition. In addition, the actuator is more effective when placed more upstream until the neutral point. In fact, if the actuator is sufficiently close to the neutral point, it is likely to act as a strong disturbance over-riding the natural disturbance and dominating transition. Different operating voltages of the DBD actuators are tested, resulting in an optimal practice for transition delay. The results demonstrate that plasma actuators offer great potential for transition control.

  4. Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)

    NASA Technical Reports Server (NTRS)

    Barber, T.

    1988-01-01

    A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.

  5. Observations of unusual pre-dawn response of the equatorial F-region during geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Lima, W.; Becker-Guedes, F.; Fagundes, P.; Sahai, Y.; Abalde, J.; Pillat, V.

    It is known that the disturbed solar wind-magnetosphere interactions have important effects on equatorial and low-latitude ionospheric electrodynamics. The response of equatorial ionosphere during storm-time is an important aspect of space weather studies. It has been observed that during geomagnetic disturbances both suppression as well as generation of equatorial spread-F (ESF) or plasma irregularities takes place. However, the mechanism(s) associated with the generation of ESF still needs further investigations. This work reports some unusual events of pre-dawn occurrence of ionospheric F-region satellite traces followed by spread-F and cusp-like spread-F from ionospheric sounding observations carried out by a Canadian Advanced Digital Ionosonde (CADI) localized at Palmas (10.2°, 48.2°W, dip latitude 5.7°S), Brazil during 2002, every 5 minutes. For the present work we have scaled and analyzed the ionospheric sounding data for three events (April 20, September 04 and 08, 2002), which are associated with geomagnetic disturbances. In the events studied, the ionograms show the occurrence of satellite trace followed by cusp-like spread. The cusp like features move up in frequency and height and finally attain the F-layer peak value (foF2) and then disappear. They had duration of about 30 min and always occurred in the early morning hours. Our studies involved seven geomagnetic disturbances as well as quiet days during the year 2002, but only on these three occasions we observed these features. We present and discuss these observations in this paper and suggest possible mechanisms for the occurrence of these unusual features.

  6. Wildfire vs. Agricultural Operations: A Tale of Overprinted Disturbance Regimes

    NASA Astrophysics Data System (ADS)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.; Warrick, J. A.; Hatten, J. A.; Goni, M. A.

    2016-12-01

    Punctuated disturbances, such as wildfire, compete with interdecadal scale changes to land surfaces, such as shifting agricultural practices, resulting in complex trends in the suspended sediment transport dynamics of watersheds. A powerful, though data intensive approach to identifying dominant disturbance regimes is the application of retrospective forensic analysis, whereby time series of major factors potentially affecting watershed expression are investigated. In the test case, a decreasing trend in discharge corrected suspended sediment concentrations was found in the lower Salinas River, California between 1967 and 2011. Event to decadal scale patterns in sediment production in the Salinas River have been found to be largely controlled by antecedent hydrologic conditions, but decreasing suspended sediment concentrations over the last 15 years of the record departed from those expected from hydro-climatic forcing. Sediment production from the mountainous headwaters of the central California Coast Ranges, which are drained in part by the Salinas River, is known to be dominated by the interaction of wildfire and large rainfall/runoff events. However, the decreasing trend in Salinas River suspended sediment concentrations run contrary to increases in the watershed's effective burn area over time. The departure from hydrologic and wildfire forcing on suspended sediment concentration patterns was found to coincide with a rapid conversion of irrigation practices from sprinkler and furrow to subsurface drip irrigation. Changes in agricultural operations appear to have decreased sediment supply to the Salinas River over late 20th to early 21st century; obscuring the influence of wildfire on suspended sediment production.

  7. Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

    PubMed

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A J L; Shea, Steven A; Buijs, Ruud M; Hu, Kun

    2014-07-06

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Investigating Forest Soil Disturbance with Different Timber Harvesting Operations in South Korea

    NASA Astrophysics Data System (ADS)

    Im, Sangjun; Lee, Eunjai; Eu, Song; Han, Sang-Kyun

    2017-04-01

    Forest operation such as timber harvesting can influence to forest environment by displacing soil particles, compacting surface layers, and destroying soil structures. This results in increased surface runoff and associated soil erosion during rainy season, due to soil disturbance. The extent of soil disturbance depends on the skidding/yarding method, types of machine used, and soil types. In South Korea, cut-to-length (CTL) operation is traditionally used by excavator with grapple in most areas. Recently, whole-tree (WT) harvesting system by swing yarder has gained considerable attention as an alternative traditional extraction method. The objectives of this study were to describe the effects of two different harvesting methods (CTL and WT) on soil disturbance and soil physical properties. After the CTL observation, we found that severe disturbed soils and compacted area were more than WT. Rutting was influenced more than 50% of the deep disturbance classes by the uphill climbing and downhill extraction method, while exposing bare soil was most disturbance in WT operation. Soil physical properties were influenced considerably by the number of excavator passes and slash residual classes in both units. The results from the study would be useful for understanding soil disturbance influence by timber harvesting in Korea. But, more detailed observations are needed to accurately estimate erosion rates and sediment delivery associated with forest management and operation. Acknowledgements. This study was carried out with the support of 'R&D Program for Forestry Technology (Project No. S211316L020110)' provided by Korea Forest Service.

  9. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  10. ELF/VLF wave disturbances detected by the DEMETER satellite over the HAARP transmitter

    NASA Astrophysics Data System (ADS)

    Titova, Elena; Demekhov, Andrei; Parrot, Michel; Mogilevsky, Mikhail; Mochalov, Alexey; Pashin, Anatoly

    We report observations of electromagnetic the ELF/VLF wave disturbances by the DEMETER satellite (670 km altitude) overflying the HAARP heating facility (62.39(°) N, 145.15(°) W, L = 4.9). The HAARP HF transmitter operated at the maximum available power of 3.6 MW, O-mode polarization, and the beam directed towards the magnetic zenith. ELF/VLF waves caused by the HAARP heating are detected by the DEMETER satellite when the HF radio wave frequency was close to the critical frequency (foF2) of the ionospheric F2 layer but below it. ELF/VLF wave disturbances observed above the HAARP transmitter were detected by electrical antennas in an area with characteristic size 10 (2) km. We analyze amplitude and polarization spectra of the ELF disturbances and compare them with the characteristics of natural ELF hiss above HAARP. The VLF wave disturbances in the topside ionosphere above the HAARP transmitter were detected in the frequency ranges 8-17 kHz and 15-18 kHz which are close to the lower hybrid resonance frequency f _LHR in the heating region and its second harmonic (2f _LHR), respectively. In the case where the HAARP HF power was modulated, the detected VLF waves were also modulated with the same frequency whereas in the ELF frequency range the modulation period of the HAARP power was not observed. Possible mechanisms of generation of the ELF/VLF disturbances produced by the HAARP transmitter in the topside ionosphere are discussed.

  11. Quantum discord is Bohr’s notion of non-mechanical disturbance introduced to counter the Einstein–Podolsky–Rosen argument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiseman, Howard M., E-mail: H.Wiseman@Griffith.edu.au

    2013-11-15

    By rigorously formalizing the Einstein–Podolsky–Rosen (EPR) argument, and Bohr’s reply, one can appreciate that both arguments were technically correct. Their opposed conclusions about the completeness of quantum mechanics hinged upon an explicit difference in their criteria for when a measurement on Alice’s system can be regarded as not disturbing Bob’s system. The EPR criteria allow their conclusion–incompleteness–to be reached by establishing the physical reality of just a single observable q (not of both q and its conjugate observable p), but I show that Bohr’s definition of disturbance prevents the EPR chain of reasoning from establishing even this. Moreover, I showmore » that Bohr’s definition is intimately related to the asymmetric concept of quantum discord from quantum information theory: if and only if the joint state has no Alice-discord, she can measure any observable without disturbing (in Bohr’s sense) Bob’s system. Discord can be present even when systems are unentangled, and this has implications for our understanding of the historical development of notions of quantum nonlocality. -- Highlights: •Both the EPR argument, and Bohr’s reply, were technically correct. •Their opposed conclusions came from different criteria for disturbance. •Bohr’s criterion works against even the simplified (one-variable) EPR argument. •Bohr’s criterion for disturbance is intimately related to quantum discord. •This illuminates the historical development of notions of quantum nonlocality.« less

  12. Using Direct Observation to Assist in Eligibility Decisions and Intervention Planning: The Scales for Assessing Emotional Disturbance-2 Observation Form

    ERIC Educational Resources Information Center

    Nordness, Philip D.; Epstein, Michael H.; Cullinan, Douglas

    2013-01-01

    A key issue in using the federal definition of emotional disturbance (ED) is the challenge of measuring five characteristics of ED (Epstein, Nordness, Cullinan, & Hertzog, 2002). Stated briefly, these five characteristics include: (1) an inability to learn; (2) relationship problems; (3) inappropriate behavior; (4) unhappiness or depression;…

  13. Magnetic storm inflation in the evening sector.

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.

    1973-01-01

    Analysis of the different behavior of a double magnetic disturbance in November 1971, as observed by Explorer 45, and in December 1971, as shown by ground level magnetic observations. The time sequence of magnetic storm inflation in the evening quadrant of the magnetosphere, as determined by both series of observations, is used as the criterion of the analysis. Particular attention is given to the various phases of proton penetration into the evening quadrant of the magnetosphere during the magnetic disturbance.

  14. Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinert, Marian; Kratz, Marita; Jones, David B.

    2014-10-15

    In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performancemore » under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.« less

  15. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  16. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  17. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  18. Effects of climate change on ecological disturbance in the northern Rockies

    USGS Publications Warehouse

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.

  19. Characterization and modeling of SET/RESET cycling induced read-disturb failure time degradation in a resistive switching memory

    NASA Astrophysics Data System (ADS)

    Su, Po-Cheng; Hsu, Chun-Chi; Du, Sin-I.; Wang, Tahui

    2017-12-01

    Read operation induced disturbance in SET-state in a tungsten oxide resistive switching memory is investigated. We observe that the reduction of oxygen vacancy density during read-disturb follows power-law dependence on cumulative read-disturb time. Our study shows that the SET-state read-disturb immunity progressively degrades by orders of magnitude as SET/RESET cycle number increases. To explore the cause of the read-disturb degradation, we perform a constant voltage stress to emulate high-field stress effects in SET/RESET cycling. We find that the read-disturb failure time degradation is attributed to high-field stress-generated oxide traps. Since the stress-generated traps may substitute for some of oxygen vacancies in forming conductive percolation paths in a switching dielectric, a stressed cell has a reduced oxygen vacancy density in SET-state, which in turn results in a shorter read-disturb failure time. We develop an analytical read-disturb degradation model including both cycling induced oxide trap creation and read-disturb induced oxygen vacancy reduction. Our model can well reproduce the measured read-disturb failure time degradation in a cycled cell without using fitting parameters.

  20. Wave Driven Disturbances of the Thermal Structure in the Polar Winter Upper Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Greer, Katelynn R.

    The polar winter middle atmosphere is a dynamically active region that is driven primarily by wave activity. Planetary waves intermittently disturbed the region at different levels and the most spectacular type of disturbance is a major Sudden Stratospheric Warming (SSW). However, other types of extreme disturbances occur on a more frequent, intraseasonal basis. One such disturbance is a synoptic-scale "weather event" observed in lidar and rocket soundings, soundings from the TIMED/SABER instrument and UK Meteorological Office (MetO) assimilated data. These disturbances are most easily identified near 42 km where temperatures are elevated over baseline conditions by a remarkable 50 K and an associated cooling is observed near 75 km. As these disturbances have a coupled vertical structure extending into the lower mesosphere, they are termed Upper Stratospheric/Lower Mesospheric (USLM) disturbances. This research begins with description of the phenomenology of USLM events in observations and the assimilated data set MetO, develops a description of the dynamics responsible for their development and places them in the context of the family of polar winter middle atmospheric disturbances. Climatologies indicates that USLM disturbances are commonly occurring polar wintertime disturbances of the middle atmosphere, have a remarkably repeating thermal structure, are located on the East side of the polar low and are related planetary wave activity. Using the same methodology for identifying USLM events and building climatologies of these events, the Whole Atmosphere Community Climate Model WACCM version 4 is established to spontaneously and internally generate USLM disturbances. Planetary waves are seen to break at a level just above the stratopause and convergence of the EP-flux vector is occurring in this region, decelerating the eastward zonal-mean wind and inducing ageostrophic vertical motion to maintain mass continuity. The descending air increases the horizontal temperature gradient at 2 hPa and is responsible for the stratopause warming. Embedded in this planetary wave breaking process is baroclinic instability, as indicated by the Charney-Stern criteria and an EP-flux analysis decomposed by planetary and synoptic-scale waves. It is recognized that USLM events are part of a family of disturbances that occur in the polar winter middle atmosphere which have the potential to impact the entire atmospheric column. Relationships between USLM events, minor SSWs and major SSWs are examined and displayed through a Venn diagram which looked for events that were linked to each other (or not) by temporal evolution of the polar vortex within 14 days. Critically, every identified major SSW (in both MetO and WACCM) is preceded by a USLM disturbance, and the baroclinic instability that is embedded in the planetary wave breaking of USLM disturbances mark significant disruption to the middle atmosphere, which may aid in the forecast of major SSWs. This leads to the proposal of new dynamics based definitions of minor and major SSWs.

  1. Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history

    NASA Astrophysics Data System (ADS)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2017-09-01

    The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re=100 , considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as Ω -type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.

  2. Identifying drought response of semi-arid aeolian systems using near-surface luminescence profiles and changepoint analysis, Nebraska Sandhills.

    NASA Astrophysics Data System (ADS)

    Buckland, Catherine; Bailey, Richard; Thomas, David

    2017-04-01

    Two billion people living in drylands are affected by land degradation. Sediment erosion by wind and water removes fertile soil and destabilises landscapes. Vegetation disturbance is a key driver of dryland erosion caused by both natural and human forcings: drought, fire, land use, grazing pressure. A quantified understanding of vegetation cover sensitivities and resultant surface change to forcing factors is needed if the vegetation and landscape response to future climate change and human pressure are to be better predicted. Using quartz luminescence dating and statistical changepoint analysis (Killick & Eckley, 2014) this study demonstrates the ability to identify step-changes in depositional age of near-surface sediments. Lx/Tx luminescence profiles coupled with statistical analysis show the use of near-surface sediments in providing a high-resolution record of recent system response and aeolian system thresholds. This research determines how the environment has recorded and retained sedimentary evidence of drought response and land use disturbances over the last two hundred years across both individual landforms and the wider Nebraska Sandhills. Identifying surface deposition and comparing with records of climate, fire and land use changes allows us to assess the sensitivity and stability of the surface sediment to a range of forcing factors. Killick, R and Eckley, IA. (2014) "changepoint: An R Package for Changepoint Analysis." Journal of Statistical Software, (58) 1-19.

  3. Experimental investigation of the stability of a moving radial liquid sheet

    NASA Astrophysics Data System (ADS)

    Paramati, Manjula; Tirumkudulu, Mahesh

    2013-11-01

    Experiments were conducted to understand the stability of moving radial liquid sheets formed by the head-on impingement of two co-linear water jets using laser induced fluorescence technique (LIF). Acoustic sinusoidal fluctuations were introduced at the jet impingement point and we measured the displacement of the center line of the liquid sheet (sinuous mode) and the thickness variation (varicose mode) of the disturbed liquid sheet. Our experiments show that the sinuous disturbances grow as they are convected outward in the radial direction even in the smooth regime (We < 800). In the absence of the acoustic forcing, the measured thickness has the expected 1/r dependence. Interestingly, we were unable to detect any thickness variation about the pre-stimulus values in the presence of acoustic forcing suggesting that the variation in the thickness is lower than the resolution of the technique (+/- 1 μm). The growth rates of the sinuous mode determined from the wave envelope matches with the prediction of a recent theory by Tirumkudulu and Paramati (Communicated to Phys. Of Fluids, 2013) which accounts for the inertia of the liquid phase and the surface tension force in a radial liquid sheet while neglecting the inertial effects due to the surrounding gas phase. The authors acknowledge the financial assistance from Indo-French Center for Pro- motion of Advanced Research and also Indian institute of technology Bombay.

  4. Data Series Subtraction with Unknown and Unmodeled Background Noise

    NASA Technical Reports Server (NTRS)

    Vitale, Stefano; Congedo, Giuseppe; Dolesi, Rita; Ferroni, Valerio; Hueller, Mauro; Vetrugno, Daniele; Weber, William Joseph; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; hide

    2014-01-01

    LISA Pathfinder (LPF), the precursor mission to a gravitational wave observatory of the European Space Agency, will measure the degree to which two test masses can be put into free fall, aiming to demonstrate a suppression of disturbance forces corresponding to a residual relative acceleration with a power spectral density (PSD) below (30 fm/sq s/Hz)(sup 2) around 1 mHz. In LPF data analysis, the disturbance forces are obtained as the difference between the acceleration data and a linear combination of other measured data series. In many circumstances, the coefficients for this linear combination are obtained by fitting these data series to the acceleration, and the disturbance forces appear then as the data series of the residuals of the fit. Thus the background noise or, more precisely, its PSD, whose knowledge is needed to build up the likelihood function in ordinary maximum likelihood fitting, is here unknown, and its estimate constitutes instead one of the goals of the fit. In this paper we present a fitting method that does not require the knowledge of the PSD of the background noise. The method is based on the analytical marginalization of the posterior parameter probability density with respect to the background noise PSD, and returns an estimate both for the fitting parameters and for the PSD. We show that both these estimates are unbiased, and that, when using averaged Welchs periodograms for the residuals, the estimate of the PSD is consistent, as its error tends to zero with the inverse square root of the number of averaged periodograms. Additionally, we find that the method is equivalent to some implementations of iteratively reweighted least-squares fitting. We have tested the method both on simulated data of known PSD and on data from several experiments performed with the LISA Pathfinder end-to-end mission simulator.

  5. Comet Halley: The Curtis Schmidts-Isla de Pascua observations

    NASA Technical Reports Server (NTRS)

    Miller, Freeman D.; Liller, William

    1986-01-01

    Halley's comet plasma tail disturbances and attendant tail phenomena were observed. Nearly simultaneous exposures with two telescopes serve to correlate information obtained with the two instruments. Photographs of 14 pre-Halley comets taken on 54 nights were examined with a view to cross-interpretation of phenomena seen in Halley with the earlier comets, as recorded on a homogenous collection of plates taken with the same instrument. The tail of Halley was highly active. This contrasts sharply with pre-Halley comets where undisturbed tails are the rule. During March and April, disturbances appeared in the tail of Halley at an average of 1 new distrubance every 3.7 days. It is considered that 10 of the 11 observed disturbances had common characteristics which allow them to be characterized as disconnections.

  6. Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi

    A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.

  7. Geomagnetic transmission disturbances and heavy-ion fluences observed in low Earth orbit during the solar energetic particle events of October 1989.

    PubMed

    Boberg, P R; Tylka, A J; Adams, J H; Beahm, L P; Fluckiger, E O; Kleis, T; Kobel, E

    1996-01-01

    The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagnetic transmission by tracing particles through the combination of the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 degrees inclination space station orbit.

  8. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.

    PubMed

    Niu, Jie; Yang, Qianqian; Chen, Guangtao; Song, Rong

    2017-07-01

    This paper introduces a cable-driven robot for upper-limb rehabilitation. Kinematic and dynamic of this rehabilitation robot is analyzed. A sliding mode controller combined with a nonlinear disturbance observer is proposed to control this robot in the presence of disturbances. Simulation is carried out to prove the effectiveness of the proposed control scheme, and the results of the proposed controller is compared with a PID controller and a traditional sliding mode controller. Results show that the proposed controller can effectively improve the tracking performance as compared with the other two controllers and cause lower chattering as compared with a traditional sliding mode controller.

  9. Measurements of Aerodynamic Damping in the MIT Transonic Rotor

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1981-01-01

    A method was developed and demonstrated for the direct measurement of aerodynamic forcing and aerodynamic damping of a transonic compressor. The method is based on the inverse solution of the structural dynamic equations of motion of the blade disk system in order to determine the forces acting on the system. The disturbing and damping forces acting on a given blade are determined if the equations of motion are expressed in individual blade coordinates. If the structural dynamic equations are transformed to multiblade coordinates, the damping can be measured for blade disk modes, and related to a reduced frequency and interblade phase angle. In order to measure the aerodynamic damping in this way, the free response to a known excitation is studied.

  10. Crew activity and motion effects on the space station

    NASA Technical Reports Server (NTRS)

    Rochon, Brian V.; Scheer, Steven A.

    1987-01-01

    Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.

  11. Notes on aerodynamic forces on airship hulls

    NASA Technical Reports Server (NTRS)

    Tuckerman, L B

    1923-01-01

    For a first approximation the air flow around the airship hull is assumed to obey the laws of perfect (i.e. free from viscosity) incompressible fluid. The flow is further assumed to be free from vortices (or rotational motion of the fluid). These assumptions lead to very great simplifications of the formulae used but necessarily imply an imperfect picture of the actual conditions. The value of the results depends therefore upon the magnitude of the forces produced by the disturbances in the flow caused by viscosity with the consequent production of vortices in the fluid. If these are small in comparison with the forces due to the assumed irrotational perfect fluid flow the results will give a good picture of the actual conditions of an airship in flight.

  12. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  13. Optically induced melting of colloidal crystals and their recrystallization.

    PubMed

    Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi

    2007-04-15

    Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.

  14. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Treesearch

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  15. Adding value to the FIA inventory: combining FIA data and satellite observations to estimate forest disturbance

    Treesearch

    Todd A. Schroeder; Gretchen G. Moisen; Sean P. Healey; Warren B. Cohen

    2012-01-01

    In addition to being one of the primary drivers of the net terrestrial carbon budget, forest disturbance also plays a critical role in regulating the surface energy balance, promoting biodiversity, and creating wildlife habitat. With climate change and an ever growing human population poised to alter the frequency and severity of disturbance regimes across the globe,...

  16. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach.

    PubMed

    Yang, Jun; Zolotas, Argyrios; Chen, Wen-Hua; Michail, Konstantinos; Li, Shihua

    2011-07-01

    Robust control of a class of uncertain systems that have disturbances and uncertainties not satisfying "matching" condition is investigated in this paper via a disturbance observer based control (DOBC) approach. In the context of this paper, "matched" disturbances/uncertainties stand for the disturbances/uncertainties entering the system through the same channels as control inputs. By properly designing a disturbance compensation gain, a novel composite controller is proposed to counteract the "mismatched" lumped disturbances from the output channels. The proposed method significantly extends the applicability of the DOBC methods. Rigorous stability analysis of the closed-loop system with the proposed method is established under mild assumptions. The proposed method is applied to a nonlinear MAGnetic LEViation (MAGLEV) suspension system. Simulation shows that compared to the widely used integral control method, the proposed method provides significantly improved disturbance rejection and robustness against load variation. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A novel active disturbance rejection based tracking design for laser system with quadrant photodetector

    NASA Astrophysics Data System (ADS)

    Manojlović, Stojadin M.; Barbarić, Žarko P.; Mitrović, Srđan T.

    2015-06-01

    A new tracking design for laser systems with different arrangements of a quadrant photodetector, based on the principle of active disturbance rejection control is suggested. The detailed models of quadrant photodetector with standard add-subtract, difference-over-sum and diagonal-difference-over-sum algorithms for displacement signals are included in the control loop. Target moving, non-linearity of a photodetector, parameter perturbations and exterior disturbances are treated as a total disturbance. Active disturbance rejection controllers with linear extended state observers for total disturbance estimation and rejection are designed. Proposed methods are analysed in frequency domain to quantify their stability characteristics and disturbance rejection performances. It is shown through simulations, that tracking errors are effectively compensated, providing the laser spot positioning in the area near the centre of quadrant photodetector where the mentioned algorithms have the highest sensitivity, which provides tracking of the manoeuvring targets with high accuracy.

  18. Reconstructing disturbances and their biogeochemical consequences over multiple timescales

    USGS Publications Warehouse

    McLauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; McGlone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A.H.; Urrego, Dunia H.; Wardle, David A.; Williams, Christopher J.; Williams, Joseph J.

    2014-01-01

    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.

  19. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    PubMed Central

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies. PMID:27761333

  20. [Effect of trampling disturbance on soil infiltration of biological soil crusts].

    PubMed

    Shi, Ya Fang; Zhao, Yun Ge; Li, Chen Hui; Wang, Shan Shan; Yang, Qiao Yun; Xie, Shen Qi

    2017-10-01

    The effect of trampling disturbance on soil infiltration of biological soil crusts was investigated by using simulated rainfall. The results showed that the trampling disturbance significantly increased soil surface roughness. The increasing extent depended on the disturbance intensity. Soil surface roughness values at 50% disturbance increased by 91% compared with the undisturbed treatment. The runoff was delayed by trampling disturbance. A linear increase in the time of runoff yield was observed along with the increasing disturbance intensity within 20%-50%. The time of runoff yield at 50% disturbance increased by 169.7% compared with the undisturbed treatment. Trampling disturbance increased soil infiltration and consequently decreased the runoff coefficient. The cumulative infiltration amount at 50% disturbance increased by 12.6% compared with the undisturbed treatment. Soil infiltration significant decreased when biocrusts were removed. The cumulative infiltration of the treatment of biocrusts removal decreased by 30.2% compared with the undisturbed treatment. Trampling disturbance did not significantly increase the soil loss when the distur bance intensity was lower than 50%, while the biocrusts removal resulted in 10 times higher in soil erosion modulus. The trampling disturbance of lower than 50% on biocrusts might improve soil infiltration and reduce the risk of runoff, thus might improve the soil moisture without obviously increa sing the soil loss.

Top